WorldWideScience

Sample records for laser capture microdissection-based

  1. Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods.

    Science.gov (United States)

    Gallagher, Rosa I; Blakely, Steven R; Liotta, Lance A; Espina, Virginia

    2012-01-01

    Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the Arcturus(XT) laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.

  2. Neuronal type-specific gene expression profiling and laser-capture microdissection.

    Science.gov (United States)

    Pietersen, Charmaine Y; Lim, Maribel P; Macey, Laurel; Woo, Tsung-Ung W; Sonntag, Kai C

    2011-01-01

    The human brain is an exceptionally heterogeneous structure. In order to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases, it is often important to define the molecular cascades that are associated with these disturbances in a neuronal type-specific manner. This can be achieved by the use of laser microdissection, in combination with molecular techniques such as gene expression profiling. To identify neurons in human postmortem brain tissue, one can use the inherent properties of the neuron, such as pigmentation and morphology or its structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neuronal cells and high-quality RNA from human postmortem brain material using a combination of rapid IHC, Nissl staining, or simple morphology with Laser-Capture Microdissection (LCM) or Laser Microdissection (LMD).

  3. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection

    DEFF Research Database (Denmark)

    Esaki, Hitokazu; Ewald, David Adrian; Ungar, Benjamin

    2015-01-01

    are unknown. Objective : We sought to establish the genomic profile of the epidermal and dermal compartments of lesional and nonlesional AD skin compared with normal skin. Methods : Laser capture microdissection was performed to separate the epidermis and dermis of lesional and nonlesional skin from patients...... epidermal and dermal genomic signatures of lesional and nonlesional AD skin and normal skin compared with whole tissues. These data establish the utility of laser capture microdissection to separate different compartments and cellular subsets in patients with AD, allowing localization of key barrier...

  4. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®.

    Directory of Open Access Journals (Sweden)

    Yelena G Golubeva

    Full Text Available Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc. and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection and membrane (laser cutting microdissection slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction

  5. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    OpenAIRE

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-01-01

    Abstract Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM...

  6. Liver gene expression profiles of rats treated with clofibric acid: comparison of whole liver and laser capture microdissected liver.

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-12-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor alpha, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci.

  7. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA.

    Science.gov (United States)

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-04-27

    Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.

  8. Notochord isolation using laser capture microdissection.

    Science.gov (United States)

    Santegoeds, R G C; Yakkioui, Y; Jahanshahi, A; Raven, G; Van Overbeeke, J J; Herrler, A; Temel, Y

    2017-03-01

    Chordoma are malignant tumors of the axial skeleton, which arise from remnants of the notochord. The Notochord (chorda dorsalis) is an essential embryonic structure involved in the development of the nervous system and axial skeleton. Therefore, the notochord seems to be the most biologically relevant control tissue to study chordoma in molecular biology research. Nevertheless, up to now mainly different tissues but not the notochord have been used as control for chordoma, due to difficulty of isolating notochordal tissue. Here, we describe a fast and precise method of isolating notochordal cells. Examination of human fetuses, with a gestation of 9, 11 and 13 weeks, using (immuno)histochemical methods was performed. To isolate pure notochord cells for further molecular biology investigation five flash frozen fetuses between 9 and 10 weeks of gestation were dissected by microtome slicing. Thereafter pure notochord cells for further molecular biology investigation where harvested by using laser capture microdissection (LCM). RNA was extracted from these samples and used in quantitative PCR. This study illustrates notochord of embryonic spines in three different stages of gestation (9-11-13 weeks). Immunohistochemical staining with brachyury showed strong staining of the notochord, but also weak staining of the intervertebral disc and vertebral body. LCM of notochord slices and subsequent total RNA extraction resulted in a good yield of total RNA. qPCR analysis of two housekeeping genes confirmed the quality of the RNA. LCM is a fast and precise method to isolate notochord and the quality and yield RNA extracted from this tissue is sufficient for qPCR analysis. Therefore early embryo notochord isolated by LCM is suggested to be the gold standard for future research in chordoma development, classification and diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer.

    Science.gov (United States)

    Domazet, Barbara; Maclennan, Gregory T; Lopez-Beltran, Antonio; Montironi, Rodolfo; Cheng, Liang

    2008-03-15

    The advent of new technologies has enabled deeper insight into processes at subcellular levels, which will ultimately improve diagnostic procedures and patient outcome. Thanks to cell enrichment methods, it is now possible to study cells in their native environment. This has greatly contributed to a rapid growth in several areas, such as gene expression analysis, proteomics, and metabolonomics. Laser capture microdissection (LCM) as a method of procuring subpopulations of cells under direct visual inspection is playing an important role in these areas. This review provides an overview of existing LCM technology and its downstream applications in genomics, proteomics, diagnostics and therapy.

  10. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    Directory of Open Access Journals (Sweden)

    Li Ming-Chung

    2006-04-01

    Full Text Available Abstract Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E, Nissl Stain (NS, and for immunofluorescence (IF as well as with the plasma cell-revealing methyl green pyronin (MGP stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. Results The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. Conclusion RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.

  11. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    Science.gov (United States)

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation AnalysisPhouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.<...

  12. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    Science.gov (United States)

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Isolation of Pure Populations of Neurons by Laser Capture Microdissection: Methods and Application in Neuroscience.

    Science.gov (United States)

    Morris, Renée; Mehta, Prachi

    2018-01-01

    In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.

  14. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  15. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    Science.gov (United States)

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  16. Efficacy of laser capture microdissection plus RT-PCR technique in analyzing gene expression levels in human gastric cancer and colon cancer

    International Nuclear Information System (INIS)

    Makino, Hiroshi; Uetake, Hiroyuki; Danenberg, Kathleen; Danenberg, Peter V; Sugihara, Kenichi

    2008-01-01

    Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase gene expressions are reported to be valid predictive markers for 5-fluorouracil sensitivity to gastrointestinal cancer. For more reliable predictability, their expressions in cancer cells and stromal cells in the cancerous tissue (cancerous stroma) have been separately investigated using laser capture microdissection. Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase mRNA in cancer cells and cancerous stroma from samples of 47 gastric and 43 colon cancers were separately quantified by reverse transcription polymerase chain reaction after laser capture microdissection. In both gastric and colon cancers, thymidylate synthase and orotate phosphoribosyltransferase mRNA expressions were higher (p < 0.0001, p <0.0001 respectively in gastric cancer and P = 0.0002, p < 0.0001 respectively in colon cancer) and dihydropyrimidine dehydrogenase mRNA expressions were lower in cancer cells than in cancerous stroma (P = 0.0136 in gastric cancer and p < 0.0001 in colon cancer). In contrast, thymidine phosphorylase mRNA was higher in cancer cells than in cancerous stroma in gastric cancer (p < 0.0001) and lower in cancer cells than in cancerous stroma in colon cancer (P = 0.0055). By using this method, we could estimate gene expressions separately in cancer cells and stromal cells from colon and gastric cancers, in spite of the amount of stromal tissue. Our method is thought to be useful for accurately evaluating intratumoral gene expressions

  17. Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis.

    Science.gov (United States)

    Sethi, Sanjeev; Vrana, Julie A; Theis, Jason D; Leung, Nelson; Sethi, Anjali; Nasr, Samih H; Fervenza, Fernando C; Cornell, Lynn D; Fidler, Mary E; Dogan, Ahmet

    2012-07-01

    Accurate diagnosis and typing of renal amyloidosis is critical for prognosis, genetic counseling, and treatment. Laser microdissection and mass spectrometry are emerging techniques for the analysis and diagnosis of many renal diseases. Here we present the results of laser microdissection and mass spectrometry performed on 127 cases of renal amyloidosis during 2008-2010. We found the following proteins in the amyloid deposits: immunoglobulin light and heavy chains, secondary reactive serum amyloid A protein, leukocyte cell-derived chemotaxin-2, fibrinogen-α chain, transthyretin, apolipoprotein A-I and A-IV, gelsolin, and β-2 microglobulin. Thus, laser microdissection of affected areas within the kidney followed by mass spectrometry provides a direct test of the composition of the deposit and forms a useful ancillary technique for the accurate diagnosis and typing of renal amyloidosis in a single procedure.

  18. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury.

    Science.gov (United States)

    Boone, Deborah R; Sell, Stacy L; Hellmich, Helen Lee

    2013-04-10

    Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function. Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al., has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types. We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving

  19. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  20. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  1. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes.

    Directory of Open Access Journals (Sweden)

    Eulalie Buffin

    Full Text Available BACKGROUND: In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP. Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. CONCLUSIONS/SIGNIFICANCE: These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.

  2. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Mitsui, Hiroshi; Zibert, John R

    2015-01-01

    Psoriasis is a systemic disease with cutaneous manifestations. MicroRNAs (miRNAs) are small non-coding RNA molecules that are differentially expressed in psoriatic skin; however, only few cell- and region-specific miRNAs have been identified in psoriatic lesions. We used laser capture...... microdissection (LCM) and next-generation sequencing (NGS) to study the specific miRNA expression profiles in the epidermis (Epi) and dermal inflammatory infiltrates (RD) of psoriatic skin (N = 6). We identified 24 deregulated miRNAs in the Epi and 37 deregulated miRNAs in the RD of psoriatic plaque compared...... with normal psoriatic skin (FCH > 2, FDR

  3. DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR.

    Directory of Open Access Journals (Sweden)

    Cai-xia Li

    Full Text Available Genetic profiling of sperm from complex biological mixtures such as sexual assault casework samples requires isolation of a pure sperm population and the ability to analyze low abundant samples. Current standard procedure for sperm isolation includes preferential lysis of epithelial contaminants followed by collection of intact sperm by centrifugation. While effective for samples where sperm are abundant, this method is less effective when samples contain few spermatozoa. Laser capture microdissection (LCM is a proven method for the isolation of cells biological mixtures, even when found in low abundance. Here, we demonstrate the efficacy of LCM coupled with on-chip low volume PCR (LV-PCR for the isolation and genotyping of low abundance sperm samples. Our results indicate that this method can obtain complete profiles (13-16 loci from as few as 15 sperm cells with 80% reproducibility, whereas at least 40 sperm cells are required to profile 13-16 loci by standard 'in-tube' PCR. Further, LCM and LV-PCR of a sexual assault casework sample generated a DNA genotype that was consistent with that of the suspect. This method was unable, however, to analyze a casework sample from a gang rape case in which two or more sperm contributors were in a mixed population. The results indicate that LCM and LV-PCR is sensitive and effective for genotyping sperm from sperm/epithelial cell mixtures when epithelial lysis may be insufficient due to low abundance of sperm; LCM and LV-PCR, however, failed in a casework sample when spermatozoa from multiple donors was present, indicating that further study is necessitated.

  4. The Use of Laser Microdissection in Forensic Sexual Assault Casework: Pros and Cons Compared to Standard Methods.

    Science.gov (United States)

    Costa, Sergio; Correia-de-Sá, Paulo; Porto, Maria J; Cainé, Laura

    2017-07-01

    Sexual assault samples are among the most frequently analyzed in a forensic laboratory. These account for almost half of all samples processed routinely, and a large portion of these cases remain unsolved. These samples often pose problems to traditional analytic methods of identification because they consist most frequently of cell mixtures from at least two contributors: the victim (usually female) and the perpetrator (usually male). In this study, we propose the use of current preliminary testing for sperm detection in order to determine the chances of success when faced with samples which can be good candidates to undergo analysis with the laser microdissection technology. Also, we used laser microdissection technology to capture fluorescently stained cells of interest differentiated by gender. Collected materials were then used for DNA genotyping with commercially available amplification kits such as Minifiler, Identifiler Plus, NGM, and Y-Filer. Both the methodology and the quality of the results were evaluated to assess the pros and cons of laser microdissection compared with standard methods. Overall, the combination of fluorescent staining combined with the Minifiler amplification kit provided the best results for autosomal markers, whereas the Y-Filer kit returned the expected results regardless of the used method. © 2017 American Academy of Forensic Sciences.

  5. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  6. Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, L.; Fleischmannová, Jana; Chlastáková, Ivana; Janečková, Eva; Tucker, A. S.

    2010-01-01

    Roč. 55, č. 8 (2010), s. 570-575 ISSN 0003-9969 R&D Projects: GA AV ČR KJB500450802; GA AV ČR IAA600450904; GA ČR GA203/08/1680 Institutional research plan: CEZ:AV0Z50450515 Keywords : Laser capture microdissection * Flow cytometry * Primary enamel knot Subject RIV: EA - Cell Biology Impact factor: 1.463, year: 2010

  7. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Directory of Open Access Journals (Sweden)

    Bonnet Agnes

    2011-08-01

    Full Text Available Abstract Background Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult. The recently developed laser capture microdissection (LCM technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA. Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. Results We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15 and three granulosa cell-specific genes (KL, GATA4, AMH. A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte. Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. Conclusions

  8. Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection.

    Science.gov (United States)

    Teutsch, Christine; Kondo, Richard P; Dederko, Dorothy A; Chrast, Jacqueline; Chien, Kenneth R; Giles, Wayne R

    2007-03-01

    Regional differences in repolarizing K(+) current densities and expression levels of their molecular components are important for coordinating the pattern of electrical excitation and repolarization of the heart. The small size of hearts from mice may obscure these interventricular and/or transmural expression differences of K(+) channels. We have examined this possibility in adult mouse ventricle using a technology that provides very high spatial resolution of tissue collection. Conventional manual dissection and laser capture microdissection (LCM) were utilized to dissect tissue from distinct ventricular regions. RNA was isolated from epicardial, mid-myocardial and endocardial layers of both the right and left ventricles. Real-time RT-PCR was used to quantify the transcript expression in these different regions. LCM revealed significant interventricular and transmural gradients for both Kv4.2 and the alpha-subunit of KChIP2. The expression profile of a second K(+) channel transcript, Kir2.1, which is responsible for the inwardly rectifying K(+) current I(k1), showed no interventricular or transmural gradients and therefore served as a negative control. Our findings are in contrast to previous reports of a relatively uniform left ventricular transmural pattern of expression of Kv4.2, Kv4.3 and KChIP2 in adult mouse heart, which appear to be different than that in larger mammals. Specifically, our results demonstrate significant epi- to endocardial differences in the patterns of expression of both Kv4.2 and KChIP2.

  9. Laser Microdissection.

    Science.gov (United States)

    Frost, Andra R; Eltoum, Isam-Eldin; Siegal, Gene P; Emmert-Buck, Michael R; Tangrea, Michael A

    2015-10-01

    Laser microdissection (LM) offers a relatively rapid and precise method of isolating and removing specified cells from complex tissues for subsequent analysis of their RNA, DNA, protein or metabolite content, thereby allowing assessment of the role of different cell types in the normal physiological or disease processes being studied. In this unit, protocols for the preparation of mammalian frozen tissues, fixed tissues, and cytologic specimens for LM, including tissue freezing, tissue processing and paraffin embedding, histologic sectioning, cell processing, hematoxylin and eosin staining, immunohistochemistry, and image-guided cell targeting are presented. Also provided are recipes for generating lysis buffers for the recovery of nucleic acids and proteins. The Commentary section addresses the types of specimens that can be utilized for LM and approaches to staining of specimens for cell visualization. Emphasis is placed on the preparation of tissue or cytologic specimens as this is critical to effective LM. Copyright © 2015 John Wiley & Sons, Inc.

  10. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer

    Directory of Open Access Journals (Sweden)

    Vasmatzis George

    2007-03-01

    Full Text Available Abstract Background To discover prostate cancer biomarkers, we profiled gene expression in benign and malignant cells laser capture microdissected (LCM from prostate tissues and metastatic prostatic adenocarcinomas. Here we present methods developed, optimized, and validated to obtain high quality gene expression data. Results RNase inhibitor was included in solutions used to stain frozen tissue sections for LCM, which improved RNA quality significantly. Quantitative PCR assays, requiring minimal amounts of LCM RNA, were developed to determine RNA quality and concentration. SuperScript II™ reverse transcriptase was replaced with SuperScript III™, and SpeedVac concentration was eliminated to optimize linear amplification. The GeneChip® IVT labeling kit was used rather than the Enzo BioArray™ HighYield™ RNA transcript labeling kit since side-by-side comparisons indicated high-end signal saturation with the latter. We obtained 72 μg of labeled complementary RNA on average after linear amplification of about 2 ng of total RNA. Conclusion Unsupervised clustering placed 5/5 normal and 2/2 benign prostatic hyperplasia cases in one group, 5/7 Gleason pattern 3 cases in another group, and the remaining 2/7 pattern 3 cases in a third group with 8/8 Gleason pattern 5 cases and 3/3 metastatic prostatic adenocarcinomas. Differential expression of alpha-methylacyl coenzyme A racemase (AMACR and hepsin was confirmed using quantitative PCR.

  11. MicroRNA Expression in Laser Micro-dissected Breast Cancer Tissue Samples - a Pilot Study.

    Science.gov (United States)

    Seclaman, Edward; Narita, Diana; Anghel, Andrei; Cireap, Natalia; Ilina, Razvan; Sirbu, Ioan Ovidiu; Marian, Catalin

    2017-10-28

    Breast cancer continues to represent a significant public health burden despite outstanding research advances regarding the molecular mechanisms of cancer biology, biomarkers for diagnostics and prognostic and therapeutic management of this disease. The studies of micro RNAs in breast cancer have underlined their potential as biomarkers and therapeutic targets; however most of these studies are still done on largely heterogeneous whole breast tissue samples. In this pilot study we have investigated the expression of four micro RNAs (miR-21, 145, 155, 92) known to be involved in breast cancer, in homogenous cell populations collected by laser capture microdissection from breast tissue section slides. Micro RNA expression was assessed by real time PCR, and associations with clinical and pathological characteristics were also explored. Our results have confirmed previous associations of miR-21 expression with poor prognosis characteristics of breast cancers such as high stage, large and highly proliferative tumors. No statistically significant associations were found with the other micro RNAs investigated, possibly due to the small sample size of our study. Our results also suggest that miR-484 could be a suitable endogenous control for data normalization in breast tissues, these results needing further confirmation by future studies. In summary, our pilot study showed the feasibility of detecting micro RNAs expression in homogenous laser captured microdissected invasive breast cancer samples, and confirmed some of the previously reported associations with poor prognostic characteristics of breast tumors.

  12. Unambiguous detection of multiple TP53 gene mutations in AAN-associated urothelial cancer in Belgium using laser capture microdissection.

