WorldWideScience

Sample records for laser compton gamma-ray

  1. Polarized gamma-rays with laser-Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Ohgaki, H.; Noguchi, T.; Sugiyama, S. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  2. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  3. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Barty, Christopher P. J.

    2017-07-11

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  4. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  5. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  6. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    Science.gov (United States)

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  7. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  8. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  9. Gamma-ray Explosion in Multiple Compton Scattering Regime

    CERN Document Server

    Gong, Z; Shou, Y R; Qiao, B; Bulanov, S V; Esirkepov, T Zh; Bulanov, S S; Chen, C E; He, X T; Yan, X Q

    2016-01-01

    Gamma-ray explosion from near critical density (NCD) target irradiated by four symmetrical imploding laser pulses is numerically investigated. With peak intensities about $10^{23}$ W/cm$^2$, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counter-propagating laser, the accelerated electron will be trapped in the optical lattice or the electromagnetic standing waves (SW) created by the coherent overlapping of the laser pulses, and meanwhile emit gamma-ray photon in Multiple Compton Scattering regime, where electron acts as a medium to transfer energy from laser to gamma-ray. The energy conversion rate from laser pulses to gamma-ray can be as high as around 50\\%. It may become one of the most efficient gamma-ray sources in laboratory.

  10. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  11. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  12. Photo-transmutation of {sup 100}Mo to {sup 99}Mo with Laser-Compton Scattering Gamma-ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents a photonuclear transmutation method using laser Compton scattering (LCS) gamma-ray beam. Potential production rate (reaction rate) of 99Mo using the photonuclear (γ,n) reaction is evaluated. Rigorous optimization of the LCS spectrum has also been performed to maximize production of the 99Mo. Cyclotron proton accelerators are used worldwide to produce many short-living medical isotopes. However, few are capable of producing Mo-99 and none are suitable for producing more than a small fraction of the required amounts. More than 90% of the world's demand of 99Mo is sourced from five nuclear reactors. Two of these reactors have already been decommissioned and the rest are more than 45 years old. Relatively short half-life of the parent 99Mo requires continuous re-supply to meet the requirements of medical industry. Therefore, there is an urgent need to produce the 99Mo and 99mTc isotopes by alternative ways. One such alternative is giant dipole resonance (GDR) based photonuclear transmutation of 100Mo to 99Mo. For 99Mo production with the LCS photons using GDR-based (γ,n) reaction, the gamma-ray energy should be around 15 MeV. This study indicates that optimization of LCS spectrum by varying the electron and laser energies within practical limits can enhance the transmutation of Mo-100 to M-99 quite significantly. It has been found that irradiation time should be rather short, e.g., less than 6 hours, to maximize the weekly production of Mo-99 in the GDR-based Mo-99 production facility using the LCS photons. The analysis shows that production of 99Mo using a high-performance LCS facility offers a potentially-promising alternative for the production of 99mTc.

  13. Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity

    CERN Document Server

    Akagi, T; Bonis, J; Chaikovska, I; Chiche, R; Cizeron, R; Cohen, M; Cormier, E; Cornebise, P; Delerue, N; Flaminio, R; Funahashi, S; Jehanno, D; Honda, Y; Labaye, F; Lacroix, M; Marie, R; Miyoshi, S; Nagata, S; Omori, T; Peinaud, Y; Pinard, L; Shimizu, H; Soskov, V; Takahashi, T; Tanaka, R; Terunuma, T; Urakawa, J; Variola, A; Zomer, F

    2011-01-01

    As part of the positron source R&D for future $e^+-e^-$ colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements of the gamma ray flux produced with a such cavity using a pulsed laser is presented here. We demonstrate the production of a flux of 2.7 $\\pm$ 0.2 gamma rays per bunch crossing ($\\sim3\\times10^6$ gammas per second) during the commissioning.

  14. All-optical Compton gamma-ray source

    CERN Document Server

    Phuoc, K Ta; Thaury, C; Malka, V; Tafzi, A; Goddet, J P; Shah, R C; Sebban, S; Rousse, A; 10.1038/nphoton.2012.82

    2013-01-01

    One of the major goals of research for laser-plasma accelerators is the realization of compact sources of femtosecond X-rays. In particular, using the modest electron energies obtained with existing laser systems, Compton scattering a photon beam off a relativistic electron bunch has been proposed as a source of high-energy and high-brightness photons. However, laser-plasma based approaches to Compton scattering have not, to date, produced X-rays above 1 keV. Here, we present a simple and compact scheme for a Compton source based on the combination of a laser-plasma accelerator and a plasma mirror. This approach is used to produce a broadband spectrum of X-rays extending up to hundreds of keV and with a 10,000-fold increase in brightness over Compton X-ray sources based on conventional accelerators. We anticipate that this technique will lead to compact, high-repetition-rate sources of ultrafast (femtosecond), tunable (X- through gamma-ray) and low-divergence (~1 degree) photons from source sizes on the order...

  15. Coded-Aperture Compton Camera for Gamma-Ray Imaging

    Directory of Open Access Journals (Sweden)

    Farber Aaron M.

    2016-01-01

    Full Text Available A novel gamma-ray imaging system is demonstrated, by means of Monte Carlo simulation. Previous designs have used either a coded aperture or Compton scattering system to image a gamma-ray source. By taking advantage of characteristics of each of these systems a new design can be implemented that does not require a pixelated stopping detector. Use of the system is illustrated for a simulated radiation survey in a decontamination and decommissioning operation.

  16. Gamma-ray imaging with compton cameras: recent years development

    CERN Document Server

    Hirasawa, M; Shibata, S; Enomoto, S; Yano, Y

    2002-01-01

    Compton cameras can image the distribution of gamma-ray sources with electronic collimation instead of mechanical collimators. It consists of at least two position sensitive detectors. The first detector measures the position and the recoil electron energy of Compton scattering process and the second detector working in coincidence with the first measures the position of the scattered ray. This camera was proposed in the 1970s and since then has been improved in moderate pace until recently. This paper reviews the recent years development on Compton cameras technology. (author)

  17. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime

    CERN Document Server

    Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01

    The interaction of a relativistic electron bunch with a counter-propagating tightly-focused laser beam is investigated for intensities when the dynamics is strongly affected by its own radiation. The Compton scattering spectra of gamma-radiation are evaluated employing a semiclassical description for the laser-driven electron dynamics and a quantum electrodynamical description for the photon emissions. We show for laser facilities under construction that gamma-ray bursts of few hundred attoseconds and dozens of megaelectronvolt photon energies may be detected in the near-backwards direction of the initial electron motion. Tight focussing of the laser beam and radiation reaction are demonstrated to be jointly responsible for such short gamma-ray bursts which are independent of both duration of electron bunch and laser pulse. Furthermore, the stochastic nature of the gamma-photon emission features signatures in the resulting gamma-ray comb in the case of the application of a multi-cycle laser pulse.

  18. Photon flux and spectrum of {gamma}-rays Compton sources

    Energy Technology Data Exchange (ETDEWEB)

    Petrillo, V., E-mail: Petrillo@mi.infn.it [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Bacci, A. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Ben Ali Zinati, R. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Chaikovska, I. [LAL Universite Paris-Sud IN2P3/CNRS, Orsay-Ville (France); Curatolo, C. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Ferrario, M. [LNF, INFN Via E.Fermi, 40 Frascati, Roma (Italy); Maroli, C. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Ronsivalle, C. [ENEA Via E.Fermi, 45 Frascati, Roma (Italy); Rossi, A.R.; Serafini, L. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Tomassini, P. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Vaccarezza, C. [LNF, INFN Via E.Fermi, 40 Frascati, Roma (Italy); Variola, A. [LAL Universite Paris-Sud IN2P3/CNRS, Orsay-Ville (France)

    2012-11-21

    We analyze the characteristics of the {gamma} radiation produced by Compton back-scattering of a high brightness electron beam produced by a photoinjector and accelerated in a linac up to energies of 360-720 MeV and a laser operated at about 500 nm, by comparing classical and quantum models and codes. The interaction produces {gamma} rays in the range 4.9-18.8 MeV. In view of the application to nuclear resonance fluorescence a relative bandwidth of few 10{sup -3} is needed. The bandwidth is reduced by taking advantage of the frequency-angular correlation typical of the phenomenon and selecting the radiation in an angle of tens of {mu}rads. The foreseen spectral density is 20-6 photons per eV in a single shot, a number that can be increased by developing multi-bunch techniques and laser recirculation. In this way a final value of 10{sup 4} photon per eV per second can be achieved.

  19. Generation of attosecond x-ray and gamma-ray via Compton backscattering.

    Science.gov (United States)

    Chung, Sang-Young; Yoon, Moohyun; Kim, Dong Eon

    2009-05-11

    The generation of an isolated attosecond gamma-ray pulse utilizing Compton backscattering of a relativistic electron bunch has been investigated. The energy of the electron bunch is modulated while the electron bunch interacts with a co-propagating few-cycle CEP (carrier envelope phase)-locked laser in a single-period wiggler. The energy-modulated electron bunch interacts with a counter-propagating driver laser, producing Compton back-scattered radiation. The energy modulation of the electron bunch is duplicated to the temporal modulation of the photon energy of Compton back-scattered radiation. The spectral filtering using a crystal spectrometer allows one to obtain an isolated attosecond gamma-ray.

  20. Imaging the gamma-ray sky with Compton telescopes

    Energy Technology Data Exchange (ETDEWEB)

    von Ballmoos, P.; Diehl, R.; Schoenfelder, V. (Max-Planck-Institut fuer Physik and Astrophysik, Garching (DE). Inst. fuer. Extraterrestrische Physik); von Ballmoos, P. (New Hampshire Univ., Durham (UK). Space Science Center); von Ballmoos, P. (Toulouse-3 Univ., 31 (FR). Centre d' Etude spatiale des Rayonnements)

    1989-09-01

    Compton telescopes can overcome the difficulties that so far delayed mapping of the low energy gamma ray sky. Since these instruments are ideally matched to the MeV energy range they have a unique potential to produce images of it. However, the multi-coincidence nature of photon detection results in complex data analysis. This paper describes the imaging characteristics of Compton telescopes, and it presents an algorithm for the generation of skymaps which has been successfully applied to data from different Compton telescopes. The algorithm generates maps of likelihood ratios by taking advantage of background symmetries of the instrument and its environment. The resulting skymaps have been found to indicate source positions reliably.

  1. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.

  2. AGATA modules as Compton polarimeters for the measurement of gamma-ray linear polarisation

    Directory of Open Access Journals (Sweden)

    Melon B.

    2014-03-01

    Full Text Available The ability of a cluster of three segmented Ge crystals (“AGATA module” acting as a Compton polarimeter to measure the linear polarization of gamma rays has been investigated at an energy close to 511 keV. Partially polarized gamma rays have been produced by Coulomb excitation of the first excited state of 104Pd a and 108Pd.

  3. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    Science.gov (United States)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron

  4. Imaging multi-energy gamma-ray fields with a Compton scatter camera

    Science.gov (United States)

    Martin, J. B.; Dogan, N.; Gormley, J. E.; Knoll, G. F.; O'Donnell, M.; Wehe, D. K.

    1994-08-01

    Multi-energy gamma-ray fields have been imaged with a ring Compton scatter camera (RCC). The RCC is intended for industrial applications, where there is a need to image multiple gamma-ray lines from spatially extended sources. To our knowledge, the ability of a Compton scatter camera to perform this task had not previously been demonstrated. Gamma rays with different incident energies are distinguished based on the total energy deposited in the camera elements. For multiple gamma-ray lines, separate images are generated for each line energy. Random coincidences and other interfering interactions have been investigated. Camera response has been characterized for energies from 0.511 to 2.75 MeV. Different gamma-ray lines from extended sources have been measured and images reconstructed using both direct and iterative algorithms.

  5. Compact FEL-driven inverse compton scattering gamma-ray source

    Science.gov (United States)

    Placidi, M.; Di Mitri, S.; Pellegrini, C.; Penn, G.

    2017-05-01

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10-20 MeV range and UV radiation in the 10-15 eV range, in a 4×22 m2 footprint system.

  6. Design and Operation of a tunable MeV-level Compton-scattering-based (gamma-ray) source

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D J; Albert, F; Anderson, S G; Betts, S M; Messerly, M J; Phan, H H; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C P

    2009-07-07

    A mono-energetic gamma-ray (MEGa-ray) source based on Compton-scattering, targeting nuclear physics applications such as nuclear resonance fluorescence, has been constructed and commissioned at Lawrence Livermore National Laboratory. In this paper, the overall architecture of the system, as well as some of the critical design decisions made in the development of the source, are discussed. The performances of the two laser systems (one for electron production, one for scattering), the electron photoinjector, and the linear accelerator are also detailed, and initial {gamma}-ray results are presented.

  7. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [NICADD, DeKalb; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [Fermilab; Piot, P. [Fermilab; Ruan, J. [Fermilab

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  8. Gamma ray vortices from nonlinear inverse Compton scattering of circularly polarized light

    CERN Document Server

    Taira, Yoshitaka; Katoh, Masahiro

    2016-01-01

    Inverse Compton scattering (ICS) is an elemental radiation process that produces high-energy photons both in nature and in the laboratory. Non-linear ICS is a process in which multiple photons are converted to a single high-energy photon. Here, we theoretically show that the photon produced by non-linear ICS of circularly polarized photons is a vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding non-linear Compton scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. They should play a critical role in stellar nucleosynthesis. Non-linear ICS is the most promising radiation process for realizing a gamma ray vortex source based on currently available laser and accelerator technol...

  9. Low energy gamma ray observations with the MPI-Compton telescope. [balloon-borne detectors

    Science.gov (United States)

    Graml, F.; Penningsfeld, F. P.; Schoenfelder, V.

    1978-01-01

    Although the evaluation of data from the first balloon-flight of a large area Compton telescope is incomplete, two preliminary results are discussed. From the measured background spectrum at float altitude, the sensitivity of the telescope for the detection of cosmic gamma ray lines is estimated. The energy spectra is determined for an enhanced gamma ray flux observed from the direction of the Seyfert galaxy NGC 4151. A schematic drawing of the telescope is presented and discussed.

  10. Inverse Compton gamma-ray models for remnants of Galactic type Ia supernovae?

    CERN Document Server

    Völk, H J; Berezhko, E G

    2008-01-01

    We theoretically and phenomenologically investigate the question whether the gamma-ray emission from the remnants of the type Ia supernovae SN 1006, Tycho's SN and Kepler's SN can be the result of electron acceleration alone. The observed synchrotron spectra of the three remnants are used to determine the average momentum distribution of nonthermal electrons as a function of the assumed magnetic field strength. Then the inverse Compton emission spectrum in the Cosmic Microwave Background photon field is calculated and compared with the existing upper limits for the very high energy gamma-ray flux from these sources. It is shown that the expected interstellar magnetic fields substantially overpredict even these gamma-ray upper limits. Only rather strongly amplified magnetic fields could be compatible with such low gamma-ray fluxes. However this would require a strong component of accelerated nuclear particles whose energy density substantially exceeds that of the synchrotron electrons, compatible with existing...

  11. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Wei-Qun Gan

    2012-01-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  12. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy.

    Science.gov (United States)

    Peterson, S W; Robertson, D; Polf, J

    2010-11-21

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ∼ 10(-6) to 10(-3) prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy.

  13. Intense inverse compton {gamma}-ray source from Duke storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We suggest using FEL intracavity power in the Duke storage ring fortrays production via Inverse Compton Backscattering (ICB). The OK-4 FEL driven by the Duke storage ring will tens of watts of average lasing power in the UV/VUV range. Average intracavity power will be in kilowatt range and can be used to pump ICB source. The {gamma}-rays with maximum energy from 40 MeV to 200 MeV with intensity of 0.1-5 10{sup 10}{gamma} per second can be generated. In this paper we present expected parameters of {gamma}-ray beam parameters including its intensity and distribution. We discuss influence of e-beam parameters on collimated {gamma}-rays spectrum and optimization of photon-electron interaction point.

  14. Bow Ties in the Sky I: The Angular Structure of Inverse Compton Gamma-ray Halos in the Fermi Sky

    CERN Document Server

    Broderick, Avery E; Shalaby, Mohamad; Pfrommer, Christoph; Puchwein, Ewald; Chang, Philip; Lamberts, Astrid

    2016-01-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the up-scattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicular to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.

  15. Bow Ties in the Sky. I: The Angular Structure of Inverse Compton Gamma-Ray Halos in the Fermi Sky

    Science.gov (United States)

    Broderick, Avery E.; Tiede, Paul; Shalaby, Mohamad; Pfrommer, Christoph; Puchwein, Ewald; Chang, Philip; Lamberts, Astrid

    2016-12-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicular to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.

  16. Design of a new vacuum Compton gamma-ray detector with clad metal electron-converter plate

    Institute of Scientific and Technical Information of China (English)

    Han Hetong; Wang Qunshu; Xia Liangbin; Guan Xingyin; Tan Xinjian; Zhang Zichuan

    2009-01-01

    A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is de-scribed. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ, which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.

  17. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  18. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    Indian Academy of Sciences (India)

    Jayashri Medhi; H. L. Duorah; A. G. Barua; K. Duorah

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino(neutral $\\chi$ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from $e^+e^−-$ pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the $e^+e^−-$ energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  19. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    Science.gov (United States)

    Medhi, Jayashri; Duorah, H. L.; Barua, A. G.; Duorah, K.

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e - pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e - energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  20. External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region

    CERN Document Server

    Finke, Justin D

    2016-01-01

    I study the location of the $\\gamma$-ray emission in blazar jets by creating a Compton-scattering approximation valid for all anisotropic radiation fields in the Thomson through Klein-Nishina regimes, which is highly accurate and can speed up numerical calculations by up to a factor $\\sim10$. I apply this approximation to synchrotron self-Compton, and external Compton-scattering of photons from the accretion disk, broad-line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus, and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of $\\gamma$-ray to optical flux produces a predictable pattern...

  1. Inverse Compton gamma-rays from Galactic dark matter annihilation: Anisotropy signatures

    CERN Document Server

    Zhang, Le; Sigl, Guenter

    2010-01-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10^(-6) M_sun. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10^(-26) cm^3/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky W...

  2. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    Indian Academy of Sciences (India)

    K K Abdullah; N Ramachandran; K Karunakaran Nair; B R S Babu; Antony Josephm; Rajive Thomas; K M Varier

    2008-04-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package.

  3. Comptonization signatures in the prompt emission of gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L. [Dipartimento di Fisicae Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Amati, L.; Landi, R., E-mail: frontera@fe.infn.it [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  4. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    Science.gov (United States)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  5. The applications possibilities of the gamma-ray compton backscattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Flechas, David; Gonzalez, Natalia; Sarmiento, Luis G.; Fajardo, Eduardo; Garzon, Claudia; Munoz, Juansebastian; Cristancho, Fernando [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Fisica

    2012-07-01

    Full text: X-rays have been for already longer than a century the instrument of choice when producing images of opaque objects. One important characteristic of the use of X-rays as an imaging tool is the geometrical arrangement in which the object under study is placed between the photons source and the imaging material (film or electronic device). This set-up cannot be realized in a multitude of situations of industrial interest. In those cases the source and the imaging device are limited to be at the same side of the object rendering impossible the use of present day's possibilities of X-ray imaging. It is in these cases where the technique discussed exhibits most of its power and advantages. By using the back-to-back emitted gamma-rays of the positron-decay of {sup 22}Na, the Gamma-Ray Compton Backscattering (GRCB) technique is able of building images of an object placed in front of the gamma-rays source. The set-up includes two detectors connected in time coincidence, one of them, a pixelated position- detector in charge of building the image and the other just providing the gating condition. The talk explains the working principle, shows some first images of hidden objects in soil, and discusses some of the prospective areas of application like oil industry and explosive landmines localization. (author)

  6. Supernova Remnants and Plerions in the Compton Gamma-Ray Observatory Era

    CERN Document Server

    De Jager, O C; Jager, Ocker C. de; Baring, Matthew G.

    1997-01-01

    Due to observations made by the Compton Gamma-Ray Observatory over the last six years, it appears that a number of galactic supernova remnants may be candidates for sources of cosmic gamma-rays. These include shell-type remnants such as IC443 and $\\gamma$ Cygni, which have no known parent pulsars, but have significant associations with unidentified EGRET sources, and others that appear to be composite, where a pulsar is embedded in a shell (e.g. W44 and Vela), or are purely pulsar-driven, such as the Crab Nebula. This review discusses our present understanding of gamma-ray production in plerionic and non-plerionic supernova remnants, and explores the relationship between such emission and that in other wavebands. Focuses include models of the Crab and Vela nebulae, the composite nature of W44, the relationship of shell-type remnants to cosmic ray production, the relative importance of shock-accelerated protons and electrons, constraints on models placed by TeV, X-ray and radio observations, and the role of el...

  7. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    CERN Document Server

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  8. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    CERN Document Server

    Mizumoto, Tetsuya; Takada, Atsushi; Tanimori, Toru; Komura, Shotaro; Kubo, Hidetoshi; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Nakamura, Kiseki; Nakamura, Shogo; Oda, Makoto; Parker, Joseph D; Sawano, Tatsuya; Bando, Naoto; Nabetani, Akira

    2015-01-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$\\;$sr and that the detection efficiency and angular resolution for 662$\\;$keV gamma rays from the ...

  9. Inverse Compton Contribution to the Star-Forming Extragalactic Gamma-Ray Background

    CERN Document Server

    Chakraborty, Nachiketa

    2012-01-01

    Fermi has resolved several star-forming galaxies, but the vast majority of the star-forming universe is unresolved and thus contributes to the extragalactic gamma ray background (EGB). Here, we calculate the contribution from star-forming galaxies to the EGB in the Fermi range from 100 MeV to 100 GeV, due to inverse-Compton (IC) scattering of the interstellar photon field by cosmic-ray electrons. We first construct a one-zone model for a single star-forming galaxy, assuming supernovae power the acceleration of cosmic rays. The same IC interactions leading to gamma rays also substantially contribute to the energy loss of the high-energy cosmic-ray electrons. Consequently, a galaxy's IC emission is determined by the relative importance of IC losses in the cosmic-ray electron energy budget ("partial calorimetry"). We use our template for galactic IC luminosity to find the cosmological contribution of star-forming galaxies to the EGB. For all of our models, we find the IC EGB contribution is almost an order of ma...

  10. LASER TECHNOLOGY FOR PRECISION MONOENERGETIC GAMMA-RAY SOURCE R&D AT LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Bayramian, A; Albert, F; Anderson, S G; Betts, S M; Chu, T S; Cross, R R; Gibson, D J; Marsh, R; Messerly, M; Phan, H; Prantil, M; Wu, S; Ebbers, C; Scarpetti, R D; Hartemann, F V; Siders, C W; McNabb, D P; Bonanno, R E; Barty, C P

    2010-04-20

    Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab (LLNL). We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 {micro}J temporally and spatially shaped UV pulses at 120 Hz to generate a low emittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

  11. GAMMA-RAY COMPTON SPECTROSCOPY OF TUNGSTEN USING 662 KeV GAMMA-RAY RADIATION А

    Directory of Open Access Journals (Sweden)

    Samir A. Hamouda

    2016-06-01

    Full Text Available Compton profile measurement of Tungsten polycrystalline sample has been performed with 662 KeV γ-radiation from a cesium-137 source scattered at 900. The Spectrometer calibration and data corrections for the high energy experiment are discussed. The data are compared with the augmented-plane-wave (APW band theoretical Compton profile of Tungsten. Theoretical predictions show the band theory overestimates the momentum density at low momenta and underestimates it at intermediate momenta. The discrepancies between experiment and theory were attributed to some non-local exchange-correlation effects and the spin-orbital interaction effect which were neglected in the theoretical calculation.

  12. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  13. Entry Debris Field Estimation Methods and Application to Compton Gamma Ray Observatory Disposal

    Science.gov (United States)

    Mrozinski, Richard B.

    2001-01-01

    For public safety reasons, the Compton Gamma Ray Observatory (CGRO) was intentionally deorbited on June 4, 2000. This deorbit was NASA's first intentional controlled deorbit of a satellite, and more will come including the eventual deorbit of the International Space Station. To maximize public safety, satellite deorbit planning requires conservative estimates of the debris footprint size and location. These estimates are needed to properly design a deorbit sequence that places the debris footprint over unpopulated areas, including protection for deorbit contingencies. This paper details a method for estimating the length (range), width (crossrange), and location of entry and breakup debris footprints. This method utilizes a three degree-of-freedom Monte Carlo simulation incorporating uncertainties in all aspects of the problem, including vehicle and environment uncertainties. The method incorporates a range of debris characteristics based on historical data in addition to any vehicle-specific debris catalog information. This paper describes the method in detail, and presents results of its application as used in planning the deorbit of the CGRO.

  14. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    CERN Document Server

    Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...

  15. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    Science.gov (United States)

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  16. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    Science.gov (United States)

    1989-06-01

    obstacles to the realization of a gamma-ray laser. A gamma-ray laser is feasible if the right combination of energy levels occurs in some real material...5: Geometrical details for the estimate of maximum size of a single massive spherical scatterer for a given energy spread. By simple trigonometry , L

  17. Laser-driven hole boring and gamma-ray emission in high-density plasmas

    CERN Document Server

    Nerush, Evgeny

    2014-01-01

    Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Besides, at forthcoming laser intensities ($I \\gtrsim 10^{23} \\text{W}\\,\\text{cm}^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of gamma-ray emission which are more pronounced at higher hole-boring velocities.

  18. Compton-Pair Production Space Telescope (ComPair) for MeV Gamma-ray Astronomy

    CERN Document Server

    Moiseev, A A; Buckley, J H; Caputo, R; Ferrara, E C; Hartmann, D H; Hays, E; McEnery, J E; Mitchell, J W; Ojha, R; Perkins, J S; Racusin, J L; Smith, A W; Thompson, D J

    2015-01-01

    The gamma-ray energy range from a few hundred keV to a few hundred MeV has remained largely unexplored, mainly due to the challenging nature of the measurements, since the pi- oneering, but limited, observations by COMPTEL on the Compton Gamma-Ray Observatory (1991-2000). This energy range is a transition region between thermal and nonthermal processes, and accurate measurements are critical for answering a broad range of astrophysical questions. We are developing a MIDEX-scale wide-aperture discovery mission, ComPair (Compton-Pair Production Space Telescope), to investigate the energy range from 200 keV to > 500 MeV with high energy and angular resolution and with sensitivity approaching a factor of 100 better than COMPTEL. This instrument will be equally capable to detect both Compton-scattering events at lower energy and pair-production events at higher energy. ComPair will build on the her- itage of successful space missions including Fermi LAT, AGILE, AMS and PAMELA, and will utilize well-developed space...

  19. Ultra-strong laser pulses: streak-camera for gamma-rays via pair production and quantum radiative reaction

    CERN Document Server

    Hatsagortsyan, K Z; Evers, J; Di Piazza, A; Keitel, C H

    2011-01-01

    We show that a strong laser pulse combined with a strong x-ray pulse can be employed in a detection scheme for characterizing high-energy $\\gamma$-ray pulses down to the zeptosecond timescale. The scheme employs streak imaging technique built upon the high-energy process of electron-positron pair production in vacuum through the collision of a test pulse with intense laser pulses. The role of quantum radiation reaction in multiphoton Compton scattering process and limitations imposed by it on the detection scheme are examined.

  20. Electron Linac design to drive bright Compton back-scattering gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A.; Rossi, A. R.; Serafini, L. [INFN-MI, Milano (Italy); Alesini, D.; Bellaveglia, M.; Boni, R.; Chiadroni, E.; Di Pirro, G.; Esposito, A.; Ferrario, M.; Gallo, A.; Gatti, G.; Ghigo, A.; Spataro, B.; Vaccarezza, C. [INFN-LNF, Frascati, Roma (Italy); Antici, P.; Migliorati, M.; Mostacci, A.; Palumbo, L. [University La Sapienza, Roma (Italy); Cianchi, A. [University of Tor Vergata, Roma (Italy); and others

    2013-05-21

    The technological development in the field of high brightness linear accelerators and high energy/high quality lasers enables today designing high brilliance Compton-X and Gamma-photon beams suitable for a wide range of applications in the innovative field of nuclear photonics. The challenging requirements of this kind of source comprise: tunable energy (1-20 MeV), very narrow bandwidth (0.3%), and high spectral density (10{sup 4} photons/s/eV). We present here a study focused on the design and the optimization of an electron Linac aimed to meet the source specifications of the European Extreme Light Infrastructure-Nuclear Physics project, currently funded and seeking for an innovative machine design in order to outperform state-of-the-art facilities. We show that the phase space density of the electron beam, at the collision point against the laser pulse, is the main quality factor characterizing the Linac.

  1. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho, E-mail: wonhol@korea.ac.kr

    2015-10-21

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by {sup 10}B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  2. Laser-plasma electron accelerator for all-optical inverse Compton X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, K. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)], E-mail: koyama@nuclear.jp; Yamazaki, A.; Maekawa, A.; Uesaka, M. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan); Hosokai, T. [Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan); Miyashita, M. [Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Masuda, S.; Miura, E. [AIST, Tsukuba-central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2009-09-01

    Inverse Compton scattering has been gaining attention as a process for the generation of X/{gamma}-ray, since it produces tunable X/{gamma}-ray pulses with a small cone angle of radiation. A table-top tunable Compton X/{gamma}-ray source would be realized by replacing a radio frequency (rf) linac with a laser wakefield accelerator (LWFA), which is one of the advanced accelerators. An empirical scaling law for the LWFA in the self-injection mode showed that the energy gain was inversely proportional to the plasma density. In order to effectively employ the LWFA as a Compton X/{gamma}-ray source, its stability must be improved. For this purpose, we are developing techniques for the injection of initial electrons by a localized wavebreaking at the density ramp of a plasma. The pointing stability and acceleration efficiency of the electron beam were significantly improved by applying an axial magnetic field to the plasma channel.

  3. Nondestructive quality assessment of shogun mandarin fruits (Citrus reticulata Blanco cv. Shogun using compton scattering of gamma-ray technique

    Directory of Open Access Journals (Sweden)

    Punnary, K.

    2005-12-01

    Full Text Available Compton scattering of gamma radiation was applied for nondestructive testing of the shogun mandarin fruits with good quality defined as no dry sack or dry fibrous structures inside. In principle, the scattering deviated angles to the left and right of a gamma ray that penetrates through a homogeneous fibrous structure meat of any orange fruit should be equal. The source Cs-137, with an initial gamma ray activity of 9.25 mCi, placed in a 7 cm thick lead shielding, was radiated through a 10 mm diameter collimator onto any single fruit to be tested. A NaI(Tl-detector, oriented perpendicular to both left and right of theincoming beam, was placed 5 cm from the fruit. Results showed that the net count rate of the scattering beam between the left and right counting for good-quality shogun mandarin with proper tissue for consumption was less than 85 counts per minute (average 83 cpm, whereas shogun mandarin with dry sack, which were unfit for consumption, had twice that rate or more (average 175 cpm.