    Directory of Open Access Journals (Sweden)

    Selda Aydin

    Full Text Available In the Balkan and Taiwan, the relationship between exposure to aristolochic acid and risk of urothelial neoplasms was inferred from the A>T genetic hallmark in TP53 gene from malignant cells. This study aimed to characterize the TP53 mutational spectrum in urothelial cancers consecutive to Aristolochic Acid Nephropathy in Belgium. Serial frozen tumor sections from female patients (n=5 exposed to aristolochic acid during weight-loss regimen were alternatively used either for p53 immunostaining or laser microdissection. Tissue areas with at least 60% p53-positive nuclei were selected for microdissecting sections according to p53-positive matching areas. All areas appeared to be carcinoma in situ. After DNA extraction, mutations in the TP53 hot spot region (exons 5-8 were identified using nested-PCR and sequencing. False-negative controls consisted in microdissecting fresh-frozen tumor tissues both from a patient with a Li-Fraumeni syndrome who carried a p53 constitutional mutation, and from KRas mutated adenocarcinomas. To rule out false-positive results potentially generated by microdissection and nested-PCR, a phenacetin-associated urothelial carcinoma and normal fresh ureteral tissues (n=4 were processed with high laser power. No unexpected results being identified, molecular analysis was pursued on malignant tissues, showing at least one mutation in all (six different mutations in two patients, with 13/16 exonic (nonsense, 2; missense, 11 and 3/16 intronic (one splice site mutations. They were distributed as transitions (n=7 or transversions (n=9, with an equal prevalence of A>T and G>T (3/16 each. While current results are in line with A>T prevalence previously reported in Balkan and Taiwan studies, they also demonstrate that multiple mutations in the TP53 hot spot region and a high frequency of G>T transversion appear as a complementary signature reflecting the toxicity of a cumulative dose of aristolochic acid ingested over a short period

  13. Analysis of transcription factor mRNAs in identified oxytocin and vasopressin magnocellular neurons isolated by laser capture microdissection.

    Directory of Open Access Journals (Sweden)

    Madison Humerick

    Full Text Available The oxytocin (Oxt and vasopressin (Avp magnocellular neurons (MCNs in the hypothalamus are the only neuronal phenotypes that are present in the supraoptic nucleus (SON, and are characterized by their robust and selective expression of either the Oxt or Avp genes. In this paper, we take advantage of the differential expression of these neuropeptide genes to identify and isolate these two individual phenotypes from the rat SON by laser capture microdissection (LCM, and to analyze the differential expression of several of their transcription factor mRNAs by qRT-PCR. We identify these neuronal phenotypes by stereotaxically injecting recombinant Adeno-Associated Viral (rAAV vectors which contain cell-type specific Oxt or Avp promoters that drive expression of EGFP selectively in either the Oxt or Avp MCNs into the SON. The fluorescent MCNs are then dissected by LCM using a novel Cap Road Map protocol described in this paper, and the purified MCNs are extracted for their RNAs. qRT-PCR of these RNAs show that some transcription factors (RORA and c-jun are differentially expressed in the Oxt and Avp MCNs.

  14. Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection

    International Nuclear Information System (INIS)

    Gregg, Jennifer L; Brown, Kathleen E; Mintz, Eric M; Piontkivska, Helen; Fraizer, Gail C

    2010-01-01

    The prostate gland represents a multifaceted system in which prostate epithelia and stroma have distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor and normal samples by performing global expression analysis using a mixture of cell populations. This report presents the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types using laser capture microdissection (LCM). LCM was used to isolate distinct cell-type populations and identify their gene expression differences using oligonucleotide microarrays. Ten differentially expressed genes were then analyzed in paired tumor and non-neoplastic prostate tissues by quantitative real-time PCR. Expression patterns of the transcription factors, WT1 and EGR1, were further compared in established prostate cell lines. WT1 protein expression was also examined in prostate tissue microarrays using immunohistochemistry. The two-step method of laser capture and microarray analysis identified nearly 500 genes whose expression levels were significantly different in prostate epithelial versus stromal tissues. Several genes expressed in epithelial cells (WT1, GATA2, and FGFR-3) were more highly expressed in neoplastic than in non-neoplastic tissues; conversely several genes expressed in stromal cells (CCL5, CXCL13, IGF-1, FGF-2, and IGFBP3) were more highly expressed in non-neoplastic than in neoplastic tissues. Notably, EGR1 was also differentially expressed between epithelial and stromal tissues. Expression of WT1 and EGR1 in cell lines was consistent with these patterns of differential expression. Importantly, WT1 protein expression was demonstrated in tumor tissues and was absent in normal and benign tissues. The prostate represents a complex mix of cell types and there is a need to analyze

  15. A minute focus of extranodal marginal zone B-cell lymphoma arising in Hashimoto thyroiditis diagnosed with PCR after laser capture microdissection: a case report

    Directory of Open Access Journals (Sweden)

    D'Antonio Antonio

    2009-09-01

    Full Text Available Abstract Background Primary thyroid gland lymphomas are uncommon tumours that occur in the setting of lymphocytic thyroiditis or Hashimoto's disease in almost all cases. In this condition a distinction between an inflammatory lymphoid infiltrate and a low grade lymphoma may be extremely difficult and precise criteria are necessary for a correct diagnosis. Patient and methods We report a case of a minute focus of primary extranodal marginal zone B-cell lymphoma (EMZBCL, incidentally discovered in a 63-year-old man with Hashimoto thyroiditis (HT and diagnosed by means of polymerase chain reaction (PCR after laser capture microdissection. The histological examination of surgical specimen confirmed the diagnosis of HT and showed a minute focus of dense lymphoid infiltrate (less than 4 mm in diameter, composed by centrocyte-like cells forming MALT balls. Immunoistochemistry was not useful. A microscopic focus of EMZBCL was suspected on the basis of morphological features. PCR assays revealed the rearrangement of the heavy chain of immunoglobulins only in the microdissected suspicious area, confirming the diagnosis of EMZBCL. Conclusion Our finding suggests that in cases of autoimmune thyroiditis a careful examination of the thyroid specimen is warranted, in order to disclose areas or small foci of lymphomatous transformation. Furthermore, in difficult cases with doubtful immunohistological findings, ancillary techniques, such as molecular studies, are necessary for a conclusive diagnosis.

  16. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  17. Establishment of a protocol for the gene expression analysis of laser microdissected rat kidney samples with affymetrix genechips

    International Nuclear Information System (INIS)

    Stemmer, Kerstin; Ellinger-Ziegelbauer, Heidrun; Lotz, Kerstin; Ahr, Hans-J.; Dietrich, Daniel R.

    2006-01-01

    Laser microdissection in conjunction with microarray technology allows selective isolation and analysis of specific cell populations, e.g., preneoplastic renal lesions. To date, only limited information is available on sample preparation and preservation techniques that result in both optimal histomorphological preservation of sections and high-quality RNA for microarray analysis. Furthermore, amplification of minute amounts of RNA from microdissected renal samples allowing analysis with genechips has only scantily been addressed to date. The objective of this study was therefore to establish a reliable and reproducible protocol for laser microdissection in conjunction with microarray technology using kidney tissue from Eker rats p.o. treated for 7 days and 6 months with 10 and 1 mg Aristolochic acid/kg bw, respectively. Kidney tissues were preserved in RNAlater or snap frozen. Cryosections were cut and stained with either H and E or cresyl violet for subsequent morphological and RNA quality assessment and laser microdissection. RNA quality was comparable in snap frozen and RNAlater-preserved samples, however, the histomorphological preservation of renal sections was much better following cryopreservation. Moreover, the different staining techniques in combination with sample processing time at room temperature can have an influence on RNA quality. Different RNA amplification protocols were shown to have an impact on gene expression profiles as demonstrated with Affymetrix Rat Genome 230 2 .0 arrays. Considering all the parameters analyzed in this study, a protocol for RNA isolation from laser microdissected samples with subsequent Affymetrix chip hybridization was established that was also successfully applied to preneoplastic lesions laser microdissected from Aristolochic acid-treated rats

  18. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    Science.gov (United States)

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  19. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  20. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  1. Laser capture microdissection and cDNA array analysis of endometrium identify CCL16 and CCL21 as epithelial-derived inflammatory mediators associated with endometriosis

    Directory of Open Access Journals (Sweden)

    Jones Rebecca L

    2007-05-01

    Full Text Available Abstract Background Understanding the pathophysiology of chemokine secretion in endometriosis may offer a novel area of therapeutic intervention. This study aimed to identify chemokines differentially expressed in epithelial glands in eutopic endometrium from normal women and those with endometriosis, and to establish the expression profiles of key chemokines in endometriotic lesions. Methods Laser capture microdissection isolated epithelial glands from endometrial eutopic tissue from women with and without endometriosis in the mid-secretory phase of their menstrual cycles. Gene profiling of the excised glands used a human chemokine and receptor cDNA array. Selected chemokines were further examined using real-time PCR and immunohistochemistry. Results 22 chemokine/receptor genes were upregulated and two downregulated in pooled endometrial epithelium of women with endometriosis compared with controls. CCL16 and CCL21 mRNA was confirmed as elevated in some women with endometriosis compared to controls on individual samples. Immunoreactive CCL16 and CCL21 were predominantly confined to glands in eutopic and ectopic endometrium: leukocytes also stained. Immunoreactive CCL16 was overall higher in glands in ectopic vs. eutopic endometrium from the same woman (P Conclusion This study provides novel candidate molecules and suggests a potential local role for CCL16 and CCL21 as mediators contributing to the inflammatory events associated with endometriosis.

  2. Gene Expression Analysis of Immunostained Endothelial Cells Isolated from Formaldehyde-fixated Paraffin Embedded Tumors Using Laser Capture Microdissection – a Technical Report

    Science.gov (United States)

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E.

    2009-01-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by RT-PCR and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4°C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. GAPDH and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM. PMID:19425073

  3. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  4. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Leethanakul, Chidchanop; Patel, Vyomesh

    2003-01-01

    keratinocytes from incisional mouse skin wounds and adjacent normal skin keratinocytes. Changes in gene expression were determined by comparative cDNA array analyses, and the approach was validated by in situ hybridization. The analyses identified 48 candidate genes not previously associated with wound...... reepithelialization. Furthermore, the analyses revealed that the phenotypic resemblance of wound keratinocytes to squamous cell carcinoma is mimicked at the level of gene expression, but notable differences between the two tissue-remodeling processes were also observed. The combination of laser capture...

  5. Laser Capture Microdissection Assisted Identification of Epithelial MicroRNA Expression Signatures for Prognosis of Stage I NSCLC

    Science.gov (United States)

    2011-10-01

    SiC  relativ stains (B) are p tandard error 0 ng of RN on of a muc , a finding s measured crease in t dissection l, given tha of total RN ummary o...the yield and quality of microRNAs from LMD microdissectates of FFPE tissues for downstream analysis. Materials and Methods Ethics statement

  6. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report.

    Science.gov (United States)

    Kimura, Yurika; Kubo, Sachiho; Koda, Hiroko; Shigemoto, Kazuhiro; Sawabe, Motoji; Kitamura, Ken

    2013-08-01

    Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection. Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heat-treated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone. COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases. We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RT-PCR should advance future RNA study of human inner ear diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Antibody-validated proteins in inflamed islets of fulminant type 1 diabetes profiled by laser-capture microdissection followed by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yoriko Nishida

    Full Text Available There are no reports of proteomic analyses of inflamed islets in type 1 diabetes.Proteins expressed in the islets of enterovirus-associated fulminant type 1 diabetes (FT1DM with extensive insulitis were identified by laser-capture microdissection mass spectrometry using formalin-fixed paraffin-embedded pancreatic tissues.Thirty-eight proteins were identified solely in FT1DM islets, most of which have not been previously linked to type 1 diabetes. Five protein-protein interacting clusters were identified, and the cellular localization of selected proteins was validated immunohistochemically. Migratory activity-related proteins, including plastin-2 (LCP1, moesin (MSN, lamin-B1 (LMNB1, Ras GTPase-activating-like protein (IQGAP1 and others, were identified in CD8+ T cells and CD68+ macrophages infiltrated to inflamed FT1DM islets. Proteins involved in successive signaling in innate/adaptive immunity were identified, including SAM domain and HD domain-containing protein 1 (SAMHD1, Ras GTPase-activating-like protein (IQGAP1, proteasome activator complex subunit 1 (PSME1, HLA class I histocompatibility antigen (HLA-C, and signal transducer and activator of transcription 1-alpha/beta (STAT1. Angiogenic (thymidine phosphorylase (TYMP and anti-angiogenic (tryptophan-tRNA ligase (WARS factors were identified in migrating CD8+ T cells and CD68+ macrophages. Proteins related to virus replication and cell proliferation, including probable ATP-dependent RNA helicase DEAD box helicase 5 (DDX5 and heterogeneous nuclear ribonucleoprotein H (HNRNPH1, were identified. The anti-apoptotic protein T-complex protein 1 subunit epsilon (CCT5, the anti-oxidative enzyme 6-phosphogluconate dehydrogenase (PDG, and the anti-viral and anti-apoptotic proteins serpin B6 (SERPINB6 and heat shock 70 kDa protein1-like (HSPA1L, were identified in FT1DM-affected islet cells.The identified FT1DM-characterizing proteins include those involved in aggressive beta cell destruction through

  8. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  9. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  10. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    Science.gov (United States)

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  11. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  12. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker.

    Directory of Open Access Journals (Sweden)

    Monica Molano

    Full Text Available Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC are associated with human papillomavirus (HPV. Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS and laser capture microdissected (LCM tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.

  13. Laser microdissection and capture of pure cardiomyocytes and fibroblasts from infarcted heart regions: perceived hyperoxia induces p21 in peri-infarct myocytes.

    Science.gov (United States)

    Kuhn, Donald E; Roy, Sashwati; Radtke, Jared; Khanna, Savita; Sen, Chandan K

    2007-03-01

    Myocardial infarction caused by ischemia-reperfusion in the coronary vasculature is a focal event characterized by an infarct-core, bordering peri-infarct zone and remote noninfarct zone. Recently, we have reported the first technique, based on laser microdissection pressure catapulting (LMPC), enabling the dissection of infarction-induced biological responses in multicellular regions of the heart. Molecular mechanisms in play at the peri-infarct zone are central to myocardial healing. At the infarct site, myocytes are more sensitive to insult than robust fibroblasts. Understanding of cell-specific responses in the said zones is therefore critical. In this work, we describe the first technique to collect the myocardial tissue with a single-cell resolution. The infarcted myocardium was identified by using a truncated hematoxylin-eosin stain. Cell elements from the infarct, peri-infarct, and noninfarct zones were collected in a chaotropic RNA lysis solution with micron-level surgical precision. Isolated RNA was analyzed for quality by employing microfluidics technology and reverse transcribed to generate cDNA. Purity of the collected specimen was established by real-time PCR analyses of cell-specific genes. Previously, we have reported that the oxygen-sensitive induction of p21/Cip1/Waf1/Sdi1 in cardiac fibroblasts in the peri-infarct zone plays a vital role in myocardial remodeling. Using the novel LMPC technique developed herein, we confirmed that finding and report for the first time that the induction of p21 in the peri-infarct zone is not limited to fibroblasts but is also evident in myocytes. This work presents the first account of an analytical technique that applies the LMPC technology to study myocardial remodeling with a cell-type specific resolution.

  14. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    Science.gov (United States)

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  15. Identification of IL-28B Genotype Modification in Hepatocytes after Living Donor Liver Transplantation by Laser Capture Microdissection and Pyrosequencing Analysis

    Directory of Open Access Journals (Sweden)

    King-Wah Chiu

    2018-01-01

    Full Text Available The aim of this study is to elucidate the biogenetic modification of donor and recipient interleukin-28B (IL-28B genotypes in liver graft biopsies after living donor liver transplantation (LDLT for chronic hepatitis C virus- (HCV- related, end-stage liver disease. Fifty liver graft biopsies were collected from recipients during LDLT treatment for HCV-related, end-stage liver disease. DNA was extracted from all 50 liver tissues, and the IL-28B single-nucleotide polymorphisms (SNPs rs8099917 and rs12979860 were studied for allelic discrimination by real-time PCR analysis. Blood samples were obtained from donors and recipients on postoperative day 0 (POD0, POD7, and POD30. We randomly selected five liver biopsies and isolated the hepatocytes by laser capture microdissection (LCM to evaluate genotype modifications resulting from LDLT. After LDLT, the IL-28B SNP rs8099917 was identified not only in the liver graft biopsies and donors’ sera (TT = 41 : 43; GT = 9 : 5; GG = 0 : 2, but also in liver graft biopsies and recipients’ sera on POD0 (TT = 41 : 44; GT = 9 : 4; GG = 0 : 2, POD7 (TT = 41 : 30; GT = 9 : 18; GG = 0 : 2, and POD30 (TT = 41 : 29; GT = 9 : 19; GG = 0 : 2. A significant difference was observed between the rs8099917 allele frequencies of liver graft biopsies and recipients’ sera on POD30 (p=0.039. In addition, a significant difference was also noted between the rs12979860 allele frequencies of liver graft biopsies and donors’ sera (CT = 49 : 39; TT = 1 : 10 (p=0.012 and of liver graft biopsies and recipients’ sera on POD0 (CT = 49 : 39; TT = 1 : 11 (p=0.002, POD7 (CT = 49 : 42; TT = 1 : 8 (p=0.016, and POD30 (CT = 49 : 41; TT = 1 : 9 (p=0.008. This phenomenon was confirmed by pyrosequencing of hepatocytes isolated by LCM. Following LDLT, the TT-to-GT IL-28B genotype modification predominated in rs8099917, and the CC-to-CT modification predominated

  16. Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis

    Directory of Open Access Journals (Sweden)

    Ingram Jane A

    2010-01-01

    Full Text Available Abstract Background Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. Methods We employed a novel laser capture microdissection (LCM design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. Results Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14, RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. Conclusions Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes

  17. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains.

    Science.gov (United States)

    Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit

    2011-01-01

    Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.

  18. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection.

    Science.gov (United States)

    Teixeira, Rita Teresa; Fortes, Ana Margarida; Bai, Hua; Pinheiro, Carla; Pereira, Helena

    2018-02-01

    The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.

  19. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    Science.gov (United States)

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The occasional role of low-risk human papillomaviruses 6, 11, 42, 44, and 70 in anogenital carcinoma defined by laser capture microdissection/PCR methodology: results from a global study.

    Science.gov (United States)

    Guimerà, Núria; Lloveras, Belén; Lindeman, Jan; Alemany, Laia; van de Sandt, Miekel; Alejo, Maria; Hernandez-Suarez, Gustavo; Bravo, Ignacio G; Molijn, Anco; Jenkins, David; Cubilla, Antonio; Muñoz, Nubia; de Sanjose, Silvia; Bosch, Francesc Xavier; Quint, Wim

    2013-09-01

    Low-risk human papillomaviruses (LR-HPVs) have been associated occasionally with clinically and pathologically unusual anogenital malignancies. The relation between clinicopathologic features and any pathogenetic role of LR-HPV remains unclear. From a global study of 13,328 anogenital carcinomas, we identified 57 cases in which whole-tissue polymerase chain reaction using SPF10-LiPA25 showed single LR-HPV infection. In 43/46 (93.5%) available carcinomas, multiple polymerase chain reaction assays confirmed single detection of HPV6, 11, 42, 44, or 70 DNA. In 75% (n=32) of these, LR-HPV DNA was confirmed in tumor cells by laser capture microdissection. In 2 cases, including 1 adenocarcinoma, viral DNA was only found outside the tumor. All anogenital tumors with confirmed HPV6/11 showed a distinctive range of papillary, warty or warty-basaloid, squamous, or transitional histology with patchy or negative p16 expression. HPV6-associated cervical tumors occurred at a low median age. HPV42/70 was associated with typical squamous cell carcinoma showing diffuse p16 staining like high-risk HPV-related malignancies. HPV44 was found in malignant cells in 1 case. Viral taxonomy and theoretical analysis show that HPV6/11 belong to a different genus from HPV42/70 with E6/E7 gene products that would not bind pRb or p53, whereas HPV42/70 could bind pRb. Our data support the causal involvement of LR-HPVs in the carcinogenesis of <2% of anogenital malignancies of 2 distinct clinicopathologic patterns related to the genetic structure of the HPV types 6/11 and 70/42. HPV42/70 was associated with typical squamous carcinomas. Importantly all carcinomas associated with HPV6/11 globally showed verruco-papillary, well-differentiated, squamous, or transitional histology without p16 expression.