  4. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  5. Nuclear gamma-ray laser: A comparative analysis of various schemes

    Science.gov (United States)

    Rivlin, L. A.; Zadernovsky, A. A.

    2010-05-01

    Four basic schemes for a nuclear gamma-ray laser (NGL) are analyzed using the “NGL-hyper-bola” as a generalized comparative criterion: solid state Mössbauer scheme; stimulated gamma-emission in cooled ensembles of free nuclei with hidden population inversion of nuclear states; nuclear gamma-ray lasing without inversion; and Bose-Einstein condensate as a hypothetical active medium for NGL.

  6. Development of Gamma-Ray Nondestructive Detection and Assay Systems for Nuclear Safeguards and Security at JAEA

    Science.gov (United States)

    Hajima, Ryoichi

    2015-10-01

    Nondestructive detection and assay of nuclide is one of the promising applications of energy-tunable gamma-rays from laser Compton scattering. In JAEA, we are developing technologies relevant to the gamma-ray non-destructive assay, which include a high-brightness gamma-ray source based on advanced laser and accelerator technologies and gamma-ray measurement techniques optimized for highly radioactive samples. In this paper, the status of the above R&D's is reviewed.

  7. Spectroscopy of positron annihilation gamma rays from laser-exited media

    Science.gov (United States)

    Szabo, C. I.; Feldman, U.; Seely, J.; Hudson, L.; Chen, Hui; Tommasini, R.; Hazi, A.; Shepherd, R.; Zulick, C.; Dollar, F.; Falk, K.; Murphy, C. D.

    2010-11-01

    Motivated by calculations for gamma ray yields and results of positron beam measurements from laser irradiated high Z targets [1], a Gamma-ray Crystal Spectrometer (GCS) was built by Artep Inc. and fielded at the Titan laser facility of LLNL. The spectrometer is equipped with heavy shielding around a cylindrically bent Ge crystal in a transmission geometry. The Bremsstrahlung continuum and the 511 keV annihilation gamma rays are dispersed by the Ge(440) crystal and detected by an image plate placed on the Rowland circle. The gamma rays originate inside the thick target material (1 to 3 mm Au disks) where positrons are produced in the intense field of the high energy (350 J) short pulse (10 ps) laser irradiation. In addition to the spectrometer, two different electronic detection systems also recorded the gamma ray spectra using the single hit per pixel technique. The first gamma ray spectra recorded with the crystal spectrometer and the electronic detectors will be reported. [4pt] [1] Hui Chen et al., PRL 105, 015003 (2010)

  8. Design of a 2 MeV Compton scattering gamma-ray source for DNDO missions

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Albert, F

    2009-08-24

    Nuclear resonance fluorescence-based isotope-specific detection and imaging is a powerful new technology that can enable access to new mission spaces for DNDO. Within this context, the development of advanced mono-energetic gamma ray sources plays an important role in the DNDO R&D portfolio, as it offers a faster, more precise, and safer alternative to conventional Bremsstrahlung sources. In this report, a specific design strategy is presented, along with a series of theoretical and computational tools, with the goal of optimizing source parameters for DNDO applications. In parallel, key technologies are outlined, along with discussions justifying specific choices and contrasting those with other alternatives. Finally, a complete conceptual design is described, and machine parameters are presented in detail.

  9. New readout and data-acquisition system in an Electron-Tracking Compton Camera for MeV Gamma-Ray Astronomy (SMILE-II)

    CERN Document Server

    Mizumoto, Tetsuya; Mizumura, Yoshitaka; Tanimori, Toru; Kubo, Hidetoshi; Takada, Atsushi; Iwaki, Satoru; Sawano, Tatsuya; Nakamura, Kiseki; Komura, Shotaro; Nakamura, Shogo; Kishimoto, Tetsuro; Oda, Makoto; Miyamoto, Shohei; Takemura, Taito; Parker, Joseph D; Tomono, Dai; Sonoda, Shinya; Miuchi, Kentaro; Kurosawa, Shunsuke

    2015-01-01

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10$\\times$10$\\times$15 cm$^3$ TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)$^{3}$ medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector syste...

  10. Response of doped alkali iodides measured with gamma-ray absorption and Compton electrons

    Energy Technology Data Exchange (ETDEWEB)

    Swiderski, Lukasz, E-mail: l.swiderski@ncbj.gov.pl [National Centre for Nuclear Research, Soltana 7, 05-400 Otwock–Swierk (Poland); Moszynski, Marek; Czarnacki, Wieslaw; Szawlowski, Marek; Szczesniak, Tomasz [National Centre for Nuclear Research, Soltana 7, 05-400 Otwock–Swierk (Poland); Pausch, Guntram, E-mail: guntram.pausch@flir.com [FLIR Radiation GmbH, Piepersberg 12, 42653 Solingen (Germany); Plettner, Cristina [National Centre for Nuclear Research, Soltana 7, 05-400 Otwock–Swierk (Poland); FLIR Radiation GmbH, Piepersberg 12, 42653 Solingen (Germany); Roemer, Katja [FLIR Radiation GmbH, Piepersberg 12, 42653 Solingen (Germany); Schotanus, Paul, E-mail: scionix@planet.nl [Scionix Holland BV, 3980 CC Bunnik (Netherlands)

    2013-03-21

    Relative light yield and intrinsic energy resolution of NaI:Tl, CsI:Na and CsI:Tl crystals were investigated by means of the wide angle Compton coincidence technique in wide energy range from several keV up to 1 MeV. The experimental setup consisted of a high purity germanium (HPGe) detector and the tested scintillators were put at a close separation from the HPGe detector. The tested samples were cylinders of 25 mm diameter and height coupled to a photomultiplier. Compton electron responses were compared to the results obtained with γ-ray absorption peaks. A correlation between intrinsic resolution of the tested scintillation materials and their nonproportionality was observed. Substantial differences in intrinsic resolution measured for γ-ray absorption peaks and Compton electrons were registered in the energy range between 50 keV and 200 keV. The results were discussed in terms of electron scattering, pointing to δ-ray production as an important contribution for determination of scintillator intrinsic resolution.

  11. Characterisation of the low-energy photon attenuation in gamma-ray spectroscopy of bituminized radioactive waste drums using a peak-to-Compton ratio

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Pin, P., E-mail: patrick.pin@areva.com [AREVA NC La Hague plant - Nuclear Measurement Team, F-50444 Beaumont-Hague Cedex (France)

    2012-04-11

    In gamma-ray spectroscopy of radioactive waste, the uncertainty on the activity can be very high for low energy photons - particularly below 100 keV - if the chemical composition of the matrix is not known with a good precision. Particularly, high atomic number (high-Z) elements increase photoelectric absorption. We present here the development of a new method characterizing photon attenuation in a homogeneous waste matrix, using a peak-to-Compton ratio extracted from the gamma spectrum.

  12. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  13. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [Department of Molecular Physics, National Research Nuclear University (MEPHI), Kashirskoe shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  14. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  15. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S

    2014-01-01

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

  16. Proposed Nuclear Pumped Laser Experiments Utilizing Gamma-Rays.

    Science.gov (United States)

    1980-02-25

    geometrica factor. The geometrical factor was derived in 21 geometry. The probability of a photon born in the LXe intersecting the laser tube is e - . 2wr dr...the absorbing media is pumped by a slowly rising pump, the excitation is rapidly degraded due to spontaneous emission and quenching processes. If the

  17. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi [Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan and Photon Pioneers Center in Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan)

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  18. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  19. Nuclear Gamma-Ray Laser of Optical Range

    CERN Document Server

    Tkalya, E V

    2010-01-01

    A possibility of amplification of the 7.6 eV (3.5 eV) $\\gamma$-radiation by the stimulated $\\gamma$-emission of the ensemble of the $^{229m}$Th isomeric nuclei in a host dielectric crystal with a large band gap is proved theoretically. This amplification is a result of the following three factors: 1) the excitation of a great number of the $^{229m}$Th isomers by laser radiation; 2) the creation of the inverse population of nuclear levels in a cooled sample placed in magnetic field; 3) the emissions/absorption of the optical photons by thorium nuclei in the crystal without recoil (the M\\"{o}ssbauer effect in the optical range).

  20. Gamma-ray emission enhanced by direct laser acceleration in a laser-driven magnetic field

    Science.gov (United States)

    Arefiev, Alexey; Wang, Tao; Toncian, Toma; Stark, David

    2016-10-01

    Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. We have examined the role of such an azimuthal Megatesla-level magnetic field on electron dynamics in a laser pulse with intensities around 5 ×1022 W/cm2, within reach for the existing laser facilities. We find that the magnetic field can be utilized in two complementary ways: to enhance direct laser acceleration, generating a GeV-level electron beam in the plasma, and to boost synchrotron emission by the accelerated electrons, producing copious multi-MeV photons in the form of a collimated beam. This regime potentially opens an opportunity for generating dense gamma-ray beams using existing laser facilities, thus fast-tracking a number of eagerly awaited applications. This work was supported by the National Science Foundation under Grant No. 1632777.

  1. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  2. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  3. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    Science.gov (United States)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  4. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  5. Gamma-ray-induced damage and recovery behavior in an erbium-doped fiber laser

    Science.gov (United States)

    Bussjager, Rebecca J.; Hayduk, Michael J.; Johns, Steven T.; Taylor, Linda R.; Taylor, Edward W.

    2002-01-01

    Erbium-doped fiber lasers (EDFLs) may soon find applications in space as high bit rate optical communication systems and photonic analog-to-digital converters (ADCs). The rapid advancement in digital signal processing systems has led to an increased interest in the direct digitization of high- frequency analog signals. The potential high bandwidth, reduced weight, and reduced power requirements makes photonics an attractive technology for wide-band signal conversion as well as for use in space-based platforms. It is anticipated that photonic ADCs will be able to operate at sampling rates and resolutions far greater than current electronic ADCs. The high repetition rates and narrow pulse widths produced by EDFLs allow for high-speed impulse sampling of analog signals thus making it a vital component of a photonic ADC. In this paper we report on the in situ gamma-ray irradiation of an actively mode-locked EDFL operating at 1530 nm. The onset, growth and extent of ionization induced damage under time-resolved operational conditions is presented. The laser consisted of approximately 3 meters of erbium-doped fiber pumped by a laser diode operating at 980 nm. The picosecond pulses produced by the laser were initiated and controlled by a Mach-Zehnder lithium niobate electro-optic modulator. The active mode-locking element allowed for the precise timing control of the laser repetition rate which is critical in high-speed optical networking systems as well as in photonic ADCs.

  6. A new gamma-ray diagnostic for energetic ion distributions - The Compton tail on the neutron capture line

    Science.gov (United States)

    Vestrand, W. Thomas

    1990-01-01

    This paper presents a new radiation diagnostic for assaying the energy spectrum and the angular distribution of energetic ions incident on thick hydrogen-rich thermal targets. This diagnostic compares the number of emergent photons in the narrow neutron capture line at 2.223 MeV to the number of Compton scattered photons that form a low-energy tail on the line. It is shown that the relative strength of the tail can be used as a measure of the hardness of the incident ion-energy spectrum. Application of this diagnostic to solar flare conditions is the main thrust of the work presented here. It is examined how the strength of the Compton tail varies with flare viewing angle and the angular distribution of the flare-accelerated particles. Application to compact X-ray binary systems is also briefly discussed.

  7. Submillimeter nuclear medical imaging with a Compton Camera using triple coincidences of collinear \\beta+ annihilation photons and \\gamma-rays

    OpenAIRE

    Lang, C.; Habs, D.; Thirolf, P. G.; Zoglauer, A.

    2012-01-01

    Modern PET systems reach a spatial resolution of 3-10 mm. A disadvantage of this technique is the diffusion of the positron before its decay with a typical range of ca. 1 mm (depending on its energy). This motion and Compton scattering of the 511 keV photons within the patient limit the performance of PET. We present a nuclear medical imaging technique, able to reach submillimeter spatial resolution in 3 dimensions with a reduced activity application compared to conventional PET. This 'gamma-...

  8. Gamma-ray emission in ultra-intense laser interaction with solid targets

    Science.gov (United States)

    Klimo, Ondrej; Vyskocil, Jiri; Kumar, Deepak; Limpouch, Jiri; Weber, Stefan

    2016-10-01

    Electrons moving in ultra-intense laser fields emit hard radiation due to radiation reaction and non-linear Compton scattering. Multi-MeV γ-rays were measured by scattering of electrons generated from laser wakefield with a focused laser of intensity a0 1 . However, non-linear Compton scattering and radiation reaction is also an efficient mechanism for generating copious amount of γ-rays in laser interaction with solids at intensities approaching 1022 W/cm2. Emission of γ-rays due to radiation reaction and bremsstrahlung are investigated here in the high intensity regime of laser-solid target interaction by using a combination of Particle-in-Cell and Monte Carlo radiation transport simulations. The relative contribution of these processes is analyzed as a function of the target parameters. We concentrate on the influence of the target thickness, material, preplasma conditions or a surface structure on the generation of high energy photons and study separately their energy and angular distributions. It is demonstrated that the presence of preplasma or a special surface structure may significantly enhance emission of hard γ photons and their cut-off energy and change their angular distribution. Supported by Czech Science Foundation project 15-02964S.

  9. Brilliant gamma-ray emission from near-critical plasma interaction with ultraintense laser pulses

    Science.gov (United States)

    Qiao, Bin

    2016-10-01

    γ -ray is the electromagnetic radiation having the highest photon energy and smallest wavelength, which has a broad range of applications in material science, nuclear physics, astrophysics and so on. In this talk, I shall report recent progresses on theoretical and numerical studies of laser-driven brilliant gamma-ray radiation in near critical plasmas at Peking University (PKU), where an intense circularly polarized (CP) lasers. A novel resonant acceleration scheme can be achieved for generating dense relativistic electron bunches and emitting brilliant γ-ray pulses, where the laser frequency matches with that of electron betatron oscillation under quasistatic electromagnetic fields and radiation reaction in plasma. 3D PIC simulations show that brilliant γ-ray radiation with energy of 3J and brightness of 1024photons/s/mm2/mrad2/0.1%BW (at 3MeV) can be produced by using CP lasers at intensity 1022W/cm2. It is found that the total number of radiated photons scales as a2 /S 1 / 2 and the conversion efficiency scales as a3 / S , where S =(ne /nc) a and a is the laser normalized amplitude. Further studies show that if the laser intensity is increased to 1023W/cm2, the quantum electrodynamic (QED) effects are in favor of trapping and achieving resonance acceleration of electrons, resulting in production of brilliant γ-ray pulses with unprecedented power of 6.7PW and brightness of 1025photons/s/mm2/mrad2/0.1%BW (at 15MeV). To the best of our knowledge, this is the γ-ray source with the highest peak brightness in tens-MeV regime ever reported in the literature. supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  10. Measurements of Rayleigh, Compton and resonant Raman scattering cross-sections for 59.536 keV {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prem; Mehta, D.; Singh, N. E-mail: nsingh@pu.ac.in; Puri, S.; Shahi, J.S

    2004-09-01

    The K-L and K-M resonant Raman scattering (RRS) cross-sections have been measured for the first time at the 59.536 keV photon energy in the {sub 70}Yb (B{sub K}=61.332 keV), {sub 71}Lu (B{sub K}=63.316 keV) and {sub 72}Hf (B{sub K}=65.345 keV) elements; B{sub K} being the K-shell binding energy. The K-L and K-M RRS measurements have been performed at the 59 deg. and 133 deg. angles, respectively, to avoid interference of the Compton-scatter peak. The Rayleigh and Compton scattering cross-sections for the 59.536 keV {gamma}-rays have also been measured at both the angles in the atomic region 1{<=}Z{<=}92. Measurements were performed using the reflection-mode geometrical arrangements involving the {sup 241}Am radioisotope as photon source and planar Si(Li) and HPGe detectors. Ratios of the K-M and K-L RRS cross-sections in Yb, Lu and Hf are in general lower than that of the fluorescent K{beta}{sub 1,3,5} (K-M) and K{alpha} (K-L) X-ray transition probabilities. Theoretical Rayleigh scattering cross-sections based on the modified form-factors (MFs) corrected for the anomalous scattering factors (ASFs) and the S-matrix calculations are on an average {approx}15% and {approx}6% higher, respectively, at the 133 deg. angle and exhibit good agreement with the measured data at the 59 deg. angle. Larger deviations {approx}30% and {approx}20%, respectively, are observed at the 133 deg. angle for the {sub 64}Gd, {sub 66}Dy, {sub 67}Ho and {sub 70}Yb elements having the K-shell binding energy in vicinity of the incident photon energy. The measured Compton scattering cross-sections are in general agreement with those calculated using the Klein-Nishina cross-sections and the incoherent scattering function.

  11. Submillimeter nuclear medical imaging with a Compton Camera using triple coincidences of collinear \\beta+ annihilation photons and \\gamma-rays

    CERN Document Server

    Lang, C; Thirolf, P G; Zoglauer, A

    2012-01-01

    Modern PET systems reach a spatial resolution of 3-10 mm. A disadvantage of this technique is the diffusion of the positron before its decay with a typical range of ca. 1 mm (depending on its energy). This motion and Compton scattering of the 511 keV photons within the patient limit the performance of PET. We present a nuclear medical imaging technique, able to reach submillimeter spatial resolution in 3 dimensions with a reduced activity application compared to conventional PET. This 'gamma-PET' technique draws on specific positron sources simultaneously emitting an additional photon with the \\beta+ decay. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to test the feasibility of this technique, Monte-Carlo simulations and image reconstruction has been performed. The spatial resolution amounts to 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about...

  12. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation.

    Science.gov (United States)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Hojbota, Calin; Jo, Sung Ha; Shin, Kang Woo; Sung, Jae Hee; Lee, Seung Ku; Cho, Byeoung Ick; Choi, Il Woo; Nam, Chang Hee

    2015-12-01

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  13. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  14. Experiment studies on the polarized gamma-rays generation at KEK-ATF

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ping; PEI Guo-Xi

    2009-01-01

    Polarized positrons can be created through electron-positron pair creation from circularly polarized gamma-rays. Laser-Compton scattering is an efficient method to generate circularly polarized gamma-rays. A high finesse 2-mirror optical stacking cavity had been installed on the straight section of the electron storage ring at KEK-ATF. A 1064 nm circularly polarized pulsed laser beam was stacked in the cavity. Polarized gamma-rays with a maximum energy of 28.3 MeV were produced via inverse Compton scattering of the enhanced laser pulse off an electron beam of 1.28 GeV. The number of generated gamma photons per collision was estimated by a photon detector. It was found that the experimental result was in agreement with the simulated value.

  15. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  16. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification.

    Science.gov (United States)

    Polf, Jerimy C; Avery, Stephen; Mackin, Dennis S; Beddar, Sam

    2015-09-21

    The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams. A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams. The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5   ×   5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction. It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary

  17. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O' Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C P; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.

  18. Simulation of Laser-Compton Cooling of Electron Beams

    OpenAIRE

    Ohgaki, T.

    2000-01-01

    We study a method of laser-Compton cooling of electron beams. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at E_0=2 GeV is considered.

  19. Design of a new vacuum Compton gamma-ray detector with clad metal electron-converter plate%复合金属发射极真空康普顿探测器结构设计

    Institute of Scientific and Technical Information of China (English)

    韩和同; 王群书; 夏良斌; 管兴胤; 谭新建; 张子川

    2009-01-01

    采用Ta-Al复合金属电子转换靶设计了一种厚窗真空型康普顿探测器,其对1.25 MeVγ射线的探测效率达到7.85×10~(-3)e/γ,比Fe发射极探测器的探测效率高出约2.5倍.探测器具有良好的封装加工和静态真空保持特性,可用于强流脉冲γ射线测量场合.%A newly designed vacuum Compton gamma-ray detector with Ta - Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7. 85 × 10~(-3)e/γ, which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.

  20. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale

    CERN Document Server

    Nakamiya, Yoshihide; Moritaka, Toseo; Seto, Keita

    2015-01-01

    Probing vacuum structures deformed by high intense fields is of great interest in general. In the context of quantum electrodynamics (QED), the vacuum exposed by a linearly polarized high-intensity laser field is expected to show birefringence. We consider the combination of a 10 PW laser system to pump the vacuum and 1 GeV gamma-rays to probe the birefringent effect. The vacuum birefringence can be measured via the polarization flip of the probe gamma-rays. We discuss the design of the gamma-ray polarimeter and then evaluate the measurability of the reduction of the degree of linear polarization due to the appearance of birefringence. We found that the measurement is indeed feasible given a realistic set of laser parameters and achievable pulse statistics.

  1. Instrumentation for gamma-ray astronomy

    Science.gov (United States)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  2. Laser pulsing in linear Compton scattering

    Science.gov (United States)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  3. Polarization measurements of proton capture gamma rays

    NARCIS (Netherlands)

    Suffert, M.; Endt, P.M.; Hoogenboom, A.M.

    1959-01-01

    The linear polarization has been measured of eight different gamma rays of widely differing energies (Eγ = 0.8 - 8.0 MeV) emitted at resonances in the 24Mg(p, γ)25Al, 30Si(p, γ)31P, and 32S(p, γ)33Cl reactions. The gamma rays emitted at 90° to the proton beam were Compton scattered in a 2″ NaI scint

  4. Laser Pulsing in Linear Compton Scattering

    CERN Document Server

    Krafft, Geoffrey; Deitrick, Kirsten; Terzic, Balsa; Kelmar, R; Hodges, Todd; Melnitchouk, W; Delayen, Jean

    2016-01-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse...

  5. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  6. The Hard VHE Gamma-ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet?

    CERN Document Server

    Boettcher, Markus; Finke, Justin D

    2008-01-01

    Observations of very-high-energy (VHE, E > 250 GeV) gamma-ray emission from several blazars at z > 0.1 have placed stringent constraints on the elusive spectrum and intensity of the intergalactic infrared background radiation (IIBR). Correcting their observed VHE spectrum for gamma-gamma absorption even by the lowest plausible level of the IIBR provided evidence for a very hard (photon spectral index Gamma_{ph} 4 X 10^6) on kiloparsec scales along the jet.

  7. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    Science.gov (United States)

    1991-12-31

    Lasers - Peter F. Moulton 2.1.2 Stoichiometric Lasers - Stephen R. Chinn 2.1.3 Color Center Lasers - Linn F. Mollenauer 2.2 Semiconductor Lasers...10i Linn F. Mollenauer .3 Semiconductor Lasers .... ..... .. ... . .... .... .... 127 Michael Ettenberg...Stolen and Chinlon Lin 1 .7 Table of Wavelengths of Solid State Lasers ................. 179 Farolene Camacho SECTION 2: LIQUID LASERS 2.1 Organic Dye

  8. Novae in gamma-rays

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission (511 keV line and a continuum below this energy, with a cut-off at 20-30 keV). The analysis of gamma-ray spectra and light curves is a potential unique and powerful tool both to trace the corresponding isotopes and to give insights on the properties of the expanding envelope determining its transparency. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected in some particular novae, in symbiotic binaries, where the companion is a red giant with a wind, instead of a main ...

  9. Constraints on the synchrotron self-Compton mechanism of TeV gamma ray emission from the Milagro TeV source MGRO J2019+37 within the pulsar wind nebula scenario

    Science.gov (United States)

    Saha, Lab; Bhattacharjee, Pijushpani

    2015-03-01

    Origin of the TeV gamma ray emission from MGRO J2019+37 discovered by the Milagro experiment is investigated within the pulsar wind nebula (PWN) scenario using multiwavelength information on sources suggested to be associated with this object. We find that the synchrotron self-Compton (SSC) mechanism of origin of the observed TeV gamma rays within the PWN scenario is severely constrained by the upper limit on the radio flux from the region around MGRO J2019+37 given by the Giant Metrewave Radio Telescope (GMRT) as well as by the x-ray flux upper limit from SWIFT/XRT. Specifically, for the SSC mechanism to explain the observed TeV flux from MGRO J2019+37 without violating the GMRT and/or Swift/XRT flux upper limits in the radio and x-ray regions, respectively, the emission region must be extremely compact with the characteristic size of the emission region restricted to ≲ O (10-4 pc) for an assumed distance of ˜ few kpc to the source. This is at least four orders of magnitude less than the characteristic size of the emission region typically invoked in explaining the TeV emission through the SSC mechanism within the PWN scenario. On the other hand, inverse Compton (IC) scattering of the nebular high energy electrons on the cosmic microwave background (CMB) photons can, for reasonable ranges of values of various parameters, explain the observed TeV flux without violating the GMRT and/or SWIFT/XRT flux bounds.

  10. Zeptosecond $\\gamma$-ray pulses

    CERN Document Server

    Klaiber, Michael; Keitel, Christoph H

    2007-01-01

    High-order harmonic generation (HHG) in the relativistic regime is employed to obtain zeptosecond pulses of $\\gamma$-rays. The harmonics are generated from atomic systems in counterpropagating strong attosecond laser pulse trains of linear polarization. In this setup recollisions of the ionized electrons can be achieved in the highly relativistic regime via a reversal of the commonly deteriorating drift and without instability of the electron dynamics such as in a standing laser wave. As a result, coherent attosecond $\\gamma$-rays in the 10 MeV energy range as well as coherent zeptosecond $\\gamma$-ray pulses of MeV photon energy for time-resolved nuclear spectroscopy become feasible.

  11. The Science of Nuclear Materials Detection using gamma-ray beams: Nuclear Resonance Fluorescence

    Science.gov (United States)

    Ohgaki, Hideaki

    2014-09-01

    An atomic nucleus is excited by absorption of incident photons with an energy the same as the excitation energy of the level, and subsequently a gamma-ray is emitted as it de-excites. This phenomenon is called Nuclear Resonance Fluorescence and mostly used for studies on Nuclear Physics field. By measuring the NRF gamma-rays, we can identify nuclear species in any materials because the energies of the NRF gamma-rays uniquely depend on the nuclear species. For example, 235U has an excitation level at 1733 keV. If we irradiate a material including 235U with a gamma-ray tuned at this excitation level, the material absorbs the gamma-ray and re-emits another gamma-ray immediately to move back towards the ground state. Therefore we can detect the 235U by measuring the re-emitted (NRF) gamma-rays. Several inspection methods using gamma-rays, which can penetrate a thick shielding have been proposed and examined. Bertozzi and Ledoux have proposed an application of nuclear resonance fluorescence (NRF) by using bremsstrahlung radiations. However the signal-to-noise (SN) ratio of the NRF measurement with the bremsstrahlung radiation is, in general, low. Only a part of the incident photons makes NRF with a narrow resonant band (meV-eV) whereas most of incident radiation is scattered by atomic processes in which the reaction rate is higher than that of NRF by several orders of magnitudes and causes a background. Thus, the NRF with a gamma-ray quasi-monochromatic radiation beam is proposed. The monochromatic gamma-rays are generated by using laser Compton scattering (LCS) of electrons and intense laser photons by putting a collimator to restrict the gamma-ray divergence downstream. The LCS gamma-ray, which is energy-tunable and monochromatic, is an optimum apparatus for NRF measurements We have been conducted NRF experiment for nuclear research, especially with high linear polarized gamma-ray generated by LCS, to survey the distribution of M1 strength in MeV region in LCS

  12. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    Science.gov (United States)

    1989-07-01

    11 MeV, the mac’tine has acquired the capability of producing a softened x-ray environment 2 with large dose- area products by Compton scattering of...The use of all four transmission lines provides a dose- area product of about 240 Gy-m 2 . This corresponds to a dose of 400 Gy (40 kRad) in a volume...interest- ed in precise (7,7’) reaction studies is to use a variable x-ray device which produces a continuum distribucion of photon energies up to the

  13. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)], E-mail: sharma@uta.edu; Murphree, Jay; Chakraborty, Tonmoy [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-11-15

    We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under {approx}100 W/cm{sup 2} laser radiation, the PL intensity (I{sub PL}) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission ({lambda}{sub peak}) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm{sup 2} 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both I{sub PL} and {lambda}{sub peak} are significantly different; I{sub PL} increases to a saturation level, and the magnitude of the blue-shift in {lambda}{sub peak} is reduced. We discuss possible mechanisms underlying these results.

  14. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light.

    Science.gov (United States)

    Liu, Cheng; Golovin, Grigory; Chen, Shouyuan; Zhang, Jun; Zhao, Baozhen; Haden, Daniel; Banerjee, Sudeep; Silano, Jack; Karwowski, Hugon; Umstadter, Donald

    2014-07-15

    Gamma-ray photons with energy >9  MeV were produced when second-harmonic-generated laser light (3 eV) inverse-Compton-scattered from a counterpropagating relativistic (~450  MeV) laser-wakefield-accelerated electron beam. Two laser pulses from the same laser system were used: one to accelerate electrons and one to scatter. Since the two pulses play very different roles in the γ-ray generation process, and thus have different requirements, a novel laser system was developed. It separately and independently optimized the optical properties of the two pulses. This approach also mitigated the deleterious effects on beam focusing that generally accompany nonlinear optics at high peak-power levels.

  15. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    Science.gov (United States)

    1989-04-01

    Either would make the resonances useless to laser development . The significance of this work is that neither detrimental effect can occur at energies as low as the value of 4 MeV at which performance has now been achieved.

  16. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    CERN Document Server

    Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

    2014-01-01

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  17. Techniques and use of a tunable, laser-based, MeV-Class Compton scattering light source

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M; Semenov, V; Shverdin, M Y; Rusnak, B; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C P

    2009-06-30

    A Compton scattering {gamma}-ray source, capable of producing photons with energies ranging from 0.1 MeV to 0.9 MeV has been commissioned and characterized, and then used to perform nuclear resonance fluorescence (NRF) experiments. The key source parameters are the size (0.01 mm{sup 2}), horizontal and vertical divergence (6 x 10 mrad{sup 2}), duration (10 ps), spectrum and intensity (10{sup 5} photons/shot). These parameters are summarized by the peak brightness, 1.5 x 10{sup 15} photons/mm{sup 2}/mrad{sup 2}/s/0.1%bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photoelectron bunch, {gamma}-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on {sup 7}Li in LiH demonstrate the potential of Compton scattering photon sources to accurately detect isotopes in situ.

  18. Using gamma-ray emission to measure ablator areal density of imploded capsules at the Omega laser

    Science.gov (United States)

    Hoffman, N.; Rubery, M.; Herrmann, H.; Kim, Y.; Young, C.; Mack, J.; Wilson, D.; McEvoy, A.; Evans, S.; Sedillo, T.; Stoeffl, W.; Horsfield, C.; Glebov, V.