  1. Combined fluorescent-chromogenic in situ hybridization for identification and laser microdissection of interphase chromosomes.

    Directory of Open Access Journals (Sweden)

    Nerea Paz

    Full Text Available Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis.

  2. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells.

    Science.gov (United States)

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer; Coleman, Paul D

    2016-06-01

    We describe a novel method for assessing the "open" or "closed" state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with qPCR to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than one gene and multiple sites within one gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue we also recognize its applicability to other tissue types.

  3. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells

    Directory of Open Access Journals (Sweden)

    Elaine Delvaux

    2016-06-01

    Full Text Available We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types.

  4. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells.

    Science.gov (United States)

    Berruti, Andrea; Borriello, Roberto; Lumini, Erica; Scariot, Valentina; Bianciotto, Valeria; Balestrini, Raffaella

    2013-01-01

    Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community.

  5. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells

    Directory of Open Access Journals (Sweden)

    Andrea eBerruti

    2013-05-01

    Full Text Available Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intracellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells through a laser microdissection (LMD approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the arbusculated cells. Unexpectedly, one taxon was found in the arbusculated cells, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community.

  6. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  7. Modified microdissection electrocautery needle

    OpenAIRE

    Singh, Virendra; Kumar, Pramod

    2014-01-01

    Electrocautery is routinely used in surgical procedures. The commercially available microdissection electrocautery needles are costly. To overcome this disadvantage, we have modified monopolar electrocautery tip to function as well as commercially available systems.

  8. Microarray Cluster Analysis of Irradiated Growth Plate Zones Following Laser Microdissection

    International Nuclear Information System (INIS)

    Damron, Timothy A.; Zhang Mingliang; Pritchard, Meredith R.; Middleton, Frank A.; Horton, Jason A.; Margulies, Bryan M.; Strauss, Judith A.; Farnum, Cornelia E.; Spadaro, Joseph A.

    2009-01-01

    Purpose: Genes and pathways involved in early growth plate chondrocyte recovery after fractionated irradiation were sought as potential targets for selective radiorecovery modulation. Materials and Methods: Three groups of six 5-week male Sprague-Dawley rats underwent fractionated irradiation to the right tibiae over 5 days, totaling 17.5 Gy, and then were killed at 7, 11, and 16 days after the first radiotherapy fraction. The growth plates were collected from the proximal tibiae bilaterally and subsequently underwent laser microdissection to separate reserve, perichondral, proliferative, and hypertrophic zones. Differential gene expression was analyzed between irradiated right and nonirradiated left tibia using RAE230 2.0 GeneChip microarray, compared between zones and time points and subjected to functional pathway cluster analysis with real-time polymerase chain reaction to confirm selected results. Results: Each zone had a number of pathways showing enrichment after the pattern of hypothesized importance to growth plate recovery, yet few met the strictest criteria. The proliferative and hypertrophic zones showed both the greatest number of genes with a 10-fold right/left change at 7 days after initiation of irradiation and enrichment of the most functional pathways involved in bone, cartilage, matrix, or skeletal development. Six genes confirmed by real-time polymerase chain reaction to have early upregulation included insulin-like growth factor 2, procollagen type I alpha 2, matrix metallopeptidase 9, parathyroid hormone receptor 1, fibromodulin, and aggrecan 1. Conclusions: Nine overlapping pathways in the proliferative and hypertrophic zones (skeletal development, ossification, bone remodeling, cartilage development, extracellular matrix structural constituent, proteinaceous extracellular matrix, collagen, extracellular matrix, and extracellular matrix part) may play key roles in early growth plate radiorecovery.

  9. Tissue-based metabolite profiling and qualitative comparison of two species of Achyranthes roots by use of UHPLC-QTOF MS and laser micro-dissection

    Institute of Scientific and Technical Information of China (English)

    Yogini Jaiswal; Zhitao Liang; Alan Ho; Hubiao Chen; Leonard Williams; Zhongzhen Zhao

    2018-01-01

    Achyranthes bidentata and Achyranthes aspera are saponin and steroid rich medicinal plants, used extensively for therapeutic treatments in Traditional Chinese Medicine (TCM) and Ayurveda. A. bidentata is reported to be one of the rare and extensively exploited medicinal plant species that face the issue of being endangered. Finding qualitative substitute with identical phyto-constituents contributing to similar composition and pharmacological benefits wil help in reducing the burden of exploitation of the natural habitats of such plants. In the present study, a comparative metabolite analysis of the whole drug and specific tissues isolated by laser micro-dissection (LMD) was carried out for both the selected species, by use of ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The results of the study indicate that the cortex and the medullary ray tissues are rich in their content of steroidal and saponin con-stituents such as (25S)-inokosterone-20,22-acetonide, ginsenoside Ro, bidentatoside II and achyranthoside B. Metabolite profiling of the whole tissues of both the species indicates presence of identical constituents. Thus, it is inferred that A. bidentata and A. aspera can be used as qualitative substitutes for each other.

  10. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo.

    Directory of Open Access Journals (Sweden)

    Jeremy T T Kennard

    Full Text Available The persistence and input specificity of long-term potentiation (LTP make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h.

  11. Microdissecção e captura a laser na investigação do gene TP53 em tecidos incluídos em parafina Laser-capture microdissection for TP53 gene analysis in paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Shadia Muhammad Ihlaseh

    2007-02-01

    Full Text Available INTRODUÇÃO: Microdissecção e captura a laser (MCL é uma técnica de desenvolvimento recente que permite a coleta de células individuais ou pequeno conjunto de células para análise molecular. Atualmente, no Brasil, há raros microscópios para MCL, de modo que a divulgação dos procedimentos inerentes a essa técnica é oportuna para destacar seu amplo potencial para diagnóstico e investigação. OBJETIVO: Este trabalho descreve a padronização dos procedimentos de MCL e de extração de DNA de material fixado em formalina e incluído em parafina. MATERIAL E MÉTODOS: Foram estudados o éxon 8 do gene TP53 e o gene da ciclofilina em amostras de tecido normal e de neoplasias de fígado e rim provenientes de modelo de carcinogênese química induzida em rato. A extração do DNA foi comprovada por reação em cadeia da polimerase (nested-PCR. RESULTADOS: Foram padronizados os procedimentos de preparo dos cortes histológicos, de microdissecção e captura a laser e de obtenção de seqüências gênicas pela reação de nested-PCR para tecidos incluídos em parafina. Obtivemos amplificação de 48,3% das amostras para o éxon 8 do gene TP53 e 51,7% para o gene da ciclofilina. Considerando pelo menos um dos dois segmentos gênicos, foram amplificadas 79,3% das amostras. DISCUSSÃO E CONCLUSÃO: A extração de DNA de tecidos fixados em formalina e incluídos em parafina e a técnica de nested-PCR foram adequadamente padronizadas para produtos gênicos de interesse, obtidos de material coletado por MCL. Esses procedimentos podem ser úteis para a obtenção de seqüências de DNA de arquivos para análise molecular.BACKGORUND: Laser-capture micro-dissection (LCM is a recently developed procedure that provides single cells or specific cell groups for molecular analysis. Currently, there are few LCM systems in Brazil, in such a way that it is necessary to disseminate the technical procedures inherent to the methodology, and also to

  12. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    Science.gov (United States)

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia.

    Science.gov (United States)

    García-Berrocoso, Teresa; Llombart, Víctor; Colàs-Campàs, Laura; Hainard, Alexandre; Licker, Virginie; Penalba, Anna; Ramiro, Laura; Simats, Alba; Bustamante, Alejandro; Martínez-Saez, Elena; Canals, Francesc; Sanchez, Jean-Charles; Montaner, Joan

    2018-01-01

    Cerebral ischemia entails rapid tissue damage in the affected brain area causing devastating neurological dysfunction. How each component of the neurovascular unit contributes or responds to the ischemic insult in the context of the human brain has not been solved yet. Thus, the analysis of the proteome is a straightforward approach to unraveling these cell proteotypes. In this study, post-mortem brain slices from ischemic stroke patients were obtained corresponding to infarcted (IC) and contralateral (CL) areas. By means of laser microdissection, neurons and blood brain barrier structures (BBB) were isolated and analyzed using label-free quantification. MS data are available via ProteomeXchange with identifier PXD003519. Ninety proteins were identified only in neurons, 260 proteins only in the BBB and 261 proteins in both cell types. Bioinformatics analyses revealed that repair processes, mainly related to synaptic plasticity, are outlined in microdissected neurons, with nonexclusive important functions found in the BBB. A total of 30 proteins showing p 2 between IC and CL areas were considered meaningful in this study: 13 in neurons, 14 in the BBB and 3 in both cell types. Twelve of these proteins were selected as candidates and analyzed by immunohistofluorescence in independent brains. The MS findings were completely verified for neuronal SAHH2 and SRSF1 whereas the presence in both cell types of GABT and EAA2 was only validated in neurons. In addition, SAHH2 showed its potential as a prognostic biomarker of neurological improvement when analyzed early in the plasma of ischemic stroke patients. Therefore, the quantitative proteomes of neurons and the BBB (or proteotypes) after human brain ischemia presented here contribute to increasing the knowledge regarding the molecular mechanisms of ischemic stroke pathology and highlight new proteins that might represent putative biomarkers of brain ischemia or therapeutic targets. © 2018 by The American Society for

  14. Laser capture microdissection of gonads from juvenile zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John; Morthorst, Jane Ebsen

    2009-01-01

    was adjusted and optimised to isolate juvenile zebrafish gonads. Results: The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows......Background: Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type...... of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex...

  15. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    Directory of Open Access Journals (Sweden)

    Tadeo Francisco R

    2009-10-01

    Full Text Available Abstract Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ and petiolar cortical (Pet cells based on laser capture microdissection (LCM and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is

  16. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  17. Improved method for extraction and detection of Helicobacter pylori DNA in formalin-fixed paraffin embedded gastric biopsies using laser micro-dissection.

    Science.gov (United States)

    Loayza, María Fernanda; Villavicencio, Fernando Xavier; Santander, Stephanie Carolina; Baldeón, Manuel; Ponce, Lourdes Karina; Salvador, Iván; Vivar Díaz, Nicolás

    2015-01-01

    To assess the molecular events exerted by Helicobacter pylori interacting directly with gastric epithelial cells, an improved procedure for microbial DNA isolation from stained hematoxilin-eosin gastric biopsies was developed based on laser micro-dissection (LM) [1]. Few articles have described the use of LM to select and detect H. pylori genome from formalin-fixed paraffin embedded gastric tissue [2]. To improve the yield and quality of DNA isolated from H. pylori contacting intestinal epithelial cells, the following conditions were established after modification of the QIAamp DNA Micro kit. •Use of at least 25 cut sections of 10-20 μm of diameter and 3 μm thick with more than 10 bacteria in each cut.•Lysis with 30 μL of tissue lysis buffer and 20 μL of proteinase K (PK) with the tube in an upside-down position.•The use of thin purification columns with 35 μL of elution buffer. The mean of DNA concentration obtained from 25 LM cut sections was 1.94± 0 .16 ng/μL, and it was efficiently amplified with qPCR in a Bio Rad iCycler instrument. The LM can improve the sample selection and DNA extraction for molecular analysis of H. pylori associated with human gastric epithelium.

  18. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo.

    Science.gov (United States)

    Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand

    2018-01-01

    Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

  19. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development

    Science.gov (United States)

    2012-01-01

    Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated. PMID:23016559

  20. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development

    Directory of Open Access Journals (Sweden)

    Teichert Ines

    2012-09-01

    Full Text Available Abstract Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated.

  1. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Michael P Stany

    Full Text Available Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  2. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    Science.gov (United States)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  3. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue

    NARCIS (Netherlands)

    N.Q. Liu (Ning Qing); R.B.H. Braakman (René); C. Stingl (Christoph); T.M. Luider (Theo); J.W.M. Martens (John); J.A. Foekens (John); A. Umar (Arzu)

    2012-01-01

    textabstractMass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while

  4. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...... tumors as being amplified. Interestingly, all these scored 2+ with the HercepTest, but were negative using FISH. We believe that real-time quantitative PCR analysis of HER-2 DNA amplification following microdissection represents a useful supplementary or perhaps even an alternative technique...

  5. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  6. High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Directory of Open Access Journals (Sweden)

    Gobert Geoffrey N

    2011-05-01

    Full Text Available Abstract Background Laser microdissection microscopy (LMM has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti. Results Total RNA was isolated from Ae. aegypti midguts that were either fresh-frozen or fixed with histological fixatives. Generally, fresh-frozen tissue sections are a common source of quality LMM-derived RNA; however, our aim was to develop an LMM protocol that could inactivate pathogenic viruses by fixation, while simultaneously preserving RNA from arbovirus-infected mosquitoes. Three groups (10 - 15 mosquitoes per group of female Ae. aegypti at 24 or 48-hours post-blood meal were intrathoracically injected with one of seven common fixatives (Bouin's, Carnoy's, Formoy's, Cal-Rite, 4% formalin, 10% neutral buffered formalin, or zinc formalin to evaluate their effect on RNA quality. Total RNA was isolated from the fixed abdomens using a Trizol® method. The results indicated that RNA from Carnoy's and Bouin's fixative samples was comparable to that of fresh frozen midguts (control in duplicate experiments. When Carnoy's and Bouin's were used to fix the midguts for the LMM procedure, however, Carnoy's-fixed RNA clearly showed much less degradation than Bouin's-fixed RNA. In addition, a sample of 5 randomly chosen transcripts were amplified more efficiently using the Carnoy's treated LMM RNA than Bouin's-fixed RNA in quantitative real-time PCR (qRT-PCR assays, suggesting there were more intact target mRNAs in the Carnoy's fixed RNA. The yields of total RNA ranged from 0.3 to 19.0 ng per ~3.0 × 106 μm2 in the LMM procedure. Conclusions Carnoy's fixative was found to be highly compatible with LMM, producing high quality RNA from Ae. aegypti midguts while

  7. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  8. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    Science.gov (United States)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  9. Laser accelerated protons captured and transported by a pulse power solenoid

    OpenAIRE

    Burris-Mog, T.; Harres, K.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.

    2011-01-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we prese...

  10. Laser-Assisted Sampling Techniques in Combination with ICP-MS: A Novel Approach for Particle Analysis at the IAEA Environmental Samples Laboratory

    International Nuclear Information System (INIS)

    Dzigal, N.; Chinea-Cano, E.

    2015-01-01

    Researchers have found many applications for lasers. About two decades ago, scientists started using lasers as sample introduction instruments for mass spectrometry measurements. Similarly, lasers as micro-dissection tools have also been increasingly on demand in the fields of life sciences, materials science, forensics, etc. This presentation deals with the interception of these aforementioned laser-assisted techniques to the field of particle analysis. Historically, the use of a nanosecond laser to ablate material has been used in materials science. Recently, it has been proven that in the analysis of particulate materials the disadvantages associated with the utilization of nanosecond lasers such as overheating and melting of the sample are suppressed when using femtosecond lasers. Further, due to the length of a single laser shot, fs-LA allows a more controlled ablation to occur and therefore the sample plasma is more homogeneous and less mass-fractionation events are detected. The use of laser micro-dissection devices enables the physical segmentation of microsized artefacts previously performed by a laborious manual procedure. By combining the precision of the laser cutting inherent to the LMD technique together with a particle identification methodology, one can increase the efficiency of single particle isolation. Further, besides the increase in throughput of analyses, this combination enhances the signal-to-noise ratio by removing matrix particles effectively. Specifically, this contribution describes the use of an Olympus+MMI laser microdissection device in improving the sample preparation of environmental swipe samples and the installation of an Applied Spectra J200 fs-LA/LIBS (laser ablation/laser inducedbreakdown spectroscopy) system as a sample introduction device to a quadrupole mass spectrometer, the iCap Q from Thermofisher Scientific at the IAEA Environmental Samples Laboratory are explored. Preliminary results of the ongoing efforts for the

  11. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR.

    Science.gov (United States)

    Happyana, Nizar; Agnolet, Sara; Muntendam, Remco; Van Dam, Annie; Schneider, Bernd; Kayser, Oliver

    2013-03-01

    Trichomes, especially the capitate-stalked glandular hairs, are well known as the main sites of cannabinoid and essential oil production of Cannabis sativa. In this study the distribution and density of various types of Cannabis sativa L. trichomes, have been investigated by scanning electron microscopy (SEM). Furthermore, glandular trichomes were isolated over the flowering period (8 weeks) by laser microdissection (LMD) and the cannabinoid profile analyzed by LCMS. Cannabinoids were detected in extracts of 25-143 collected cells of capitate-sessile and capitate stalked trichomes and separately in the gland (head) and the stem of the latter. Δ(9)-Tetrahydrocannabinolic acid [THCA (1)], cannabidiolic acid [CBDA (2)], and cannabigerolic acid [CBGA (3)] were identified as most-abundant compounds in all analyzed samples while their decarboxylated derivatives, Δ(9)-tetrahydrocannabinol [THC (4)], cannabidiol [CBD (5)], and cannabigerol [CBG (6)], co-detected in all samples, were present at significantly lower levels. Cannabichromene [CBC (8)] along with cannabinol (CBN (9)) were identified as minor compounds only in the samples of intact capitate-stalked trichomes and their heads harvested from 8-week old plants. Cryogenic nuclear magnetic resonance spectroscopy (NMR) was used to confirm the occurrence of major cannabinoids, THCA (1) and CBDA (2), in capitate-stalked and capitate-sessile trichomes. Cryogenic NMR enabled the additional identification of cannabichromenic acid [CBCA (7)] in the dissected trichomes, which was not possible by LCMS as standard was not available. The hereby documented detection of metabolites in the stems of capitate-stalked trichomes indicates a complex biosynthesis and localization over the trichome cells forming the glandular secretion unit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Laser accelerated protons captured and transported by a pulse power solenoid

    Directory of Open Access Journals (Sweden)

    T. Burris-Mog

    2011-12-01

    Full Text Available Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  13. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  14. Can the rapid identification of mature spermatozoa during microdissection testicular sperm extraction guide operative planning?

    Science.gov (United States)

    Alrabeeah, K; Doucet, R; Boulet, E; Phillips, S; Al-Hathal, N; Bissonnette, F; Kadoch, I J; Zini, A

    2015-05-01

    The minimum sperm count and quality that must be identified during microdissection testicular sperm extraction (micro-TESE) to deem the procedure successful remains to be established. We conducted a retrospective study of 81 consecutive men with non-obstructive azoospermia who underwent a primary (first) micro-TESE between March 2007 and October 2013. Final assessment of sperm recovery [reported on the day of (intracytoplasmic sperm injection) ICSI] was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a unilateral (with limited or complete microdissection) or bilateral micro-TESE was guided by the intra-operative identification of sperm recovery (≥5 motile or non-motile sperm) from the first testicle. Overall, sperm recovery was successful in 56% (45/81) of the men. A unilateral micro-TESE was performed in 47% (38/81) of the men (based on intra-operative identification of sperm) and in 100% (38/38) of these men, spermatozoa was found on final assessment. In 42% (16/38) of the unilateral cases, a limited microdissection was performed (owing to the rapid intra-operative identification of sperm). The remaining 43 men underwent a bilateral micro-TESE and 16% (7/43) of these men had sperm identified on final assessment. The cumulative ICSI pregnancy rates (per cycle started and per embryo transfer) were 47% (21/45) and 60% (21/35), respectively, with a mean (±SD) of 1.9 ± 1.0 embryos transferred. The data demonstrate that intra-operative assessment of sperm recovery can correctly identify those men that require a unilateral micro-TESE. Moreover, the rapid identification of sperm recovery can allow some men to undergo a limited unilateral micro-TESE and avoid the need for complete testicular microdissection. © 2015 American Society of Andrology and European Academy of Andrology.