    2010-11-01

    We have measured the ablator areal density of plastic-shell implosions at the Omega laser, using gamma-ray emission from the capsules detected by the prototype Gamma Reaction History (GRH) diagnostic. The intensity of 4.44-MeV gamma emission from ^12C nuclei in the ablator is proportional to the product of ablator areal density and yield of fusion neutrons, so by detecting the gammas we can infer the ablator areal density, provided we also have a measurement of total neutron yield. Neutron yield is determined from the nTOF experiment at Omega in our approach; alternatively one could use 16.7-MeV gammas from DT fusion. Inferred values of time-averaged carbon areal density are in the range 10-30 mg/cm^2, for a range of implosions. These values are smaller than predicted values based on 1D simulations, which are typically in the range 30-40 mg/cm^2. We discuss possible reasons for the discrepancy, primarily related to mixing.

  19. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction

    Science.gov (United States)

    Chang, H. X.; Qiao, B.; Huang, T. W.; Xu, Z.; Zhou, C. T.; Gu, Y. Q.; Yan, X. Q.; Zepf, M.; He, X. T.

    2017-03-01

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2.

  20. DUAL Gamma-Ray Mission

    CERN Document Server

    Boggs, S; von Ballmoos, P; Takahashi, T; Gehrels, N; Tueller, J; Baring, M; Beacom, J; Diehl, R; Greiner, J; Grove, E; Hartmann, D; Hernanz, M; Jean, P; Johnson, N; Kanbach, G; Kippen, M; Knödlseder, J; Leising, M; Madejski, G; McConnell, M; Milne, P; Motohide, K; Nakazawa, K; Oberlack, U; Phlips, B; Ryan, J; Skinner, G; Starrfield, S; Tajima, H; Wulf, E; Zoglauer, A; Zych, A

    2010-01-01

    Gamma-ray astronomy presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. In order to take full advantage of this potential, the next generation of instrumentation for this domain will have to achieve an improvement in sensitivity over present technologies of at least an order of magnitude. The DUAL mission concept takes up this challenge in two complementary ways: a very long observation of the entire sky, combined with a large collection area for simultaneous observations of Type Ia SNe. While the Wide-Field Compton Telescope (WCT) accumulates data from the full gamma-ray sky (0.1-10 MeV) over the entire mission lifetime, the Laue-Lens Telescope (LLT) focuses on 56Co emission from SNe Ia (0.8-0.9 MeV), collecting gamma-rays from its large area crystal lens onto the WCT. Two separated spacecraft flying in formation will maintain the DUAL payloads at the lens' focal distance.

  1. Compact Gamma-ray Source Technology Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Gibson, D J; Rusnak, B

    2009-09-25

    This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

  2. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—a benchmark setup for prompt gamma-ray imaging devices

    Science.gov (United States)

    Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.

    2016-06-01

    The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt

  3. Gamma-ray triangles

    DEFF Research Database (Denmark)

    Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano

    2016-01-01

    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon. The r...

  4. Galactic gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1982-05-01

    During the last decade the exploration of the sky in the light of gamma rays has begun by means of satellite-and balloon-borne instruments. Like in other ranges of the electromagnetic spectrum the Milky Way clearly stands out against the rest of the sphere. Part of the galactic ..gamma..-ray emission is due to discrete sources, part is diffuse in origin and is produced in interstellar space. Some of the discrete ..gamma..-ray sources are radio pulsars, the nature of the other sources is still unknown. The intensity distribution of the diffuse galactic ..gamma..-ray component is consistent with a decrease of the cosmic-ray intensity towards the outer part of the galaxy. The identification of the cosmic-ray sources will be one of the main objectives of the next generation of ..gamma..-ray telescopes.

  5. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  6. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Bayramian, Andy; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Cross, R.; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; McNabb, Dennis; /LLNL, Livermore; Messerly, Michael; /LLNL, Livermore; Shverdin, Miroslav; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Semenov, Vladimir; /UC, Berkeley

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.

  7. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    Science.gov (United States)

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ˜1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  8. Active Detection and Imaging of Nuclear Materials with High-Brightness Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C J; Gibson, D J; Albert, F; Anderson, S G; Anderson, G G; Betts, S M; Berry, R D; Fisher, S E; Hagmann, C A; Johnson, M S; Messerly, M J; Phan, H H; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P

    2009-02-26

    A Compton scattering {gamma}-ray source, capable of producing photons with energies ranging from 0.1 MeV to 0.9 MeV has been commissioned and characterized, and then used to perform nuclear resonance fluorescence (NRF) experiments. The performances of the two laser systems (one for electron production, one for scattering), the electron photoinjector, and the linear accelerator are also detailed, and {gamma}-ray results are presented. The key source parameters are the size (0.01 mm{sup 2}), horizontal and vertical divergence (6 x 10 mrad{sup 2}), duration (10 ps), spectrum and intensity (10{sup 5} photons/shot). These parameters are summarized by the peak brightness, 1.5 x 10{sup 15} photons/mm{sup 2}/mrad{sup 2}/s/0.1% bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photo-electron bunch, {gamma}-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on {sup 7}Li in LiH demonstrate the potential of Compton scattering photon sources to accurately detect isotopes in situ.

  9. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced......The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...

  10. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  11. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  12. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  13. The polarization effect of a laser in multiphoton Compton scattering

    Science.gov (United States)

    Liang, Guo-Hua; Lü, Qing-Zheng; Teng, Ai-Ping; Li, Ying-Jun

    2014-05-01

    The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics (QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame. We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.

  14. Photon Acceleration of Laser-plasma Based on Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; XIE Hong-jun

    2006-01-01

    The one-dimensional electron density disturbance is studied by using the inelastic collision model of the relativity electron and photon group, the relativity theory, the momentum equation and the continuity equation, which is generated by a driving laser pulse and scattered laser pulse propagating through a tenuous plasma, and the electron density disturbance is closely associated with the incident laser and scattering laser. The electron plasma wave(EPW)is formed by the propagation of the electron density disturbance. Owing to the action of EPW, the increasing of the frequency of the photons in the incident laser pulses that there is a distance with the driving laser pulses is studied by using optical metric. The results show that it is possible that the photon will gain higher energy from the EPW when photon number is decreased and one-photon Compton scattering enters, the photon will be accelerated.

  15. SVOM Gamma Ray Monitor

    CERN Document Server

    Dong, Yongwei; Li, Yanguo; Zhang, Yongjie; Zhang, Shuangnan

    2009-01-01

    The Space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of Gamma-Ray Bursts (GRBs) and other high-energy transient phenomena. The Gamma Ray Monitor (GRM) onboard is designed to observe the GRBs up to 5 MeV. With this instrument one of the key GRB parameter, Epeak, can be easily measured in the hard x-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  16. SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  17. Gamma Rays From Rotation-Powered Pulsars

    CERN Document Server

    Harding, A K

    2002-01-01

    The seven known gamma-ray pulsars represent a very small fraction of the more than 1000 presently known radio pulsars, yet they can give us valuable information about pulsar particle acceleration and energetics. Although the theory of acceleration and high-energy emission in pulsars has been studied for over 25 years, the origin of the pulsed gamma rays is a question that remains unanswered. Characteristics of the pulsars detected by the Compton Gamma-Ray Observatory could not clearly distinguish between an emission site at the magnetic poles (polar cap models) and emission from the outer magnetosphere (outer gap models). There are also a number of theoretical issues in both type of model which have yet to be resolved. The two types of models make contrasting predictions for the numbers of radio-loud and radio-quiet gamma-ray pulsars and of their spectral characteristics. GLAST will probably detect at least 50 radio-selected pulsars and possibly many more radio-quiet pulsars. With this large sample, it will b...

  18. Gamma-Rays from Intergalactic Shocks

    CERN Document Server

    Keshet, U; Loeb, A; Springel, V; Hernquist, L E; Keshet, Uri; Waxman, Eli; Loeb, Abraham; Springel, Volker; Hernquist, Lars

    2003-01-01

    Structure formation in the intergalactic medium (IGM) produces large-scale, collisionless shock waves, where electrons can be accelerated to highly relativistic energies. Such electrons can Compton scatter cosmic microwave background photons up to gamma-ray energies. We study the radiation emitted in this process using a hydrodynamic cosmological simulation of a LCDM universe. The resulting radiation, extending beyond TeV energies, has roughly constant energy flux per decade in photon energy, in agreement with the predictions of Loeb & Waxman (2000). Assuming that a fraction \\xi_e=0.05 of the shock energy is transferred to the relativistic electrons, as inferred from collisionless non-relativistic shocks in the interstellar medium, we find that the radiation energy flux, e^2 (dJ/de) ~ 50-160 eV cm^{-2} s^{-1} sr^{-1}, constitutes ~10% of the extragalactic gamma-ray background flux. The associated gamma-ray point-sources are too faint to account for the ~60 unidentified EGRET gamma-ray sources, but GLAST s...

  19. Gamma-ray emission from nova outbursts

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission, with the 511 keV line and a continuum. Gamma-ray spectra and light curves are potential unique tools to trace the corresponding isotopes and to give insights on the properties of the expanding envelope. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected with the Fermi satellite in V407 Cyg, a nova in a symbiotic binary, where the companion is a red giant with a wind, instead of a main sequence star as in the cataclysmic variables hosting classical novae. Two more nov...

  20. Gamma Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  2. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  3. Observation of Nonlinear Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  4. Gamma-ray transfer and energy deposition in supernovae

    Science.gov (United States)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  5. Photoneutron production with the Laser-Compton backscattered photons

    Energy Technology Data Exchange (ETDEWEB)

    Toyokawa, Hiroyuki; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa; Yamada, Kawakatsu; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Sei, Norihiro; Chiwaki, Mitsukuni [Electrotechnical Laboratory, Tsukuba, Ibaraki (Japan)

    1999-03-01

    A method to produce quasi-monoenergetic photoneutrons for detector calibration was examined. The photoneutrons were produced with a photo-induced neutron emission of a {sup 9}Be using the Laser-Compton backscattered photons. Because the photon energy is continuously tunable, neutrons with various energies are obtained. Yield of the neutrons was measured with a liquid scintillation detector at the photon energies from 1651 keV to 3019 keV. Neutron yield at around the threshold energy for the {sup 9}Be ({gamma}, n) reaction was measured by changing the photon energy in a 10 keV step. (author)

  6. MEGA - Medium Energy Gamma-ray Astronomy Mission

    Science.gov (United States)

    Ryan, J. M.; Bloser, P. F.; Macri, J. R.; McConnell, M. L.; Ajello, M.; Andritschke, R.; Kanbach, G.; Schoenfelder, V.; Zoglauer, A.; Hunter, S. D.; Kurfess, J. D.; Phlips, B.; Strickman, M.; Wulf, E.; Hartmann, D.; Miller, R.; Paciesas, W.; Zych, A. D.; Kippen, R. M.; Vestrand, W. T.; Cherry, M. L.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Reglero, V.; Di Cocco, G.; Cravens, J.

    2004-12-01

    The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3 - 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL, and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include, among other things, compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA will accomplish these goals using a tracker made of Si strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV) its momentum vector can also be measured. At higher photon energies (above 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. A prototype instrument has been developed and calibrated, and is currently being prepared for a scientific balloon flight.

  7. Spectral properties of Compton inverse radiation: Application of Compton beams

    CERN Document Server

    Bulyak, Eugene

    2013-01-01

    Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiation as compared with the classical electromagnetic devices such as undulators. In this report, the possibility of such radiation to monochromatization by means of collimation is studied. Two approaches have been considered for the description of the spectral-angular density of Compton radiation based on the classical field theory and on the quantum electrodynamics. As is shown, both descriptions produce similar total spectra. On the contrary, angular distribution of the radiation is different: the classical approach predicted a more narrow radiation cone. Also proposed and estimated is a method of the `electronic' monochromatization based on the electronic subtraction of the two images produced by the electron beams with slightly different energies. A `proof-of-prin...

  8. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Trois, A; Giuliani, A; Tavani, M; Labanti, C; Fuschino, F; Bulgarelli, A; Longo, F; Barbiellini, G; Del Monte, E; Moretti, E; Trifoglio, M; Costa, E; Caraveo, P; Cattaneo, P W; Chen, A; D'Ammando, F; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Lapshov, I; Lazzarotto, F; Lipari, P; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Piano, G; Pilia, M; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Antonelli, L A; Colafrancesco, S; Cutini, S; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L; 10.1103/PhysRevLett.105.128501

    2010-01-01

    Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  9. Laser pulse-shape dependence of Compton scattering

    CERN Document Server

    Titov, Alexander I; Shibata, Takuya; Hosaka, Atsushi; Takabe, Hideaki

    2014-01-01

    Compton scattering of short and ultra short (sub-cycle) laser pulses off mildly relativistic electrons is considered within a QED framework. The temporal shape of the pulse is essential for the differential cross section as a function of the energy of the scattered photon at fixed observation angle. The partly integrated cross section is sensitive to the non-linear dynamics resulting in a large enhancement of the cross section for short and, in particular, for ultra-short flat-top pulse envelopes which can reach several orders of magnitude, as compared with the case of a long pulse. Such effects can be studied experimentally and must be taken into account in Monte-Carlo/transport simulations of %$e^+e^-$ pair production in the interaction of electrons and photons in a strong laser field.

  10. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  11. Bremsstrahlung gamma rays from light Dark Matter

    CERN Document Server

    Cirelli, Marco; Zaharijas, Gabrijela

    2013-01-01

    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moder...

  12. Gamma-ray Polarimetry with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    Science.gov (United States)

    Kislat, Fabian

    2017-08-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a next-generation Compton and pair-production telescope. It will allow us to perform sensitive polarimetric observations in the 200keV to 3MeV energy range. Due to its wide field of view it will survey the entire sky every 3 hours, enabling polarization measurements not only of persistent, but also of transient sources such as gamma-ray bursts. The polarization of gamma-rays carries geometric information about compact emission regions that are too small to be imaged at any wavelength, and will thus provide qualitatively new insights. In this paper we discuss AMEGO's polarization sensitivity based on detailed simulations of the instrument. We will use these results to discuss the scientific potential of AMEGO to search for violations of Lorentz invariance. Finally, we present predictions for possible observations based on theoretical models of bright gamma-ray bursts, blazar jets, and the high-energy tail of the galactic black hole binary Cygnus X-1. These predictions will demonstrate AMEGO's ability to distinguish different theoretical models.

  13. On the possibility of sub-TeV Gamma-ray emission from Cyg X-3

    CERN Document Server

    Bednarek, W

    2010-01-01

    The compact X-ray binary system Cyg X-3 has been recently discovered as a source of GeV gamma-rays by the AGILE and the {\\it Fermi} satellites. It shows emission features in the GeV gamma-rays similar to other gamma-ray binaries which were also observed in the TeV gamma-rays (LS 5039 and LSI +61 303). The question appears whether Cyg X-3 can be also detected in the TeV gamma-rays by the Cherenkov telescopes. Here we discuss this problem in detail based on the anisotropic inverse Compton (IC) e-p pair cascade model successfully applied to TeV gamma-ray binaries. We calculate the gamma-ray light curves and gamma-ray spectra expected from the cascade process occurring inside the Cyg X-3 binary system. It is found that the gamma-ray light curves at GeV energies can be consistent with the gamma-ray light curve observed by the Fermi for reasonable parameters of the orbit of the injection source of relativistic electrons. Moreover, we show that in such a model the sub-TeV gamma-ray emission (above 100 GeV) is expect...

  14. Accordion effect in a laser wakefield accelerator: Generating comb-like electron beams for a tunable pulsed source of polychromatic gamma-rays

    Science.gov (United States)

    Kalmykov, Serge; Davoine, Xavier; Ghebregziabher, Isaac; Shadwick, Bradley

    2016-10-01

    Trains of synchronized, fs-length GeV-scale electron bunches with a sub-micron normalized transverse emittance, brightness up to 1017 A/m2, and controlled energy spacing may be purposely produced in both plasma channels and uniform plasmas. A cavity of electron density, driven by an optimally designed multi-color stack of 10-TW-scale laser pulses, experiences expansions and contractions, periodically injecting electrons from the ambient dense plasma, accelerating them without compromising the beam quality. This periodic injection is naturally achieved in a plasma channel. The channel, however, is not a prerequisite to this effect. The number of comb components, as well as their charge and energy spacing, can be controlled in a uniform plasma by independently varying focal spots of the laser stack components. Inverse Thomson scattering from these comb-like beams produces synchronized sequences of quasi-monochromatic, fs-length gamma-ray flashes, which may become an asset to pump-probe experiments in dense plasmas. NSF Grant PHY-1535678.

  15. Simulation of laser-Compton cooling of electron beams for future linear colliders

    Directory of Open Access Journals (Sweden)

    T. Ohgaki

    2001-11-01

    Full Text Available We study a method of laser-Compton cooling of electron beams for future linear colliders. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for Japan Linear Collider/Next Linear Collider at E_{0}=2 GeV is considered.

  16. Development and performance of a gamma-ray imaging detector

    Science.gov (United States)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  17. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  18. Critical remarks on the electron (positron) beam polarization by Compton scattering on circular polarized laser photons

    CERN Document Server

    Kotkin, G L; Telnov, V I

    2003-01-01

    In a number of papers an attractive method of laser polarization of electrons (positrons) at storage rings or linear colliders have been proposed. We show that these suggestions are incorrect and based on errors in simulation of multiple Compton scattering and in calculation of the Compton spin-flip cross sections. We argue that the equilibrium polarization in this method is zero.

  19. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  20. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Sylla, F.; Goddet, J.-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P.; Conejero, E.; Ruiz, C.; Ta Phuoc, K.; Malka, V.

    2016-09-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  1. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    CERN Document Server

    Döpp, A; Thaury, C; Lifschitz, A; Sylla, F; Goddet, J-P; Tafzi, A; Iaquanello, G; Lefrou, T; Rousseau, P; Conejero, E; Ruiz, C; Phuoc, K Ta; Malka, V

    2016-01-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately linear with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance wit...

  2. Terrestrial implications of cosmological gamma-ray burst models

    CERN Document Server

    Thorsett, S E

    1995-01-01

    The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N_2, greatly reducing the ozone concentration for several years through NO_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances...

  3. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  4. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  5. Gamma-Ray Variability of Cygnus X-1

    Science.gov (United States)

    McConnell, Mark; Ryan, James; Zdziarski, Andrzej; Bennett, Kevin; Bloemen, Hans; Hermsen, Wim; Kuiper, Lucien; Collmar, Werner; Schoenfelder, Volker; Steinle, Helmut; Strong, Andrew; Paciesas, William; Phlips, Bernard; Poutanen, Juri

    2002-04-01

    We have used observations of Cygnus X-1 from the Compton Gamma-Ray Observatory (CGRO) and BeppoSAX to study the variation in the MeV gamma-ray emission between the hard and soft spectral states, using spectra that cover the energy range 20 keV up to 10 MeV. These data provide evidence for significant spectral variability at energies above 1 MeV. In particular, whereas the hard X-ray flux decreases during the soft state, the flux at energies above 1 MeV increases, resulting in a significantly harder gamma-ray spectrum at energies above 1 MeV. This behavior is consistent with the general picture of galactic black hole candidates having two distinct spectral forms at soft gamma-ray energies. These data extend this picture, for the first time, to energies above 1 MeV. We have used two different hybrid thermal/non-thermal Comptonization models to fit broad band spectral data obtained in both the hard and soft spectral states. These fits provide a quantitative estimate of the electron distribution and allow us to probe the physical changes that take place during transitions between the low and high X-ray states. We find that there is a significant increase (by a factor of 4) in the bolometric luminosity as the source moves from the hard state to the soft state.

  6. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  7. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    Science.gov (United States)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  8. Fermi Reveals New Light on Novae in Gamma rays

    CERN Document Server

    Cheung, C C; Shore, S N; Grove, J E; Leising, M

    2016-01-01

    Novae are now firmly established as a high-energy (>100 MeV) gamma-ray source class by the Fermi Large Area Telescope (LAT). In symbiotic binary systems such as V407 Cyg 2010, there is a firm theoretical framework for the production of shock-accelerated particles in the nova ejecta from interactions with the dense wind of the red giant companion. Yet, the high-energy gamma-ray emission detected in classical novae involving less evolved stellar companions cannot be explained in the same way and could instead be produced in internal shocks in the ejecta. We summarize the Fermi-LAT gamma-ray observations of novae, highlighting the main properties that will guide further studies. Additionally, we report on the soft gamma-ray (~0.1 MeV) continuum detection of the oxygen-neon type classical nova V382 Vel 1999 with the OSSE detector aboard the Compton Gamma Ray Observatory in light of its Fermi-era analog, V959 Mon 2012.

  9. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  10. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  11. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  12. $\\gamma$-Ray Bursts the Four Crises

    CERN Document Server

    Tavani, M

    1998-01-01

    We discuss some open problems concerning the origin and the emission mechanism of gamma-ray bursts (GRBs) in light of recent developments. If GRBs originate at extragalactic distances, we are facing four crises: (1) an energy crisis, models have to account for more than 10^{53} ergs of energy emitted in the gamma-ray energy band; (2) a spectral crisis, emission models have to account for the surprising `smoothness' of GRB broad-band spectra, with no indication of the predicted spectral `distorsions' caused by inverse Compton scattering in large radiation energy density media, and no evidence for beaming; (3) an afterglow crisis, relativistic shock models have to explain the complexity of the afterglow behavior, the longevity of optical transients detectable up to six months after the burst, the erratic behavior of the radio emission, and the lack of evidence for substantial beaming as indicated by recent searches for GRB afterglows in the X-ray band; (4) a population crisis, from data clearly indicating that ...

  13. Balloon-borne gamma-ray polarimetry

    CERN Document Server

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  14. Gamma-ray Production in Supernova Remnants

    CERN Document Server

    Baring, M G

    1997-01-01

    Supernova remnants are widely believed to be a principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding shock. This review discusses recent modelling of how such energetic particles can produce gamma-rays via interactions with the remnants' ambient interstellar medium, specifically via neutral pion decay, bremsstrahlung and inverse Compton emission. Predictions that relate to the handful of associations between EGRET unidentified sources and known radio/optical/X-ray emitting remnants are summarized. The cessation of acceleration above 1 TeV - 10 TeV energies in young shell-type remnants is critical to model consistency with Whipple's TeV upper limits; these observations provide important diagnostics for theoretical models.

  15. Gamma-ray Pulsar Revolution

    CERN Document Server

    Caraveo, Patrizia A

    2013-01-01

    Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the 70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting, INS, adding a new dimension to the INS family. Today we are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known of gamma-ray-emitting neutron stars. The 100 mark was crossed in 2011 and we are now appr...

  16. High Energy Gamma-rays from FR I Jets

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek

    2003-07-22

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy {gamma}-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated {gamma}-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting from synchrotron self-Compton process and from comptonization of the galactic photon fields, respectively. In the case of Centaurus A, we also find a relatively strong emission component due to comptonization of the nuclear blazar photons, which could be easily observed by GLAST at energy {approx} 10 GeV, providing important test for the unification of FR I sources with BL Lac objects.

  17. Atmospheric gamma ray angle and energy distributions from 2 to 25 MeV

    Science.gov (United States)

    Ryan, J. M.; Moon, S. H.; Wilson, R. B.; Zych, A. D.; White, R. S.; Dayton, B.

    1977-01-01

    Results are given for gamma ray fluxes in six energy intervals from 2-25 MeV and five zenith angle intervals from 0-50 deg (downward moving) and five from 130-180 deg (upward moving). Observations were obtained with the University of California, Riverside double Compton scatter gamma ray telescope flown on a balloon to a 3.0 g/sq cm residual atmosphere at a geomagnetic cuttoff of 4.5 GV. It was found that the angular distribution of downward moving gamma rays is relatively flat, increasing slowly from 10-40 deg. The angular distribution of the upward moving gamma rays at 4.2 g/sq cm increases with angle from the vertical. Energy distributions of upward and downward moving gamma rays are in good agreement with the results of previous studies.

  18. High Brightness Gamma-Ray Production at Fermilab Accelerator Science and Technology (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [Northern Illinois U.; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piiot, P. [Northern Illinois U.; Ruan, J. [Fermilab

    2016-10-10

    Electron beams with energies of the order of a few 100’s of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ∼ 1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  19. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    Science.gov (United States)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  20. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  1. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  2. Extragalactic Gamma-Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  3. A combined model for the X-ray to gamma-ray emission of Cyg X-1

    OpenAIRE

    Moskalenko, I. V.; Collmar, W.; Schoenfelder, V.

    1998-01-01

    We use recent data obtained by three (OSSE, BATSE, and COMPTEL) of four instruments on board the Compton Gamma Ray Observatory, to construct a model of Cyg X-1 which describes its emission in a broad energy range from soft X-rays to MeV gamma-rays self-consistently. The gamma-ray emission is interpreted to be the result of Comptonization, bremsstrahlung, and positron annihilation in a hot optically thin and spatially extended region surrounding the whole accretion disk. For the X-ray emission...

  4. Terrestrial gamma-ray flashes

    Energy Technology Data Exchange (ETDEWEB)

    Marisaldi, Martino, E-mail: marisaldi@iasfbo.inaf.it [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Fuschino, Fabio; Labanti, Claudio [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Tavani, Marco [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Argan, Andrea [INAF, Viale del Parco Mellini 84, 00136 Roma (Italy); Del Monte, Ettore [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Longo, Francesco; Barbiellini, Guido [Dipartimento di Fisica Università di Trieste and INFN Trieste, via A. Valerio 2, I-34127 Trieste (Italy); Giuliani, Andrea [INAF-IASF Milano, Via Bassini 15, I-20133 Milano (Italy); Trois, Alessio [INAF Osservatorio Astronomico di Cagliari, loc. Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-08-21

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  5. Proceeding of the workshop on gamma-ray spectroscopy utilizing heavy-ion, photon and RI beams

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Sugita, Michiaki; Hayakawa, Takehito [eds.

    1998-03-01

    Three time since 1992, we have held the symposia entitled `Joint Spectroscopy Experiments Utilizing JAERI Tandem-Booster Accelerator` at the Tokai Research Establishment. In the symposia, we have mainly discussed the plans of experiments to be done in this joint program. The joint program started in 1994. Several experiments have been made since and some new results have already come up. This symposium `Gamma-ray Spectroscopy utilizing heavy-ion, Photon and RI beams` was held at Tokai Research Establishment of JAERI. Because this symposium is the first occasion after the program started, the first purpose of the symposium is to present and discuss the experimental results so far obtained using the JAERI Tandem-Booster. The second purpose of the symposium is to discuss new possibilities of gamma-ray spectroscopy using new resources such as RI-beam and Photon-beam. The participants from RIKEN, Tohoku University and JAERI Neutron Science Research Center presented the future plans of experiments with RI-beam at each facility. Compared with these nuclear beams, photon beam provides a completely new tool for the {gamma}-ray spectroscopy, which is achieved by inverse Compton scattering between high-energy electron and laser beams. The 23 of the presented papers are indexed individually. (J.P.N.)

  6. High flux polarized gamma rays production: first measurements with a four-mirror cavity at the ATF

    CERN Document Server

    Delerue, Nicolas; Chaikovska, Iryna; Chiche, R; Cizeron, R; Cohen, M; Colin, J; Cornebise, P; Jehanno, D; Labaye, F; Lacroix, M; Marie, R; Peinaud, Y; Soskov, V; Variola, A; Zomer, F; Cormier, E; Flaminio, R; Pinard, L; Araki, S; Funahashi, S; Honda, Y; Omori, T; Shimizu, H; Terunuma, T; Urakawa, J; Akagi, T; Miyoshi, S; Nagata, S; Takahashi, T

    2011-01-01

    The next generation of e+/e- colliders will require a very intense flux of gamma rays to allow high current polarized positrons to be produced. This can be achieved by converting polarized high energy photons in polarized pairs into a target. In that context, an optical system consisting of a laser and a four-mirror passive Fabry-Perot cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. In this contribution, we describe the experimental system and present preliminary results. An ultra-stable four-mirror non planar geometry has been implemented to ensure the polarization of the gamma rays produced. A fiber amplifier is used to inject about 10W in the high finesse cavity with a gain of 1000. A digital feedback system is used to keep the cavity at the length required for the optimal power enhancement. Preliminary measurements show that a flux of about $4\\times10^6 \\gamma$/s with an average energy of about 2...

  7. Design of a Polarised Positron Source Based on Laser Compton Scattering

    CERN Document Server

    Araki, S; Honda, Y; Kurihara, Y; Kuriki, M; Okugi, T; Omori, T; Taniguchi, T; Terunuma, N; Urakawa, J; Artru, X; Chevallier, M; Strakhovenko, V M; Bulyak, E; Gladkikh, P; Mönig, K; Chehab, R; Variola, A; Zomer, F; Guiducci, S; Raimondi, Pantaleo; Zimmermann, Frank; Sakaue, K; Hirose, T; Washio, M; Sasao, N; Yokoyama, H; Fukuda, M; Hirano, K; Takano, M; Takahashi, T; Sato, H; Tsunemi, A; Gao, J; Soskov, V

    2005-01-01

    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.

  8. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  10. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  11. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  12. Pulsar Populations and Unidentified Gamma-Ray Sources

    CERN Document Server

    Harding, A K; Grenier, I A; Perrot, C A

    2003-01-01

    The EGRET telescope on the Compton Gamma-Ray Observatory detected over 200 sources and the majority of these are still unidentified. At least three subpopulations of EGRET sources have been associated with the Galaxy: bright sources lying along the Galactic plane, weaker sources spatially correlated with the Gould Belt and a high-latitude, halo population. Many of these sources may be pulsars and there are more than two-dozen radio pulsars in or near EGRET source error boxes, most of them recently discovered in the Parkes Multibeam Survey. We present results from several population synthesis studies of pulsars in the Galaxy, which predict the number of pulsars detected by gamma-ray and radio surveys assuming models for the high-energy emission beam and its relation to the radio beam. Future gamma-ray pulsar detections by AGILE and GLAST together with the recent large rise in the radio pulsar population will give greatly improved statistics. The relative numbers of radio and gamma-ray pulsars detected in the p...

  13. Shock Acceleration and Gamma-Ray Emitting Supernova Remnants

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I A; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle A.; Goret, Philippe

    1997-01-01

    Diffusive shock acceleration in the environs of a remnant's expanding shell is a popular candidate for the origin of SNR gamma-rays. In this paper, results from our study of non-linear effects in shock acceleration theory and their impact on the gamma-ray spectra of SNRs are presented. These effects describe the dynamical influence of the accelerated cosmic rays on the shocked plasma at the same time as addressing how the non-uniformities in the fluid flow force the distribution of the cosmic rays to deviate from pure power-laws. Such deviations are crucial to gamma-ray spectral determination. Our self-consistent Monte Carlo approach to shock acceleration is used to predict ion and electron distributions that spawn neutral pion decay, bremsstrahlung and inverse Compton emission components for SNRs. We demonstrate how the spatial and temporal limitations imposed by the expanding SNR shell quench acceleration above critical energies in the 500 GeV - 10 TeV range, thereby spawning gamma-ray spectral cutoffs that...