  15. Detection of clonal B cells in microdissected reactive lymphoproliferations: possible diagnostic pitfalls in PCR analysis of immunoglobulin heavy chain gene rearrangement

    DEFF Research Database (Denmark)

    Zhou, X.G.; Sandvej, K.; Gregersen, Niels

    1999-01-01

    Aims-To evaluate the specificity of standard and fluorescence based (GENESCAN) polymerase chain reaction (PCR) immunoglobulin heavy chain (IgH) gene rearrangement analysis in complete and microdissected paraffin wax embedded sections from lymphoid proliferations. Methods-PCR IgH gene rearrangement...... because of preferential priming or detection of local B cell clones. Data from clonal analysis of small, microdissected or lymphocyte poor samples must be evaluated critically. It is recommended that analyses should be run in parallel on at least two tissue specimens. Only reproducible bands present...

  16. Molecular profiling of tumour budding implicates TGFβ-mediated epithelial–mesenchymal transition as a therapeutic target in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jensen, David Hebbelstrup; Dabelsteen, Erik; Specht, Lena

    2015-01-01

    collected from oral squamous cell carcinoma (OSCC) specimens using laser capture microdissection and examined with RNA sequencing and miRNA-qPCR arrays. Compared with cells from the central parts of the tumours, budding cells exhibited a particular gene expression signature comprising factors involved...

  17. Identification of circulating fetal cell markers by microarray analysis

    DEFF Research Database (Denmark)

    Brinch, Marie; Hatt, Lotte; Singh, Ripudaman

    2012-01-01

    identified by XY fluorescence in situ hybridization and confirmed by reverse-color fluorescence in situ hybridization were shot off microscope slides by laser capture microdissection. The expression pattern of a subset of expressed genes was compared between fetal cells and maternal blood cells using stem...

  18. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    Science.gov (United States)

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  19. Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape

    International Nuclear Information System (INIS)

    Zhuber-Okrog, K.

    1996-04-01

    This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)

  20. Noncontact laser microsurgery of three-dimensional living objects for use in reproductive and regenerative medicine

    Science.gov (United States)

    Sitnikov, D. S.; Ilina, I. V.; Kosheleva, N. V.; Khramova, Yu V.; Filatov, M. A.; Semenova, M. L.; Zurina, I. M.; Gorkun, A. A.; Saburina, I. N.

    2018-01-01

    Laser microsurgery has enabled us to make highly precise and delicate processing of living biological specimens. We present the results of using femtosecond (fs) laser pulses in assisted reproductive technologies. Femtosecond laser dissection of outer shells of embryos (so-called laser-assisted hatching) as well as laser-mediated detachment of the desired amount of trophectoderm cells (so-called embryo biopsy) required for preimplantaion genetic diagnosis were successfully performed. The parameters of laser radiation were optimized so as to efficiently perform embryo biopsy and preserve the viability of the treated embryos. Effects of application of fs-laser radiation in the infrared (1028 nm) and visible (514 nm) wavelength ranges were studied. We also applied laser microsurgery to develop a new simple reproducible model for studying repair and regeneration in vitro. Nanosecond laser pulses were applied to perform localized microdissection of cell spheroids. After microdissection, the edges of the wound surface opened, the destruction of the initial spheroid structure was observed in the wound area, with surviving cells changing their shape into a round one. It was shown that the spheroid form partially restored in the first six hours with subsequent complete restoration within seven days due to remodeling of surviving cells.

  1. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  2. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...

  3. A bead-based western for high-throughput cellular signal transduction analyses

    Science.gov (United States)

    Treindl, Fridolin; Ruprecht, Benjamin; Beiter, Yvonne; Schultz, Silke; Döttinger, Anette; Staebler, Annette; Joos, Thomas O.; Kling, Simon; Poetz, Oliver; Fehm, Tanja; Neubauer, Hans; Kuster, Bernhard; Templin, Markus F.

    2016-01-01

    Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. PMID:27659302

  4. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.

    Science.gov (United States)

    Balestrini, Raffaella; Gómez-Ariza, Jorge; Lanfranco, Luisa; Bonfante, Paola

    2007-09-01

    The establishment of a symbiotic interaction between plant roots and arbuscular mycorrhizal (AM) fungi requires both partners to undergo significant morphological and physiological modifications which eventually lead to reciprocal beneficial effects. Extensive changes in gene expression profiles recently have been described in transcriptomic studies that have analyzed the whole mycorrhizal root. However, because root colonization by AM fungi involves different cell types, a cell-specific gene expression pattern is likely to occur. We have applied the laser microdissection (LMD) technology to investigate expression profiles of both plant and fungal genes in Lycopersicon esculentum roots colonized by Glomus mosseae. A protocol to harvest arbuscule-containing cells from paraffin sections of mycorrhizal roots has been developed using a Leica AS LMD system. RNA of satisfactory quantity and quality has been extracted for molecular analysis. Transcripts for plant phosphate transporters (LePTs), selected as molecular markers for a functional symbiosis, have been detected by reverse-transcriptase polymerase chain reaction assays and associated to distinct cell types, leading to novel insights into the distribution of LePT mRNAs. In fact, the transcripts of the five phosphate transporters (PTs) have been detected contemporaneously in the same arbusculated cell population, unlike from the neighboring noncolonized cells. In addition, fungal H(+)ATPase (GmHA5) and phosphate transporter (GmosPT) mRNAs were found exclusively in arbusculated cells. The discovery that five plant and one fungal PT genes are consistently expressed inside the arbusculated cells provides a new scenario for plant-fungus nutrient exchanges.

  5. Low-cost structured-light based 3D capture system design

    Science.gov (United States)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  6. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  7. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  8. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Feature-based attention is functionally distinct from relation-based attention: The double dissociation between color-based capture and color-relation-based capture of attention.

    Science.gov (United States)

    Du, Feng; Jiao, Jun

    2016-04-01

    The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Isolation of a cosmid sublibrary for a region of chromosome 12 frequently amplified in human cancers using a complex chromosome microdissection probe

    Energy Technology Data Exchange (ETDEWEB)

    Elkahloun, A.G.; Meltzer, P.S.; Guan, Xin-Yuan [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-02-01

    Chromosome-specific cosmid libraries are in extremely useful resource for positional cloning projects. Once a particular region of interest has been identified, it would be of value to have an approach for isolating chromosome band-specific cosmids that could be assembled into a sublibrary for rapid screening. We constructed a region-specific sublibrary of 700 cosmids by screening a chromosome 12-specific cosmid library with a complex probe generated by degenerate oligonucleotide-primed PCR of a microdissected homogeneously staining region containing sequences amplified from chromosome 12q13-q15. Based on fluorescence in situ hybridization, approximately 60% of the cosmids in the sublibrary were derived from the microdissected region. To demonstrate further the utility of the sublibrary, a 150-kb contig containing the SAS and CDK4 genes was constructed, as well as several additional contigs between CDK4 and MDM2. This study demonstrates the possibility of utilizing probes generated by microdissection for assembling band-specific libraries that are amendable to rapid screening with multiple markers.

  11. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap.

    Science.gov (United States)

    Liu, Xiaohui; Wang, Haowei; Li, Yinmei; Tang, Yesheng; Liu, Yilei; Hu, Xin; Jia, Peixin; Ying, Kai; Feng, Qi; Guan, Jianping; Jin, Chaoqing; Zhang, Lei; Lou, Liren; Zhou, Zhuan; Han, Bin

    2004-04-29

    We report the development of a laser micromanipulation system and its application in the isolation of individual rice chromosomes directly from a metaphase cell. Microdissection and flow sorting are two major methods for the isolation of single chromosome. These methods are dependent on the techniques of chromosome spread and chromosome suspension, respectively. In the development of this system, we avoided using chromosome spread and cell suspension was used instead. The cell wall of metaphase rice cell was cut by optical scissors. The released single chromosome was captured by an optical trap and transported to an area without cell debris. The isolated single chromosome was then collected and specific library was constructed by linker adaptor PCR. The average insert size of the library was about 300 bp. Two hundred inserts of chromosome 4 library were sequenced, and 96.5% were aligned to the corresponding sequences of rice chromosome 4. These results suggest the possible application of this method for the preparation of other subcellular structures and for the cloning of single macromolecule through a laser microbeam trap.

  12. POTENTIALS OF IMAGE BASED ACTIVE RANGING TO CAPTURE DYNAMIC SCENES

    Directory of Open Access Journals (Sweden)

    B. Jutzi

    2012-09-01

    Full Text Available Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility of capturing range information by images with a single measurement. With this new technique image-based active ranging is possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen from the recent development of highly specialized (far-range imaging sensors – so called flash-light lasers – that most of the limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded operating range. The presented work is a first step towards the development of methods capable for application of range images in outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the experimental setup a measurement campaign was carried out and first results will be presented within this paper.

  13. Proteomic alterations in early stage cervical cancer

    OpenAIRE

    Güzel, Coşkun; Govorukhina, Natalia; Wisman, G.B.A.; Stingl, Christoph; Dekker, Lennard; Hollema, Harry; Guryev, Victor; Horvatovich, Peter; van der Zee, Ate; Bischoff, Rainer; Luider, Theo

    2018-01-01

    Laser capture microdissection (LCM) allows the capture of cell types or well-defined structures in tissue. We compared in a semi-quantitative way the proteomes from an equivalent of 8,000 tumor cells from patients with squamous cell cervical cancer (SCC, n = 22) with healthy epithelial and stromal cells obtained from normal cervical tissue (n = 13). Proteins were enzymatically digested into peptides which were measured by high-resolution mass spectrometry and analyzed by “all-or-nothing” anal...

  14. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    Science.gov (United States)

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  15. Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration.

    Science.gov (United States)

    Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao

    2017-07-01

    In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.

  16. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    Science.gov (United States)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  17. STRUCTURED-LIGHT BASED 3D LASER SCANNING OF SEMI-SUBMERGED STRUCTURES

    Directory of Open Access Journals (Sweden)

    J. van der Lucht

    2018-05-01

    Full Text Available In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  18. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Mølbak, Lars; Jensen, Tim Kåre

    2005-01-01

    RNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria......Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells...

  19. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  20. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  1. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  2. Marker chromosome 21 identified by microdissection and FISH

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Palmer, C.G. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Rubinstein, J. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)] [and others

    1995-03-27

    A child without Down`s syndrome but with developmental delay, short stature, and autistic behavior was found to be mosaic 46,XX/47,XX,+mar(21) de novo. The marker was a small ring or dot-like chromosome. Microdissection of the marker was performed. The dissected fragments were biotinylated with sequence-independent PCR as a probe pool for fluorescence in situ hybridization (FISH). FISH results suggested an acrocentric origin of the marker. Subsequent FISH with {alpha}-satellite DNA probes for acrocentric chromosomes and chromosome-specific 21 and 22 painting probes confirmed its origin from chromosome 21. 14 refs., 3 figs.

  3. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  4. 75 FR 5796 - Danaher Corporation and MDS, Inc.; Analysis of Agreement Containing Consent Orders to Aid Public...

    Science.gov (United States)

    2010-02-04

    ... protein profiling. These devices are fully integrated machines that incorporate a laser, a computer, and a... price of laser microdissection devices were to increase by five or ten percent, customers would not... laser microdissection devices is no larger than North America. Customers are unwilling to consider laser...

  5. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Science.gov (United States)

    Deng, Chuanliang; Bai, Lili; Fu, Shulan; Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R-C; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  6. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  7. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  8. A comparative tissue-specific metabolite analysis and determination of protodioscin content in Asparagus species used in traditional Chinese medicine and Ayurveda by use of laser microdissection, UHPLC-QTOF/MS and LC-MS/MS.

    Science.gov (United States)

    Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Chen, Hubiao; Zhao, Zhongzhen

    2014-01-01

    Asparagus is esteemed in Traditional Chinese Medicine and Ayurveda, and it is commercially one of the most important drugs in the global herbal market. Comparative metabolite profiling of different species would help in determining the similarities and ascertain their validity for being used as substitutes for each other. Laser microdissection (LMD) facilitates identification of metabolites in specific tissues, and thus it can aid in exploration of metabolic pathways in target tissues. To compare tissue-specific metabolites and protodioscin content of Asparagus cochinchinensis (Lour.) Merr. and Asparagus racemosus Willd. used in China and India. Metabolite analysis of laser-dissected tissues was carried out using UHPLC-QTOF/MS and LC-MS/MS. The protodioscin contents were determined and the method was validated as per the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. Metabolite analysis reveals that the velamen tissue, among other tissues such as cortex, vascular bundles and pith, contained maximum components, specifically those belonging to the steroidal saponin class. Although the metabolite profiles were similar, the content of protodioscin was found to be higher in Chinese than Indian species. The study provided a suitable methodology for metabolite profiling and protodioscin content determination of Asparagus by use of LMD, UHPLC-QTOF/MS and LC-MS/MS. The similarities in metabolite profiles indicate that Asparagus species from India and China can serve as substitute for each other in various therapeutic and pharmaceutical applications. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  10. Laser-based structural sensing and surface damage detection

    Science.gov (United States)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of

  11. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    Science.gov (United States)

    Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven

    2013-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire

  12. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Directory of Open Access Journals (Sweden)

    Chuanliang Deng

    Full Text Available In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome and pDbH12 (a J(s genome specific probe as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s , J and St in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of

  13. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    International Nuclear Information System (INIS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-01-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics

  14. Histology-Based Expression Profiling Yields Novel Prognostic Markers in Human Glioblastoma

    Science.gov (United States)

    Dong, Shumin; Nutt, Catherine L.; Betensky, Rebecca A.; Stemmer-Rachamimov, Anat O.; Denko, Nicholas C.; Ligon, Keith L.; Rowitch, David H.; Louis, David N.

    2006-01-01

    Although the prognosis for patients with glioblastoma is poor, survival is variable, with some patients surviving longer than others. For this reason, there has been longstanding interest in the identi-fication of prognostic markers for glioblastoma. We hypothesized that specific histologic features known to correlate with malignancy most likely express molecules that are directly related to the aggressive behavior of these tumors. We further hypothesized that such molecules could be used as biomarkers to predict behavior in a manner that might add prognostic power to sole histologic observation of the feature. We reasoned that perinecrotic tumor cell palisading, which denotes the most aggressive forms of malignant gliomas, would be a striking histologic feature on which to test this hypothesis. We therefore used laser capture microdissection and oligonucleotide arrays to detect molecules differentially expressed in perinecrotic palisades. A set of RNAs (including POFUT2, PTDSR, PLOD2, ATF5, and HK2) that were differentially expressed in 3 initially studied, micro-dissected glioblastomas also provided prognostic information in an independent set of 28 glioblastomas that did not all have perinecrotic palisades. On validation in a second, larger independent series, this approach could be applied to other human glioma types to derive tissue biomarkers that could offer ancillary prognostic and predictive information alongside standard histopathologic examination. PMID:16254489

  15. Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics

    OpenAIRE

    Hou, Shuang; Chen, Jie-Fu; Song, Min; Zhu, Yazhen; Jan, Yu Jen; Chen, Szu Hao; Weng, Tzu-Hua; Ling, Dean-An; Chen, Shang-Fu; Ro, Tracy; Liang, An-Jou; Lee, Tom; Jin, Helen; Li, Man; Liu, Lian

    2017-01-01

    Circulating fetal nucleated cells (CFNCs) in maternal blood offer an ideal source of fetal genomic DNA for noninvasive prenatal diagnostics (NIPD). We developed a class of nanoVelcro microchips to effectively enrich a subcategory of CFNCs, i.e., circulating trophoblasts (cTBs) from maternal blood, which can then be isolated with single-cell resolution by a laser capture microdissection (LCM) technique for downstream genetic testing. We first established a nanoimprinting fabrication process to...

  16. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    Science.gov (United States)

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  17. SPAM1 (PH-20 protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2003-08-01

    Full Text Available Abstract Background The Sperm Adhesion Molecule 1 (SPAM1 is an important sperm surface hyaluronidase with at least three functions in mammalian fertilization. Previously our laboratory reported that in the mouse, in addition to its expression in the testis, Spam1 is synthesized in the epididymis where it is found in membranous vesicles in the principal cells of the epithelium in all three regions. Since SPAM1 is widely conserved among mammals the aim of the study was to determine if its expression pattern in the epididymis is conserved in rodents and primates. Methods We used laser microdissection (LM/RT-PCR on frozen and paraffin-embedded epididymal sections of humans (n = 3 and macaques (n = 2 as well as in situ transcript hybridization to determine if transcripts are present in the epididymal epithelium. Western analysis and immunohistochemistry were used to detect and confirm the protein expression, and hyaluronic acid substrate gel electrophoresis analyzed its hyaluronidase activity. An in silico analysis of the proximal promoter of SPAM1 was also performed to identify relevant putative transcription binding sites for the androgen receptor. Results We demonstrate that mRNA unique to SPAM1 is present in the principal cells of the epididymal epithelium in all individuals of both species studied. SPAM1 protein is present in all three regions of the epididymis, as well as the vas deferens, and is localized similarly to the transcripts. SPAM1 was shown to have hyaluronidase activity at pH 7.0. In the proximal promoter of SPAM1 were uncovered putative epididymal transcription factor binding sites including androgen receptor elements (AREs, consistent with epididymal expression. Conclusions These findings allow us to conclude that epididymal SPAM1 is conserved in at least two mammalian classes, rodents and primates. This conservation of expression suggests that the protein is likely to play an important function, possibly in sperm maturation.

  18. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  19. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  20. Comparing the outcomes of incisions made by colorado microdissection needle, electrosurgery tip, and surgical blade during periodontal surgery: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Rampalli Viswa Chandra

    2016-01-01

    Full Text Available Context: Electrosurgery offers many unique advantages such as hemostasis and precise tissue cutting; however, there are a number of disadvantages including thermal injury and delayed wound healing. Aims: The aim of the present study was to compare the outcomes of incisions made by Colorado® microdissection needle, electrosurgery tip, and surgical blade during periodontal surgery. Settings and Design: Twenty-two individuals participated in this study. Three quadrants in each individual were randomly assigned into each of the following experimental groups: Colorado® microdissection needle (CMD, electrosurgery tip (EC and surgical blade (BP, in which, incisions were given with Colorado® microdissection needle, straight electrocautery tip, and a scalpel blade, respectively. Materials and Methods: Blood loss (BL was measured immediately after surgery, and changes in interdental papilla dimensions were recorded at baseline, 7, 30, 120, and 180 days after surgery. Measures of periodontal disease were recorded at baseline, 120, and 180 days after surgery. Postoperative pain and wound healing were recorded at 1, 7, and 15 days after surgery. Results: The use of CMD for periodontal surgery showed better results over EC in all parameters. CMD resulted in lesser bleeding and less postoperative pain and attained similar results to that of BP in clinical parameters of periodontal disease. Conclusions: Colorado® microdissection needle may be a better choice for incisions as it seems to show less tissue damage than cautery and offers tissue healing comparable to scalpel blade.

  1. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    Science.gov (United States)

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  2. Comparison of Ring-Buffer-Based Packet Capture Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Steven Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  3. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  4. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  5. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Science.gov (United States)

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  6. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Quantitative real-time PCR (qPCR is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD, an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA and nonparametric (Kruskal-Wallis tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  7. Laser-based additive manufacturing of metals

    CSIR Research Space (South Africa)

    Kumar, S

    2010-11-01

    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  8. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik

    2009-01-01

    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdis......Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser...... protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet...

  9. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    Science.gov (United States)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  10. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  11. DPD is a molecular determinant of capecitabine efficacy in colorectal cancer

    DEFF Research Database (Denmark)

    Vallböhmer, Daniel; Yang, Dong Yun; Kuramochi, Hidekazu

    2007-01-01

    in this study and treated with single agent capecitabine. The intratumoral mRNA levels of DPD, TP and TS were assessed from paraffin-embedded tissue samples using laser-capture-microdissection methods and quantitative real-time PCR. There were 20 women and 17 men with a median age of 61 years (range 49...... was inevaluable in 7 patients). Higher gene expression levels of DPD were associated with resistance to capecitabine (P=0.032; Kruskal-Wallis test). Patients with a lower mRNA amount of DPD (...

  12. Warp simulations for capture and control of laser-accelerated proton beams

    International Nuclear Information System (INIS)

    Nuernberg, Frank; Harres, K; Roth, M; Friedman, A; Grote, D P; Logan, B G; Schollmeier, M

    2010-01-01

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that we have used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons outbalances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Beside the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  13. Warp simulations for capture and control of laser-accelerated proton beams

    International Nuclear Information System (INIS)

    Nurnberg, F.; Friedman, A.; Grote, D.P.; Harres, K.; Logan, B.G.; Schollmeier, M.; Roth, M.

    2009-01-01

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that was used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons out balances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Besides the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  14. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  15. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens.

    Science.gov (United States)

    Del Prete, D; Forino, M; Gambaro, G; D'Angelo, A; Baggio, B; Anglani, F

    1998-01-01

    Molecular biology techniques, to be applicable to a diagnostic renal biopsy specimen, should (1) be highly sensitive to be performed on a very small quantity of tissue; (2) be quantitative because they have to analyze genes normally expressed in the tissue and (3) allow the analysis of as large a number of genes as possible. Among different methods, only the reverse-transcriptase polymerase chain reaction (RT/-PCR) might comply with previous requisites, but the few RT/-PCR examples on renal biopsies in the literature do not allow starting RNA quantification and quality control; furthermore they have the drawback of analyzing only few genes. In an ongoing study to assess the expression of a number of genes in glomeruli and in tubulointerstitium of patients with different nephropathies, we developed a comparative RT/-PCR kinetic strategy based on the purification and quantification of total glomerular and tubulointerstitial RNA and on the use of an internal standard, the housekeeping gene G3PDH. We demonstrate that in microdissected diagnostic renal biopsies (1) glomerular and interstitial starting RNA can be quantified; (2) the G3PDH gene may be used both as an internal standard and as an indirect marker of RNA integrity; (3) as low as 28 ng of total RNA is sufficient to obtain PCR products of eight genes, and (4) it is worth to operate on microdissected biopsy specimens because of the different expression of genes in the two renal compartments.

  16. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.

    Science.gov (United States)

    Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J

    2015-11-10

    Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.

  17. Cage-based performance capture

    CERN Document Server

    Savoye, Yann

    2014-01-01

    Nowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this re...

  18. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  19. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Gao Xiangdong; Liu Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality. (plasma technology)

  20. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing

    Directory of Open Access Journals (Sweden)

    Manabu Watanabe

    2014-09-01

    Full Text Available Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line were used as a model. Single-cell capture was performed using laser capture microdissection (LCM with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈106 cells were subjected to whole genome amplification (WGA. For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 1031–35. For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100× were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100× were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  1. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Rasmussen, Mads Heilskov; Jensen, Niels; Tarpgaard, Line Schmidt

    2013-01-01

    The backbone of current cytotoxic treatment of metastatic colorectal cancer (mCRC) consists of a fluoropyrimidine together with either oxaliplatin (XELOX/FOLFOX) or irinotecan (XELIRI/FOLFIRI). With an overall objective response rate of approximately 50% for either treatment combination, a major...... analyses showed that miR-625-3p was not dysregulated between normal and cancer samples, nor was its expression associated with recurrence of stage II or III disease, indicating that miR-625-3p solely is a response marker. Finally, we also found that these miRNAs were up-regulated in oxaliplatin resistant...... unsolved problem is that no predictors of response to these treatments are available. To address this issue, we profiled 742 microRNAs in laser-capture microdissected cancer cells from responding and non-responding patients receiving XELOX/FOLFOX as first-line treatment for mCRC, and identified, among...

  2. Iron transport, deposition and bioavailability in the wheat and barley grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2009-01-01

    will briefly review existing knowledge on the distribution and transport pathways of iron in the two small grained cereals, barley and wheat, and focus on the efforts made to increase the iron content in cereals in general. However, mineral content is not the only factor of relevance for improving......). The nutritional impact of increasing mineral content accordingly has to be seen in the context of mineral bioavailability. Finally, we will briefly report on recent data from barley, where laser capture microdissection of the different grain tissues combined with gene expression profiling has provided some...

  3. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  4. A Technical Assessment of the Utility of Reverse Phase Protein Arrays for the Study of the Functional Proteome in Non-microdissected Human Breast Cancers.

    LENUS (Irish Health Repository)

    Hennessy, Bryan T

    2010-12-01

    INTRODUCTION: The lack of large panels of validated antibodies, tissue handling variability, and intratumoral heterogeneity potentially hamper comprehensive study of the functional proteome in non-microdissected solid tumors. The purpose of this study was to address these concerns and to demonstrate clinical utility for the functional analysis of proteins in non-microdissected breast tumors using reverse phase protein arrays (RPPA). METHODS: Herein, 82 antibodies that recognize kinase and steroid signaling proteins and effectors were validated for RPPA. Intraslide and interslide coefficients of variability were <15%. Multiple sites in non-microdissected breast tumors were analyzed using RPPA after intervals of up to 24 h on the benchtop at room temperature following surgical resection. RESULTS: Twenty-one of 82 total and phosphoproteins demonstrated time-dependent instability at room temperature with most variability occurring at later time points between 6 and 24 h. However, the 82-protein functional proteomic "fingerprint" was robust in most tumors even when maintained at room temperature for 24 h before freezing. In repeat samples from each tumor, intratumoral protein levels were markedly less variable than intertumoral levels. Indeed, an independent analysis of prognostic biomarkers in tissue from multiple tumor sites accurately and reproducibly predicted patient outcomes. Significant correlations were observed between RPPA and immunohistochemistry. However, RPPA demonstrated a superior dynamic range. Classification of 128 breast cancers using RPPA identified six subgroups with markedly different patient outcomes that demonstrated a significant correlation with breast cancer subtypes identified by transcriptional profiling. CONCLUSION: Thus, the robustness of RPPA and stability of the functional proteomic "fingerprint" facilitate the study of the functional proteome in non-microdissected breast tumors.

  5. Compact laser-diode-based femtosecond sources

    International Nuclear Information System (INIS)

    Brown, C T A; Cataluna, M A; Lagatsky, A A; Rafailov, E U; Agate, M B; Leburn, C G; Sibbett, W

    2004-01-01

    This paper describes the development of compact femtosecond laser systems that are capable of being directly pumped by laser diodes or are based directly on laser diodes. The paper demonstrates the latest results in a highly efficient vibronic based gain medium and a diode-pumped Yb:KYW laser is reported that has a wall plug efficiency >14%. A Cr 4+ :YAG oscillator is described that generates transform-limited pulses of 81 fs duration at a pulse repetition frequency of >4 GHz. The development of Cr 3+ :LiSAF lasers that can be operated using power supplies based on batteries is briefly discussed. We also present a summary of work being carried out on the generation of fs-pulses from laser diodes and discuss the important issues in this area. Finally, we outline results obtained on the generation of pulses as short as 550 fs directly from a two-section quantum dot laser without any external pulse compression

  6. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  7. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  8. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  9. Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

    International Nuclear Information System (INIS)

    AUGUSTONI, ARNOLD L.

    2003-01-01

    A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD min ) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ

  10. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  11. Laser Spot Detection Based on Reaction Diffusion.

    Science.gov (United States)

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  12. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    OBJECTIVE: To optimize total bacterial 16S rRNA quantification in microdissected colonic crypts in healthy controls and patients with ulcerative colitis (UC) and to characterize the findings with disease activity. BACKGROUND: Microscopic and molecular techniques have recently converged to allow bacterial enumeration in remote anatomic locations [eg, crypt-associated mucous gel (CAMG)]. The aims of this study were to combine laser capture microdissection (LCM) and 16S rRNA-based quantitative polymerase chain reaction (qPCR) to determine total bacterial copy number in CAMG both in health and in UC and to characterize the findings with disease activity. METHODS: LCM was used to microdissect CAMG from colonic mucosal biopsies from controls (n = 20) and patients with acute (n = 10) or subacute (n = 10) UC. Pan-bacterial 16S rRNA copy number per millimeter square in samples from 6 locations across the large bowel was obtained by qPCR using Desulfovibrio desulfuricans as a reference strain. Copy numbers were correlated with the UC disease activity index (UCDAI) and the simple clinical colitis activity index (SCCAI). RESULTS: Bacterial colonization of CAMG was detectable in all groups. Copy numbers were significantly reduced in acute UC. In subacute colitis, there was a positive correlation between copy number and UCDAI and SCCAI in the ascending, transverse and sigmoid colon. CONCLUSIONS: This study describes a sensitive method of quantitatively assessing bacterial colonization of the colonic CAMG. A positive correlation was found between CAMG bacterial load and subacute disease activity in UC, whereas detectable bacterial load was reduced in acute UC.

  13. Laser Spot Detection Based on Reaction Diffusion

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2016-03-01

    Full Text Available Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  14. Influence of quasi-bound states on the carrier capture into quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2002-01-01

    An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...... are believed to be mediated by carrier-phonon and carrier-carrier interaction (Auger processes). In systems of higher dimensionality, carrier relaxation via emission of LO (Longitudinal Optical) phonons is dominant. However, due to the discrete QD density of states, this process is often considered impossible...... unless the energy level separation equals the LO phonon energy, leading to a so-called phonon bottleneck. This argument is based on the assumption that the carrier-LO phonon interaction is weak. It was shown that carriers in discrete QD states couple strongly to phonons and that the intersubband...

  15. Desulfovibrio bacterial species are increased in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    BACKGROUND: Debate persists regarding the role of Desulfovibrio subspecies in ulcerative colitis. Combined microscopic and molecular techniques enable this issue to be investigated by allowing precise enumeration of specific bacterial species within the colonic mucous gel. The aim of this study was to combine laser capture microdissection and quantitative polymerase chain reaction to determine Desulfovibrio copy number in crypt-associated mucous gel in health and in acute and chronic ulcerative colitis. METHODS: Colonic mucosal biopsies were harvested from healthy controls (n = 19) and patients with acute (n = 10) or chronic (n = 10) ulcerative colitis. Crypt-associated mucous gel was obtained by laser capture microdissection throughout the colon. Pan-bacterial 16S rRNA and Desulfovibrio copy number\\/mm were obtained by polymerase chain reaction at each locus. Bacterial copy numbers were interrogated for correlation with location and disease activity. Data were evaluated using a combination of ordinary linear methods and linear mixed-effects models to cater for multiple interactions. RESULTS: Desulfovibrio positivity was significantly increased in acute and chronic ulcerative colitis at multiple levels within the colon, and after normalization with total bacterial signal, the relative Desulfovibrio load was increased in acute colitis compared with controls. Desulfovibrio counts did not significantly correlate with age, disease duration, or disease activity but interlevel correlations were found in adjacent colonic segments in the healthy control and chronic ulcerative colitis groups. CONCLUSION: The presence of Desulfovibrio subspecies is increased in ulcerative colitis and the data presented suggest that these bacteria represent an increased percentage of the colonic microbiome in acute ulcerative colitis.

  16. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    Science.gov (United States)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  17. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  18. Laser-heating of hydrogen plasma

    International Nuclear Information System (INIS)

    Foeldes, I.B.; Ignacz, P.N.; Kocsis, G.

    1990-10-01

    The possibility of creating a fully ionized hydrogen plasma to investigate the capture of slow antiprotons is discussed. Laser heating of the initially discharge-created arc or Z-pinch plasma is proposed. Within the framework of a simple 1-dimensional model based on the energy balance equation alone it is shown that plasma equilibrium can be sustained for 10 μs. A simple pulsed CO 2 laser with this pulse duration and an energy of about 10-30 J is sufficient for heating. (author) 16 refs.; 3 figs

  19. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  20. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  1. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  2. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  3. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction

    DEFF Research Database (Denmark)

    Markholt, Sara; Grøndahl, M L; Ernst, Erik

    2012-01-01

    The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood...... but follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis......) and the mitochondrial-encoded ATPase6 (ATP6). Thus, the present study provides not only a technique to capture and perform transcriptome analysis of the sparse material of human oocytes from the earliest follicle stages but further includes a comprehensive basis for our understanding of the regulatory factors...

  4. Value-based attentional capture influences context-dependent decision-making

    Science.gov (United States)

    Cha, Kexin; Rangsipat, Napat; Serences, John T.

    2015-01-01

    Normative theories posit that value-based decision-making is context independent. However, decisions between two high-value options can be suboptimally biased by the introduction of a third low-value option. This context-dependent modulation is consistent with the divisive normalization of the value of each stimulus by the total value of all stimuli. In addition, an independent line of research demonstrates that pairing a stimulus with a high-value outcome can lead to attentional capture that can mediate the efficiency of visual information processing. Here we tested the hypothesis that value-based attentional capture interacts with value-based normalization to influence the optimality of decision-making. We used a binary-choice paradigm in which observers selected between two targets and the color of each target indicated the magnitude of their reward potential. Observers also had to simultaneously ignore a task-irrelevant distractor rendered in a color that was previously associated with a specific reward magnitude. When the color of the task-irrelevant distractor was previously associated with a high reward, observers responded more slowly and less optimally. Moreover, as the learned value of the distractor increased, electrophysiological data revealed an attenuation of the lateralized N1 and N2Pc responses evoked by the relevant choice stimuli and an attenuation of the late positive deflection (LPD). Collectively, these behavioral and electrophysiological data suggest that value-based attentional capture and value-based normalization jointly mediate the influence of context on free-choice decision-making. PMID:25995350

  5. LASER CAPTURE MICRODISSECTION AND GENE ARRAY ANALYSIS OF PALATAL EPITHELIAL AND MESENCHYMAL CELLS EXPOSED TO TCDD

    Science.gov (United States)

    Palatal shelves from embryos exposed on gestation day (GD) 12 to either retinoic acid (RA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contact but fail to fuse. It is of interest to know if diverse agents that induce clefting via the same etiology also activate the same biochem...

  6. Capturing Reality at Centre Block

    Science.gov (United States)

    Boulanger, C.; Ouimet, C.; Yeomans, N.

    2017-08-01

    The Centre Block of Canada's Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS) of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  7. CAPTURING REALITY AT CENTRE BLOCK

    Directory of Open Access Journals (Sweden)

    C. Boulanger

    2017-08-01

    Full Text Available The Centre Block of Canada’s Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  8. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  9. Laser Spot Detection Based on Reaction Diffusion

    OpenAIRE

    Alejandro Vázquez-Otero; Danila Khikhlukha; J. M. Solano-Altamirano; Raquel Dormido; Natividad Duro

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presente...

  10. Value-based attentional capture influences context-dependent decision-making.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Cha, Kexin; Rangsipat, Napat; Serences, John T

    2015-07-01

    Normative theories posit that value-based decision-making is context independent. However, decisions between two high-value options can be suboptimally biased by the introduction of a third low-value option. This context-dependent modulation is consistent with the divisive normalization of the value of each stimulus by the total value of all stimuli. In addition, an independent line of research demonstrates that pairing a stimulus with a high-value outcome can lead to attentional capture that can mediate the efficiency of visual information processing. Here we tested the hypothesis that value-based attentional capture interacts with value-based normalization to influence the optimality of decision-making. We used a binary-choice paradigm in which observers selected between two targets and the color of each target indicated the magnitude of their reward potential. Observers also had to simultaneously ignore a task-irrelevant distractor rendered in a color that was previously associated with a specific reward magnitude. When the color of the task-irrelevant distractor was previously associated with a high reward, observers responded more slowly and less optimally. Moreover, as the learned value of the distractor increased, electrophysiological data revealed an attenuation of the lateralized N1 and N2Pc responses evoked by the relevant choice stimuli and an attenuation of the late positive deflection (LPD). Collectively, these behavioral and electrophysiological data suggest that value-based attentional capture and value-based normalization jointly mediate the influence of context on free-choice decision-making. Copyright © 2015 the American Physiological Society.

  11. Active solution of homography for pavement crack recovery with four laser lines.

    Science.gov (United States)

    Xu, Guan; Chen, Fang; Wu, Guangwei; Li, Xiaotao

    2018-05-08

    An active solution method of the homography, which is derived from four laser lines, is proposed to recover the pavement cracks captured by the camera to the real-dimension cracks in the pavement plane. The measurement system, including a camera and four laser projectors, captures the projection laser points on the 2D reference in different positions. The projection laser points are reconstructed in the camera coordinate system. Then, the laser lines are initialized and optimized by the projection laser points. Moreover, the plane-indicated Plücker matrices of the optimized laser lines are employed to model the laser projection points of the laser lines on the pavement. The image-pavement homography is actively determined by the solutions of the perpendicular feet of the projection laser points. The pavement cracks are recovered by the active solution of homography in the experiments. The recovery accuracy of the active solution method is verified by the 2D dimension-known reference. The test case with the measurement distance of 700 mm and the relative angle of 8° achieves the smallest recovery error of 0.78 mm in the experimental investigations, which indicates the application potentials in the vision-based pavement inspection.

  12. Introductory remarks on electron capture by multicharged ions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1979-01-01

    An overview is presented of applications of multicharged-ion electron capture and, through the qualitative assessment of availability of information, the general status of current understanding of such capture. A chart is given on which the various ion collision processes are related to other pertinent fields of physical research notably fusion, astrophysics, the solar corona, and lasers. The production and transport of ions is also noted. The symposium considers collision velocities less than 4 x 10 8 cm/s, where the capture cross sections are largest and where most of the available results are quite recent

  13. Anatomical study of the pigs temporal bone by microdissection.

    Science.gov (United States)

    Garcia, Leandro de Borborema; Andrade, José Santos Cruz de; Testa, José Ricardo Gurgel

    2014-01-01

    Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP - Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.