  14. Gamma-Ray Line Studies of Nuclei in the Cosmos

    CERN Document Server

    Leising, M

    2009-01-01

    Gamma-ray line studies are capable of identifying radioactive tracer isotopes generated in cosmic nucleosynthesis events. Pioneering measurements were made 30 years ago with HEAO-C1, detecting the first interstellar gamma-ray line from 26Al, then with SMM and numerous balloon experiments, among their results the detection of radioactivity from supernova SN1987A, and with the Compton Observatory and its OSSE and COMPTEL instruments in 1991-2000, which performed sky surveys in 26Al and 511 keV annihilation emission and the detection of the Cas A supernova remnant in 44Ti radioactivity. The SPI high-resolution Ge spectrometer on INTEGRAL was launched in 2002 and continues to collect data on astrophysically-important gamma-ray lines from decays of 44Ti, 26Al, 60Fe, and positron annihilation. 44Ti decay lines from Cas A have been observed with both INTEGRAL telescopes, and constrain the expansion dynamics of the ejecta. The lack of other 44Ti remnants is a mystery. The 26Al gamma-ray line is now measured throughou...

  15. Gamma-Ray Spectral States of Galactic Black Hole Candidates

    CERN Document Server

    Grove, J E; Kroeger, R A; McNaron-Brown, K; Skibo, J G; Phlips, B F

    1998-01-01

    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with th...

  16. SPEIR: A Ge Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  17. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    Science.gov (United States)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  18. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  19. Combining Harmonic Generation and Laser Chirping to Achieve High Spectral Density in Compton Sources

    CERN Document Server

    Terzić, Balša; Krafft, Geoffrey A

    2015-01-01

    Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. This combination of chirping and h...

  20. Nonthermal gamma-ray and X-ray flashes from shock breakout in gamma-ray bursts/supernovae

    CERN Document Server

    Wang, X Y; Waxman, E; Mészáros, P; Wang, Xiang-Yu; Li, Zhuo; Waxman, Eli; Meszaros, Peter

    2006-01-01

    Thermal X-ray emission which is simultaneous with the prompt gamma-rays has been detected for the first time from a supernova connected with a gamma-ray burst (GRB), namely GRB060218/SN2006aj. It has been interpreted as arising from the breakout of a mildly relativistic, radiation-dominated shock from a dense stellar wind surrounding the progenitor star. There is also evidence for the presence of a mildly relativistic ejecta in GRB980425/SN1998bw, based on its X-ray and radio afterglow. Here we study the process of repeated bulk Compton scatterings of shock breakout thermal photons by the mildly relativistic ejecta. During the shock breakout process, a fraction of the thermal photons would be repeatedly scattered between the pre-shock material and the shocked material as well as the mildly relativistic ejecta and, as a result, the thermal photons get boosted to increasingly higher energies. This bulk motion Comptonization mechanism will produce nonthermal gamma-ray and X-ray flashes, which could account for t...

  1. The Gamma-ray Sky with Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J. [NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 (United States)

    2013-10-15

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as clusters of galaxies. Some results include a stringent limit on Lorentz invariance violation derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure in the direction of the center of our Galaxy, and strong constraints on some Weakly Interacting Massive Particle (WIMP) models for dark matter.

  2. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  3. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  4. High Energy Gamma-rays from Globular Clusters

    CERN Document Server

    Sitarek, W B J

    2007-01-01

    It is expected that specific globular clusters can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the globular cluster comptonizing stellar and microwave background radiation. We calculate the GeV-TeV $\\gamma$-ray spectra for different models of injection of leptons and parameters of the globular clusters assuming reasonable, of the order of 1%, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the globular cluster cores should produce well localized $\\gamma$-ray sources which are concentric with these globular clusters. The results are shown for four specific globular clusters (47 Tuc, Ter 5, M13, and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potenti...

  5. Classifying gamma-ray bursts with Gaussian Mixture Model

    Science.gov (United States)

    Zhang, Zhi-Bin; Yang, En-Bo; Choi, Chul-Sung; Chang, Heon-Young

    2016-11-01

    Using Gaussian Mixture Model (GMM) and expectation-maximization algorithm, we perform an analysis of time duration (T90) for Compton Gamma Ray Observatory (CGRO)/BATSE, Swift/BAT and Fermi/GBM gamma-ray bursts (GRBs). The T90 distributions of 298 redshift-known Swift/BAT GRBs have also been studied in both observer and rest frames. Bayesian information criterion has been used to compare between different GMM models. We find that two Gaussian components are better to describe the CGRO/BATSE and Fermi/GBM GRBs in the observer frame. Also, we caution that two groups are expected for the Swift/BAT bursts in the rest frame, which is consistent with some previous results. However, Swift GRBs in the observer frame seem to show a trimodal distribution, of which the superficial intermediate class may result from the selection effect of Swift/BAT.

  6. Photon generation by laser-Compton scattering at the KEK-ATF

    CERN Document Server

    Miyoshi, Shuhei; Araki, Sakae; Funahashi, Yoshisato; Hirose, Tachishige; Honda, Yosuke; Kuriki, Masao; Li, Xiao; Okugi, Toshiyuki; Omori, Tsunehiko; Pei, Guoxi; Sakaue, Kazuyuki; Shimizu, Hirotaka; Takahashi, Tohru; Terunuma, Nobuhiro; Urakawa, Junji; Ushio, Yasuaki; Washio, Masakazu

    2010-01-01

    We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.

  7. SPATIAL AND SPECTRAL MODELING OF THE GAMMA-RAY DISTRIBUTION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Gary; Chu, You-Hua; Gruendl, Robert; Fields, Brian; Ricker, Paul [Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 (United States); Hughes, Annie, E-mail: gforema2@illinois.edu [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-07-20

    We perform spatial and spectral analyses of the LMC gamma-ray emission collected over 66 months by the Fermi Gamma-ray Space Telescope. In our spatial analysis, we model the LMC cosmic-ray distribution and gamma-ray production using observed maps of the LMC interstellar medium, star formation history, interstellar radiation field, and synchrotron emission. We use bootstrapping of the data to quantify the robustness of spatial model performance. We model the LMC gamma-ray spectrum using fitting functions derived from the physics of π{sup 0} decay, Bremsstrahlung, and inverse Compton scattering. We find the integrated gamma-ray flux of the LMC from 200 MeV to 20 GeV to be 1.37 ± 0.02 × 10{sup −7} ph cm{sup −2} s{sup −1}, of which we attribute about 6% to inverse Compton scattering and 44% to Bremsstrahlung. From our work, we conclude that the spectral index of the LMC cosmic-ray proton population is 2.4 ± 0.2, and we find that cosmic-ray energy loss through gamma-ray production is concentrated within a few 100 pc of acceleration sites. Assuming cosmic-ray energy equipartition with magnetic fields, we estimate LMC cosmic rays encounter an average magnetic field strength ∼3 μG.

  8. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  9. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  10. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  11. The Physics of Gamma-Ray Burst Afterglows and the Nature of Their Host Galaxies

    Science.gov (United States)

    Vreeswijk, Paul

    Gamma-ray bursts are brief flashes of γ-rays, discovered by the cold-war Vela satellites in the early 1970s. For over two decades the distance scale of these explosions was unknown. In the early 1990s, the Burst and Transient Source experiment onboard the Compton Gamma-Ray Observatory showed gamma-ray bursts to have an isotropic sky distribution, suggestive of a cosmological origin. Thanks to the discovery of X-ray and optical afterglows by BeppoSAX, their distant extra-galactic nature was definitely established in 1997. We discuss the history and current status of the study of gamma-ray burst afterglows, and future VLT observations that can significantly advance the field.

  12. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  13. COMPTEL gamma-ray observations of the quasars CTA 102 and 3C 454.3

    Science.gov (United States)

    Blom, J. J.; Bloemen, H.; Bennett, K.; Collmar, W.; Hermsen, W.; Mcconnell, M.; Schoenfelder, V.; Stacy, J. G.; Steinle, H.; Strong, A.

    1994-01-01

    The blazar-type active galactic nuclei CTA 102 (QSO 2230+114) and 3C 454.3 (QSO 2251+158), located about 7 deg apart, were observed by the Compton Gamma Ray Observatory at four epochs in 1992. Both were detected by Energy Gamma Ray Experiment Telescope (EGRET). The combined Compton Telescope (COMPTEL) observations in the 10-30 MeV energy range clearly indicate a source of MeV emission, which is likely due to a contribution from both quasars. These observations strongly suggest that the power-law spectra measured by EGRET above approximately 50 MeV flatten at lower MeV energies. A comparison with observations at other wavelengths shows that the power spectra of CTA 102 and 3C 454.3 peak at MeV energies. This behavior appears to be a common feature of gamma-ray active galactic nuclei (AGN).

  14. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  15. Terrestrial Gamma-ray Flash (TGF) Observations with the Gamma-ray Burst Monitor on the Fermi Observatory

    Science.gov (United States)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial Gamma-ray Flashes (TGFs) have now been detected with four different orbiting spacecraft. The latest observations are being made with the scintillation detectors of Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi). Although this experiment was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations, surpassing those of the experiment that discovered TGFs, the BATSE experiment on the Compton Gamma-ray Observatory. Launched in June 2008 from the Kennedy Space Center, the Fermi-GBM has been detecting about one TGF every four weeks. The thick bismuth germinate (BGO) scintillation detectors of the GBM have now observed photon energies from TGFs at energies up to approx.40 MeV. Individual photons are detected with an absolute timing accuracy of 2 microsec. Unlike the BATSE instrument, the GBM data system allows higher counting rates to be recorded and deadtime characteristics are well-known and correctable; thus the saturation effects seen with BATSE are avoided. TGF pulses as narrow as approx.0.1ms have been observed with the GBM. Like BATSE (and unlike RHESSI) an on-board trigger is required to detect TGFs. The minimum time window for this trigger is 16ms. A trigger window this wide greatly reduces the number of detected TGFs, since they most often have a much shorter duration than this window, thus reducing the signal-to-background. New on-board trigger algorithms based on detected photon energies are about to be implemented; this should increase the number of TGF triggers. High-energy spectra from TGFs observed with Fermi-GBM will be described.

  16. Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    Science.gov (United States)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-07-01

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ self-Compton (SSC) luminosity L SSC low accretion disk luminosity L d. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ >~ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ~ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t var, obs. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t var, obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be provided by determination of the synchrotron self-absorption frequency for correlated synchrotron and gamma-ray flares.

  17. The galactic center arc as source of high energy gamma-rays

    DEFF Research Database (Denmark)

    Pohl, M.

    1997-01-01

    of high-energy electrons coincides with the sickle region (G0.18-0.04), as indicated by the radio data, then the ambient far-infrared (FIR) photons can be up-scattered to gamma-rays by inverse-Compton interaction with the young high-energy electrons. We solve the continuity equation for the electrons...

  18. Centaurus A observation at MeV-gamma-ray energies

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P.; Diehl, R.; Schoenfelder, V.

    1987-01-01

    Results are reported from balloon-borne measurements of Cen A gamma-ray emissions in the 0.7-20 Mev interval on Oct. 31, 1982. The Compton telescope used is described, along with data analysis procedures which accounted for the probabilities that the measured events originated in Cen A, background, instrumental and atmospheric contributions, and the arrival probabilities for all observable sky directions. The data were closely approximated with a power-law spectrum, although balloon failure significantly reduced the number of measurements and introduced large uncertainties into the calculations. 28 references.

  19. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  20. Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2006-01-01

    After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.

  1. Gamma-Ray Bursts Above 1 GeV

    CERN Document Server

    Baring, M G

    1997-01-01

    One of the principal results obtained by the Compton Gamma Ray Observatory relating to the study of gamma-ray bursts was the detection by the EGRET instrument of energetic ($>$100 MeV) photons from a handful of bright bursts. The most extreme of these was the single 18 GeV photon from the GRB940217 source. Given EGRET's sensitivity and limited field of view, the detection rate implies that such high energy emission may be ubiquitous in bursts. Hence expectations that bursts emit out to at least TeV energies are quite realistic, and the associated target-of-opportunity activity of the TeV gamma-ray community is well-founded. This review summarizes the observations and a handful of theoretical models for generating GeV--TeV emission in bursts sources, outlining possible ways that future positive detections could discriminate between different scenarios. The power of observations in the GeV--TeV range to distinguish between spectral structure intrinsic to bursts and that due to the intervening medium between sou...

  2. Active galactic nuclei at gamma-ray energies

    CERN Document Server

    Dermer, Charles Dennison

    2016-01-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with gamma-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling t...

  3. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V. A.; Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Christiansen, J. L. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 94307 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2011-12-10

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t{sup -1.5} time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  4. Distribution of Spectral Lags in Gamma Ray Bursts

    CERN Document Server

    Chen, L; Wu, M; Qu, J L; Jia, S M; Yang, X J

    2004-01-01

    Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given lo...

  5. Constraining decaying dark matter with Fermi LAT gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Weniger, Christoph; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2009-12-15

    High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constraint dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraint. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess. (orig.)

  6. A Revised Analysis of Gamma Ray Bursts' prompt efficiencies

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    The prompt Gamma-Ray Bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the $\\gamma$-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity $L_X$, suggested that this efficiency is large, with values above 90\\% in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between $L_X$ (and hence the blast wave energy) and $E_{\\gamma\\rm ,iso}$, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion $L_X$ is indeed a valid proxy for the latter. Recent findings sugg...

  7. High Redshift Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  8. Gamma ray observatory productivity showcase

    Science.gov (United States)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  9. Gravitational microlensing of gamma-ray blazars

    DEFF Research Database (Denmark)

    F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto

    2003-01-01

    We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze...... the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified $\\gamma$-ray sources (particularly some of those lying at high...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....

  10. Analytical capabilities of the new thermal neutron prompt gamma-ray activation analysis instrument at the National Institute of Standards and Technology Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, E.A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States); Anderson, D.L. [US Food and Drug Administration, Elemental Research Branch, College Park, MD (United States)

    2004-07-01

    A new thermal neutron prompt gamma-ray activation analysis (PGAA) instrument was designed and built to replace the original PGAA system at the National Institute of Standards and Technology's Center for Neutron Research. The new PGAA instrument was constructed to achieve a reduction of the fast neutron beam component, a reduction of background gamma-radiation (including gamma-ray lines that directly interfere with element analyses, low-energy scattered gamma rays, and Compton scattered gamma rays), improvement in element sensitivities and limits of detection (LODs), and a simplified instrument set-up procedure. (orig.)

  11. Map of the Galactic center region in the 1. 8 MeV Al-26 gamma-ray line

    Energy Technology Data Exchange (ETDEWEB)

    Von ballmoos, P.; Diehl, R.; Schoenfelder, V.

    1987-07-01

    The mapping of the Galactic center region in the 1.8 MeV gamma-ray line based on observations made with the MPI Compton telescope during a balloon flight is reported. The measured gamma-ray line profile and the intensity map of the Galactic center region are presented, and the measured map is compared with maps expected from distributions of those objects that have been suggested as possible sources. The consistency of the results with a point source at the Galactic center raises questions about the validity of the generally assumed origin of the gamma-ray line in interstellar space. 26 references.

  12. Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment

    Science.gov (United States)

    Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.

    2012-01-01

    We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…

  13. Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment

    Science.gov (United States)

    Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.

    2012-01-01

    We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…

  14. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  15. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  16. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  17. Magnetars and Gamma Ray Bursts

    CERN Document Server

    Bucciantini, N

    2012-01-01

    In the last few years, evidences for a long-lived and sustained engine in Gamma Ray Bursts (GRBs) have increased the attention to the so called millisecond-magnetar model, as a competitive alternative to the standard collapsar scenario. I will review here the key aspects of the {\\it millisecond magnetar} model for Long Duration Gamma Ray Bursts (LGRBs). I will briefly describe what constraints, present observations put on any engine model, both in term of energetic, outflow properties, and the relation with the associated Supernova (SN). For each of these I will show how the millisecond magnetar model satisfies the requirements, what are the limits of the model, how can it be further tested, and what observations might be used to discriminate against it. I will also discuss numerical results that show the importance of the confinement by the progenitor star in explaining the formation of a collimated outflow, how a detailed model for the evolution of the central engine can be built, and show that a wide varie...

  18. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  19. FERMI Observations of Gamma -Ray Emission From the Moon

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  20. Modelling the $\\gamma$-ray variability of 3C 273

    CERN Document Server

    Zheng, Y G; Huang, B R; Kang, S J

    2016-01-01

    We investigate MeV-GeV $\\gamma$-ray outbursts in 3C 273 in the frame of a time-dependent one-zone synchrotron self-Compton (SSC) model. In this model, electrons are accelerated to extra-relativistic energy through the stochastic particle acceleration and evolve with the time, nonthermal photons are produced by both synchrotron and inverse Compton scattering of synchrotron photons. Moreover, nonthermal photons during a quiescent are produced by the relativistic electrons in the steady state and those during a outburst are produced by the electrons whose injection rate is changed at some time interval. We apply the model to two exceptionally luminous $\\gamma$-ray outbursts observed by the Fermi-LAT from 3C 273 in September, 2009 and obtain the multi-wavelength spectra during the quiescent and during the outburst states, respectively. Our results show that the time-dependent properties of outbursts can be reproduced by adopting the appropriate injection rate function of the electron population.

  1. Recent progress in single sided gamma-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thoe, R.S.

    1994-04-01

    The use of scattered radiation for radiography has many potential advantages over conventional projection techniques: For high energy photons the scattering process strongly dominates all other processes. The intensity of scattered radiation is due directly to the electron density and highly insensitive to chemical composition. Finally, the use of scattered radiation allows the investigator to position the radiation source-on-the same side of the object as the detector. In this paper I will present some recent results of a set of measurements made with our uncollimated Compton backscattering tomography apparatus. This technique uses the Compton energy shift of scattered gamma rays to determine the scattering site. By measuring the spectrum of these scattered gamma rays it is then possible to determine the electron density of the object being investigated. I will give a brief description of the apparatus and present the results of numerous measurements made on a brass phantom with voids placed at various depths. These results imply that for this crude apparatus occlusions as small as one cubic millimeter may be located to an accuracy of about one millimeter at depths of about 15 millimeters in solid brass.

  2. Status of development of the Gamma Ray Energy Tracking Array (GRETA)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.Y.; Schmid, G.J.; Vetter, K. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1996-12-31

    The current generation of large gamma-ray detector arrays, Gammasphere, Eurogam and GASP, are based on modules of Compton suppressed Ge detectors. Due to the solid angle occupied by the Compton shields and to gamma rays escaping the detector, the total peak efficiency of such a design is limited to about 20% for a 1.3 MeV gamma ray. A shell consisting of closely packed Ge detectors has been suggested as the solution to the efficiency limitation. In this case, the entire solid angle is covered by Ge detectors, and by adding the signal from neighboring detectors, the escaped energy is recovered and much higher efficiency can be achieved (e.g. 60% for a 1.3 MeV gamma ray). However, for high multiplicity cascades, the summing of two gamma rays hitting neighboring detectors reduces the efficiency and increases the background. In order to reduce this summing, a large number of detectors is required. For example, with a multiplicity of 25, one needs about 1500 detectors to keep the probability of false summing below 10% and the cost of such a detector array will be prohibitive. Rather than such an approach, the authors are developing a new concept for a gamma-ray array; a shell of closely-packed Ge detectors consisting of 100-200 highly-segmented elements. The high granularity of the segmented Ge detector enables the authors to resolve each of the scattering interactions and determine its position and energy. A tracking algorithm, using the position and energy information, will then identify the interactions belonging to a particular gamma ray and its energy is obtained by summing only these interactions. Such an array can reach a total efficiency about 60%, with a resolving power 1000 times higher than that of current arrays.

  3. Identification of gamma-ray emission from 3C345 and NRAO512

    CERN Document Server

    Schinzel, F K; D'Ammando, F; Burnett, T H; Max-Moerbeck, W; Cheung, C C; Fegan, S J; Casandjian, J M; Reyes, L C; Villata, M; Raiteri, C M; Agudo, I; Calle, O J A Bravo; Carosati, D; Casas, R; Gomez, J L; Gurwell, M A; Hsiao, H Y; Jorstad, S G; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Larionova, E G; Larionova, L V; Marscher, A P; Morozova, D A; Nikolashvili, M G; Roca-Sogorb, M; Ros, J A; Sigua, L A; Spiridonova, O; Troitsky, I S; Vlasyuk, V V; Lobanov, A P; Zensus, J A

    2011-01-01

    For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991-2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at gamma-ray energies <=20 MeV. Recently a bright gamma-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO 512, B3 1640+396) were combined with 20 months of Fermi-LAT monitoring data (August 2008 - April 2010) to associate and identify the dominating gamma-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this gamma-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO 512 started to contribute and thereafter was detected with ...

  4. The hadronic origin of hard gamma-ray spectrum from blazar 1ES 1101-232

    CERN Document Server

    Cao, Gang

    2014-01-01

    The very hard $\\gamma$-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is the contribution of an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard $\\gamma$-ray spectrum from distant blazars. We develop a model to explain the hard $\\gamma$-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs, the GeV emission would be produced by the SSC process, however, the hard $\\gamma$-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed SED of 1ES 1101-232 well, especially the very hard $\\gamma$-ray spectrum. However, our model requires the very large proton power to efficiently produce the $\\gamma$-ray through proton-photon int...

  5. Gamma rays and the case for baryon symmetric big-bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1 to 200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of omega which best fits the present gamma-ray data is omega equals approx. 0.1 which does not conflict with upper limits on Comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.

  6. A large high-energy gamma-ray flare from the blazar 3C 273

    OpenAIRE

    Collmar, W.; Reimer, O.; Bennett, K.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Williams, O. R.; Boettcher, M.

    2000-01-01

    The Compton Gamma-Ray Observatory (CGRO) experiments EGRET and COMPTEL observed the Virgo sky region continuously for 7 weeks between December 10, 1996 and January 28, 1997. The prominent quasar 3C~273 was found to be the brightest source in gamma-rays and was significantly detected by EGRET and COMPTEL. The EGRET experiment observed a time-variable flux at energies above 100 MeV, which reached in a 2-week flaring period (December 30, 1996 to January 14, 1997) its highest flux level observed ...

  7. Origin of $\\gamma$ Ray Bursters

    CERN Document Server

    Mészáros, P

    1999-01-01

    The successful discovery of X-ray, optical and radio afterglows of GRB hasmade possible the identification of host galaxies at cosmological distances.The energy release inferred in these outbursts place them among the mostenergetic and violent events in the Universe. They are thought to be theoutcome of a cataclysmic stellar collapse or compact stellar merger, leading toa relativistically expanding fireball, in which particles are accelerated atshocks and produce nonthermal radiation. The substantial agreement betweenobservations and the theoretical predictions of the fireball shock modelprovide confirmation of the basic aspects of this scenario. Among recent issuesare the collimation of the outflow and its implications for the energetics, theproduction of prompt bright flashes at wavelenghts much longer than gamma-rays,the time structure of the afterglow, its dependence on the central engine orprogenitor system behavior, and the role of the environment on the afterglow.

  8. A search for optical counterparts of gamma-ray bursts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Sook

    1995-03-09

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comers of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from

  9. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  10. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  11. Gamma ray spectroscopy with PPM resolving power

    CERN Document Server

    Börner, H; Mutti, P

    2002-01-01

    Applications of gamma-ray spectroscopy with ppm resolving power are presented. The extraordinary resolution allows via the Gamma Ray Induced Doppler broadening (GRID) technique to determine lifetimes of excited nuclear levels. This has contributed to important nuclear structure information. We report on the current status of the technique

  12. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  13. Gamma ray astronomy from satellites and balloons

    Science.gov (United States)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  14. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  15. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  16. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K.; Decerprit, G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Coppi, P. [Department of Astronomy, Yale University, P. O. Box 208101 New Haven, CT 06511 (United States); Cui, W., E-mail: gunessenturk@gmail.com, E-mail: fortin@llr.in2p3.fr, E-mail: deirdre@llr.in2p3.fr [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); and others

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat} {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.

  17. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  18. Experiments in Special Relativity Using Compton Scattering of Gamma Rays.

    Science.gov (United States)

    Egelstaff, P. A.; And Others

    1981-01-01

    Some simple undergraduate laboratory experiments are described, which verify the energy-momentum relationship of special relativity. These experiments have been designed either to be used as classroom demonstrations or to be carried out by second-year students. (Author/JN)

  19. Gamma-ray imaging with a large micro-TPC and a scintillation camera

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, K. [Graduate School of Science, Department of Physics, Kyoto University Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)], E-mail: hattori@cr.scphys.kyoto-u.ac.jp; Kabuki, S.; Kubo, H.; Kurosawa, S.; Miuchi, K. [Graduate School of Science, Department of Physics, Kyoto University Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Nagayoshi, T. [Advanced Research Institute for Science and Engineering, Waseda University, 17 Kikui-cho, Shinjuku 162-0044, Tokyo (Japan); Nishimura, H.; Okada, Y. [Graduate School of Science, Department of Physics, Kyoto University Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Orito, R. [Graduate School of Science and Technology, Department of Physics, Kobe University, 1-1 Rokkoudai, Nada, Kobe 657-8501 (Japan); Sekiya, H.; Takada, A. [Graduate School of Science, Department of Physics, Kyoto University Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Takeda, A. [Kamioka Observatory, ICRR, University of Tokyo, 456 Higashi-mozumi, Hida-shi, Gifu 505-1205 (Japan); Tanimori, T.; Ueno, K. [Graduate School of Science, Department of Physics, Kyoto University Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)

    2007-10-21

    We report on the development of a large Compton camera with the full reconstruction of the Compton process based on a prototype. This camera consists of two kinds of detectors. One is a gaseous time projection chamber (micro-TPC) for measuring the energy and the track of a Compton recoil electron. The micro-TPC is based on a {mu}-PIC and a GEM, which are micro-pattern gas detectors (MPGDs). The size of the micro-TPC was 10cmx10cmx8cm in the case of the prototype, and we enlarged it to 23cmx28cmx15cm. The other detector part is a NaI (Tl) Anger camera for measuring the scattered gamma-ray. With these informations, we can completely reconstruct a Compton event, and determine the direction of the incident gamma-ray, event by event. We succeeded in reconstructing events of incident 662 keV gamma-rays. The measured angular resolutions of the 'angular resolution measure' (ARM) and the 'scatter plane deviation' (SPD) were 9.3{sup 0} and 158{sup 0} (FWHM), respectively.

  20. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  1. Gamma-ray luminosity function of gamma-ray bright AGNs

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; P. Sreekumar; R. Mukherjee

    2009-01-01

    Detection of γ-ray emissions from a class of active galactic nuclei (viz blazars),has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their-γ-ray luminosity function has not been well determined. Few at-tempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and γ-ray luminosity function of FSRQs and BL Lacs separately. Our investi-gation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolu-tion models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac lu-minosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.

  2. Searches for optical counterparts of BATSE gamma-ray bursts with the Explosive Transient Camera.

    Science.gov (United States)

    Krimm, H. A.; Vanderspek, R. K.; Ricker, G. R.

    1996-12-01

    The Explosive Transient Camera (ETC) is a wide-field CCD camera system capable of detecting short (1-10s) celestial optical flashes as faint as m~10 over a field-of-view of 0.75-steradians between -15° and +62° declination. The ETC has been operating automatically under computer control since January 1991. Since the launch of the Compton Gamma Ray Observatory, the ETC has been capable of observing an optical flash coincident with a gamma-ray burst (GRB) detected by the Burst and Transient Spectroscopy Experiment (BATSE). Between April 1991 and August 1995, there were seven cases of at least partial spatial overlap between a BATSE 68% confidence positional error box and the ETC field-of-view during an ETC observation. In each case upper limits are placed on the optical-to-gamma-ray flux ratio.

  3. Gamma Rays, Electrons, Hard X-Rays, and the Central Parsec of the Milky Way

    CERN Document Server

    Kistler, Matthew D

    2015-01-01

    The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified model to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.

  4. Ambiguity in gamma-ray tracking of 'two-interaction' events

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, N.J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Duguet, T. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lister, C.J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)]. E-mail: lister@anl.gov

    2005-08-01

    Tracking of gamma-rays in germanium detectors can allow the full reconstruction of interactions, a feature that is useful in many applications. Scrutiny of the kinematics and geometry of gamma-rays which are Compton scattered only once prior to full absorption reveals that there are special cases where even perfect spatial and energy resolution cannot resolve the true interaction sequence and consequently the gamma-ray tracks cannot be unambiguously reconstructed. The photon energy range where this ambiguity exists is from 255 keV to about 700 keV. This is an energy region of importance for nuclear structure research and a domain where two-point interactions are probable.

  5. VHE Gamma-Rays From Westerlund 2 And Implications for the Inferred Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, O.; /Stanford U., HEPL /KIPAC, Menlo Park; Aharonian, F.; /Heidelberg, Max Planck Inst. /Dublin Inst.; Hinton, J.; /Leeds U.; Hofmann, W.; Hoppe, S.; /Heidelberg, Max Planck Inst.; Raue, M.; /Hamburg U.; Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-14

    The H.E.S.S. collaboration recently reported the discovery of VHE {gamma}-ray emission coincident with the young stellar cluster Westerlund 2. This system is known to host a population of hot, massive stars, and, most particularly, the WR binary WR 20a. Particle acceleration to TeV energies in Westerlund 2 can be accomplished in several alternative scenarios, therefore we only discuss energetic constraints based on the total available kinetic energy in the system, the actual mass loss rates of respective cluster members, and implied gamma-ray production from processes such as inverse Compton scattering or neutral pion decay. From the inferred gamma-ray luminosity of the order of 10{sup 35} erg/s, implications for the efficiency of converting available kinetic energy into non-thermal radiation associated with stellar winds in the Westerlund 2 cluster are discussed under consideration of either the presence or absence of wind clumping.

  6. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

    CERN Document Server

    Lister, M L; Aller, H; Hovatta, T; Kellermann, K I; Kovalev, Y Y; Meyer, E T; Pushkarev, A B; Ros, E; Ackermann, M; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Boeck, M; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Chang, C S; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Kadler, M; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nishino, S; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Rainò, S; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Ritz, S; Sadrozinski, H F -W; Sgrò, C; Shaw, M S; Siskind, E J; Spandre, G; Spinelli, P; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tosti, G; Tramacere, A; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Zimmer, S

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any...