  14. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  15. Graphene devices based on laser scribing technology

    Science.gov (United States)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  16. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    International Nuclear Information System (INIS)

    Abbas, Syed Haider; Lee, Jung-Ryul; Jang, Jae-Kyeong; Kim, Zaeill

    2016-01-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  17. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Syed Haider; Lee, Jung-Ryul [Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jang, Jae-Kyeong [The Engineering Institute-Korea, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Zaeill [The 4th R& D Institute-1st directorate, Agency for Defense Development, Daejeon (Korea, Republic of)

    2016-07-15

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  18. Commercialization plan laser-based decoating systems

    International Nuclear Information System (INIS)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ''document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.'' This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2's commercialization and marketing plans are described, including how F2's organization is structured to meet the needs of technology commercialization, F2's strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed

  19. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    Science.gov (United States)

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO 2 from flue gas. Direct air capture (DAC) of CO 2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO 2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO 2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  20. Laser-based analytical monitoring in nuclear-fuel processing plants

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified

  1. Electrically pumped graphene-based Landau-level laser

    Science.gov (United States)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  2. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  3. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  4. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  5. Capturing Complex Multidimensional Data in Location-Based Data Warehouses

    DEFF Research Database (Denmark)

    Timko, Igor; Pedersen, Torben Bach

    2004-01-01

    Motivated by the increasing need to handle complex multidimensional data inlocation-based data warehouses, this paper proposes apowerful data model that is able to capture the complexities of such data. The model provides a foundation for handling complex transportationinfrastructures...

  6. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer*

    Science.gov (United States)

    Chen, Chien-Lun; Chung, Ting; Wu, Chih-Ching; Ng, Kwai-Fong; Yu, Jau-Song; Tsai, Cheng-Han; Chang, Yu-Sun; Liang, Ying; Tsui, Ke-Hung; Chen, Yi-Ting

    2015-01-01

    More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins—SLC3A2, STMN1, and TAGLN2—in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant

  7. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, July 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Haught, A.F.; Polk, D.H.; Fader, W.J.; Tomlinson, R.G.; Jong, R.A.; Ard, W.B.; Mensing, A.E.; Churchill, T.L.; Stufflebeam, J.H.; Bresnock, F.J.

    1976-01-01

    The Laser Initiated Target Experiment (LITE) at the United Technologies Research Center is designed to address the target plasma buildup approach to a steady state mirror fusion device. A dense, mirror confined, target plasma is produced by high power laser irradiation of a solid lithium hydride particle, electrically suspended in a vacuum at the center of an established minimum-B magnetic field. Following expansion in and capture by the magnetic field, this target plasma is irradiated by an energetic neutral hydrogen beam. Charge exchange collisions with energetic beam particles serve to heat the confined plasma while ionization of the neutral beam atoms and trapping in the mirror magnetic field add particles to the confined plasma. For sufficiently high beam intensities, confined plasmas losses will be offset so that buildup of the plasma density occurs, thus demonstrating sustenance and fueling as well as the heating by neutral beam injection of a steady state mirror fusion device. Investigations of the decay of the magnetically confined target plasmas and initial studies of energetic neutral beam injection into confined target plasmas, conducted during this report period, are presented. Additional development of the LITE experimental systems including improvements in the laser plasma production facility, the energetic neutral beam line, and the heavy ion probe diagnostic is reported. A series of calculations on enhanced scattering and classical decay for plasma mirror confined in a LITE type system are discussed

  8. Study and development of a laser based alignment system for the compact linear collider

    CERN Document Server

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  9. A Survey of Advances in Vision-Based Human Motion Capture and Analysis

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Hilton, Adrian; Krüger, Volker

    2006-01-01

    This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant...... actions and behavior. This survey reviews recent trends in video based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement....

  10. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis

    International Nuclear Information System (INIS)

    Turashvili, Gulisa; Srovnal, Josef; Hajduch, Marian; Murray, Paul; Kolar, Zdenek; Bouchal, Jan; Baumforth, Karl; Wei, Wenbin; Dziechciarkova, Marta; Ehrmann, Jiri; Klein, Jiri; Fridman, Eduard; Skarda, Jozef

    2007-01-01

    Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells. We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients) microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17) was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR. Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1) distinguished large sets of IDC from ILC. IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN) and collagen triple helix repeat containing 1 (CTHRC1) which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue microarrays (EMP1, DVL1, DDR1) may represent novel

  11. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  12. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  13. 77 FR 13367 - General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0157] General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment Facility, Wilmington, NC AGENCY: Nuclear Regulatory... Impact Statement (EIS) for the proposed General Electric- Hitachi Global Laser Enrichment, LLC (GLE...

  14. Absolute GPS Time Event Generation and Capture for Remote Locations

    Science.gov (United States)

    HIRES Collaboration

    The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more

  15. Infrared-laser-based fundus angiography

    Science.gov (United States)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  16. CO-REGISTRATION OF DSMs GENERATED BY UAV AND TERRESTRIAL LASER SCANNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. A. Persad

    2016-06-01

    Full Text Available An approach for the co-registration of Digital Surface Models (DSMs derived from Unmanned Aerial Vehicles (UAVs and Terrestrial Laser Scanners (TLS is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  17. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  18. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    Science.gov (United States)

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  20. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  1. Implicit prosody mining based on the human eye image capture technology

    Science.gov (United States)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of

  2. Scattered Data Processing Approach Based on Optical Facial Motion Capture

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2013-01-01

    Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.

  3. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  4. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  5. Laser-based direct-write techniques for cell printing

    International Nuclear Information System (INIS)

    Schiele, Nathan R; Corr, David T; Huang Yong; Raof, Nurazhani Abdul; Xie Yubing; Chrisey, Douglas B

    2010-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  6. Potential for GPC-based laser direct writing

    DEFF Research Database (Denmark)

    Bañas, Andrew; Glückstad, Jesper

    2016-01-01

    lasers for such applications by using phase modulation as opposed to amplitude truncating masks. Here, we explore GPC’s potential for increasing the yield of micropscopic 3D printing also known as direct laser writing. Many light based additive manufacturing techniques, adopt a point scanning approach...

  7. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1996-01-01

    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...... be improved with a factor of 2 - 4 for typical mask transmittances between 10 - 40%....

  8. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  9. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis

    Directory of Open Access Journals (Sweden)

    Srovnal Josef

    2007-03-01

    Full Text Available Abstract Background Invasive ductal and lobular carcinomas (IDC and ILC are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells. Methods We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17 was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR. Results Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1 distinguished large sets of IDC from ILC. Conclusion IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN and collagen triple helix repeat containing 1 (CTHRC1 which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue

  10. Process observation in fiber laser-based selective laser melting

    Science.gov (United States)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  11. Discrimination of the glucose and the white sugar based on the pulsed laser-induced photoacoustic technique

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong

    2017-08-01

    In this study, to discriminate the glucose and the white sugar gradient in the food, a noninvasive optical detection system based on pulsed laser-induced photoacoustic technique was developed. Meanwhile, the Nd: YAG 532nm pumped OPO pulsed laser was used as the excitation light source to generate of the photoacoustic signals of the glucose and white sugar. The focused ultrasonic transducer with central detection frequency of 1MHz was used to capture the photoacoustic signals. In experiments, the real-time photoacoustic signals of the glucose and the white sugar aqueous solutions were gotten and compared with each other. In addition, to discriminate the difference of the characteristic photoacoustic signals between both of them, the difference spectrum and the first order derivative technique between the peak-to-peak photoacoustic signals of the water and that of the glucose and white sugar were employed. The difference characteristic photoacoustic wavelengths between the glucose and the white sugar were found based on the established photoacoustic detection system. This study provides the potential possibility for the discrimination of the glucose and the white sugar by using the photoacoustic detection method.

  12. Precedent Research on Compact Laser-plasma based Gantry for Cancer Therapy

    International Nuclear Information System (INIS)

    Hee, Park Seong; Jeong, Young Uk; Lee, Ki Tae; Kim, Kyung Nam; Cha, Young Ho

    2012-03-01

    This is the precedent R and D to develop the technology of next generation compact particle cancer treatment system based on laser-plasma interaction and to deduce a big project. The subject of this project are the survey of application technology of laser-plasma based particle beam and the design of compact laser-plasma based gantry. The survey of characteristic of particle beam for cancer therapy and present status can be adapted to develop new system. The comparison between particle beams from the existing system and new one based on laser-plasma acceleration will be important to new design and design optimization. The project includes design of multi-dimensional laser transfer beamline, minimization of laser-plasma acceleration chamber, design of effective energy separation/selection system, and radiation safety and local shielding

  13. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process.

    Science.gov (United States)

    Zeng, Shaojuan; Zhang, Xiangping; Bai, Lu; Zhang, Xiaochun; Wang, Hui; Wang, Jianji; Bao, Di; Li, Mengdie; Liu, Xinyan; Zhang, Suojiang

    2017-07-26

    The inherent structure tunability, good affinity with CO 2 , and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO 2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the recent advances on IL-based materials, including pure ILs, IL-based solvents, and IL-based membranes for CO 2 capture and separation from the viewpoint of molecule to engineering. The effects of anions, cations and functional groups on CO 2 solubility and selectivity of ILs, as well as the studies on degradability of ILs are reviewed, and the recent developments on functionalized ILs, IL-based solvents, and IL-based membranes are also discussed. CO 2 separation mechanism with IL-based solvents and IL-based membranes are explained by combining molecular simulation and experimental characterization. Taking into consideration of the applications and industrialization, the recent achievements and developments on the transport properties of IL fluids and the process design of IL-based processes are highlighted. Finally, the future research challenges and perspectives of the commercialization of CO 2 capture and separation with IL-based materials are posed.

  14. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  15. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  16. Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins.

    Science.gov (United States)

    Wiśniewski, Jacek R; Duś, Kamila; Mann, Matthias

    2013-04-01

    Archival formalin-fixed and paraffin-embedded clinical samples represent a very diverse source of material for proteomic investigation of diseases, often with follow-up patient information. Here, we describe an analytical workflow for analysis of laser-capture microdissected formalin-fixed and paraffin-embedded samples that allows studying proteomes to a depth of 10 000 proteins per sample. The workflow involves lysis of tissue in SDS-containing buffer, detergent removal, and consecutive digestion of the proteins with two enzymes by the multienzyme digestion filter-aided sample preparation method. Resulting peptides are fractionated by pipette-tip based strong anion exchange into six fractions and analyzed by LC-MS/MS on a bench top quadrupole Orbitrap mass spectrometer. Analysis of the data using the MaxQuant software resulted in the identification of 9502 ± 28 protein groups per a 110 nL sample of microdissected cells from human colonic adenoma. This depth of proteome analysis enables systemic insights into the organization of the adenoma cells and an estimation of the abundances of known biomarkers. It also allows the identification of proteins expressed from tumor suppressors, oncogenes, and other key players in the development and progression of the colorectal cancer. Our proteomic platform can be used for quantitative comparisons between samples representing different stages of diseases and thus can be applied to the discovery of biomarkers or drug targets. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recent results in mirror based high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Nielsen, Jakob Skov; Elvang, Mads

    2004-01-01

    In this paper, recent results in high power laser cutting, obtained in reseach and development projects are presented. Two types of mirror based focussing systems for laser cutting have been developed and applied in laser cutting studies on CO2-lasers up to 12 kW. In shipyard environment cutting...... speed increase relative to state-of-the-art cutting of over 100 % has been achieved....

  18. Analysis of Temporal-spatial Co-variation within Gene Expression Microarray Data in an Organogenesis Model

    Science.gov (United States)

    Ehler, Martin; Rajapakse, Vinodh; Zeeberg, Barry; Brooks, Brian; Brown, Jacob; Czaja, Wojciech; Bonner, Robert F.

    The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. We used a novel clustering method based on Laplacian Eigenmaps, a nonlinear dimension reduction method, to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our new method provided greater biological specificity than classical clustering algorithms in terms of identifying more biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates. This new methodology builds on the advantages of LCM to isolate pure phenotypic populations within complex tissues and allows improved ability to identify critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and extracting spatial and temporal co-variations appear to be a powerful approach to understanding the gene regulatory networks that specify mammalian organogenesis.

  19. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  20. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  1. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  2. Capturing PM2.5 emissions from 3D printing via nanofiber-based air filter

    OpenAIRE

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-01-01

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, ...

  3. Multiple-predators-based capture process on complex networks

    International Nuclear Information System (INIS)

    Sharafat, Rajput Ramiz; Pu Cunlai; Li Jie; Chen Rongbin; Xu Zhongqi

    2017-01-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter α . We derive the distribution of the lamb’s lifetime and the expected lifetime 〈 T 〉. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. Moreover, we study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than on large-degree nodes to prolong the lifetime of the lamb. The dense or homogeneous network structures are against the survival of the lamb. We also discuss how to improve the capture efficiency in our model. (paper)

  4. Evaluation of potential cost reductions from improved amine-based CO2 capture systems

    International Nuclear Information System (INIS)

    Rao, Anand B.; Rubin, Edward S.; Keith, David W.; Granger Morgan, M.

    2006-01-01

    Technological innovations in CO 2 capture and storage technologies are being pursued worldwide under a variety of private and government-sponsored R and D programs. While much of this R and D is directed at novel concepts and potential breakthrough technologies, there are also substantial efforts to improve CO 2 capture technologies already in use. In this paper, we focus on amine-based CO 2 capture systems for power plants and other combustion-based applications. The current performance and cost of such systems have been documented in several recent studies. In this paper we examine the potential for future cost reductions that may result from continued process development. We used the formal methods of expert elicitation to understand what experts in this field believe about possible improvements in some of the key underlying parameters that govern the performance and cost of this technology. A dozen leading experts from North America, Europe and Asia participated in this study, providing their probabilistic judgments via a detailed questionnaire coupled with individual interviews. Judgments about detailed technical parameters were then used in an integrated power plant modeling framework (IECM-CS) developed for USDOE to evaluate the performance and costs of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The experts' responses have allowed us to build a picture of how the overall performance and cost of amine-based systems might improve over the next decade or two. Results show how much the cost of CO 2 capture could be reduced via targeted R and D in key areas

  5. Review of fission produce capture measurements at the Oak Ridge Electron Laser Accelerator (ORELA)

    International Nuclear Information System (INIS)

    Larson, D.C.; Macklin, R.L.

    1992-01-01

    The 40-meter capture system of R.L. Macklin at ORELA has been used to measure capture cross sections for over eighty isotopes between A = 75 and 161, the primary mass region of interest for fission products. This review outlines the primary features of the capture system, lists the isotopes measured and their references, and describes recent changes incorporated in the capture system

  6. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  7. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  8. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    International Nuclear Information System (INIS)

    Aleksandrov, B P; Bashkin, A S; Beznozdrev, V N; Parfen'ev, M V; Pirogov, N A; Semenov, S N

    2003-01-01

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  9. Orders- Versus Encounters-Based Image Capture: Implications Pre- and Post-Procedure Workflow, Technical and Build Capabilities, Resulting, Analytics and Revenue Capture: HIMSS-SIIM Collaborative White Paper.

    Science.gov (United States)

    Cram, Dawn; Roth, Christopher J; Towbin, Alexander J

    2016-10-01

    The decision to implement an orders-based versus an encounters-based imaging workflow poses various implications to image capture and storage. The impacts include workflows before and after an imaging procedure, electronic health record build, technical infrastructure, analytics, resulting, and revenue. Orders-based workflows tend to favor some imaging specialties while others require an encounters-based approach. The intent of this HIMSS-SIIM white paper is to offer lessons learned from early adopting institutions to physician champions and informatics leadership developing strategic planning and operational rollouts for specialties capturing clinical multimedia.

  10. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-01-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity ( 14 Wcm -2 ) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  11. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection.

    Science.gov (United States)

    Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer

    2015-09-09

    A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.

  12. A Subpath-based Logit Model to Capture the Correlation of Routes

    Directory of Open Access Journals (Sweden)

    Xinjun Lai

    2016-06-01

    Full Text Available A subpath-based methodology is proposed to capture the travellers’ route choice behaviours and their perceptual correlation of routes, because the original link-based style may not be suitable in application: (1 travellers do not process road network information and construct the chosen route by a link-by-link style; (2 observations from questionnaires and GPS data, however, are not always link-specific. Subpaths are defined as important portions of the route, such as major roads and landmarks. The cross-nested Logit (CNL structure is used for its tractable closed-form and its capability to explicitly capture the routes correlation. Nests represent subpaths other than links so that the number of nests is significantly reduced. Moreover, the proposed method simplifies the original link-based CNL model; therefore, it alleviates the estimation and computation difficulties. The estimation and forecast validation with real data are presented, and the results suggest that the new method is practical.

  13. Laser-Based Maintenance and Repair Technologies for Reactor Components

    International Nuclear Information System (INIS)

    Masaki Yoda; Naruhiko Mukai; Makoto Ochiai; Masataka Tamura; Satoshi Okada; Katsuhiko Sato; Motohiko Kimura; Yuji Sano; Noboru Saito; Seishi Shima; Tetsuo Yamamoto

    2004-01-01

    Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening (LP) technology was developed and applied to reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP system as a preventive maintenance measure against stress corrosion cracking (SCC). Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed using a compact probe with a multi-mode optical fiber and an interferometer. The developed system successfully detected a micro slit of 0.5 mm depth on weld metal and heat-affected zone (HAZ). An artificial SCC was also detected by the system. We are developing a new LP system combined with LUT to treat the inner surface of bottom-mounted instruments (BMI) of PWR plants. Underwater laser seal welding (LSW) technology was also developed to apply surface crack. LSW is expected to isolate the crack tip from corrosive water environment and to stop the propagation of the crack. Rapid heating and cooling of the process minimize the heat effect, which extends the applicability to neutron-irradiated material. This paper describes recent advances in the development and application of such laser-based technologies. (authors)

  14. A multipurpose TIM-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.

    1998-01-01

    The authors have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of Hohlraum drive temperature. The telescope is based on University of Rochester's Ten-Inch Manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6-mm, have a spatial resolution of 5 to 7-microm per line pair at the object plane, and are optimized for operation at 280-nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM

  15. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  16. Laser-plasma based electron acceleration studies planned at CAT, Indore

    International Nuclear Information System (INIS)

    Naik, P.A.; Gupta, P.D.

    2005-01-01

    The Laser Plasma Division at the Centre for Advanced Technology is engaged in a variety of R and D activities on laser-plasma interaction with special emphasis on laser-matter interaction at ultra-high intensities. An important aspect of our future work is studies in laser-plasma based acceleration using an elaborate infrastructural set-up of ultra-fast laser and plasma diagnostic systems and recently acquired 10 TW, 50 fs Ti: Sapphire laser system. This paper presents outline of the planned studies in this field. (author)

  17. Biomechanical model-based displacement estimation in micro-sensor motion capture

    International Nuclear Information System (INIS)

    Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C

    2012-01-01

    In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)

  18. An effort to use human-based exome capture methods to analyze chimpanzee and macaque exomes.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Non-human primates have emerged as an important resource for the study of human disease and evolution. The characterization of genomic variation between and within non-human primate species could advance the development of genetically defined non-human primate disease models. However, non-human primate specific reagents that would expedite such research, such as exon-capture tools, are lacking. We evaluated the efficiency of using a human exome capture design for the selective enrichment of exonic regions of non-human primates. We compared the exon sequence recovery in nine chimpanzees, two crab-eating macaques and eight Japanese macaques. Over 91% of the target regions were captured in the non-human primate samples, although the specificity of the capture decreased as evolutionary divergence from humans increased. Both intra-specific and inter-specific DNA variants were identified; Sanger-based resequencing validated 85.4% of 41 randomly selected SNPs. Among the short indels identified, a majority (54.6%-77.3% of the variants resulted in a change of 3 base pairs, consistent with expectations for a selection against frame shift mutations. Taken together, these findings indicate that use of a human design exon-capture array can provide efficient enrichment of non-human primate gene regions. Accordingly, use of the human exon-capture methods provides an attractive, cost-effective approach for the comparative analysis of non-human primate genomes, including gene-based DNA variant discovery.

  19. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  20. ANISOTROPY EFFECTS IN ELECTRON-CAPTURE BY O6+ FROM ALIGNED NA-ASTERISK(3P)

    NARCIS (Netherlands)

    SCHLATMANN, AR; WIERSEMA, WP; HOEKSTRA, R; MORGENSTERN, R; OLSON, RE; PASCALE, J

    1994-01-01

    We report results of one electron capture by highly charged ions colliding with laser excited aligned Na*(3p). The 0 vi(10-->8) photon emission cross section after electron capture by the O6+ projectile is measured in the collision energy range 2-8 keV/amu. Effects of the Na*(3p) orbital alignment

  1. LIGHT: Towards a laser-based accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Busold, Simon; Deppert, Oliver; Roth, Markus [Technical University of Darmstadt, Institute for Nuclear Physics, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Brabetz, Christian [Goethe University Frankfurt am Main, Institute for Applied Physics, Max von Laue Strasse 1, 60438 Frankfurt (Germany); Burris-Mog, Trevor; Joost, Martin; Cowan, Tom [Helmholtz Center Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Blazevic, Abel; Bagnoud, Vincent [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Zielbauer, Bernhard [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Helmholtz Institute Jena, Helmholtzweg 4, 07743 Jena (Germany); Kester, Oliver [GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Goethe University Frankfurt am Main, Institute for Applied Physics, Max von Laue Strasse 1, 60438 Frankfurt (Germany)

    2012-07-01

    Proton acceleration by ultrashort, high intensity laser pulses has been a fast growing field of research during the last decade. The most intensely investigated acceleration mechanism is the TNSA mechanism (Target Normal Sheath Acceleration), providing protons in the multi-MeV-range. For many possible applications, however, the full energy spread and large beam divergence are major draw-backs. Therefore, a pulsed high-field solenoid was used for collimation and energy-selection and is now integrated in a full test stand for a laser-based accelerator at GSI Helmholtz Center, Darmstadt, namely the LIGHT project (Laser Ion Generation, Handling and Transport), which is a collaboration between TU Darmstadt, GSI, HZDR, JWGU Frankfurt and HI Jena. An overview of the new infrastructure, the goals of the LIGHT project, and first experimental results are presented.

  2. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  3. Microdissecting the Genetic Events in Nephrogenic Rests and Wilms’ Tumor Development

    Science.gov (United States)

    Charles, Adrian K.; Brown, Keith W.; Berry, P. Jeremy

    1998-01-01

    Nephrogenic rests are precursor lesions associated with about 40% of Wilms’ tumors. This study identifies genetic steps occurring in the development of Wilms’ tumor. Thirty-four Wilms’ tumors with nephrogenic rests and/or areas of anaplasia were microdissected from paraffin sections to determine whether and at what stage loss of heterozygosity (LOH) occurred, using polymerase chain reaction-based polymorphic markers at 11p13, 11p15, and 16q. LOH at these loci have been identified in Wilms’ tumors and are associated with identified or putative tumor suppressor genes. Three cystic nephromas/cystic partially differentiated nephroblastomas were also examined. LOH was detected in six cases at 11p13 and in six cases at 11p15, and two of these cases had LOH at both loci. All intralobar rests showing LOH also showed LOH in the tumor. A case with a small perilobar rest showed LOH of 11p13 only in the tumor. Five cases showing LOH at 16q were identified (this was identified only in the tumor, and not in the associated rest), and three of these had recurrence of the tumor. Two cases had a WT1 mutation (one germline and the other somatic), as well as LOH in both the intralobar rest and the tumor. A cystic partially differentiated nephroblastoma showed loss at 11p13 and 11p15, as well as at 16q. This study suggests that LOH at 11p13 and 11p15 and WT1 mutations are early events but that LOH at 16q occurs late in the pathogenesis of Wilms’ tumor. Intralobar and perilobar nephrogenic rests are known to have different biological behaviors, and this study suggests that they are genetically different. A multistep model of Wilms’ tumor pathogenesis is supported by these findings. PMID:9736048

  4. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry

    OpenAIRE

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R. Ogorzalek; Julian, Ryan R.; Loo, Joseph A.

    2015-01-01

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in comb...

  5. Laser backlight unit based on a leaky optical fiber

    Science.gov (United States)

    Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro

    2012-07-01

    A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.

  6. Single event upset threshold estimation based on local laser irradiation

    International Nuclear Information System (INIS)

    Chumakov, A.I.; Egorov, A.N.; Mavritsky, O.B.; Yanenko, A.V.

    1999-01-01

    An approach for estimation of ion-induced SEU threshold based on local laser irradiation is presented. Comparative experiment and software simulation research were performed at various pulse duration and spot size. Correlation of single event threshold LET to upset threshold laser energy under local irradiation was found. The computer analysis of local laser irradiation of IC structures was developed for SEU threshold LET estimation. The correlation of local laser threshold energy with SEU threshold LET was shown. Two estimation techniques were suggested. The first one is based on the determination of local laser threshold dose taking into account the relation of sensitive area to local irradiated area. The second technique uses the photocurrent peak value instead of this relation. The agreement between the predicted and experimental results demonstrates the applicability of this approach. (authors)

  7. ZY3-02 Laser Altimeter On-orbit Geometrical Calibration and Test

    Directory of Open Access Journals (Sweden)

    TANG Xinming

    2017-06-01

    Full Text Available ZY3-02 is the first satellite equipped with a laser altimeter for earth observation in China .This laser altimeter is an experimental payload for land elevation measurement experiment. The ranging and pointing bias of the laser altimeter would change due to the launch vibration, the space environment difference or other factors, and that could bring plane and elevation errors of laser altimeter. In this paper, we propose an on-orbit geometric calibration method using a ground-based electro-optical detection system based on the analysis of ZY3-02 laser altimeter characteristic, and this method constructs the rigorous geometric calibration model, which consider the pointing and ranging bias as unknown systematic errors, and the unknown parameters are calibrated with laser spot's location captured by laser detectors and the minimum ranging error principle. With the ALOS-DSM data as reference, the elevation accuracy of the laser altimeter can be improved from 100~150 meters before calibration to 2~3 meters after calibration when the terrain slope is less than 2 degree. With several ground control points obtained with RTK in laser footprint for validation, the absolute elevation precision of laser altimeter in the flat area can reach about 1 meter after the calibration. The test results demonstrated the effectiveness and feasibility of the proposed method.

  8. Fabrication of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jr., Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    A small sorbent-based capture system was designed that could be placed in the off-gas line from the fuel dissolver in the ATALANTE hot cells with minimal modifications to the ATALANTE dissolver off-gas system. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system have been specified, procured, and received on site at Oak Ridge National Laboratory (ORNL), meeting the April 30, 2015, milestone for completing the fabrication of the ATALANTE dissolver off-gas capture system. This system will be tested at ORNL to verify operation and to ensure that all design requirements for ATALANTE are met. Modifications to the system will be made, as indicated by the testing, before the system is shipped to ATALANTE for installation in the hot cell facility.

  9. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    Runchev, Dobre; Dorn, Lutc; Jaferi, Seifolah; Purbst, Detler

    1997-01-01

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  10. Pedestrian Detection by Laser Scanning and Depth Imagery

    Science.gov (United States)

    Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.

    2016-06-01

    Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).

  11. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  12. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  13. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  14. Engineering fluidic delays in paper-based devices using laser direct-writing.

    Science.gov (United States)

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  15. Fiber-based laser MOPA transmitter packaging for space environment

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  16. Compact silicon photonics-based multi laser module for sensing

    Science.gov (United States)

    Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.

    2018-02-01

    A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.

  17. Laser-based coatings removal

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings

  18. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  19. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  20. Mobile Laser Scanning for Indoor Modelling

    Directory of Open Access Journals (Sweden)

    C. Thomson

    2013-10-01

    Full Text Available The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM. At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  1. Mobile Laser Scanning for Indoor Modelling

    Science.gov (United States)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  2. IGZO TFT-based circuit with tunable threshold voltage by laser annealing

    Science.gov (United States)

    Huang, Xiaoming; Yu, Guang; Wu, Chenfei

    2017-11-01

    In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.

  3. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  4. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  5. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  6. Rapid analysis of steels using laser-based techniques

    International Nuclear Information System (INIS)

    Cremers, D.A.; Archuleta, F.L.; Dilworth, H.C.

    1985-01-01

    Based on the data obtained by this study, we conclude that laser-based techniques can be used to provide at least semi-quantitative information about the elemental composition of molten steel. Of the two techniques investigated here, the Sample-Only method appears preferable to the LIBS (laser-induced breakdown spectroscopy) method because of its superior analytical performance. In addition, the Sample-Only method would probably be easier to incorporate into a steel plant environment. However, before either technique can be applied to steel monitoring, additional research is needed

  7. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.

    Science.gov (United States)

    Hagio, Taichi; Sakuraba, Shun; Iwakiri, Junichi; Mori, Ryota; Asai, Kiyoshi

    2018-02-19

    It is known that functional RNAs often switch their functions by forming different secondary structures. Popular tools for RNA secondary structures prediction, however, predict the single 'best' structures, and do not produce alternative structures. There are bioinformatics tools to predict suboptimal structures, but it is difficult to detect which alternative secondary structures are essential. We proposed a new computational method to detect essential alternative secondary structures from RNA sequences by decomposing the base-pairing probability matrix. The decomposition is calculated by a newly implemented software tool, RintW, which efficiently computes the base-pairing probability distributions over the Hamming distance from arbitrary reference secondary structures. The proposed approach has been demonstrated on ROSE element RNA thermometer sequence and Lysine RNA ribo-switch, showing that the proposed approach captures conformational changes in secondary structures. We have shown that alternative secondary structures are captured by decomposing base-paring probabilities over Hamming distance. Source code is available from http://www.ncRNA.org/RintW .

  8. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  9. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    Science.gov (United States)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  10. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  11. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  12. Laser-induced cavitation based micropump

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.

    2008-01-01

    Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 m3 within 75 s against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in

  13. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    Science.gov (United States)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  14. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  15. CO{sub 2}-capture in coal based IGCC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Van Aart, F.; Fleuren, W.; Kamphuis, H.; Ploumen, P.; Jelles, S. [KEMA, Arnhem (Netherlands)

    2007-07-01

    The paper discusses IGCC with carbon capture and storage (CCS), both for retrofit and capture ready plants. The penalties for carbon dioxide capture are given, along with its effect on CAPEX and OPEC costs. 3 refs., 9 figs.

  16. Implementation of nuclear material surveillance system based on the digital video capture card and counter

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Song, Dae Yong; Ko, Won Il; Ha, Jang Ho; Kim, Ho Dong

    2003-07-01

    In this paper, the implementation techniques of nuclear material surveillance system based on the digital video capture board and digital counter was described. The surveillance system that is to be developed is consist of CCD cameras, neutron monitors, and PC for data acquisition. To develop the system, the properties of the PCI based capture board and counter was investigated, and the characteristics of related SDK library was summarized. This report could be used for the developers who want to develop the surveillance system for various experimental environments based on the DVR and sensors using Borland C++ Builder

  17. Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Gopala; Jayaweera, Indira; Sanjrujo, Angel; O' Brien, Kevin; Callahan, Richard; Berchtold, Kathryn; Roberts, Daryl-Lynn; Johnson, Will

    2012-03-31

    The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

  18. Nuclear based diagnostics in high-power laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc; Sonnabend, Kerstin; Harres, Knut; Otten, Anke; Roth, Markus [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Vogt, Karsten; Bagnoud, Vincent [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    High-power lasers allow focused intensities of >10{sup 18} W/cm{sup 2}. During the laser-solid interaction, an intense relativistic electron current is injected from the plasma into the target. One challenge is to characterize the electron dynamic close to the interaction region. Moreover, next generation high-power laser proton acceleration leads to high proton fluxes, which require novel, nuclear diagnostic techniques. We present an activation-based nuclear pyrometry for the investigation of electrons generated in relativistic laser-solid interactions. We use novel activation targets consisting of several isotopes with different photo-neutron disintegration thresholds. The electrons are decelerated inside the target via bremsstrahlung processes. The high-energy bremsstrahlung induces photo-nuclear reactions. In this energy range no disturbing low energy effects are important. Via the pyrometry the Reconstruction of the absolute yield, spectral and spatial distribution of the electrons is possible. For the characterization of proton beams we present a nuclear activation imaging spectroscopy (NAIS). The diagnostic is based on proton-neutron disintegration reactions of copper stacked in consecutive layers. An autoradiography of copper layers leads to spectrally and spatially reconstruction of the beam profile.

  19. Photocoagulation of microvascular and hemorrhagic lesions of the vocal fold with the KTP laser.

    Science.gov (United States)

    Hirano, Shigeru; Yamashita, Masaru; Kitamura, Morimasa; Takagita, Shin-ichi

    2006-04-01

    Ectasias and varices of the vocal fold are microvascular lesions that are often due to chronic abuse of the voice, and are occasionally encountered in association with other disorders such as polyps, Reinke's edema, and hematoma. The KTP laser can be used for photocoagulation of small vascular lesions, because the laser beam is well absorbed by hemoglobin, and damage to the epithelium is minimal. The present pilot study examined how the KTP laser could be used for microvascular lesions and their associated lesions. Twelve patients who had undergone phonomicrosurgery were enrolled in the present study. The microvascular lesions were treated by photocoagulation with the laser set at a low power of 1.5 W in the continuous mode, while preserving the epithelium, and associated lesions were then treated by microdissection with cold instruments. The postoperative phonatory function was assessed by maximum phonation time, a perceptual test rating (GRBAS scale), and stroboscopy. The procedures were completed successfully in all cases. An exceptional case of a small hemorrhagic polyp allowed treatment with the laser only. The postoperative stroboscopic findings, maximum phonation time, and perceptual test rating all showed significant improvement compared with the preoperative state. No adverse effects, such as scarring or reduction of the mucosal wave, were observed in the current series. KTP laser photocoagulation is a relatively simple and safe procedure for treating microvascular lesions of the vocal fold. It is not recommended for photocoagulation of hemorrhagic polyps or hematomas, because such lesions have little blood flow inside and thus photocoagulation is usually impossible or requires too much laser energy. However, photocoagulation of perimeter or feeding vessels of such disorders may facilitate the following procedure by avoiding unnecessary bleeding, as well as preventing recurrence of hemorrhagic lesions.

  20. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  1. In situ TEM Raman spectroscopy and laser-based materials modification

    International Nuclear Information System (INIS)

    Allen, F.I.; Kim, E.; Andresen, N.C.; Grigoropoulos, C.P.; Minor, A.M.

    2017-01-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS_2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS_2 are performed in situ.

  2. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  3. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based

  4. Efficient TEA CO2 laser based coating removal system

    CSIR Research Space (South Africa)

    Prinsloo, FJ

    2007-04-01

    Full Text Available stream_source_info Prinsloo_2007.pdf.txt stream_content_type text/plain stream_size 11617 Content-Encoding UTF-8 stream_name Prinsloo_2007.pdf.txt Content-Type text/plain; charset=UTF-8 Efficient TEA CO2 laser based... by keeping energy density below the damage threshold. The advantage of a pulsed TEA CO2 laser system is that a laser frequency and temporal profile can be chosen to maximize paint removal and concurrently minimize substrate damage. To achieve...

  5. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  6. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  7. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    Science.gov (United States)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  8. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...

  9. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    International Nuclear Information System (INIS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H 2 O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H 2 O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm −1 (1343.3 nm) and 7185.6 cm −1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H 2 O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H 2 O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis

  10. Digital Communication System Based on Polarization Self-Modulation in Lasers

    Science.gov (United States)

    Tabarin, V. A.; Ikonnikov, V. P.; Shatalov, A. N.

    2014-09-01

    Polarization self-modulation in lasers can be used to create instruments for generating optical pulses at very high repetition rates without using high-speed electronics. Self-oscillation is observed when part of the output of a laser is returned to the laser after a 90° polarization change. A practical scheme based on polarization self-modulation in a 3.39-μm helium-neon laser is proposed for pulsed code data transmission with an yttrium-iron garnet magnetooptical Q-switch. Highly efficient transmission of digital signals is implemented with a repetition rate of 75 MHz, equivalent to half the free spectral range of the laser.

  11. Multipurpose 10 in. manipulator-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.; Faulkner, J.; Schmell, R.; Little, D.; Archuleta, T.; Lopez, J.; Velarde, J.; Horton, R.F.

    1999-01-01

    We have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of the hohlraum drive temperature. The telescope is based on the University of Rochester close-quote s 10 in. manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6 mm, have a spatial resolution of 5 - 7 μm per line pair at the object plane, and are optimized for operation at 280 nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM. copyright 1999 American Institute of Physics

  12. Vesicular signalling and immune modulation as hedonic fingerprints

    DEFF Research Database (Denmark)

    Bisgaard, Christina F; Bak, Steffen; Christensen, Trine

    2012-01-01

    versions of DYN1 and GSTO1 potentially accounted for SSRI treatment refraction. In the present study, we searched for new markers of stress reactivity and treatment response as well as any underlying molecular mechanisms correlating to the development of anhedonia and antidepressant therapy refraction. Our...... the chronic mild stress (CMS) model of depression using chronic administration with two selective serotonin reuptake inhibitors (SSRIs), escitalopram and sertraline. We isolated granular cells using Laser-Capture Microdissection (LCM) and we identified their regulated proteins using two-dimensional (2D...... alpha (GDIA) and syntaxin-binding protein 1 (STXB1) were potential markers for stress reactivity. Dynamin 1 (DYN1), glutathione S-transferase omega-1 (GSTO1) and peroxiredoxin (PRDX6) were associated with treatment response. In addition, an imbalance between different post-translationally modified...

  13. Training the Masses ? Web-based Laser Safety Training at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, D D

    2004-12-17

    The LLNL work smart standard requires us to provide ongoing laser safety training for a large number of persons on a three-year cycle. In order to meet the standard, it was necessary to find a cost and performance effective method to perform this training. This paper discusses the scope of the training problem, specific LLNL training needs, various training methods used at LLNL, the advantages and disadvantages of these methods and the rationale for selecting web-based laser safety training. The tools and costs involved in developing web-based training courses are also discussed, in addition to conclusions drawn from our training operating experience. The ILSC lecture presentation contains a short demonstration of the LLNL web-based laser safety-training course.