  7. Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Pfrommer, Christoph; Puchwein, Ewald [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States)

    2014-08-01

    Fermi has been instrumental in constraining the luminosity function and redshift evolution of gamma-ray bright BL Lac objects, a subpopulation of blazars with almost featureless optical spectra. This includes limits on the spectrum and anisotropy of the extragalactic gamma-ray background (EGRB), redshift distribution of nearby Fermi active galactic nuclei (AGNs), and the construction of a logN-log S relation. Based on these, it has been argued that the evolution of the gamma-ray bright BL Lac population must be much less dramatic than that of other AGNs. However, critical to such claims is the assumption that inverse Compton cascades reprocess emission above a TeV into the Fermi energy range, substantially enhancing the strength of the observed limits. Here we demonstrate that in the absence of such a process, due, e.g., to the presence of virulent plasma beam instabilities that preempt the cascade, a population of TeV-bright BL Lac objects that evolve similarly to quasars is consistent with the population of hard gamma-ray BL Lac objects observed by Fermi. Specifically, we show that a simple model for the properties and luminosity function is simultaneously able to reproduce their logN-log S relation, local redshift distribution, and contribution to the EGRB and its anisotropy without any free parameters. Insofar as the naturalness of a picture in which the hard gamma-ray BL Lac population exhibits the strong redshift evolution observed in other tracers of the cosmological history of accretion onto halos is desirable, this lends support for the absence of the inverse Compton cascades and the existence of the beam plasma instabilities.

  8. Generation of tens-of-MeV photons by compton backscatter from laser-plasma-accelerated GeV electrons

    Science.gov (United States)

    Shaw, J. M.; Bernstein, A. C.; Hannasch, A.; LaBerge, M.; Chang, Y.-Y.; Weichman, K.; Welch, J.; Zgadzaj, R.; Henderson, W.; Tsai, H.-E.; Fazel, N.; Wang, X.; Wagner, C.; Donovan, M.; Dyer, G.; Gaul, E.; Gordon, J.; Martinez, M.; Spinks, M.; Toncian, T.; Ditmire, T.; Downer, M. C.

    2017-03-01

    Previous work has demonstrated the use of a plasma mirror (PM), after a laser-plasma accelerator (LPA), for generating Compton γ-rays by retro-reflecting the spent laser pulse into the just-accelerated electrons. Here, we investigate the use of a PM to stimulate Compton backscatter (CBS) by retro-reflecting a spent pulse from the Texas Petawatt (TPW) laser after it has driven a cm-scale, GeV LPA. A comparative analysis between the electron and CBS pointing and divergence reveals strong agreement, from shot-to-shot, suggesting a reliable, non-invasive extension for GeV-beam metrology. Our observations confirm the self-aligning PM method is scalable to GeV LPAs, while also suggesting a technique with unique advantages and a robustness that can potentially be exploited for investigations of nonlinear Compton backscatter from ultralow divergence, GeV electrons using the Texas Petawatt Laser.

  9. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  10. Gamma-Ray Burst Progenitors

    Science.gov (United States)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  11. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  12. Gamma-ray burst progenitors

    CERN Document Server

    Levan, Andrew; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-01-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; i) direct observations of GRBs and their host galaxies, ii) parameters derived from modeling, both via population synthesis and direct numerical simulation and iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous an...

  13. Gamma-ray Burst Cosmology

    CERN Document Server

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  14. Gamma-Ray Burst Early Afterglows

    CERN Document Server

    Zhang, B

    2005-01-01

    The successful launch and operation of NASA's Swift Gamma-Ray Burst Explorer open a new era for the multi-wavelength study of the very early afterglow phase of gamma-ray bursts (GRBs). GRB early afterglow information is essential to explore the unknown physical composition of GRB jets, the link between the prompt gamma-ray emission and the afterglow emission, the GRB central engine activity, as well as the immediate GRB environment. Here I review some of the recent theoretical efforts to address these problems and describe how the latest Swift data give answers to these outstanding questions.

  15. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  16. Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory

    Science.gov (United States)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño deLeón, S.; De la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hernandez, S.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-07-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico that has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index 1.66, the high-energy component is extended to higher energies with no cutoff other than that from extragalactic background light attenuation, HAWC would observe gamma-rays with a peak energy of ˜300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift and Fermi, including 3 GRBs that were also detected by the Large Area Telescope (Fermi-LAT). An ON/OFF analysis method is employed, searching on the timescale given by the observed light curve at keV-MeV energies and also on extended timescales. For all GRBs and timescales, no statistically significant excess of counts is found and upper limits on the number of gamma-rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi satellite (Fermi-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cutoff in an additional high-energy component to be less than 100 {GeV} for reasonable assumptions about the energetics and redshift of the burst.

  17. The gamma-ray emitting region of the jet in Cyg X-3

    CERN Document Server

    Zdziarski, Andrzej A; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzalek, Anna

    2011-01-01

    We study models of the gamma-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum, based on Swift data, during the gamma-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy cut-off in the electron distribution at a Lorentz factor of 10^3 is required by the form of the observed X-ray/gamma-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed gamma-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is 2.5--3. The presence of the low energy electron cut-off is well explained by recent shock acceleration models, in which it is related to the ion/electron mass ra...

  18. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    Science.gov (United States)

    Young, C. A.; Arndt, M. B.; Bennett, K.; Connors, A.; Debrunner, H.; Diehl, R.; McConnell, M.; Miller, R. S.; Rank, G.; Ryan, J. M.; Schoenfelder, V.; Winkler, C.

    2001-10-01

    The ``Pre-SMM'' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE. .

  19. The Refractive Index of Silicon at Gamma Ray Energies

    CERN Document Server

    Habs, D; Jentschel, M; Urban, W

    2011-01-01

    The index of refraction n(E_{\\gamma})=1+\\delta(E_{\\gamma})+i\\beta(E_{\\gamma}) is split into a real part \\delta and an absorptive part \\beta. The absorptive part has the three well-known contributions to the cross section \\sigma_{abs}: the photo effect, the Compton effect and the pair creation, but there is also the inelastic Delbr\\"uck scattering. Second-order elastic scattering cross sections \\sigma_{sca} with Rayleigh scattering (virtual photo effect), virtual Compton effect and Delbr\\"uck scattering (virtual pair creation) can be calculated by integrals of the Kramers-Kronig dispersion relations from the cross section \\sigma_{abs}. The real elastic scattering amplitudes are proportional to the refractive indices \\delta_{photo}, \\delta_{Compton} and \\delta_{pair}. While for X-rays the negative \\delta_{photo} dominates, we show for the first time experimentally and theoretically that the positive \\delta_{pair} dominates for \\gamma rays, opening a new era of \\gamma optics applications, i.e. of nuclear photoni...

  20. Compton sources for the observation of elastic photon-photon scattering events

    Science.gov (United States)

    Micieli, D.; Drebot, I.; Bacci, A.; Milotti, E.; Petrillo, V.; Conti, M. Rossetti; Rossi, A. R.; Tassi, E.; Serafini, L.

    2016-09-01

    We present the design of a photon-photon collider based on conventional Compton gamma sources for the observation of elastic γ γ scattering. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton backscattering with two high energy lasers. The elastic photon-photon scattering is analyzed by start-to-end simulations from the photocathodes to the detector. A new Monte Carlo code has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary gamma yield, obtained by using the parameters of existing or approved Compton devices, a discussion of the feasibility of the experiment and of the nature of the background are presented.

  1. Direct And Reprocessed Gamma-Ray Emission of Kpc-Scale Jets in FR I Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; /SLAC; Kneiske, T.M.; /Adelaide U.; Kataoka, J.; /Tokyo Inst. Tech. /KIPAC, Menlo Park

    2007-10-09

    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse {gamma}-ray background radiation. The analyzed {gamma}-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 {micro}G in the brightest knots of these jets), can contribute about one percent to the extragalactic {gamma}-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 {micro}G on average, as otherwise the extragalactic {gamma}-ray background would be overproduced.

  2. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  3. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi LAT

    CERN Document Server

    Tanaka, T; Ballet, J; Funk, S; Giordano, F; Hewitt, J; Lemoine-Goumard, M; Tajima, H; Tibolla, O; Uchiyama, Y

    2011-01-01

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope. In the Fermi LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of Gamma = 1.85 +/- 0.06 (stat) (+0.18,-0.19) (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi LAT energy range, the model can fit the data conside...

  4. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park; Ballet, J.; /Saclay; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Giordano, F.; /Bari U. /INFN, Bari; Hewitt, J.; /NASA, Goddard; Lemoine-Goumard, M.; /Bordeaux U.; Tajima, H.; /Stanford U., HEPL /KIPAC, Menlo Park /Nagoya U., Solar-terrestrial Environ Lab.; Tibolla, O.; /Wurzburg U.; Uchiyama, Y.; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-12-13

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope. In the Fermi LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of {Lambda} = 1.85 {+-} 0.06 (stat){sub -0.19}{sup +0.18} (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi LAT energy range, the model can fit the data considering the statistical and systematic errors.

  5. Gamma-ray properties of active galactic nuclei

    Science.gov (United States)

    Schoenfelder, V.

    1994-01-01

    Recent observations by the Compton Observatory (CGRO) have increased our knowledge about the gamma-ray emission from Active Galactic Nuclei (AGN) considerably. The three most important findings of CGRO with respect to AGNs are: first, no Seyfert 1 galaxy has been found to show emission above 500 keV. The by far strongest Seyfert 1 galaxy NGC 4151 shows a spectrum which falls off exponentially with an e-folding energy of 39 keV between 65 and 500 keV. OSSE so far has detected or has indications of detections for seven additional Seyfert 1 galaxies, which, however, all show very weak hard X-ray emission compared to NGC 4151. No annihilation feature has been seen from any Seyfert galaxy to this date. Second, the radio galaxy Cen A shows a power-law energy spectrum from hard X-ray energies of about 150 keV to at least 3 MeV. It has not been seen at EGRET-energies. Third, a new class of AGN was discovered at energies above 100 MeV by EGRET. The power of these objects in gamma-rays can dominate the luminosity in other spectral ranges. These objects are associated with extragalactic sources that have blazar properties. The high-energy gamma-ray emission is probably produced in relativistically outflowing jets. At hard X-ray energies the objects are rather weak. Spectral breaks at MeV energies were found by COMPTEL for three of these objects (3C 273, 3C 279, and PKS 0528+134).

  6. Zinc oxide nanowire gamma ray detector with high spatiotemporal resolution

    Science.gov (United States)

    Mayo, Daniel C.; Nolen, J. Ryan; Cook, Andrew; Mu, Richard R.; Haglund, Richard F.

    2016-03-01

    Conventional scintillation detectors are typically single crystals of heavy-metal oxides or halides doped with rare-earth ions that record the recombination of electron-hole pairs by photon emission in the visible to ultraviolet. However, the light yields are typically low enough to require photomultiplier detection with the attendant instrumental complications. Here we report initial studies of gamma ray detection by zinc oxide (ZnO) nanowires, grown by vapor-solid deposition. The nanowires grow along the c-axis in a wurtzite structure; they are typically 80 nm in diameter and have lengths of 1- 2 μm. The nanowires are single crystals of high quality, with a photoluminescence (PL) yield from band-edge exciton emission in the ultraviolet that is typically one hundred times larger than the PL yield from defect centers in the visible. Nanowire ensembles were irradiated by 662 keV gamma rays from a Cs-137 source for periods of up to ten hours; gamma rays in this energy range interact by Compton scattering, which in ZnO creates F+ centers that relax to form singly-charged positive oxygen vacancies. Following irradiation, we fit the PL spectra of the visible emission with a sum of Gaussians at the energies of the known defects. We find highly efficient PL from the irradiated area, with a figure of merit approaching 106 photons/s/MeV of deposited energy. Over a period of days, the singly charged O+ vacancies relax to the more stable doubly charged O++ vacancies. However, the overall defect PL returns to pre-irradiation values after about a week, as the vacancies diffuse to the surface of these very thin nanowires, indicating that a self-healing process restores the nanowires to their original state.

  7. The e-ASTROGAM gamma-ray space mission

    Science.gov (United States)

    Tatischeff, V.; Tavani, M.; von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; Bykov, A.; Campana, R.; Caraveo, P.; Cardillo, M.; Coppi, P.; De Angelis, A.; Diehl, R.; Donnarumma, I.; Fioretti, V.; Giuliani, A.; Grenier, I.; Grove, J. E.; Hamadache, C.; Hartmann, D.; Hernanz, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Marisaldi, M.; McBreen, S.; McEnery, J. E.; Mereghetti, S.; Mirabel, F.; Morselli, A.; Nakazawa, K.; Peyré, J.; Piano, G.; Pittori, C.; Sabatini, S.; Stawarz, L.; Thompson, D. J.; Ulyanov, A.; Walter, R.; Wu, X.; Zdziarski, A.; Zoglauer, A.

    2016-07-01

    e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 { 100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.

  8. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  9. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    Science.gov (United States)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E. J.

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  10. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  11. Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light

    CERN Document Server

    Seipt, D; Fritzsche, S

    2014-01-01

    The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

  12. Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    CERN Document Server

    Nalewajko, Krzysztof; Sikora, Marek

    2014-01-01

    Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta ~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling co...

  13. Detecting gamma-ray anisotropies from decaying dark matter. Prospects for Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro; Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Weniger, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-09-15

    Decaying dark matter particles could be indirectly detected as an excess over a simple power law in the energy spectrum of the diffuse extragalactic gamma-ray background. Furthermore, since the Earth is not located at the center of the Galactic dark matter halo, the exotic contribution from dark matter decay to the diffuse gamma-ray flux is expected to be anisotropic, offering a complementary method for the indirect search for decaying dark matter particles. In this paper we discuss in detail the expected dipole-like anisotropies in the dark matter signal, taking also into account the radiation from inverse Compton scattering of electrons and positrons from dark matter decay. A different source for anisotropies in the gamma-ray flux are the dark matter density fluctuations on cosmic scales. We calculate the corresponding angular power spectrum of the gamma-ray flux and comment on observational prospects. Finally, we calculate the expected anisotropies for the decaying dark matter scenarios that can reproduce the electron/positron excesses reported by PAMELA and the Fermi LAT, and we estimate the prospects for detecting the predicted gamma-ray anisotropy in the near future. (orig.)

  14. Gamma-ray emission from the galactic anticenter at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Graser, U.; Schoenfelder, V.

    1982-12-15

    An image of the anticenter region of the Galaxy between right ascension 50/sup 0/ and 110/sup 0/ and between declination +10/sup 0/ and +50/sup 0/ in the energy range 1.1--10 MeV is derived from data obtained during a balloon flight with the MPI Compton telescope. The telescope has a field of view of 40/sup 0/--50/sup 0/ (FWHM) and a 1 sigma angular resolution of about 4/sup 0/ within this field. A significantly enhanced ..gamma..-ray emission is observed along the galactic plane from l/sup II/ = 160/sup 0/ to l/sup II/ = 197/sup 0/. Part of the emission is due to the Crab Nebula. The energy spectrum of the pulsed and total Crab emission is determined. Because of the limited angular resolution of the telescope it is not possible to decide whether the remainder of the emission is diffuse in nature or due to unresolved sources. No significantly enhanced ..gamma..-ray emission is observed from the direction of the high-energy ..gamma..-ray source Geminga (2CG 195+04) or from the Seyfert galaxy MCG 8--11--11, which recently was reported to be a soft ..gamma..-ray source. An upper limit to the diffuse galactic ..gamma..-ray emission is determined, which leads to restrictions of the spectrum of interstellar cosmic ray electrons at MeV energies.

  15. An Intense Gamma-Ray Flare of PKS 1622-297

    CERN Document Server

    Mattox, J R; Malkan, M A; McGlynn, T A; Schachter, J F; Grove, J E; Johnson, W N; Kurfess, J D

    1996-01-01

    We report the observation by the Compton Gamma Ray Observatory of a spectacular flare of radio source PKS 1622-297. A peak flux of 17E-6 cm^-2 s^-1 (E > 100 MeV) was observed. The corresponding isotropic luminosity is 2.9E49 erg/s. We find that PKS 1622-297 exhibits gamma-ray intra-day variability. A flux increase by a factor of at least 3.6 was observed to occur in less than 7.1 hours (with 99% confidence). Assuming an exponential rise, the corresponding doubling time is less than 3.8 hours. A significant flux decrease by a factor of ~2 in 9.7 hours was also observed. Without beaming, the rapid flux change and large isotropic luminosity are inconsistent with the Elliot-Shapiro condition (assuming that gas accretion is the immediate source of power for the gamma-rays). This inconsistency suggests that the gamma-ray emission is beamed. A minimum Doppler factor of 8.1 is implied by the observed lack of pair-production opacity (assuming x-rays are emitted co-spatially with the gamma-rays). Simultaneous observati...

  16. "Orphan" $\\gamma$-ray Flares and Stationary Sheaths of Blazar Jets

    CERN Document Server

    MacDonald, Nicholas R; Marscher, Alan P

    2016-01-01

    Blazars exhibit flares across the entire electromagnetic spectrum. Many $\\gamma$-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These "orphan" $\\gamma$-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. Macdonald et al. have developed the Ring of Fire model to explain the origin of orphan $\\gamma$-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan $\\gamma$-ray flare. This model was successfully applied to modeling a prominent orphan $\\gamma$-ray flare observed in the ...

  17. Supernova remnants and gamma-ray sources

    CERN Document Server

    Torres, D F; Dame, T M; Combi, J A; Butt, Y M; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.; Butt, Yousaf M.

    2003-01-01

    A review of the possible relationship between $\\gamma$-ray sources and supernova remnants (SNRs) is presented. Particular emphasis is given to the analysis of the observational status of the problem of cosmic ray acceleration at SNR shock fronts. All positional coincidences between SNRs and unidentified $\\gamma$-ray sources listed in the Third EGRET Catalog at low Galactic latitudes are discussed on a case by case basis. For several coincidences of particular interest, new CO(J=1-0) and radio continuum maps are shown, and the mass content of the SNR surroundings is determined. The contribution to the $\\gamma$-ray flux observed that might come from cosmic ray particles (particularly nuclei) locally accelerated at the SNR shock fronts is evaluated. We discuss the prospects for future research in this field and remark on the possibilities for observations with forthcoming $\\gamma$-ray instruments.

  18. Zapping Mars Rocks with Gamma Rays

    Science.gov (United States)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  19. Thermal neutron capture gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  20. Gamma-Ray Astrophysics NSSTC Fermi GBM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...

  1. Soft gamma rays from heavy WIMPs

    Science.gov (United States)

    Krauss, Manuel Ernst; Opferkuch, Toby; Staub, Florian; Winkler, Martin Wolfgang

    2016-12-01

    We propose an explanation of the galactic center gamma ray excess by supersymmetric WIMPs as heavy as 500 GeV. The lightest neutralino annihilates into vector-like leptons or quarks which cascade decay through intermediate Higgs bosons. Due to the long decay chains, the gamma ray spectrum is much softer than naively expected and peaks at GeV energies. The model predicts correlated diboson and dijet signatures to be tested at the LHC.

  2. Conditions for Production of Terrestral Gamma-Ray Flashes

    Science.gov (United States)

    Lehtinen, N. G.; Inan, U. S.

    2005-12-01

    Terrestrial gamma-ray flashes (TGFs) are the most energetic natural photon phenomena on Earth and have been a subject of keen interest since their accidental discovery by the Burst and Transient Source Experiment (BATSE) instrument on the Compton Gamma Ray Observatory (CGRO), which has observed a total of 76 flashes at an average rate of once per month. The new observations of hundreds of TGFs on the RHESSI spacecraft, with many tens of events observed per month, corresponding to a rate of >50 events per day globally, bring to the fore the need of theoretical studies of new TGF mechanisms. In this work, we study the TGF production by a combined action of the electromagnetic pulse (EMP) from a lightning return stroke and the post-discharge quasi-electrostatic (QES) field. We investigate various parameters necessary for the production of a detectable TGF, including the return stroke speed and maximum value, the charge removed by a continuing current in the positive cloud-to-ground (+CG) discharge, and the dependence on the pre-discharge atmosphere conductivity profile.

  3. Calibration of Gamma-ray Burst Polarimeter POLAR

    CERN Document Server

    Xiao, H L; Bao, T W; Batsch, T; Bernasconi, T; Cernuda, I; Chai, J Y; Dong, Y W; Gauvin, N; Kole, M; Kong, M N; Kong, S W; Li, L; Liu, J T; Liu, X; Marcinkowski, R; Orsi, S; Pohl, M; Produit, N; Rapin, D; Rutczynska, A; Rybka, D; Shi, H L; Song, L M; Sun, J C; Szabelski, J; Wu, B B; Wang, R J; Wen, X; Xu, H H; Zhang, L; Zhang, L Y; Zhang, S N; Zhang, X F; Zhang, Y J; Zwolinska, A

    2015-01-01

    Gamma Ray Bursts (GRBs) are the strongest explosions in the universe which might be associated with creation of black holes. Magnetic field structure and burst dynamics may influence polarization of the emitted gamma-rays. Precise polarization detection can be an ultimate tool to unveil the true GRB mechanism. POLAR is a space-borne Compton scattering detector for precise measurements of the GRB polarization. It consists of a 40$\\times$40 array of plastic scintillator bars read out by 25 multi-anode PMTs (MaPMTs). It is scheduled to be launched into space in 2016 onboard of the Chinese space laboratory TG2. We present a dedicated methodology for POLAR calibration and some calibration results based on the combined use of the laboratory radioactive sources and polarized X-ray beams from the European Synchrotron Radiation Facility. They include calibration of the energy response, computation of the energy conversion factor vs. high voltage as well as determination of the threshold values, crosstalk contributions...

  4. Hard X / soft gamma ray polarimetry using a Laue lens

    CERN Document Server

    Barrière, Nicolas M; Ubertini, Pietro

    2011-01-01

    Hard X / soft gamma-ray polarimetric analysis can be performed efficiently by the study of Compton scattering anisotropy in a detector composed of fine pixels. But in the energy range above 100 keV where sources flux are extremely weak and instrumental background very strong, such delicate measurement is actually very difficult to perform. Laue lens is an emerging technology based on diffraction in crystals allowing the concentration of soft gamma rays. This kind of optics can be applied to realize an efficient high-sensitivity and high-angular resolution telescope, at the cost of a field of view reduced to a few arcmin though. A 20 m focal length telescope concept focusing in the 100 keV - 600 keV energy range is taken as example here to show that recent progresses in the domain of high-reflectivity crystals can lead to very appealing performance. The Laue lens being fully transparent to polarization, this kind of telescope would be well suited to perform polarimetric studies since the ideal focal plan is a ...

  5. GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment

    CERN Document Server

    Bloser, P F; Macri, J R; McConnell, M L; Narita, T; Ryan, J M

    2005-01-01

    This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of other astrophysical sources. Accurately measuring the polarization of the emitted radiation will lead to a better understating of both emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. The azimuthal distribution of photon scatters from the plastic array into the central calorimeter provides a measure of the polarization fraction and polarization angle of the incident radiation. The design of the detector provides sensitivity over a large field-of-view (>pi steradian). The design facilitates the fabrication of large area arrays w...

  6. High-Energy Spectral Signatures in $\\gamma$-Ray Bursts

    CERN Document Server

    Baring, M G

    1999-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several Gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  7. Probing Massive Stars Around Gamma-Ray Burst Progenitors

    CERN Document Server

    Lu, Wenbin; Smoot, George F

    2015-01-01

    Long Gamma-Ray Bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPFs are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind, and (III) in a dense star cluster. Typical luminosities of 10^47 - 10^50 erg/s in the 10 - 100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass loss rate (II), stellar number density (III), etc. We calculate the lightcurve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt gamma-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenit...

  8. On the X-Ray emission of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times. We show that the entire X-ray observations are in excellent agreement with the predictions of the `cannonball' model of GRBs and XRFs, which are based on simple physics and were published long before the launch of SWIFT. Two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. The former mechanism provides a unified description of the gamma-ray peaks, X-ray flares and even the optical `humps' seen in some favourable cases; i.e. their very different durations, fluxes and peak-times are related precisely as predicted. The observed smooth or bumpy fast decay of the X-ray light curve is correctly described case-by-case, in minute detail. The `canonical' X-ray plateau, as well as the subsequent gra...

  9. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  10. Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam

    Science.gov (United States)

    Thomas, A. G. R.; Ridgers, C. P.; Bulanov, S. S.; Griffin, B. J.; Mangles, S. P. D.

    2012-10-01

    A number of theoretical calculations have studied the effect of radiation-reaction forces on radiation distributions in strong-field counterpropagating electron-beam-laser interactions, but could these effects—including quantum corrections—be observed in interactions with realistic bunches and focusing fields, as is hoped in a number of soon-to-be-proposed experiments? We present numerical calculations of the angularly resolved radiation spectrum from an electron bunch with parameters similar to those produced in laser-wakefield-acceleration experiments, interacting with an intense, ultrashort laser pulse. For our parameters, the effect of radiation damping on the angular distribution and energy distribution of photons is not easily discernible for a realistic moderate-emittance electron beam. However, experiments using such a counterpropagating beam-laser geometry should be able to measure these effects using current laser systems through measurement of the electron-beam properties. In addition, the brilliance of this source is very high, with peak spectral brilliance exceeding 1029photonss-1mm-2mrad-2(0.1%bandwidth)-1 with an approximately 2% conversion efficiency and with a peak energy of 10 MeV.

  11. Next Generation Gamma Ray Diagnostics for the National Ignition Facility

    Science.gov (United States)

    Herrmann, Hans; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Jorgenson, H. J.; Barlow, D. B.; Stoeffl, W.; Church, J. A.; Hernandez, J. E.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Moy, K.; Hares, J. D.; Milnes, J.

    Fusion reaction history and ablator areal density measurements based on gamma ray detection are an essential part of Inertial Confinement Fusion (ICF) experiments on the National Ignition Facility (NIF). Capability improvements are being implemented in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m). The ``Super'' Gas Cherenkov Detector (GCD) will provide 200x more sensitivity, reduce the effective temporal resolution from 100 to 10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH-6m. The Gamma-to-Electron Magnetic Spectrometer (GEMS) - a Compton spectrometer intended to provide true gamma energy resolution (<=5%) for isolation of specific lines such as t(d, γ) , D(n, γ) , 12C(n,n' γ) and energetic charged particle nuclear reactions indicative of ablator/fuel mix

  12. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30.

  13. Development of a Compton Camera for Online Range Monitoring of Laser-Accelerated Proton Beams via Prompt-Gamma Detection

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2014-03-01

    Full Text Available Presently large efforts are conducted in Munich towards the development of proton beams for bio-medical applications, generated via the technique of particle acceleration from high-power, short-pulse lasers. While so far mostly offline diagnostics tools are used in this context, we aim at developing a reliable and accurate online range monitoring technique, based on the position-sensitive detection of prompt γ rays emitted from nuclear reactions between the proton beam and the biological sample. For this purpose, we develop a Compton camera, designed to be able to track not only the Compton scattering of the primary photon, but also to detect the secondary Compton electron, thus reducing the Compton cone to an arc segment and by this increasing the source reconstruction efficiency. Design specifications and the status of the protype system are discussed.

  14. GAMCOTE: a prototype for an advanced Compton Telescope

    Science.gov (United States)

    de Séréville, N.; Tatischeff, V.; Laurent, P.; Bertoli, W.; Brulin, G.; Dormard, J.-J.; Dosme, N.; Faul, T.; Genolini, B.; Gibelin, L.; Gostojić, A.; Grave, X.; Hamadache, C.; Karkour, N.; Kiener, J.; Lafay, X.; Legay, E.; Limousin, O.; Linget, D.; Maier, D.; Oger, R.; Peyré, J.; Rauly, E.; Rosier, P.; Santos, C.; Torrentó, A.-S.; Le Ven, V.; Wanlin, E.

    2016-07-01

    Astronomy in the MeV gamma-ray band (0.1 - 100 MeV) holds a rich promise for elucidating many fundamental questions concerning the most violent cosmic phenomena. The next generation of gamma-ray space instrument could be a Compton and pair-creation telescope made of two main parts: a silicon tracker optimized for Compton scattering of cosmic gamma rays and a calorimeter that absorbs the scattered photons. We present here the first results of GAMCOTE, a GAMma-ray COmpton TElescope prototype which includes thick double sided silicon strip detectors coupled to a LaBr3:Ce crystal read by a 64 multi-anode photomultiplier tube.

  15. The variability of the quasar 3C 273: a radio to gamma-ray view

    CERN Document Server

    Soldi, S; Türler, M

    2009-01-01

    We have analysed the first 15 months of Fermi/LAT data of the radio loud quasar 3C 273. Intense gamma-ray activity has been detected, showing an average flux of F(> 100 MeV) = 1.4e-6 ph/cm^2/s, with a peak at F(> 100 MeV) = 5.6e-6 ph/cm^2/s detected during a flare in September 2009. Together with the brightening of the source, a possible hardening of the gamma-ray spectrum is observed, pointing to a shift of the inverse Compton peak toward higher energies than the 1-10 MeV range in which 3C 273 inverse Compton emission is typically observed to peak. During the 15 months of observations the photon index is measured to vary between 2.4 and 3.3, with an average value of 2.78 +/- 0.03. When compared to the observations at other wavelengths, the gamma-rays show the largest flux variations and we discuss the possibility that two different components are responsible for the inverse Compton hump emission below and above the MeV peak.

  16. Gamma-Ray Transition-Edge Sensor Microcalorimeters on Solid Substrates

    Science.gov (United States)

    Iyomoto, Naoko; Kawakami, Hisao; Maehata, Keisuke; Yoshimine, Ikumi; Shuto, Yuki; Nagayoshi, Kenichiro; Mitsuda, Kazuhisa; Ezaki, Shohei; Takano, Akira; Yoshimoto, Shota; Ishibashi, Kenji

    2016-07-01

    We develop transition-edge-sensor microcalorimeters for gamma-ray spectroscopy. To develop mechanically robust detectors, we fabricated devices with no membrane structure. We report results of three such devices, two with a Bi-absorber and the other with a Sn-absorber. The thickness and volume of each absorber are 1 mm and 0.5-0.6 mm3. We cooled the detectors and irradiated each with gamma rays from a Cs-137 source and observed two types of pulses: slow-rise and fast-rise. The slow-rise pulses are signals from gamma rays absorbed or Compton scattered in the absorbers and the fast-rise pulses are signals resulting from Compton scattering in the Si substrate. We selected the slow pulses to obtain energy spectra. The energy resolutions of the 662-keV photo peak for the Bi-absorber and Sn-absorber devices are, respectively, 4.1 and 7.5 keV, whereas their baseline energy resolutions are 3.2 and 2.6 keV. The degradation in energy resolution is mainly because of the fluctuation of bath temperature. The baseline energy resolutions are more than an order of magnitude worse than the design values. The poor resolution probably arises because of thermal noise from Compton events on the Si substrate.

  17. Strong radiation damping effects in a gamma-ray source generated by the interaction of a high intensity laser with a wakefield accelerated electron beam

    Science.gov (United States)

    Thomas, Alexander; Ridgers, Christopher; Bulanov, Stepan; Griffin, Blake; Mangles, Stuart

    2012-10-01

    We present numerical calculations of the angularly resolved radiation spectrum from a relativistic electron beam interacting with an ultrashort laser pulse. These calculations include the effect of semi-classical radiation reaction forces including a Gaunt factor for synchrotron radiation. For a laser of 5x10^21 Wcm-2 intensity interacting with a 200 MeV electron beam with an emittance similar to that in laser wakefield acceleration experiments, radiation reaction does not produce a significant change in the angular and energy distribution of photons. However the effects of radiation reaction are clear when observing the electron beam properties. The result is that near-term experiments using such a counter-propagating beam-laser geometry should be able to measure the effects of quantum effects in radiation reaction. The calculations also show that the brilliance of this source is very high, with a peak spectral brilliance exceeding 10^29 photons,s-1mm-2mrad-2(0.1% bandwidth)-1 with approximately 2% efficiency and with a peak energy of 10 MeV.

  18. Soft Gamma-ray Detector for the ASTRO-H Mission

    CERN Document Server

    Tajima, Hiroyasu; Enoto, Teruaki; Fukazawa, Yasushi; Gilmore, Kirk; Kamae, Tuneyoshi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakazawa, Kazuhiro; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke; 10.1117/12.857531

    2010-01-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window ...

  19. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  20. Constraining the location of gamma-ray flares in luminous blazars

    Energy Technology Data Exchange (ETDEWEB)

    Nalewajko, Krzysztof; Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Sikora, Marek, E-mail: knalew@jila.colorado.edu [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland)

    2014-07-10

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ ≲ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L{sub SSC} ≲ L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ≲ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ ≳ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ∼ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ∼ a few days are located at r ∼ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be

  1. ULTRA-BRIGHT X-RAY GENERATION USING INVERSE COMPTON SCATTERING OF PICOSECOND CO(2) LASER PLUSES.

    Energy Technology Data Exchange (ETDEWEB)

    TSUNEMI,A.; ENDO,A.; POGORELSKY,I.; BEN-ZVI,I.; KUSCHE,K.; SKARITKA,J.; YAKIMENKO,V.; HIROSE,T.; URAKAWA,J.; OMORI,T.; WASHIO,M.; LIU,Y.; HE,P.; CLINE,D.

    1999-03-01

    Laser-Compton scattering with picosecond CO{sub 2} laser pulses is proposed for generation of high-brightness x-rays. The interaction chamber has been developed and the experiment is scheduled for the generation of the x-rays of 4.7 keV, 10{sup 7} photons in 10-ps pulse width using 50-MeV, 0.5-nC relativistic electron bunches and 6 GW CO{sub 2} laser.

  2. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  3. Experiment of X-ray Generations Using Laser-Compton Scattering at LINAC of SINAP

    Institute of Scientific and Technical Information of China (English)

    PAN Qiang-yan; XU Wang; LUO Wen; FAN Gong-tao; Yang Li-feng; Fan Guang-wei; LI Yong-jiang; XU Ben-ji; SHI Xiang-chun; LIN Guo-qiang; YAN Zhe; XU Yi; CHEN Jing-gen; GUO Wei; WANG Hong-wei; WANG Cheng-bin; XU Jia-qiang; Ma Yu-gang; CAI Xiang-zhou; ZHAO Ming-hua; SHEN Wen-qing

    2009-01-01

    Laser Compton scattering(LCS) can generate X-rays or y-rays with high brightness and easy controlled polarization by applying high-peak-power laser pulses to relativistic electron bunches.One of the most promising approaches to short pulsed X-ray sources is the laser synchrotron source.It is based on LCS between picoseconds relativistic electron bunches and picoseconds laser pulses.A project of Shanghai laser electron gamma source with LCS method has been proposed on Shanghai synchrotron radiation facility.Before that,a prototype has been developed in the beamline of the linear accelerator at the Shanghai Institute of Applied Physics,Chinese Academy of Sciences.The LCS experiment was carried out by using the 107 MeV,5 Hz,1 ns,0.1 nC electron bunches from the linear accelerator and the 18 ns,10 MW peak power,Nd:YAG laser pulses.In this communication,we describe the details and report the first results of this experiment.

  4. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  5. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    CERN Document Server

    Tsai, Hai-En; Shaw, Joseph; Li, Zhengyan; Arefiev, Alexey V; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V; Shvets, G; Downer, M C

    2014-01-01

    We present results of the first tunable Compton backscattering (CBS) x-ray source that is based on the easily aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The LPA is driven in the blowout regime by 30 TW, 30 fs laser pulses, and produces high-quality, tunable, quasi-monoenergetic electron beams. A thin plastic film near the gas jet exit efficiently retro-reflects the LPA driving pulse with relativistic intensity into oncoming electrons to produce $2\\times10^{7}$ CBS x-ray photons per shot with 10-20 mrad angular divergence and 50 % (FWHM) energy spread without detectable bremsstrahlung background. The x-ray central energy is tuned from 75 KeV to 200 KeV by tuning the LPA e-beam central energy. Particle-in-cell simulations of the LPA, the drive pulse/PM interaction and CBS agree well with measurements.

  6. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  7. On the difference between gamma-ray-detected and non-gamma-ray-detected pulsars

    CERN Document Server

    Rookyard, Simon C; Johnston, Simon; Kerr, Matthew

    2016-01-01

    We compare radio profile widths of young, energetic gamma-ray-detected and non-gamma-ray-detected pulsars. We find that the latter typically have wider radio profiles, with the boundary between the two samples exhibiting a dependence on the rate of rotational energy loss. We also find that within the sample of gamma-ray-detected pulsars, radio profile width is correlated with both the separation of the main gamma-ray peaks and the presence of narrow gamma-ray components. These findings lead us to propose that these pulsars form a single population where the main factors determining gamma ray detectability are the rate of rotational energy loss and the proximity of the line of sight to the rotation axis. The expected magnetic inclination angle distribution will be different for radio pulsars with and without detectable gamma rays, naturally leading to the observed differences. Our results also suggest that the geometry of existing radio and outer-magnetosphere gamma-ray emission models are at least qualitative...

  8. Simple synchronization technique of a mode-locked laser for Laser-Compton scattering γ-ray source

    Science.gov (United States)

    Mori, Michiaki; Kosuge, Atsushi; Kiriyama, Hiromitsu; Hajima, Ryoichi; Kondo, Kiminori

    2016-06-01

    We propose a simple and effective synchronization technique between a reference electrical oscillator and a mode-locked laser for a narrowband picosecond Laser-Compton scattering γ-ray source by using a commercial-based 1-chip frequency synthesizer, which is widely used in radio communication. The mode-locked laser has been successfully synchronized in time with a jitter of 180 fs RMS for 10 Hz-100 kHz bandwidth. A good stability of 640 μHz at 80 MHz repetition rate for 10 h operation has also been confirmed. We discuss in detail the design and performance of this technique (in terms of timing jitter, stability, and validity).

  9. An Emerging Class of Gamma-ray Flares from Blazars: Beyond One-zone Models

    Science.gov (United States)

    Tavani, M.; Vittorini, V.; Cavaliere, A.

    2015-11-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {{Γ }}∼ 10, closely aligned along our line of sight. In a number of blazars of the flat-spectrum radio quasar type, such as 3C 454.3 and 3C 279, gamma-ray flares have recently been detected with very high luminosity and few or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad-line region (BLR). The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton upscattering of surrounding soft photons. To meet the challenge, we present here a model based on primary synchrotron photons emitted in the BLR by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outside the BLR and an alternative provided by a moving mirror geometry. We show that mirroring phenomena can locally enhance the density and anisotropy with associated relativistic boosting of soft photons within the jet, so as to trigger bright inverse Compton gamma-ray transients from nearly steady optical/X-ray synchrotron emissions. In this picture we interpret the peculiarly asymmetric light curves of the recently detected gamma-ray flares from 3C 279. Our scenario provides a promising start to understanding the widening class of bright and transient gamma-ray activities in blazars.

  10. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles...... are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. While Fermi will take......, albeit at much more modest sensitivities. There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Lane diffraction and multilayer-coated mirror techniques...

  11. The Infrared-Gamma-Ray Connection: A WISE View of the Extragalactic Gamma-Ray Sky

    CERN Document Server

    Massaro, F

    2016-01-01

    Using data from the WISE all-sky survey we discovered that the non-thermal infrared (IR) emission of blazars, the largest known population of extragalactic gamma-ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the gamma-ray spectral index of Fermi blazars. We name this correlation "the infrared--gamma-ray connection". We discuss how this connection links both the emitted powers and the spectral shapes of particles accelerated in jets arising from blazars over ten decades in energy. Based on this evidence, we argue that the infrared--gamma-ray connection is stronger than the well known radio--gamma-ray connection.

  12. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-Ray Emission

    Institute of Scientific and Technical Information of China (English)

    张力; 吴杰; 姜泽军; 梅冬成

    2003-01-01

    We study the possibility of high-energy gamma-ray emission from the known 1130 radio pulsars based on the outer gap model of high-energy emission from pulsars. We estimate the fractional size of outer gap, the integrated flux, the gamma-ray luminosity for each known radio pulsar, and find that only 14% of the known radio pulsars are gamma-ray emitters according to the outer gap model. In the sample of possible 156 gamma-ray pulsars, our statistical analysis indicates that the distributions of the spin-down powers and the ages of these pulsars concentrate mainly on 1033.5-1039 erg/s and 103-107 y, respectively. The predictions of gamma-ray pulsars detected by the AGILE and GLAST missions are given.

  13. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  14. Gamma-Ray Astronomy from the Ground

    CERN Document Server

    Horns, D

    2016-01-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately $10^{11}$ eV and $10^{13}$ eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as $\\approx 10^{-13}$ erg\\,cm$^{-2}\\,$s$^{-1}$. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudo-scalars). The current standing of the field and its major instruments are summarised briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  15. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  16. Gamma-ray limits on neutrino lines

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany); GRAPPA Institute, University of Amsterdam,Science Park 904, 1090 GL Amsterdam, Netherland (Netherlands)

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  17. Gamma-ray array physics.

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C. J.

    1999-05-25

    In this contribution I am going to discuss the development of large arrays of Compton Suppressed, High Purity Germanium (HpGe) detectors and the physics that has been, that is being, and that will be done with them. These arrays and their science have dominated low-energy nuclear structure research for the last twenty years and will continue to do so in the foreseeable future. John Sharpey Schafer played a visionary role in convincing a skeptical world that the development of these arrays would lead to a path of enlightenment. The extent to which he succeeded can be seen both through the world-wide propagation of ever more sophisticated devices, and through the world-wide propagation of his students. I, personally, would not be working in research if it were not for Johns inspirational leadership. I am eternally grateful to him. Many excellent reviews of array physics have been made in the past which can provide detailed background reading. The review by Paul Nolan, another ex-Sharpey Schafer student, is particularly comprehensive and clear.

  18. Designing a Gamma-Ray Telescope on a Budget

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    telescope as a whole including the on-board electronics and flight system would likely require a 4U model.The teams proposed nanoscale observatory would be capable of detecting gamma rays from 100 keV up to a few MeV. In comparison to the major space-based observatories, this project would be very low-cost, at only half a million Euros and such a telescope could go from build to launch in about a year.Evaluating PerformanceEstimated sensitivity of the proposed nanoscale satellite telescope (for tracked, untracked, and pair production events) compared to that of COMPTEL. [Lucchetta et al. 2017]Cheaper and faster is great, but how would this project do in terms of quality? The authors performed simulations to examine the scientific performance of the proposed detector, evaluating its effective area, energy resolution, and angular resolution. Luchetta and collaborators show that while the scientific performance would be well below that expected for large future missions, it would likely be on par with the last detector to observe this region COMPTEL, on board the Compton Gamma Ray Observatory.It seems that a nanoscale satellite like this one would helpfully cover the gap around 1 MeV and allow us to learn more about low-energy gamma rays while we wait for large future missions to launch. As an additional benefit, such a project could serve as a pathfinder mission to test technologies and algorithms to be used in larger missions in the future.CitationGiulio Lucchetta et al 2017 AJ 153 237. doi:10.3847/1538-3881/aa6a1b

  19. TeV Gamma-Ray Astrophysics

    CERN Document Server

    Ribó, M

    2008-01-01

    The window of TeV Gamma-Ray Astrophysics was opened less than two decades ago, when the Crab Nebula was detected for the first time. After several years of development, the technique used by imaging atmospheric Cherenkov telescopes like HESS, MAGIC or VERITAS, is now allowing to conduct sensitive observations in the TeV regime. Water Cherenkov instruments like Milagro are also providing the first results after years of integration time. Different types of extragalactic and galactic sources have been detected, showing a variety of interesting phenomena that are boosting theory in very high energy gamma-ray astrophysics. Here I review some of the most interesting results obtained up to now, making special emphasis in the field of X-ray/gamma-ray binaries.

  20. Gamma-Ray Imaging for Explosives Detection

    Science.gov (United States)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  1. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  2. Generation of circular polarization of gamma ray bursts

    CERN Document Server

    Batebi, S; Ruffini, R; Tizchang, S; Xue, S S

    2016-01-01

    The generation of the circular polarization of Gamma Ray Burst (GRB) photons is discussed in this paper via their interactions with astroparticles in the presence or absence of background fields such as magnetic fields and non-commutative space time geometry. Solving quantum Boltzmann equation for GRB-photons as a photon ensemble, we discuss the generation of circular polarization (as Faraday conversion phase shift $\\Delta \\phi_{FC}$) of GRBs in the following cases: (i) intermediate interactions, i.e. the Compton scattering of GRBs in the galaxy cluster magnetic field and in the presence of non-commutative space time geometry, as well as the scattering of GRBs in cosmic neutrino background (CNB), and in cosmic microwave background (CMB); (ii) interactions with particles and fields in shock wave, i.e. the Compton scattering of GRBs with accelerated charged particles in the presence of magnetic fields. We found that (i) after shock wave crossing, the most contribution of $\\Delta \\phi_{FC}$ for energetic GRBs (i...

  3. Neutron and Gamma-ray Measurements

    Science.gov (United States)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  4. Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation)

    Science.gov (United States)

    Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.

    2017-05-01

    High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.

  5. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    Science.gov (United States)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  6. Nuclear forensics using gamma-ray spectroscopy

    CERN Document Server

    Norman, Eric B

    2016-01-01

    Much of George Dracoulis's research career was devoted to utilizing gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the past several years, our research group has made use of both high- and low- resolution gamma ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  7. Gamma ray spectroscopy monitoring method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  8. Status of the Milagro $\\gamma$ Ray Observatory

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    2001-01-01

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  9. Gamma Ray Bursts in the HAWC Era

    CERN Document Server

    Mészáros, Peter; Murase, Kohta; Fox, Derek; Gao, He; Senno, Nicholas

    2015-01-01

    Gamma-Ray Bursts are the most energetic explosions in the Universe, and are among the most promising for detecting multiple non-electromagnetic signals, including cosmic rays, high energy neutrinos and gravitational waves. The multi-GeV to TeV gamma-ray range of GRB could have significant contributions from hadronic interactions, mixed with more conventional leptonic contributions. This energy range is important for probing the source physics, including overall energetics, the shock parameters and the Lorentz factor. We discuss some of the latest observational and theoretical developments in the field.

  10. Nuclear Forensics using Gamma-ray Spectroscopy

    Science.gov (United States)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  11. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  12. Intense X-ray sources based on compton scattering in laser electron storage rings

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The main problem of the designing of intense X-ray sources based on Compton scattering in laser-electron storage ring is associated with large steady-state electron beam energy spread. In paper the principles of the development of compact storage ring lattice with large RF-acceptance and negligible chromatic effects at interaction point are considered. The storage ring with electron beam energy over the range 100-400 MeV that allows generating intense VUV from bending magnets, X-ray up to 280 keV with rate up to 10 sup 1 sup 4 photons/s and gamma-beam up to 2.8 MeV for neutron generation on beryllium target is proposed.

  13. A Proposed Student Built and Operated Satellite: The Gamma Ray Burst Polarization Observer (PolOSat)

    Science.gov (United States)

    Malphrus, Benjamin K.; Jernigan, J. G.; Bloom, J. S.; Boggs, S.; Butler, N. R.; Cominsky, L. R.; Doering, T. J.; Doty, J. P.; Erb, D. M.; Figer, D. F.; Hurley, K. C.; Kimel, K. W.; Lumpp, J. E.; Labov, S.

    2009-01-01

    The Polarization Observer (PolOSat) is small satellite mission whose goal is to measure the polarization of bright gamma-ray bursts (GRBs). A precise measurement of the polarization of GRBs will constrain the models of radiative mechanisms associated with GRBs as supermassive stars undergo collapse into black holes. The primary goal of PolOSat is the detection of strongly linearly polarized GRBs (≥20; %) and/or to set upper limits on polarization for a few GRBs (≤30; %). PolOSat is designed to have a sensitivity to polarization that exceeds all prior experiments. The primary scientific instrument, the Gamma-ray Polarization Monitor (GPM) is based on a CMOS hybrid array that is optimized for performance in the low energy gamma-ray band (20-200 keV). The GPM has two passive Beryllium (Be) scattering elements which provide signal gamma-rays within a large field of view (two 45 degree radius cones). Gamma-rays impinge on the Be scatterers and are then Compton scattered into the CZT arrays and detected. A bright GRB (occurring 5 times a year) will produce 100,000s of direct gamma-rays and 1000s of Compton scattered gamma-rays detected by the CZT array. The PolOSat satellite with the GPM is rotated ( 1 Hz) inducing a strong temporal component at twice the spin frequency that is proportional to the linear polarization in the GRB signal. The team includes the University of California, Berkeley, the Kentucky Space Program including the Kentucky Science and Technology Corporation, the University of Kentucky, Morehead State University, Sonoma State University, the Rochester Institute of Technology, the University of Rochester and the Lawrence Livermore National Laboratory. PolOSat features significant participation by undergraduate and graduate students in all phases of development and operation of the spacecraft and instruments and in data analysis. PolOSat was initially proposed as a small complete NASA Mission of Opportunity and is currently seeking funding.

  14. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    Science.gov (United States)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  15. AGN emission processes of NGC 4945 in the X-rays and gamma-rays

    CERN Document Server

    Menzel, Marie-Luise; Mattana, Fabio

    2012-01-01

    NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the...

  16. Analyzing power of AGATA triple clusters for gamma-ray linear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Bizzeti, P.G.; Sona, P.; Melon, B.; Bizzeti-Sona, A.M.; Perego, A. [Universita di Firenze, Dipartimento di Fisica, Firenze (Italy); INFN, Firenze (Italy); Michelagnoli, C.; Lunardi, S.; Mengoni, D.; Recchia, F. [INFN, Padova (Italy); Universita di Padova, Dipartimento di Fisica, Padova (Italy); Bazzacco, D.; Farnea, E.; Menegazzo, R.; Ur, C.A. [INFN, Padova (Italy); De Angelis, G.; Gottardo, A.; Napoli, D.R.; Sahin, E.; Valiente-Dobon, J.J. [Laboratori Nazionali di Legnaro, INFN, Padova (Italy); Gadea, A. [University of Valencia, IFIC, CSIC, Valencia (Spain); Nannini, A. [INFN, Firenze (Italy)

    2015-04-01

    We have investigated the ability of AGATA triple clusters to measure the linear polarization of gamma rays, exploiting the azimuthal-angle dependence of the Compton scattering differential cross section. To this aim, partially polarized gamma rays have been produced by Coulomb excitation of the first excited state of {sup 104}Pd and {sup 108}Pd, which decay to the ground state by emission of gamma rays of 555.8 keV and 433.9 keV, respectively. Pulse-shape analysis and gamma-ray tracking techniques have been used to determine the position and time sequence of the interaction points inside the germanium crystals. Anisotropies in the detection efficiency have been taken into account using 661.6 keV gammas from a {sup 137}Cs radioactive source. We obtain an average analyzing power of 0.451(34) at 433.9 keV and 0.484(24) at 555.8 keV. (orig.)

  17. CANGAROO-III search for TeV Gamma-rays from two clusters of galaxies

    CERN Document Server

    Kiuchi, R; Bicknell, G V; Clay, R W; Edwards, P G; Enomoto, R; Gunji, S; Hara, S; Hara, T; Hattori, T; Hayashi, S; Higashi, Y; Hirai, Y; Inoue, K; Itoh, C; Kabuki, S; Kajino, F; Katagiri, H; Kawachi, A; Kifune, T; Kubo, H; Kushida, J; Matsubara, Y; Mizukami, T; Mizumoto, Y; Mizuniwa, R; Muraishi, H; Muraki, Y; Naito, T; Nakamori, T; Nakano, S; Nishida, D; Nishijima, K; Ohishi, M; Sakamoto, Y; Seki, A; Stamatescu, V; Suzuki, T; Swaby, D L; Tanimori, T; Thornton, G; Tokanai, F; Tsuchiya, K; Watanabe, S; Yamada, Y; Yamazaki, E; Yanagita, S; Yoshida, T; Yoshikoshi, T; Yukawa, Y

    2009-01-01

    Because accretion and merger shocks in clusters of galaxies may accelerate particles to high energies, clusters are candidate sites for the origin of ultra-high-energy (UHE) cosmic-rays. A prediction was presented for gamma-ray emission from a cluster of galaxies at a detectable level with the current generation of imaging atmospheric Cherenkov telescopes. The gamma-ray emission was produced via inverse Compton upscattering of cosmic microwave background (CMB) photons by electron-positron pairs generated by collisions of UHE cosmic rays in the cluster. We observed two clusters of galaxies, Abell 3667 and Abell 4038, searching for very-high-energy gamma-ray emission with the CANGAROO-III atmospheric Cherenkov telescope system in 2006. The analysis showed no significant excess around these clusters, yielding upper limits on the gamma-ray emission. From a comparison of the upper limit for the north-west radio relic region of Abell 3667 with a model prediction, we derive a lower limit for the magnetic field of th...

  18. Evidence for COMPTEL detections of low-energy gamma rays from HVC complexes

    Science.gov (United States)

    Blom, J. J.; Bloemen, H.; Bykov, A. M.; Burton, W. B.; Hartmann, Dap; Hermsen, W.; Iyudin, A. F.; Ryan, J.; Schoenfelder, V.; Strong, A. W.; hide

    1997-01-01

    Observational evidence of extended MeV emissions that may be associated with high velocity clouds (HVCs) is reported on. Based on observations acquired between 1991 and 1996 with the Compton telescope (COMPTEL), evidence is found for intense gamma ray radiation at 0.75 to 3 MeV from the general direction of two HVC regions. One bright gamma ray excess is located between the HVC complexes M and A, adjacent to the Lockman hole and is seen to approximately cover a sky area of exceptionally low H I column densities. A second source is detected at the high velocity end of complex C near the Draco Nebula. Both gamma ray excesses appear to consist of a time variable source and a diffuse emission component. The enhanced diffuse soft X-rays seen by Rosat from both HVC regions may be closely related to the gamma ray emission in terms of bremsstrahlung arising from HVC interactions with the galactic disk or lower halo.

  19. Imaging principles and techniques in space-borne gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Volker E-mail: vos@mpe.mpg.de

    2004-06-01

    Gamma-ray astronomy in the photon energy band from several 100 keV up to say 10 GeV can only be performed from space. Tremendous progress has been made in this young research field during the last 40 years. All-Sky maps exist now in continuum and line emission and short gamma-ray bursts--lasting only seconds--can be located to better than 1 arcmin. The imaging principles used in gamma-ray astronomy are different at low energies (<30 MeV) and at high energies (>30 MeV). Low-energy telescopes are based on the photo- or Compton-effect, whereas high-energy telescopes use the pair-production effect. The angular resolutions achieved by modern telescopes are in the range of 0.1 to 1 deg. A review of previous, current, and future telescopes is given for gamma-ray astronomy in general, and for burst astronomy in particular.

  20. Concept study for the next generation medium-energy gamma-ray astronomy mission: MEGA

    Science.gov (United States)

    Kanbach, Gottfried; Andritschke, Robert; Bloser, Peter F.; Schopper, Florian; Schoenfelder, Volker; Zoglauer, Andreas

    2003-03-01

    A new telescope for Medium Energy Gamma-Ray Astronomy, MEGA, is being developed for the energy band 0.4 - 50 MeV as a successor to COMPTEL on CGRO. MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude with respect to past instruments and will fill a severe sensitivity gap between already scheduled hard-X-ray and high-energy gamma-ray missions. MEGA records and images gamma rays by completely tracking Compton and pair creation events in a stack of double sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. MEGA will have an effective area of ~100 square cm, a large field of view of ~130 degrees, angular resolution of ~2 degrees, and energy resolution of ~8% (all FWHM at ~2 MeV). Key science objectives for MEGA are the investigation of cosmic high-energy accelerators, nucleosynthesis sites with gamma-ray lines, and the mapping of large-scale structures in the Galaxy and beyond. If operated on a zenith pointing satellite MEGA will be an ideal continuous all-sky monitor for transient sources. This paper describes the development of a small scale prototype and the concept of a space mission for MEGA.

  1. Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113

    CERN Document Server

    ,

    2009-01-01

    We report the observations of PG 1553+113 during the first ~200 days of Fermi Gamma-ray Space Telescope science operations, from 4 August 2008 to 22 February 2009 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution. We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power-law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray and very high energy (VHE) gamma-ray data to model its broadband spectral energy distribution and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, ...

  2. Gamma-Ray Burst at the extreme: "the naked-eye burst" GRB 080319B

    CERN Document Server

    Wozniak, P R; Panaitescu, A D; Wren, J A; Davis, H R; White, R R

    2008-01-01

    On 19 March 2008, the northern sky was the stage of a spectacular optical transient that for a few seconds remained visible to the naked eye. The transient was associated with GRB 080319B, a gamma-ray burst at a luminosity distance of about 6 Gpc (standard cosmology), making it the most luminous optical object ever recorded by human kind. We present comprehensive sky monitoring and multi-color optical follow-up observations of GRB 080319B collected by the RAPTOR telescope network covering the development of the explosion and the afterglow before, during, and after the burst. The extremely bright prompt optical emission revealed features that are normally not detectable. The optical and gamma-ray variability during the explosion are correlated, but the optical flux is much greater than can be reconciled with single emission mechanism and a flat gamma-ray spectrum. This extreme optical behavior is best understood as synchrotron self-Compton model (SSC). After a gradual onset of the gamma-ray emission, there is ...

  3. High-Energy $\\gamma$-Ray Observations of Two Young, Energetic Radio Pulsars

    CERN Document Server

    Kaspi, V M; Mattox, J R; Manchester, R N; Bailes, M; Pace, R

    1999-01-01

    We present results of Compton Gamma-Ray Observatory EGRET observations of the unidentified high-energy gamma-ray sources 2EG J1049-5847 (GEV J1047-5840, 3EG J1048-5840) and 2EG J1103-6106 (3EG J1102-6103). These sources are spatially coincident with the young, energetic radio pulsars PSRs B1046-58 and J1105-6107, respectively. We find evidence for an association between PSR B1046-58 and 2EG J1049-5847. The gamma-ray pulse profile, obtained by folding time-tagged photons having energies above 400 MeV using contemporaneous radio ephemerides, has probability of arising by chance of 1.2E-4 according to the binning-independent H-test. A spatial analysis of the on-pulse photons reveals a point source of equivalent significance 10.2 sigma. Off-pulse, the significance drops to 5.8 sigma. Archival ASCA data show that the only hard X-ray point source in the 95% confidence error box of the gamma-ray source is spatially coincident with the pulsar within the 1' uncertainty (Pivovaroff, Kaspi & Gotthelf 1999). The doub...

  4. Hypernova and Gamma-Ray Burst Remnants as TeV Unidentified Sources

    CERN Document Server

    Ioka, Kunihito

    2009-01-01

    We investigate hypernova (hyper-energetic supernova) and gamma-ray burst (GRB) remnants in our Galaxy as TeV gamma-ray sources, particularly in the role of potential TeV unidentified sources, which have no clear counterpart at other wavelengths. We show that the observed bright sources in the TeV sky could be dominated by GRB/hypernova remnants, even though they are fewer than supernova remnants (SNRs). If this is the case, TeV SNRs are more extended (and more numerous) than deduced from current observations. In keeping with their role as cosmic ray accelerators, we discuss hadronic gamma-ray emission from pi^0 decay, from beta decay followed by inverse Compton emission, and propose a third, novel process of TeV gamma-ray emission arising from the decay of accelerated radioactive isotopes such as 56Co entrained by relativistic or semi-relativistic jets in GRBs/hypernovae. We discuss the relevant observational signatures which could discriminate between these three mechanisms.

  5. Generation of circular polarization of gamma ray bursts

    Science.gov (United States)

    Batebi, S.; Mohammadi, R.; Ruffini, R.; Tizchang, S.; Xue, S.-S.

    2016-09-01

    The generation of the circular polarization of gamma ray burst (GRB) photons is discussed in this paper via their interactions with astroparticles in the presence or absence of background fields such as magnetic fields and noncommutative space-time geometry. Solving the quantum Boltzmann equation for GRB photons as a photon ensemble, we discuss the generation of circular polarization (as Faraday conversion phase shift Δ ϕFC) of GRBs in the following cases: (i) intermediate interactions, i.e., the Compton scattering of GRBs in the galaxy cluster magnetic field and in the presence of noncommutative space-time geometry, as well as the scattering of GRBs in the cosmic neutrino background (CNB) and cosmic microwave background (CMB); (ii) interactions with particles and fields in shockwaves, i.e., the Compton scattering of GRBs with accelerated charged particles in the presence of magnetic fields. We found that (i) after shockwave crossing, the greatest contribution of Δ ϕFC for energetic GRBs (of the order of GeV and larger) comes from GRB-CMB interactions, but for low-energy GRBs the contributions of the Compton scattering of GRBs in the galaxy cluster magnetic field dominate; (ii) in shockwave crossing, the magnetic field has significant effects on converting a GRB's linear polarization to a circular one, and this effect can be used to better understand the magnetic profile in shockwaves. The main aim of this work is to study and measure the circular polarization of GRBs for a better understanding of the physics and mechanism of the generation of GRBs and their interactions before reaching us.

  6. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    Science.gov (United States)

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences.

  7. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A

    Science.gov (United States)

    Iyudin, A. F.; Diehl, R.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Varendorff, M.

    1994-01-01

    The Compton Telescope (COMPTEL) telescope aboard the Compton Gamma-Ray Observatory (CGRO) is capable of imaging gamma-ray line sources in the MeV region with a sensitivity of the order 10(exp -5) photons/(sq cm s). During two observations periods in July 1992 and February 1993 the Galactic plane in the region of the young supernova remnant Cas A was observed, showing evidence for line emission at 1.16 MeV from the decay of Ti-44 at a significance level of approximately 4 sigma. This is the first time a supernova remnant has been detected in the gamma-ray line from Ti-44 decay. Adopting a distance of 2.8 kpc to the Cas A remnant, the measured line flux (7.0 +/- 1.7) x 10(exp -5) photons/(sq cm s), can be translated into a Ti-44 mass ejected during the Cas A supernova explosion, between (1.4 +/- 0.4) x 10(exp -4) solar mass and (3.2 +/- 0.8) x 10(exp -4) solar mass, depending on the precise value of the Ti-44 mean life time and on the precise date of the event. Implications of this result for supernova nucleosynthesis models are discussed.

  8. Long Term Correlations between X-rays and Gamma-rays in AGN

    Science.gov (United States)

    Ilhan, Muhammed Diyaddin; Guver, Tolga

    2016-07-01

    Active Galactic Nuclei are the brightest continuous objects in the universe. Non-termal radiation is produced by synchrotron radiation that is accelarated by the magnetic fields in the jet. Relativistic electrons interact with photons via inverse-Compton scattering to generate highly energetic photons , which is also called as 'synchrotron self-Compton (SSC)' that the seed photons are generated by relativistic electron particles. According to the SSC models, relativistic electron particles are responsible for production of high energy photons such as hard x-rays and gamma-rays. We here present the results of ZDCF (Z-Transform Discrete Correlation Function) analysis of 19 BL Lac objects and 13 Seyfert 1 galaxies. We aimed to understand the correlation between gamma-rays (0.1-300 GeV obtained with Fermi LAT) and X-rays (MAXI 2-20 keV, Swift/BAT 15-150 keV) in these two different types of objects. Strong Correlation coefficients and time lags were found both for the BL Lac objects and Seyfert 1 galaxies. Our results are consistent with SSC model and Leptonic model in which the x-rays and gamma-rays are produced in same electron population and same physical region.

  9. New shield for gamma-ray spectrometry

    Science.gov (United States)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  10. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    R.A.M.J. Wijers

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  11. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  12. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  13. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  14. HAWC observatory catches first gamma rays

    Science.gov (United States)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  15. Gamma-ray Novae: Rare or Nearby?

    CERN Document Server

    Morris, Paul J; Brown, Anthony M; Chadwick, Paula M

    2016-01-01

    Classical Novae were revealed as a surprise source of gamma-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to > 5 sigma in gamma-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are gamma-ray emitters, and assigning peak one-day fluxes based on a flat distribution of the known emitters to a simulated population. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way, which we approximate as a disc with a 20 kpc radius and elliptical bulge with semi major axis 3 kpc and axis ratios 2:1 in the xy plane. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of r_d = 5 kpc and z_d = 0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of gamma-ray novae, implying that these apparently r...

  16. Chandra Imaging of Gamma-Ray Binaries

    CERN Document Server

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G

    2013-01-01

    We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.

  17. Effects of Shielding on Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    The interaction of gamma rays with matter results in an effect we call attenuation (i.e. ‘shielding’). Attenuation can dramatically alter the appearance of a spectrum. Attenuating materials may actually create features in a spectrum via x-ray fluorescence

  18. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  19. The soft gamma-ray detector (SGD) onboard ASTRO-H

    Science.gov (United States)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  20. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    Science.gov (United States)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E.

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  1. Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electrongamma source

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-Gen; YUAN Ren-Yong; XU Jia-Qiang; YAN Zhe; FAN Gong-Tao; SHEN Wen-Qing; XU Wang; WANG Hong-Wei; GUO Wei; MA Yu-Gang; CAI Xiang-Zhou; LU Guang-Cheng; XU Yi; PAN Qiang-Yan

    2008-01-01

    Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS),the transmutation for nuclear wastes such as 137Cs and 129I is investigated.It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons.The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser.Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons,the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.

  2. Influences of Uncaptured Electron on Energy Conversion of Photon Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jing-hua; HAO Xiao-fei; HAO Dong-shan

    2004-01-01

    Using the single particle theory and the non-flexibility collision model of electron and photon, the influence of the uncaptured electrons on the energy conversion efficiency of multi-photon nonlinear Compton scattering in the extra stationary laser-plasma is investigated. It shows that in extra stationary laser-plasma,the uncaptured electrons make the Δω of the scattering frequency of the multi-photon Compton fall down with the increases of the incident radiation electron speed,the materials of the incident collision of electron and photon, and the number of the photons which work with the electrons at the same time. Under the modulation of the uncaptured electrons to the laser field, the energy conversion efficiency between electrons and photons will fall down with the increase of the electron incident radiation speed, using the low-power electrons for incident source, the loss can be efficiently reduced.

  3. A revised analysis of gamma-ray bursts' prompt efficiencies

    Science.gov (United States)

    Beniamini, Paz; Nava, Lara; Piran, Tsvi

    2016-09-01

    The prompt gamma-ray bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the γ-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity LX, suggested that this efficiency is large, with values above 90 per cent in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between LX (and hence the blast wave energy) and Eγ, iso, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion LX is indeed a valid proxy for the latter. Recent findings suggest that the magnetic field in the afterglow shocks is significantly weaker than was earlier thought and its equipartition fraction, ɛB, could be as low as 10-4 or even lower. Motivated by these findings we reconsider the problem, taking now IC cooling into account. We find that the observed LX - Eγ, iso correlation is recovered also when IC losses are significant. For small ɛB values the blast wave must be more energetic and we find that the corresponding prompt efficiency is significantly smaller than previously thought. For example, for ɛB ˜ 10-4 we infer a typical prompt efficiency of ˜15 per cent.

  4. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  5. Systematic Study of Gamma-ray bright Blazars with Optical Polarization and Gamma-ray Variability

    CERN Document Server

    Itoh, Ryosuke; Fukazawa, Yasushi; Uemura, Makoto; Tanaka, Yasuyuki T; Kawabata, Koji S; Madejski, Grzegorz M; Schinzel, Frank K; Kanda, Yuka; Shiki, Kensei; Akitaya, Hiroshi; Kawabata, Miho; Moritani, Yuki; Nakaoka, Tatsuya; Ohsugi, Takashi; Sasada, Mahito; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro; Yamanaka, Masayuki; Yoshida, Michitoshi

    2016-01-01

    Blazars are highly variable active galactic nuclei which emit radiation at all wavelengths from radio to gamma-rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between Jul. 2008 and Dec. 2014 to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), thi...

  6. $\\gamma$-Ray Absorption at High Redshifts and the $\\gamma$-Ray Background

    CERN Document Server

    Stecker, F W

    1997-01-01

    We present results of a calculation of absorption of 10-500 GeV gamma-rays at high redshifts. This calculation requires the determination of the high- redshift evolution of the full spectral energy distribution of the intergalactic photon field. For this, we have primarily followed the recent analysis of Fall, Charlot and Pei. We give our results for the gamma-ray opacity as a function of redshift out to a redshift of 3. We then give predicted gamma-ray spectra for selected blazars and also extend our results on the background from unresolved blazars to an energy of 500 GeV. Absorption effects are predicted to significantly steepen the background spectrum above 20 GeV. Our absorption calculations can be used to place limits on the redshifts of gamma-ray bursts. Our background calculations can be used to determine the observability of multi-GeV lines from dark matter neutralino particles.

  7. How many radio-loud quasars can be detected by the Gamma-Ray Large Area Space Telescope?

    CERN Document Server

    Cao, Xinwu

    2007-01-01

    In the unification scheme, radio quasars and FR II radio galaxies come from the same parent population, but viewed at different angles. Based on the Comptonization models for the gamma-ray emission from active galactic nuclei (AGNs), we estimate the number of radio quasars and FR II radio galaxies to be detected by the Gamma-Ray Large Area Space Telescope (GLAST) using the luminosity function (LF) of their parent population derived from the flat-spectrum radio quasar (FSRQ) LF. We find that ~1200 radio quasars will be detected by GLAST, if the soft seed photons for Comptonization come from the regions outside the jets. We also consider the synchrotron self-Comptonization (SSC) model, and find it unlikely to be responsible for gamma-ray emission from radio quasars. We find that no FR II radio galaxies will be detected by GLAST. Our results show that most radio AGNs to be detected by GLAST will be FSRQs (~99 % for the external Comptonization model, EC model), while the remainder (~1 %) will be steep-spectrum ra...

  8. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  9. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    Science.gov (United States)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  10. Calculation of point isotropic buildup factors of gamma rays for water and lead

    Directory of Open Access Journals (Sweden)

    A. S. H.

    2001-12-01

    Full Text Available   Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.

  11. First observation of low-energy {\\gamma}-ray enhancement in the rare-earth region

    CERN Document Server

    Simon, A; Larsen, A C; Beausang, C W; Humby, P; Burke, J T; Casperson, R J; Hughes, R O; Ross, T J; Allmond, J M; Chyzh, R; Dag, M; Koglin, J; McCleskey, E; McCleskey, M; Ota, S; Saastamoinen, A

    2016-01-01

    The {\\gamma}-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using BGO shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow for an extraction of the {\\gamma} strength down to unprecedentedly low {\\gamma} energies of about 500 keV. For the first time an enhanced low- energy {\\gamma}-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low {\\gamma} energies could have an impact of 2-3 orders of magnitude on the (n,{\\gamma}) reaction rates for the r-process nucleosynthesis.

  12. Attenuation of the gamma rays in tissues; Atenuacion de los rayos gamma en tejidos

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10{sup -3} to 10{sup 5} MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of {sup 137} Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  13. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    Science.gov (United States)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  14. The new prompt gamma-ray activation facility at the Paul Scherrer Institute, Switzerland

    CERN Document Server

    Crittin, M; Schenker, J L

    2000-01-01

    Since October 1997, a new Prompt Gamma-ray Activation (PGA) facility at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland, is operational. The detection system includes a Compton-suppression spectrometer and a pair spectrometer. An interesting feature of this PGA facility is the capillary-based neutron focusing optics which permits scanning of samples and nuclear spectroscopy of isotopes having small capture cross sections. During the beam periods 1997 and 1998, measurements were undertaken to characterize the PGA facility (gamma-ray background, efficiencies of the two spectrometers, analytical sensitivities and detection limits for several elements, performances of the neutron lens). Elemental analyses of standards were also performed.

  15. Very high energy gamma rays from the composite SNR G0.9+0.1

    CERN Document Server

    Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khelifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-01-01

    Very high energy (> 100 GeV) gamma-ray emission has been detected for the first time from the composite supernova remnant G0.9+0.1 using the H.E.S.S. instrument. The source is detected with a significance of 13 sigma, and a photon flux above 200 GeV of (5.7+/-0.7 stat +/- 1.2 sys) * 10^-12 cm^-2 s^-1, making it one of the weakest sources ever detected at TeV energies. The photon spectrum is compatible with a power law (dN/dE \\propto E^-Gamma) with photon index Gamma = 2.40 +/- 0.11 stat +/- 0.20 sys. The gamma-ray emission appears to originate in the plerionic core of the remnant, rather than the shell, and can be plausibly explained as inverse Compton scattering of relativistic electrons.

  16. Evidence for Intergalactic Absorption in the TeV Gamma-Ray Spectrum of Markarian 501

    CERN Document Server

    Konopelko, A K; Stecker, F W; Mastichiadis, A; Konopelko, Alexander K.; Kirk, John G.; Stecker, Floyd W.; Mastichiadis, Apostolos

    1999-01-01

    The recent HEGRA observations of the blazar Mkn 501 show strong curvature in the very high energy gamma-ray spectrum. Applying the gamma-ray opacity derived from an empirically based model of the intergalactic infrared background radiation field (IIRF), to these observations, we find that the intrinsic spectrum of this source is consistent with a power-law: dN/dE~ E^-alpha with alpha=2.00 +/- 0.03 over the range 500 GeV - 20 TeV. Within current synchrotron self-Compton scenarios, the fact that the TeV spectral energy distribution of Mkn 501 does not vary with luminosity, combined with the correlated, spectrally variable emission in X-rays, as observed by the BeppoSAX and RXTE instruments, also independently implies that the intrinsic spectrum must be close to alpha=2. Thus, the observed curvature in the spectrum is most easily understood as resulting from intergalactic absorption.

  17. Search for an extended VHE gamma-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope

    CERN Document Server

    Aleksić, J; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paiano, S; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Neronov, A; Semikoz, D V

    2010-01-01

    Context: Part of the very high energy $\\gamma$-ray radiation coming from extragalactic sources is absorbed through the pair production process on the extragalactic background light photons. Extragalactic magnetic fields alter the trajectories of these cascade pairs and, in turn, convert cosmic background photons to gamma-ray energies by inverse Compton scattering. These secondary photons can form an extended halo around bright VHE sources. Aims: We searched for an extended emission around the bright blazars Mrk 421 and Mrk 501 using the MAGIC telescope data. Methods: If extended emission is present, the angular distribution of reconstructed gamma-ray arrival directions around the source is broader than for a point-like source. In the analysis of a few tens of hours of observational data taken from Mrk 421 and Mrk 501 we used a newly developed method that provides better angular resolution. This method is based on the usage of multidimensional decision trees. Comparing the measured shapes of angular distributi...

  18. Modelling the TeV gamma-ray spectra of two low redshift AGNs Mkn 501 and Mkn 421

    CERN Document Server

    Konopelko, A K; Kirk, J G; De Jager, O C; Stecker, F W; Konopelko, Alexander K.; Mastichiadis, Apostolos; Kirk, John G.; Jager, Ocker C. de; Stecker, Floyd W.

    2003-01-01

    We discuss the results of modelling the TeV gamma-ray spectra of two AGNs, Mkn 501 and Mkn 421 that have almost the same redshifts: z=0.031 and z=0.034, respectively. The effect of intergalactic gamma-ray absorption is treated as an uncertainty in the measurement of the intrinsic spectrum. Although the objects differ, we obtain satisfactory fits for both of them in a synchrotron self-Compton scenario. Compared to previous models, our fits are characterised by higher values of the Doppler factor (>= 50) and an electron injection spectrum extending to higher energies (Gmax = 1.5x10^5). In the case of Mkn 421, the observed difference in spectral slope in X-rays and TeV gamma-rays between the high and low states can be explained as a variation of a single parameter - the maximum energy Gmax mc^2 at which electrons are injected.

  19. BL Lacertae Objects and the Extragalactic Gamma-Ray Background

    CERN Document Server

    Li, Fan

    2011-01-01

    A tight correlation between gamma-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The gamma-ray emission of BL Lac objects exhibits strong variability, and the detection rate of gamma-ray BL Lac objects is low, which may be related to the gamma-ray duty cycle of BL Lac objects. We estimate the gamma-ray duty cycle ~ 0.11, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of gamma-ray emission with radio emission and the estimated gamma-ray duty cycle, we derive the gamma-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived gamma-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. We find that about 45% of the extragalactic diffuse gamma-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contri...

  20. NEW GAMMA RAYS FROM DECAY OF 189W

    Institute of Scientific and Technical Information of China (English)

    杨维凡; 赵之正; 等

    1995-01-01

    Radioactivities of 189W are produced through an 192Os(n,α189W reaction.Gamma ray spectroscopy from chemically separated tungsten sources using HPGe detector has revealed the presence of 22 gamma rays assigned to the decay of 189W,of them,18 gamma rays are new ones unreported until now.

  1. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  2. Multi-Epoch VLBA Observations of EGRET-Detected Quasars and BL Lac Objects Superluminal Motion of Gamma-Ray Bright Blazars

    CERN Document Server

    Jorstad, S G; Mattox, J R; Wehrle, A E; Bloom, S D; Yurchenko, A V; Jorstad, Svetlana G; Marscher, Alan P; Mattox, John R; Wehrle, Ann E; Bloom, Steven D; Yurchenko, Alexei V

    2001-01-01

    We present the results of a program to monitor the structure of the radio emission in 42 $\\gamma$-ray bright blazars (31 quasars and 11 BL Lac objects) with the VLBA at 43, 22, and occasionally 15 and 8.4 GHz, over the period from November 1993 to July 1997. We determine proper motions in 33 sources and find that the apparent superluminal motions in $\\gamma$-ray sources are much faster than for the general population of bright compact radio sources. This follows the strong dependence of the $\\gamma$-ray flux on the level of relativistic beaming for both external-radiation Compton and synchrotron self-Compton emission. There is a positive correlation (correlation coefficient $r$=0.45) between the flux density of the VLBI core and the $\\gamma$-ray flux and a moderate correlation (partial correlation coefficient $r$=0.31) between $\\gamma$-ray apparent luminosity and superluminal velocities of jet components, as expected if the $\\gamma$-ray emission originates in a very compact region of the relativistic jet and ...

  3. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  4. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor

  5. TeV Gamma Ray Astronomy

    CERN Document Server

    Cui, Wei

    2009-01-01

    The field of ground-based gamma ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play to advance this young but exciting field.

  6. Physics of gamma-ray bursts

    Science.gov (United States)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  7. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  8. Are gamma-ray bursts cosmological?

    CERN Document Server

    Horvath, I

    2015-01-01

    Gamma-ray burst sources are distributed with a high level of isotropy, which is compatible with either a cosmological origin or an extended Galactic halo origin. The brightness distribution is another indicator used to characterize the spatial distribution in distance. In this paper the author discusses detailed fits of the BATSE gamma-ray burst peak-flux distributions with Friedmann models taking into account possible density evolution and standard candle luminosity functions. A chi-square analysis is used to estimate the goodness of the fits and the author derives the significance level of limits on the density evolution and luminosity function parameters. Cosmological models provide a good fit over a range of parameter space which is physically reasonable

  9. Stirling Colgate and Gamma-Ray Bursts

    Science.gov (United States)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  10. Measuring cosmology with Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z.G.; Xu, D.; Liang, W. [Nanjing Univ., Nanjing (Switzerland). Department of Astronomy

    2005-07-15

    Gamma-Ray Bursts (GRBs) are becoming more and more standardizable candles. Different methods have been proposed to measure cosmology with the relation between the {gamma}-ray energy E{sub {gamma}} of a GRB jet and the peak energy E{sub p} of the {nu}F{nu} spectrum in the burst frame. We compare the procedures and results of these methods. Using the present sample of 17 GRBs, we obtain a constraint on the mass density {omega}M 0.22{sub -0.07}{sup +0.42} (1{sigma}) for a flat ACDM universe with the median circumburst density n {approx_equal} 3.0 cm{sup -3}. Theoretical investigations of the E{sub {gamma}} {alpha} E{sub p}{sup a} relation reach a {approx} 1.5. A larger sample in the Swift era is expected to provide further constraints on the GRB cosmography.

  11. TeV gamma-ray astronomy

    Institute of Scientific and Technical Information of China (English)

    Wei Cui

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re-view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.

  12. The Future of Gamma Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  13. The future of gamma-ray astronomy

    CERN Document Server

    Knödlseder, Jürgen

    2016-01-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

  14. The future of gamma-ray astronomy

    Science.gov (United States)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades. xml:lang="fr"

  15. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  16. Gamma-Ray Background Variability in Mobile Detectors

    Science.gov (United States)

    Aucott, Timothy John

    . This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  17. Future astrophysics space missions in gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik)

    1990-04-01

    An overview about presently approved space missions in gamma ray astronomy is given. Special emphasis is devoted to the Gamma Ray Observatory GRO of NASA - a multi-instrument observatory which covers more than 5 orders of magnitude in photon energy from about 100 keV to 30 GeV. Significant progress in the exploration and understanding of the gamma ray sky can be expected in the very near future. The next generation of gamma ray missions will have to focus on high resolution spectroscopy, on high resolution imaging and on broad band studies of gamma ray burst sources. (orig.).

  18. Modelling the Multifrequency SED of AGN Candidates among the Unidentied EGRET and Fermi Gamma-Ray Sources

    Directory of Open Access Journals (Sweden)

    Pieter J. Meintjes

    2014-12-01

    Full Text Available Of the 271 sources in the 3rd EGRET catalogue, 131 were reported as unidentied, i.e. not associated with any particular class of point source in the sky. Since the largest fraction of the EGRET sources were extragalactic, a sample of 13 extragalactic unidentied sources have been selected for multi-wavelength follow-up studies. Five of the selected EGRET sources coincide with gamma-ray flux enhancements seen in the Fermi-LAT data after one year of operation. In this article, we report the multi-wavelength properties of, among others, the 5 sources detected by Fermi-LAT from our sample of high galactic latitude unidentied EGRET sources. Recent spectroscopic observations with the Southern African Large Telescope (SALT conrmed one of the unidentied EGRET sources as a possible Seyfert 2 galaxy, or alternatively, a narrow line radio galaxy. The detected gamma-ray emission (Eγ > 30 MeV of the 5 coinciding EGRET/Fermi-LAT sources are tted with external Compton and Synchrotron Self Compton (SSC models to investigate the energetics required to produce the EGRET/Fermi gamma-ray flux. In all the models the inclination angle of the jet with respect to the observer is jet 60, between those of Seyfert 1 and Seyfert 2/radio galaxies. These results confirm the possibility of Seyfert and radio galaxies sources are constituting a new class of gamma-ray source in the energy range Eγ > 30 MeV.

  19. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  20. Multi-wavelength emission from 3C 66A: clues to its redshift and gamma-ray emission location

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yan; Zhong-Hui Fan; Yao Zhou; Ben-Zhong Dai

    2013-01-01

    The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model.It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular,the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR).Clues to its redshift and gamma-ray emission location are obtained.The results indicate the following.(i) On the redshift:The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra.Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light,it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3,with the most likely value being ~ 0.2.(ii) On the gamma-ray emission location:To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR,the gamma-ray emission region is always required to be beyond the inner zone of the BLR.The BLR absorption effect on gamma-ray emission confirms this point.

  1. Do Gamma-Ray Burst Sources Repeat?

    OpenAIRE

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb 1993; Wang and Lingenfelter 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and...

  2. GAMMA-RAY BURSTS, NEW COSMOLOGICAL BEACONS

    Directory of Open Access Journals (Sweden)

    V. Avila-Reese

    2009-01-01

    Full Text Available Long Gamma-Ray Bursts (GRBs are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  3. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    Energy Technology Data Exchange (ETDEWEB)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  4. A concept for a soft gamma-ray concentrator using thin-film multilayer structures

    Science.gov (United States)

    Bloser, Peter F.; Shirazi, Farzane; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Aliotta, Paul H.

    2016-07-01

    We are investigating the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Following initial investigations conducted at Los Alamos National Laboratory, we have constructed and tested a prototype structure using spin coating combined with magnetron sputtering. We are now investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness more quickly by using magnetron sputter and pulsed laser deposition techniques. We present the latest results of our fabrication and gamma-ray channeling tests, and describe our modeling of the sensitivity of potential concentrator-based telescope designs. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.

  5. Gamma ray tracking with the AGATA demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Hess, Herbert; Lewandowski, Lars; Reiter, Peter; Steinbach, Tim; Schneiders, David; Vogt, Andreas [IKP, Universitaet zu Koeln (Germany); Collaboration: AGATA-Collaboration

    2014-07-01

    The performance of the AGATA demonstrator will be discussed based on data taken from a multi-nucleon transfer experiment at the AGATA PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce a multitude of nuclei in the vicinity of {sup 136}Xe and corresponding reaction partners in the actinide region. The obtained results for in-beam gamma-ray spectroscopy allow for a critical assessment of the novel gamma ray tracking technique and comparison with standard procedure. High resolution spectroscopy of both reaction products after multi-nucleon transfer reaction in the presence of a high background from excited fission fragments is based on pulse-shape analysis (PSA) and gamma-ray tracking (GRT). The quality of the position information is crucial for the final energy resolution after Doppler correction. The impact of the calculated PSA libraries and the initial detector characterization for the PSA and GRT are summarized. Details of the achieved position and energy resolution, peak-to-background optimization are presented and illustrated with results from the neutron-transfer products in Xe and U-isotopes.

  6. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  7. Gamma Ray Bursts Cook Book I: Formulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in early 90's, the mathematical formulation of this process has stayed at phenomenological level. One of the reasons for the slow development of theoretical works in this domain has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. Nowadays with the launch of the Swift satellite, gamma-ray bursts can be observed in multi-wavelength from a few tens of seconds after trigger onward. These observations have leaded to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. But "devil is in details" and some of these features may be explained with a more detailed formulation of phenomena and without adhoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the collision between two spherical relativistic shells. The model can be applied to both internal and ...

  8. Afterglow Radiation from Gamma Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  9. Delayed Nickel Decay in Gamma Ray Bursts

    CERN Document Server

    McLaughlin, G C

    2002-01-01

    Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce ...

  10. Hadronic Gamma Rays from Supernova Remnants

    CERN Document Server

    Moskalenko, I V; Malkov, M A; Diamond, P H

    2007-01-01

    A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. The gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.

  11. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    Science.gov (United States)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  12. Superradiant control of gamma-ray propagation by vibrating nuclear arrays

    CERN Document Server

    Zhang, Xiwen

    2013-01-01

    The collective nature of light interactions with atomic and nuclear ensembles yields the fascinating phenomena of superradiance and radiation trapping. We study the interaction of gamma rays with a coherently vibrating periodic array of two-level nuclei. Such nuclear motion can be generated, e.g., in ionic crystals illuminated by a strong driving optical laser field. We find that deflection of the incident gamma beam into the Bragg angle can be switched on and off by nuclear vibrations on a superradiant time scale determined by the collective nuclear frequency, which is of the order of terahertz. Namely, if the incident gamma wave is detuned from the nuclear transition by much larger frequency it passes through the static nuclear array. However, if the nuclei vibrate with the frequency of the gamma ray detuning then parametric resonance can yield energy transfer into the Bragg deflected beam on the superradiant time scale, which can be used for fast control of gamma rays.

  13. Research and development of a gamma-ray imaging spectrometer in the MeV range in Barcelona

    Science.gov (United States)

    Alvarez, José-Manuel; Galvez, José-Luis; Hernanz, Margarita; Isern, Jordi; Lozano, Manuel; Pellegrini, Giulio; Chmeissani, Mokhtar; Cabruja, Enric; Ullán, Miguel

    2010-07-01

    Gamma-ray astrophysics in the MeV energy range plays an important role for the understanding of cosmic explosions and acceleration mechanisms in a variety of galactic and extragalactic sources, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). Through the development of focusing telescopes in the MeV energy range, it will be possible to reach unprecedented sensitivities, compared with those of the currently operating gamma ray telescopes. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is required. It will be also desirable that the detector could detect polarization of the source. Our research and development activities in Barcelona aim to study a gamma-ray imaging spectrometer in the MeV range suited for the focal plane of a gamma-ray telescope mission, based on CdTe pixel detectors arranged in multiple layers with increasing thicknesses, to enhance gamma-ray absorption in the Compton regime. We have developed an initial prototype based on several CdTe module detectors, with 11x11 pixels, a pixel pitch of 1mm and a thickness of 2mm. Each pixel is stud-bump bonded to a fanout board and routed to a readout ASIC to measure pixel position, pulse height and rise time information for each incident gamma-ray photon. We will report on the results of an optimization study based on simulations, to select the optimal thickness of each CdTe detector within the module to get the best energy resolution of the spectrometer.

  14. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    CERN Document Server

    ,

    2016-01-01

    We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about ~ 2 - 3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus ...

  15. A Search for Very High Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Biteau, J.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Lang, M. J.; Loo, A.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pelassa, V.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Chernyakova, M.; Roberts, M. S. E.

    2016-11-01

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ˜2 G before the disappearance of the radio pulsar and greater than ˜10 G afterward.

  16. Evidence for TeV $\\gamma$-ray emission from the shell type SNR RXJ1713.7-3946

    CERN Document Server

    Muraishi, H; Yanagita, S; Yoshida, T; Moriya, M; Kifune, T; Dazeley, S A; Edwards, P G; Gunji, S; Hara, S; Hara, T; Kawachi, A; Kubo, H; Matsubara, Y; Mizumoto, Y; Mori, M; Muraki, Y; Naito, T; Nishijima, K; Patterson, J R; Rowell, G P; Sako, T; Sakurazawa, K; Susukita, R; Tamura, T; Yoshikoshi, T

    2000-01-01

    We report the results of TeV gamma-ray observations of the shell type SNR RXJ1713.7-3946 (G347.3-0.5). The discovery of strong non-thermal X-ray emission from the northwest part of the remnant strongly suggests the existence of electrons with energies up to 100 TeV in the remnant, making the SNR a good candidate TeV gamma-ray source. We observed RXJ1713.7-3946 from May to August 1998 with the CANGAROO 3.8m atmospheric imaging Cerenkov telescope and obtained evidence for TeV gamma-ray emission from the NW rim of the remnant with the significance of 5.6 sigma. The observed TeV gamma-ray flux from the NW rim region was estimated to be (5.3 +/- 0.9[statistical] +/- 1.6[systematic]) * 10^{-12} photons cm^{-2} s^{-1} at energies >= 1.8 +/- 0.9 TeV. The data indicate that the emitting region is much broader than the point spread function of our telescope. The extent of the emission is consistent with that of hard X-rays observed by ASCA. This TeV gamma-ray emission can be attributed to the Inverse Compton scattering...

  17. Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068

    CERN Document Server

    Lamastra, A; Guetta, D; Antonelli, L A; Colafrancesco, S; Menci, N; Puccetti, S; Stamerra, A; Zappacosta, L

    2016-01-01

    We compute the non-thermal emissions produced by relativistic particles accelerated by the AGN-driven shocks in NGC 1068, and we compare the model predictions with the observed gamma-ray and radio spectra . The former is contributed by pion decay, inverse Compton scattering, and bremsstrahlung, while the latter is produced by synchrotron radiation. We derive the gamma-ray and radio emissions by assuming the standard acceleration theory, and we discuss how our results compare with those corresponding to other commonly assumed sources of gamma-ray and radio emissions, like Supernova remnants (SNR) or AGN jets. We find that the AGN-driven shocks observed in the circumnuclear molecular disk of such a galaxy provide a contribution to the gamma-ray emission comparable to that provided by the starburst activity when standard particle acceleration efficiencies are assumed, while they can yield the whole gamma-ray emission only when the parameters describing the acceleration efficiency and the proton coupling with the...

  18. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    , just one step short of a black hole. A neutron star is created by the force of a supernova explosion in a large star, which crushes the star's core to an unimaginable density. A mass greater than the Sun's is squeezed into a ball no wider than a city. The gravity and magnetic fields are billions of times stronger than the Earth's. The neutron star revolves rapidly, which causes it to wink like a cosmic lighthouse as it swivels its magnetic poles towards and away from the Earth. Pulsar 1055-52 spins at five revolutions per second. At its formation in a supernova explosion, a neutron star is endowed with two main forms of energy. One is heat, at temperatures of millions of degrees, which the neutron star radiates mainly as X-rays, with only a small proportion emerging as visible light. The other power supply for the neutron star comes from its high rate of spin and a gradual slowing of the rotation. By a variety of processes involving the magnetic field and accelerated particles in the neutron star's vicinity, the spin energy of the neutron star is converted into radiation at many different wavelengths, from radio waves to gamma-rays. The exceptional gamma-ray intensity of Pulsar 1055-52 was first appreciated in observations by NASA's Compton Gamma Ray Observatory. The team in Milan recently used the Hubble Space Telescope to find the distance of the peculiar neutron star Geminga, which is not detectable by radio pulses but is a strong source of gamma-rays (see ESA Information Note 04-96, 28 March 1996). Pulsar 1055-52 is even more powerful in that respect. About 50 per cent of its radiant energy is gamma-rays, compared with 15 per cent from Geminga and 0.1 per cent from the famous Crab Pulsar, the first neutron star seen by visible light. Making the gamma-rays requires the acceleration of electrons through billions of volts. The magnetic environment of Pulsar 1055-52 fashions a natural gamma-ray machine of amazing power. The orientation of the neutron star's magnetic

  19. Gamma-ray Output Spectra from 239Pu Fission

    Directory of Open Access Journals (Sweden)

    Ullmann John

    2015-01-01

    Full Text Available Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  20. Measurement of fast neutrons and secondary gamma rays in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; El-Asyd Abdo, A.; Kansouh, W.A. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Bashter, I.I. [Zagazig Univ. (Egypt). Faculty of Science

    1996-05-01

    The spatial fluxes and energy distributions of fast neutrons, total gamma rays and secondary gamma rays transmitted through different thicknesses of graphite have been measured. The graphite samples were arranged in front of one of the horizontal channels of the ET-RR-1 reactor. Gamma ray measurements were carried out for bare, cadmium filtered and boron carbide filtered reactor beams. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectrum of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to distinguish the proton pulses from the electron pulses. The total fast neutrons macroscopic cross section and the linear attenuation coefficient for gamma rays were derived both for the whole energy range and at different energies. The obtained values were used to calculate the relaxation lengths for fast neutrons and gamma rays. (Author).

  1. News from Cosmic Gamma-ray Line Observations

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma~rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma~rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of $^{56}$Ni, $^{56}$Co, and $^{44}$Ti. The diffuse afterglow in gamma rays of radioa...

  2. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  3. Constraints on gamma-ray line and continuum emission from the Galactic Center Region at MeV Energies

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, R.; v. Ballmoos, P.; Schoenfelder, V.

    1988-09-25

    MPE Compton Telescope observations of MeV radiation from the direction of the Galactic Center lead to constraints on the central source and on diffuse processes in the Galaxy: The extent of 1.8 MeV line emission from /sup 26/Al suggests an /sup 26/Al production process with pronounced concentration towards the Galactic Center. The absence of other ..gamma..-ray lines constrains nucleosynthesis and cosmic ray excitation parameters in the Galaxy.

  4. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    Science.gov (United States)

    Wang, Yuqing; Feng, Yi; Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin

    2014-07-01

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100 keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200 keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  5. Predicted Extragalactic TeV $\\gamma$-Ray Sources

    CERN Document Server

    Stecker, F W; Salamon, M H

    1996-01-01

    We suggest that low-redshift XBLs (X-ray selected BL Lacertae objects) may be the only extragalactic gamma-ray sources observable at TeV energies. We use simple physical considerations involving synchrotron and Compton component spectra for blazars to suggest why the observed TeV sources are XBLs, whereas mostly RBLs and FSRQs are seen at GeV energies. These considerations indicate that the differences between XBLs and RBLs cannot be explained purely as relativistic jet orientation effects. We note that the only extragalactic TeV sources which have been observed are XBLs and that a nearby RBL with a very hard spectrum in the GeV range has not been seen at TeV energies. We also note that of the 14 BL Lacs observed by EGRET, 12 are RBLs, whereas only 2 are XBLs. We give a list of nearby XBLs which we consider to be good candidate TeV sources and predict estimated TeV fluxes for these objects.

  6. Explosive Material Identification via Neutron-Induced Gamma Rays

    Science.gov (United States)

    Freiberg, David; Litz, Marc

    2014-09-01

    With the increase in the usage of improvised explosive devices, both vehicle-borne and buried, it has become increasingly important to quickly identify potentially explosive materials before they can be detonated. In a field test performed in January of 2014, 14 MeV neutrons generated in a deuterium-tritium reaction induced gamma emissions in explosive material targets. The resulting gamma rays were counted in LaBr3 detectors in both a time-binned associated particle imaging (API) mode and a repetitively pulsed mode. The details of the resulting data sets were analyzed, and gamma lines for carbon, oxygen, and nitrogen were identified in the spectra produced by both modes. Post-test noise reduction techniques included empty hole background subtraction, Compton background subtraction, peak area integration, and time-of-flight gating. The induced C, O, and N gamma line intensities and ratios were compared to the elemental weight ratios expected for each type of material. The composition results are indicative of the known elemental weights in the target materials. The statistics are limited because of the short, 20 second data collection periods, and would improve greatly with longer exposure times in the future.

  7. Prompt gamma-ray burst emission from gradual magnetic dissipation

    Science.gov (United States)

    Beniamini, Paz; Giannios, Dimitrios

    2017-07-01

    We considered a model for the prompt phase of gamma-ray burst emission arising from a magnetized jet undergoing gradual energy dissipation due to magnetic reconnection. The dissipated magnetic energy is translated to bulk kinetic energy and to acceleration of particles. The energy in these particles is released via synchrotron radiation as they gyrate around the strong magnetic fields in the jet. At small radii, the optical depth is large, and the radiation is reprocessed through Comptonization into a narrow, strongly peaked component. At larger distances the optical depth becomes small and radiation escapes the jet with a non-thermal distribution. The obtained spectra typically peak around ≈300 keV (as observed) and with spectral indices below and above the peak that are, for a broad range of the model parameters, close to the observed values. The small radius of dissipation causes the emission to become self-absorbed at a few keV and can sufficiently suppress the optical and X-ray fluxes within the limits required by observations.

  8. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    CERN Document Server

    Fan, Yi-Zhong

    2008-01-01

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  9. Broad-band continuum and line emission of the gamma-ray blazar PKS 0537-441

    CERN Document Server

    Pian, E; Hartman, R C; Maraschi, L; Tavecchio, F; Tornikoski, M; Treves, A; Urry, C M; Ballo, L; Mukherjee, R; Scarpa, R; Thompson, D J; Pesce, J E

    2002-01-01

    PKS 0537-441, a bright gamma-ray emitting blazar, was observed at radio, optical, UV and X-ray frequencies during various EGRET pointings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazar component, which we attribute to inverse Compton scattering. The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the bolometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by IUE in...

  10. Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster

    Science.gov (United States)

    HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Ali, M. O.

    2012-09-01

    Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims: Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods: Data obtained in 20.2 h of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results: No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions: The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 μG in the inner lobes.

  11. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  12. Search for Pulsed TeV $\\gamma$-ray Emission from the Crab Pulsar

    CERN Document Server

    Lessard, R W; Bradbury, S M; Buckley, J H; Burdett, A M; Carter-Lewis, D A; Catanese, M; Cawley, M F; D'Vali, M; Fegan, D J; Finley, J P; Gaidos, J A; Gillanders, G H; Hall, T; Hillas, A M; Krennrich, F; Lang, M J; Masterson, C; Moriarty, P; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Vasilev, V; Weekes, T C

    1999-01-01

    We present the results of a search for pulsed TeV emission from the Crab pulsar using the Whipple Observatory's 10 m gamma-ray telescope. The direction of the Crab pulsar was observed for a total of 73.4 hours between 1994 November and 1997 March. During this period the Whipple 10 m telescope was operated at its lowest energy threshold to date. Spectral analysis techniques were applied to search for the presence of a gamma-ray signal from the Crab pulsar over the energy band 250 GeV to 4 TeV. We do not see any evidence of the 33 ms pulsations present in other energy bands from the Crab pulsar. The 99.9% confidence level upper limit for pulsed emission above 250 GeV is derived to be 4.8x10^-12 cm^-2 s^-1 or <3% of the steady flux from the Crab Nebula. These results imply a sharp cut-off of the power-law spectrum seen by the EGRET instrument on the Compton Gamma-Ray Observatory. If the cut-off is exponential, it must begin at 60 GeV or lower to accommodate these upper limits.

  13. A Search for Pulsed TeV $\\gamma$ Ray Emission from the Crab Pulsar

    CERN Document Server

    Burdett, A M; Boyle, P J; Bradbury, S M; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Gillanders, G H; Hall, T A; Hillas, A M; Kildea, J; Knapp, J; Krennrich, F; Lang, M J; Le Bohec, S; Lessard, R W; Masterson, C; Moriarty, P; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Vasilev, V; Weekes, T C

    1999-01-01

    We present the results of a search for pulsed TeV emission from the Crab pulsar using the Whipple Observatory's 10m gamma-ray telescope. The direction of the Crab pulsar was observed for a total of 73.4 hours between 1994 November and 1997 March. Spectral analysis techniques were applied to search for the presence of a gamma-ray signal from the Crab pulsar over the energy band 250GeV to 4TeV. At these energies we do not see any evidence of the 33ms pulsations present at lower energies from the Crab pulsar. The 99.9% confidence level upper limit for pulsed emission above 250GeV is derived to be 4.8 10^-12 cm^-2 s^-1 or <3% of the steady flux from the Crab Nebula. These results imply a sharp cut-off of the power-law spectrum seen by the EGRET instrument on the Compton Gamma-Ray Observatory. If the cut-off is exponential, it must begin at 60GeV or lower to accommodate these upper limits.

  14. Extragalactic Gamma-Ray Absorption and the Intrinsic Spectrum of Mkn 501 During the 1977 Flare

    CERN Document Server

    De Jager, O C

    2002-01-01

    Using the recent models of Malkan & Stecker (2001) for the infrared background radiation and extrapolating them into the optical and UV range using recent galaxy count data, we rederive the optical depth of the Universe to high energy gamma-rays as a function of energy and redshift for energies between 50 GeV and 100 TeV and redshifts between 0.03 and 0.3. We then use these results to derive the intrinsic gamma-ray spectrum of Mkn 501 during its 1997 high state. We find that the spectral energy distribution of Mkn 501 while flaring had a broad, flat peak in the 5-10 TeV range which corresponds to the broad, flat peak in the 50-100 keV range observed during the flare. The differential spectral index of our derived intrinsic gamma-ray spectrum at energies below about 2 TeV was found to be about 1.6 to 1.7. This corresponds to a time averaged index of 1.76 found in soft X-rays at energies below the X-ray synchrotron peak. These results appear to favor a synchrotron-self Compton origin for the TeV emission to...

  15. The Fermi Haze: A Gamma-Ray Counterpart to the Microwave Haze

    CERN Document Server

    Dobler, Gregory; Cholis, Ilias; Slatyer, Tracy R; Weiner, Neal

    2009-01-01

    The Fermi Gamma-Ray Space Telescope reveals a diffuse inverse Compton signal in the inner Galaxy with the same spatial morphology as the microwave haze observed by WMAP, confirming the synchrotron origin of the microwaves. Using spatial templates, we regress out pi0 gammas, as well as ICS and bremsstrahlung components associated with known soft-synchrotron counterparts. We find a significant gamma-ray excess towards the Galactic center with a spectrum that is significantly harder than other sky components and is most consistent with ICS from a hard population of electrons. The morphology and spectrum are consistent with it being the ICS counterpart to the electrons which generate the microwave haze seen at WMAP frequencies. In addition to confirming that the microwave haze is indeed synchrotron, the distinct spatial morphology and very hard spectrum of the ICS are evidence that the electrons responsible for the microwave and gamma-ray haze originate from a harder source than supernova shocks. We describe the ...

  16. Study of TeV shell supernova remnants at gamma-ray energies

    CERN Document Server

    Acero, F; Renaud, M; Ballet, J; Hewitt, J W; Rousseau, R; Tanaka, T

    2015-01-01

    The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{\\deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance,...

  17. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    Science.gov (United States)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F.; Nolan, P. L.; Tompkins, W. F.; Kanbach, G.; Mayer-Hasselwander, A.; Muecke, A.

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  18. Powerful GeV emission from a gamma-ray-burst shock wave scattering stellar photons

    CERN Document Server

    Giannios, Dimitrios

    2008-01-01

    The gamma-ray bursts of long duration are likely connected to the death of massive stars. The gamma-ray emission is believed to come from energy released internally in a flow that moves at ultrarelativistic speed. The fast flow drives a shock wave into the external medium leading to the afterglow emission. Most massive stars form in dense clusters, their high luminosity producing a very dense radiation field. Here, I explore the observational consequences of the interaction of the shocked external medium of the burst with the photon field of a nearby O star. I show that inverse Compton scattering of the stellar photons by electrons heated by the shock leads to powerful gamma-ray emission in the ~1-100 GeV range. This emission appears minutes to hours after the burst and can be easily detected by Cherenkov telescopes and likely with the GLAST satellite. This signal may have already been observed in GRB 940217 and can yield important information about the circumburst environment.

  19. Angular Signatures of Dark Matter in the Diffuse Gamma Ray Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Serpico, Pasquale D.; /Fermilab

    2007-02-01

    Dark matter annihilating in our Galaxy's halo and elsewhere in the universe is expected to generate a diffuse flux of gamma rays, potentially observable with next generation satellite-based experiments, such as GLAST. In this article, we study the signatures of dark matter in the angular distribution of this radiation. Pertaining to the extragalactic contribution, we discuss the effect of the motion of the solar system with respect to the cosmological rest frame, and anisotropies due to the structure of our local universe. For the gamma ray flux from dark matter in our own Galactic halo, we discuss the effects of the offset position of the solar system, the Compton-Getting effect, the asphericity of the Milky Way halo, and the signatures of nearby substructure. We explore the prospects for the detection of these features by the GLAST satellite and find that, if {approx} 10% or more of the diffuse gamma ray background observed by EGRET is the result of dark matter annihilations, then GLAST should be sensitive to anisotropies down to the 0.1% level. Such precision would be sufficient to detect many, if not all, of the signatures discussed in this paper.

  20. Milliarcsecond-Scale Structure in the Gamma-Ray Loud Quasar PKS 1622-297

    CERN Document Server

    Wajima, K; Kobayashi, H; Hirabayashi, H; Murata, Y; Edwards, P G; Tsuboi, M; Fujisawa, K; Wajima, Kiyoaki; Bignall, Hayley E.; Kobayashi, Hideyuki; Hirabayashi, Hisashi; Murata, Yasuhiro; Edwards, Philip G.; Tsuboi, Masato; Fujisawa, Kenta

    2005-01-01

    We have made a high-resolution VLBI observation of the gamma-ray loud quasar PKS 1622-297 with the HALCA spacecraft and ground radio telescopes at 5 GHz in 1998 February, almost three years after the source exhibited a spectacular GeV gamma-ray flare. The source shows an elongated structure toward the west on the parsec scale. The visibility data are well modeled by three distinct components; a bright core and two weaker jet components. Comparison with previous observations confirms that the jet components have an apparent superluminal motion up to 12.1 h^{-1}c, with the inner jet components having lower superluminal speeds. We apply the inverse Compton catastrophe model and derive a Doppler factor, \\delta, of 2.45, which is somewhat lower than that of other gamma-ray loud active galactic nuclei (AGNs), suggesting the source was in a more quiescent phase at the epoch of our observation. As an alternative probe of the sub-parsec scale structure, we also present the results from multi-epoch ATCA total flux moni...

  1. High-mass microquasars and low-latitude gamma-ray sources

    CERN Document Server

    Bosch-Ramon, V; Paredes, J M

    2004-01-01

    Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it...

  2. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  3. Properties of $\\gamma$-Ray Burst Classes

    CERN Document Server

    Hakkila, J; Roiger, R J; Mallozzi, R S; Pendleton, G N; Meegan, C A; Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Meegan, Charles A.

    2000-01-01

    The three gamma-ray burst (GRB) classes identified by statistical clustering analysis (Mukherjee et al. 1998) are examined using the pattern recognition algorithm C4.5 (Quinlan 1986). Although the statistical existence of Class 3 (intermediate duration, intermediate fluence, soft) is supported, the properties of this class do not need to arise from a distinct source population. Class 3 properties can easily be produced from Class 1 (long, high fluence, intermediate hardness) by a combination of measurement error, hardness/intensity correlation, and a newly-identified BATSE bias (the fluence duration bias). Class 2 (short, low fluence, hard) does not appear to be related to Class 1.

  4. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  5. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  6. The Nature of Gamma Ray Burst Supernovae

    OpenAIRE

    Cano, Zach

    2012-01-01

    Gamma Ray Bursts (GRBs) and Supernovae (SNe) are among the brightest and most energetic physical processes in the universe. It is known that core-collapse SNe arise from the gravitational collapse and subsequent explosion of massive stars (the progen- itors of nearby core-collapse SNe have been imaged and unambiguously identified). It is also believed that the progenitors of long-duration GRBs (L-GRBs) are massive stars, mainly due to the occurrence and detection of very energetic core-collap...

  7. Two classes of gamma-ray bursts

    CERN Document Server

    Katz, J I

    1995-01-01

    Data from the 3B Catalogue suggest that short and long GRB are the results of different classes of events, rather than different parameter values within a single class: Short bursts have harder spectra in the BATSE bands, but chiefly long bursts are detected at photon energies over 1 MeV, implying that their hard photons are radiated by a process not found in short bursts. The values of \\langle V/V_{max} \\rangle for short and long bursts differ by 4.3 \\sigma, implying different spatial distributions. Only the soft gamma-ray radiation mechanisms are the same in both classes.

  8. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  9. Multiwavelength Studies of gamma-ray Binaries

    Science.gov (United States)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  10. Nucleosynthetic Yields from Gamma-Ray Bursts

    CERN Document Server

    Rockefeller, Gabriel; Young, Patrick; Bennett, Michael; Diehl, Steven; Herwig, Falk; Hirschi, Raphael; Hungerford, Aimee; Pignatari, Marco; Magkotsios, Georgios; Timmes, Francis X

    2008-01-01

    The "collapsar" engine for gamma-ray bursts invokes as its energy source the failure of a normal supernova and the formation of a black hole. Here we present the results of the first three-dimensional simulation of the collapse of a massive star down to a black hole, including the subsequent accretion and explosion. The explosion differs significantly from the axisymmetric scenario obtained in two-dimensional simulations; this has important consequences for the nucleosynthetic yields. We compare the nucleosynthetic yields to those of hypernovae. Calculating yields from three-dimensional explosions requires new strategies in post-process nucleosynthesis; we discuss NuGrid's plan for three-dimensional yields.

  11. Soft gamma-ray constraints on a bright flare from the Galactic Center supermassive black hole

    Energy Technology Data Exchange (ETDEWEB)

    Trap, G.; Goldwurm, A.; Ferrando, P. [Service d' Astrophysique - SAp, /IRFU/DSM/CEA Saclay, Bat. 709, 91191 Gif-sur-Yvette Cedex (France); AstroParticule and Cosmologie - APC, Universite Paris VII/CNRS/CEA/Observatoire de Paris, Bat. Condorcet, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Terrier, R. [AstroParticule and Cosmologie - APC, Universite Paris VII/CNRS/CEA/Observatoire de Paris, Bat. Condorcet, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Dodds-Eden, K.; Gillessen, S.; Genzel, R. [Max Planck Institut fuer Extraterretrische Physik - MPE, 85748 Garching (Germany); Pantin, E.; Lagage, P.O. [Service d' Astrophysique - SAp, /IRFU/DSM/CEA Saclay, Bat. 709, 91191 Gif-sur-Yvette Cedex (FR); Astrophysique Interactions Multi-echelles - AIM/Universite Paris VII/CEA/CNRS, Bat. 709, 91191 Gif-sur-Yvette Cedex (FR); Belanger, G. [European Space Agency - ESA/ESAC, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Porquet, D.; Grosso, N. [Observatoire astronomique de Strasbourg/Universite de Strasbourg/CNRS, 11, rue de l' Universite, 67000 Strasbourg (FR); Yusef-Zadeh, F. [Department of Physics and Astronomy/Northwestern University, Evanston, IL 60208 (US); Melia, F. [Department of Physics and Steward Observatory/The University of Arizona, Tucson, AZ 85721 (US)

    2010-07-01

    Sagittarius A* (SgrA*) is the supermassive black hole residing at the center of the Milky Way. It has been the main target of an extensive multiwavelength campaign we carried out in April 2007. Herein, we report the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM-Newton/EPIC) and near infrared (VLT/NACO) on April 4 for 1-2 h. For the first time, such an event also benefited from a soft gamma-rays (INTEGRAL/ISGRI) and mid infrared (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of the flare spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes. (authors)

  12. The Calibration System of the HAWC Gamma-Ray Observatory

    CERN Document Server

    Solares, Hugo A Ayala; Hui, C Michelle; Lauer, Robert J; Ren, Zhixiang; Greus, Francisco Salesa; Zhou, Hao

    2015-01-01

    The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.

  13. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  14. How promising is the search for gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1985-03-01

    Radiopulsars are rotating neutron stars. At present more than 330 of these objects are known. From two of them (Crab and Vela) pulsed emission has been observed at ..gamma..-ray energies, too. Because both of these pulsars have their maximum of luminosity at ..gamma..-ray energies and not in the radio range, it is supposed that the key for an understanding of the pulsar phenomenon will be found in the ..gamma..-ray range. In spite of intensive searches in the ..gamma..-ray range no further pulsars have been found yet. Indeed, theoretical estimates on the ..gamma..-ray luminosity indicate that only the next generation of ..gamma..-ray telescopes will be sufficiently sensitive to see more of them.

  15. SAS-2 galactic gamma ray results. 2. Localized sources

    Science.gov (United States)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  16. Relation between $\\gamma$-rays and emission lines for the $\\gamma$-ray loud blazars

    CERN Document Server

    Fan, J H

    2000-01-01

    The relation between the $\\gamma$-ray and the emission line luminosities for a sample of 36 $\\gamma$-ray loud blazars is investigated; an apparent correlation between them, $L_{\\gamma} \\propto L_{Line}^{0.69\\pm0.11}$, with a correlation coefficient $r=0.741$ and a chance probability of $p = 1.9\\times10^{-6}$, is found. It is found, however, that there is no intrinsic correlation between them: the apparent correlation is due to the redshift dependence in a flux-limited sample. Thus no evidence is found to support the argument that the up-scattered soft photons are from the broad emission lines. Our analysis does not conflict with the SSC model. The disk-jet symbiosis and radio/$\\gamma$-ray correlation found in the literature are also discussed. The radio/$\\gamma$-ray correlation may be an apparent correlation caused by the boosting effect since both bands are strongly beamed.

  17. AGNs and microquasars as high energy gamma-ray sources

    CERN Document Server

    Paredes, J M

    2004-01-01

    The extragalactic analogs of the microquasars, the quasars, are strong gamma-ray emitters at GeV energies. It is expected that microquasars are also gamma-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy gamma-ray sources.

  18. Gamma ray bursts, neutron star quakes, and the Casimir effect

    CERN Document Server

    Carlson, C; Pérez-Mercader, J; Carlson, C; Goldman, T; Perez-Mercader, J

    1994-01-01

    We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into \\gamma--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

  19. Pulse Summing in the gamma-Ray Spectra

    CERN Document Server

    Gromov, K Ya; Samatov, Zh K; Chumin, V G

    2004-01-01

    It was shown that the peaks formed at the summing of the cascade gamma-rays pulses can be used for the determination of gamma-ray source activity and gamma-ray registration efficency. Possible sources of the determined quantities errors have been investigated. Such a method can be useful at the nuclear reaction cross section measurements, at background analysis in looking for rare decays and so on.

  20. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    Science.gov (United States)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  1. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  2. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  3. The interplanetary gamma ray burst network

    Science.gov (United States)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  4. Gamma-ray bursts and collisionless shocks

    CERN Document Server

    Waxman, E

    2006-01-01

    Particle acceleration in collisionless shocks is believed to be responsible for the production of cosmic-rays over a wide range of energies, from few GeV to >10^{20} eV, as well as for the non-thermal emission of radiation from a wide variety of high energy astrophysical sources. A theory of collisionless shocks based on first principles does not, however, exist. Observations of gamma-ray burst (GRB) "afterglows" provide a unique opportunity for diagnosing the physics of relativistic collisionless shocks. Most GRBs are believed to be associated with explosions of massive stars, and their "afterglows," delayed low energy emission following the prompt burst of gamma-rays, are produced by relativistic collisionless shock waves driven by the explosion into the surrounding plasma. Some of the striking characteristics of these shocks include the generation of downstream magnetic fields with energy density exceeding that of the upstream field by ~8 orders of magnitude, the survival of this strong field at distances ...

  5. Gamma-ray binaries: pulsars in disguise ?

    CERN Document Server

    Dubus, G

    2006-01-01

    LS 5039 and LSI +61 303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. I investigate whether the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63, constitutes a viable scenario to explain the observations of LS 5039 and LSI +61 303. Emission would arise from the shocked pulsar wind material, which then flows away to large distances in a comet-shape tail, reproducing on a smaller scale what is observed in isolated, high motion pulsars interacting with the ISM. Simple expectations for the SED are derived and are shown to depend on few input parameters. Detailed modelling of the particle evolution is compared to the observations from ...

  6. Long Gamma-Ray Transients from Collapsars

    CERN Document Server

    Woosley, S E

    2011-01-01

    In the collapsar model for common gamma-ray bursts, the formation of a centrifugally supported disk occurs during the first $\\sim$10 seconds following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur - blue supergiants with low mass loss rates, tidally-interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common gamma-ray burst. A broad range of powers is possible, $10^{47}$ to $10^{50}\\,$erg s$^{-1}$, and t...

  7. The Cosmic Gamma-Ray Bursts

    CERN Document Server

    Djorgovski, S G; Kulkarni, S R; Sari, R; Bloom, J S; Galama, T J; Harrison, F A; Price, P A; Fox, D; Reichart, D; Yost, S; Berger, E; Diercks, A H; Goodrich, R; Chaffee, F H

    2001-01-01

    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host gal...

  8. Classifying Unidentified Gamma-ray Sources

    CERN Document Server

    Salvetti, David

    2016-01-01

    During its first 2 years of mission the Fermi-LAT instrument discovered more than 1,800 gamma-ray sources in the 100 MeV to 100 GeV range. Despite the application of advanced techniques to identify and associate the Fermi-LAT sources with counterparts at other wavelengths, about 40% of the LAT sources have no a clear identification remaining "unassociated". The purpose of my Ph.D. work has been to pursue a statistical approach to identify the nature of each Fermi-LAT unassociated source. To this aim, we implemented advanced machine learning techniques, such as logistic regression and artificial neural networks, to classify these sources on the basis of all the available gamma-ray information about location, energy spectrum and time variability. These analyses have been used for selecting targets for AGN and pulsar searches and planning multi-wavelength follow-up observations. In particular, we have focused our attention on the search of possible radio-quiet millisecond pulsar (MSP) candidates in the sample of...

  9. Gamma ray tests of Minimal Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hambye, Thomas [Service de Physique Theórique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); Panci, Paolo [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France); Sala, Filippo; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  10. GRIPS - Gamma-Ray Burst Investigation via Polarimetry and Spectroscopy

    CERN Document Server

    Greiner, J

    2008-01-01

    The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using gamma-ray bursts. We propose a new generation gamma-ray observatory capable of unprecedented spectroscopy over a wide range of gamma-ray energies (200 keV--50 MeV) and of polarimetry (200--1000 keV). Secondary goals achievable by this mission include direct measurements of supernova interiors through gamma-rays from radioactive decays, nuclear astrophysics with massive stars and novae, and studies of particle acceleration near compact stars, interstellar shocks, and clusters of galaxies.

  11. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  12. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  13. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  14. Gamma-ray spectroscopy on irradiated fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear], e-mail: laaterre@ipen.br

    2009-07-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  15. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS)

    Science.gov (United States)

    Saint-Hilaire, Pascal; Shih, Albert Y.; Duncan, Nicole; Bain, Hazel; Maruca, Bennett A.; Kelley, Nicole; Godbole, Niharika; Kaufmann, Pierre; Caspi, Amir; Sample, John; Hoberman, Jane; Mochizuki, Brent; Olson, Jerry; Boggs, Steven E.; Zoglauer, Andreas; Hurford, Gordon J.; Smith, David M.; Tajima, Hiroyasu; Amman, Mark

    2016-05-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload was successfully flown in January 2016 from Antarctica (Jan 19 to Jan 30).GRIPS provides a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma ray/hard X-ray emissions from ~20 keV to >~10 MeV. GRIPS’s goal is to address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of six 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs, with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS was also equipped with active BGO shields, and three piggy-back instruments: a solar terahertz radiometer (Solar-T), a hard X-ray spectrometer (SMASH), and a sonic anemometer (TILDAE).We will present an overview of GRIPS's first flight, the performance of its instruments and subsystems, including the solar pointing and aspect systems, and the current progress of our data analysis.

  16. What did we learn from gamma-ray burst 080319B?

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, Alin [Los Alamos National Laboratory; Kumar, Pawan [UNIV OF TEXAS

    2008-01-01

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10{sup 16.3} cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10{sup 52.3} erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  17. X-ray spectral studies of TeV gamma-ray emitting blazars

    CERN Document Server

    Wierzcholska, Alicja

    2016-01-01

    This work is a summary of the X-ray spectral studies of 29 TeV $\\gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35...

  18. Matter from light-light scattering via Breit-Wheeler events produced by two interacting Compton sources

    Science.gov (United States)

    Drebot, Illya; Micieli, D.; Milotti, E.; Petrillo, V.; Tassi, E.; Serafini, L.

    2017-04-01

    We present the dimensioning of a photon-photon collider based on Compton gamma sources for the observation of Breit-Wheeler pair production and QED γ γ events. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two gamma ray beams through Compton back scattering with two J-class lasers. Tuning the system energy above the Breit-Wheeler cross section threshold, a flux of electron-positron pairs is generated out of light-light interaction. The process is analyzed by start-to-end simulations. Realistic numbers of the secondary particle yield, referring to existing state-of-the-art set-ups and a discussion of the feasibility of the experiment taking into account the background signal are presented.

  19. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  20. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.