  14. Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Giuseppe Dionisio

    2018-01-01

    Full Text Available Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc binding proteins in different grain tissues, we microdissected barley grains into (1 seed coats; (2 aleurone/subaleurone; (3 embryo; and (4 endosperm. Initial screening for putative zinc binding proteins from the different tissue types was performed by fractionating proteins according to solubility (Osborne fractionation, and resolving those via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by polyvinylidene fluoride (PVDF membrane blotting and dithizone staining. Selected protein fractions were subjected to Zn2+-immobilized metal ion affinity chromatography, and the captured proteins were identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS. Results: In the endosperm, the most abundant zinc binding proteins were the storage protein B-hordeins, gamma-, and D-hordeins, while in the embryo, 7S globulins storage proteins exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have been captured by Zn-IMAC, and their zinc binding properties in relationship to the possibility of zinc storage is discussed.

  15. High-Rate Data-Capture for an Airborne Lidar System

    Science.gov (United States)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  16. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  17. Research on laser detonation pulse circuit with low-power based on super capacitor

    Science.gov (United States)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  18. OMNIDIRECTIONAL PERCEPTION FOR LIGHTWEIGHT UAVS USING A CONTINUOUSLY ROTATING 3D LASER SCANNER

    Directory of Open Access Journals (Sweden)

    D. Droeschel

    2013-08-01

    Full Text Available Many popular unmanned aerial vehicles (UAV are restricted in their size and weight, making the design of sensory systems for these robots challenging. We designed a small and lightweight continuously rotating 3D laser scanner – allowing for environment perception in a range of 30 m in almost all directions. This sensor it well suited for applications such as 3D obstacle detection, 6D motion estimation, localization, and mapping. We aggregate the distance measurements in a robot-centric grid-based map. To estimate the motion of our multicopter, we register 3D laser scans towards this local map. In experiments, we compare the laser-based ego-motion estimate with ground-truth from a motion capture system. Overall, we can build an accurate 3D obstacle map and can estimate the vehicle's trajectory by 3D scan registration.

  19. Memory-based attention capture when multiple items are maintained in visual working memory.

    Science.gov (United States)

    Hollingworth, Andrew; Beck, Valerie M

    2016-07-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    OpenAIRE

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope...

  1. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Zangeneh, H.R.; Zamanipour, Z.; Davoud-Abadi, Gh.R.

    2008-01-01

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler

  2. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, P. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of)], E-mail: parvin@aut.ac.ir; Jaleh, B. [Physics Department, Bu-Ali Sina University, Postal Code 65174, Hamedan (Iran, Islamic Republic of); Zangeneh, H.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Zamanipour, Z. [Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of); Davoud-Abadi, Gh.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of)

    2008-08-15

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler.

  3. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  4. PEDESTRIAN DETECTION BY LASER SCANNING AND DEPTH IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Barsi

    2016-06-01

    Full Text Available Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events, security (e.g. detecting prohibited baggage in endangered areas and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall.

  5. En Route: next-generation laser-plasma-based electron accelerators

    International Nuclear Information System (INIS)

    Hidding, Bernhard

    2008-05-01

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10 19 W=cm 2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the

  6. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  7. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang; Cao, Zhang [School of Instrument Science and Opto-Electronic Engineering, Beihang University, Beijing 100191 (China); Ministry of Education’s Key Laboratory of Precision Opto-Mechatronics Technology, Beijing 100191 (China); Xue, Xin; Lin, Yuzhen [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  8. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    Science.gov (United States)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  9. Fiber-Based Lasers as an Option for GRACE Follow-On Light Source

    Science.gov (United States)

    Camp, Jordan

    2010-01-01

    Fiber based lasers offer a number of attractive characteristics for space application: state of the art laser technology, leverage of design and reliability from the substantial investments of the telecon industry, and convenient redundancy of higher risk components through fiber splicing. At NASA/Goddard we are currently investigating three GFO fiber-based laser options: a fiber oscillator built in our laboratory; an effort to space qualify a commercial design that uses a proprietary high-gain fiber cavity; and the space qualification of a promising new commercial external cavity laser, notable for its low-mass, compact design. In my talk I will outline these efforts, and suggest that the GFO Project may soon have the option of a US laser vendor for its light source.

  10. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  11. Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.

    Science.gov (United States)

    Nishio, Shin-Ya; Takumi, Yutaka; Usami, Shin-Ichi

    2017-05-01

    Cochlear implantation (CI), which directly stimulates the cochlear nerves, is the most effective and widely used medical intervention for patients with severe to profound sensorineural hearing loss. The etiology of the hearing loss is speculated to have a major influence of CI outcomes, particularly in cases resulting from mutations in genes preferentially expressed in the spiral ganglion region. To elucidate precise gene expression levels in each part of the cochlea, we performed laser-capture micro dissection in combination with next-generation sequencing analysis and determined the expression levels of all known deafness-associated genes in the organ of Corti, spiral ganglion, lateral wall, and spiral limbs. The results were generally consistent with previous reports based on immunocytochemistry or in situ hybridization. As a notable result, the genes associated with many kinds of syndromic hearing loss (such as Clpp, Hars2, Hsd17b4, Lars2 for Perrault syndrome, Polr1c and Polr1d for Treacher Collins syndrome, Ndp for Norrie Disease, Kal for Kallmann syndrome, Edn3 and Snai2 for Waardenburg Syndrome, Col4a3 for Alport syndrome, Sema3e for CHARGE syndrome, Col9a1 for Sticker syndrome, Cdh23, Cib2, Clrn1, Pcdh15, Ush1c, Ush2a, Whrn for Usher syndrome and Wfs1 for Wolfram syndrome) showed higher levels of expression in the spiral ganglion than in other parts of the cochlea. This dataset will provide a base for more detailed analysis in order to clarify gene functions in the cochlea as well as predict CI outcomes based on gene expression data. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Target berthing and base reorientation of free-floating space robotic system after capturing

    Science.gov (United States)

    Xu, Wenfu; Li, Cheng; Liang, Bin; Xu, Yangsheng; Liu, Yu; Qiang, Wenyi

    2009-01-01

    Space robots are playing an increasingly important role in on-orbital servicing, including repairing, refueling, or de-orbiting the satellite. The target must be captured and berthed before the servicing task starts. However, the attitude of the base may lean much and needs re-orientating after capturing. In this paper, a method is proposed to berth the target, and re-orientate the base at the same time, using manipulator motion only. Firstly, the system state is formed of the attitude quaternion and joint variables, and the joint paths are parameterized by sinusoidal functions. Then, the trajectory planning is transformed to an optimization problem. The cost function, defined according to the accuracy requirements of system variables, is the function of the parameters to be determined. Finally, we solve the parameters using the particle swarm optimization algorithm. Two typical cases of the spacecraft with a 6-DOF manipulator are dynamically simulated, one is that the variation of base attitude is limited; the other is that both the base attitude and the joint rates are constrained. The simulation results verify the presented method.

  13. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  14. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  15. Defects in degraded GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tomiya, Shigetaka [Materials Analysis Center, GPS, Sony Corporation, 2-1-1 Shin-sakuragaoka, Hodogaya, Yokohama, Kanagawa, 240-0036 (Japan); Goto, Shu; Takeya, Motonobu; Ikeda, Masao [Development Center, Sony Shiroishi Semiconductor, Inc., 3-53-2 Shiratori, Shiroishi, Miyagi, 989-0734 (Japan)

    2003-11-01

    We investigate degraded GaN-based laser diodes (LDs) fabricated on epitaxial lateral overgrown (ELO) GaN layers using transmission electron microscopy. The dislocation density in the wing region of the ELO is of the order of 10{sup 6}/cm{sup 2} and there are approximately ten threading dislocations in the laser stripe. Neither dislocation multiplication from the threading dislocations nor any structural changes of the threading dislocations were observed in the devices, which were degraded within approximately one hundred hours under 30 mW continuous operation at 25 C. We can, therefore, conclude that degradation in GaN-based LDs is not responsible for the recombination enhanced dislocation motion that is usually observed in zincblende structure-based LDs. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Breakdown plasma and vortex flow control for laser ignition using a combination of nano- and femto-second lasers.

    Science.gov (United States)

    Kojima, Hirokazu; Takahashi, Eiichi; Furutani, Hirohide

    2014-01-13

    The breakdown plasma and successive flow leading to combustion are controlled by the combination of a nano-second Nd:YAG laser and a femto-second Ti:Sapphire (TiS) laser. The behaviors are captured by an intensified charged coupled device (ICCD) camera and a high-speed schlieren optical system. The TiS laser determines the initial position of the breakdown by supplying the initial electrons in the optical axis of focusing YAG laser pulses. We show that the initial position of the breakdown can be controlled by the incident position of the TiS laser. In addition, the ignition lean limit of the flammable mixture changes depending on the TiS laser incident position, which is influenced by hot gas distribution and the flow in the flame kernel.

  17. Laser-based measuring equipment controlled by microcomputer

    International Nuclear Information System (INIS)

    Miron, N.; Sporea, D.; Velculescu, V.G.; Petre, M.

    1988-03-01

    Some laser-based measuring equipment controlled by microcomputer developed for industrial and scientific purposes are described. These equipments are intended for dial indicators verification, graduated rules measurement, and for very accurate measurement of the gravitational constant. (authors)

  18. Optical character recognition of camera-captured images based on phase features

    Science.gov (United States)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  19. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  20. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  1. Laser-based instrumentation for the detection of chemical agents

    International Nuclear Information System (INIS)

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures

  2. MBE System for Antimonide Based Semiconductor Lasers

    National Research Council Canada - National Science Library

    Lester, Luke

    1999-01-01

    .... SLR-770 inductively coupled plasma (ICP) processing system. The SLR-770 has been invaluable in the study of plasma etching of AlGaAsSb and GaSb-materials that form the backbone of antimonide-based semiconductor lasers...

  3. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc [SRI International, Menlo Park, CA (United States)

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  4. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  5. Laser based refurbishment of steel mill components

    CSIR Research Space (South Africa)

    Kazadi, P

    2006-03-01

    Full Text Available Laser refurbishment capabilities were demonstrated and promising results were obtained for repair of distance sleeves, foot rolls, descaler cassette, idler rolls. Based on the cost projections and the results of the in-situ testing, components which...

  6. Laser-based gluing of diamond-tipped saw blades

    Science.gov (United States)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  7. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  8. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  9. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Clement, S.D.; Harling, O.K.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated

  10. Augmented reality in laser laboratories

    Science.gov (United States)

    Quercioli, Franco

    2018-05-01

    Laser safety glasses block visibility of the laser light. This is a big nuisance when a clear view of the beam path is required. A headset made up of a smartphone and a viewer can overcome this problem. The user looks at the image of the real world on the cellphone display, captured by its rear camera. An unimpeded and safe sight of the laser beam is then achieved. If the infrared blocking filter of the smartphone camera is removed, the spectral sensitivity of the CMOS image sensor extends in the near infrared region up to 1100 nm. This substantial improvement widens the usability of the device to many laser systems for industrial and medical applications, which are located in this spectral region. The paper describes this modification of a phone camera to extend its sensitivity beyond the visible and make a true augmented reality laser viewer.

  11. Non-Topographic Space-Based Laser Remote Sensing

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  12. OCTAVIUS: evaluation of flexibility and operability of amine based post combustion CO2 capture at the Brindisi Pilot Plant

    NARCIS (Netherlands)

    Mangiaracina, A.; Zangrilli, L.; Robinson, L.; Kvamsdal, H.M.; Os, P.J. van

    2014-01-01

    Solvent storage is an option for amine based post combustion capture that can be used to de-couple the capture of CO2 and the energy demand of the process. In this process, electricity output of a power station is temporarily increased by diverting steam from the CO2 capture plant back to the steam

  13. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria.

    Science.gov (United States)

    Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin

    2018-02-15

    Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High-speed microjet generation using laser-induced vapor bubbles

    Science.gov (United States)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  15. Applications of optical sensing for laser cutting and drilling.

    Science.gov (United States)

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  16. A laser-based FAIMS detector for detection of ultra-low concentrations of explosives

    Science.gov (United States)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Tugaenko, Anton V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Eugene M.

    2014-06-01

    A non-contact method for analyzing of explosives traces from surfaces was developed. The method is based on the laser desorption of analyzed molecules from the surveyed surfaces followed by the laser ionization of air sample combined with the field asymmetric ion mobility spectrometry (FAIMS). The pulsed radiation of the fourth harmonic of a portable GSGG: Cr3+ :Nd3+ laser (λ = 266 nm) is used. The laser desorption FAIMS analyzer have been developed. The detection limit of the analyzer equals 40 pg for TNT. The results of detection of trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) are presented. It is shown that laser desorption of nitro-compounds from metals is accompanied by their surface decomposition. A method for detecting and analyzing of small concentrations of explosives in air based on the laser ionization and the FAIMS was developed. The method includes a highly efficient multipass optical scheme of the intracavity fourthharmonic generation of pulsed laser radiation (λ = 266 nm) and the field asymmetric ion mobility (FAIM) spectrometer disposed within a resonator. The ions formation and detection proceed inside a resonant cavity. The laser ion source based on the multi-passage of radiation at λ = 266 nm through the ionization region was elaborated. On the basis of the method the laser FAIMS analyzer has been created. The analyzer provides efficient detection of low concentrations of nitro-compounds in air and shows a detection limit of 10-14 - 10-15 g/cm3 both for RDX and TNT.

  17. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  18. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  19. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  20. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  1. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  2. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  3. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  4. The design of laser atmosphere transmission characteristic measurement system based on virtual instrument

    Science.gov (United States)

    Zhang, Laixian; Sun, Huayan; Xu, Jiawen

    2010-10-01

    The laser atmosphere transmission characteristic affects the use of laser in engineering greatly. This paper designed a laser atmosphere transmission characteristic measurement system based on LabVIEW software, a product of NI. The system acquires laser spacial distribution by means of controlling NI image acquisition card and CCD through PCI, controls oscillograph to acquire laser time domain distribution through Ethernet and controls power meter to acquire energy of laser through RS-232. It processes the data acquired and analyses the laser atmosphere transmission characteristic using Matlab, which is powerful in data processing, through software interface. It provided a new way to study the laser atmosphere transmission characteristic.

  5. Nociceptor-Enriched Genes Required for Normal Thermal Nociception

    Directory of Open Access Journals (Sweden)

    Ken Honjo

    2016-07-01

    Full Text Available Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil. Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  6. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  7. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  8. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    Directory of Open Access Journals (Sweden)

    Pavel Pořízka

    2014-09-01

    Full Text Available Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail.

  9. A laser based reusable microjet injector for transdermal drug delivery

    Science.gov (United States)

    Han, Tae-hee; Yoh, Jack J.

    2010-05-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of microscale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 μm and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  10. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  11. Quantum dot laser optimization: selectively doped layers

    Science.gov (United States)

    Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.

    2016-08-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.

  12. Quantum dot laser optimization: selectively doped layers

    International Nuclear Information System (INIS)

    Korenev, Vladimir V; Konoplev, Sergey S; Savelyev, Artem V; Shernyakov, Yurii M; Maximov, Mikhail V; Zhukov, Alexey E

    2016-01-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics. (paper)

  13. Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment

    Directory of Open Access Journals (Sweden)

    Xiaobo Luo

    2017-04-01

    Full Text Available Carbon capture and storage (CCS technology will play a critical role in reducing anthropogenic carbon dioxide (CO2 emission from fossil-fired power plants and other energy-intensive processes. However, the increment of energy cost caused by equipping a carbon capture process is the main barrier to its commercial deployment. To reduce the capital and operating costs of carbon capture, great efforts have been made to achieve optimal design and operation through process modeling, simulation, and optimization. Accurate models form an essential foundation for this purpose. This paper presents a study on developing a more accurate rate-based model in Aspen Plus® for the monoethanolamine (MEA-based carbon capture process by multistage model validations. The modeling framework for this process was established first. The steady-state process model was then developed and validated at three stages, which included a thermodynamic model, physical properties calculations, and a process model at the pilot plant scale, covering a wide range of pressures, temperatures, and CO2 loadings. The calculation correlations of liquid density and interfacial area were updated by coding Fortran subroutines in Aspen Plus®. The validation results show that the correlation combination for the thermodynamic model used in this study has higher accuracy than those of three other key publications and the model prediction of the process model has a good agreement with the pilot plant experimental data. A case study was carried out for carbon capture from a 250 MWe combined cycle gas turbine (CCGT power plant. Shorter packing height and lower specific duty were achieved using this accurate model.

  14. Efficiency of crystalline laser materials based on lanthanides

    International Nuclear Information System (INIS)

    Synek, M.

    1990-01-01

    Lanthanide-based laser-crystal efficiency has been investigated, using the laser-active ions Dy 2+ and Nd 3+ as significant illustrations. Authors' calculations, and various approaches by other authors, are reviewed. In specific examples of treatment, the analytical self-consistent field(SCF) expansion method has been used to calculate accurate ab initio wave functions and energy levels for a number of excited states of Nd 3+ and Dy 2+ , which were investigated for the first time. General group-theoretical principles were considered and the formulae for crystal-field parameters were obtained. The Racah quantum numbers were included in these calculations, in fact showing sizeable energy effects. Oscillator strengths, calculated from the SCF wave functions, revealed which orbitals can be neglected without influencing the transition probability at the fourth significant figure. The relationship to the spectral character of the pumping device was considered. The efficiency parameters (mechanical, economic, and energetic) have to be considered as supplementing the related threshold energy parameter. It would be conceivable to predict the applicability of competing laser systems to a specific task, based on integrated energy pictures. (author). 32 refs., 2 tabs

  15. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  16. Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2017-09-01

    Full Text Available Cellular-based machine-to-machine (M2M communication is expected to facilitate services for the Internet of Things (IoT. However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR scheme to increase the capture probability (thereby increasing the RA success probability even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results.

  17. An evaluation method on seat comfort based on optical motion capture

    Directory of Open Access Journals (Sweden)

    Qing TAO

    2015-10-01

    Full Text Available To research the sitting posture comfort evaluation method, through the example of comfort evaluation of the ergonomic seat and standard office seat, a methodology is introduced to evaluate the sitting posture comfort combining ergonomics theory. The proposed method is based on optical motion capture system, pressure sensor and JACK software, and TRC file is acquired by using EVART real-time capture software for identifying the spatial motion trail of human body. Then MATLAB software is used to analyze the human body motion data, and the sitting posture angle difference data for human body in different seats is acquired. TRC file is loaded into JACK software, and with the TAT REPORTER of JACK software, muscle force, moment of force and fatigue data, etc. are output, which are compared with the actual measured data from experiments, and ergonomics method is used for the evaluation. The result shows that the method of considering joint angles combining JACK software for data output is effective for evaluating sitting comfort.

  18. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  19. Large angle and high linearity two-dimensional laser scanner based on voice coil actuators

    Science.gov (United States)

    Wu, Xin; Chen, Sihai; Chen, Wei; Yang, Minghui; Fu, Wen

    2011-10-01

    A large angle and high linearity two-dimensional laser scanner with an in-house ingenious deflection angle detecting system is developed based on voice coil actuators direct driving mechanism. The specially designed voice coil actuators make the steering mirror moving at a sufficiently large angle. Frequency sweep method based on virtual instruments is employed to achieve the natural frequency of the laser scanner. The response shows that the performance of the laser scanner is limited by the mechanical resonances. The closed-loop controller based on mathematical model is used to reduce the oscillation of the laser scanner at resonance frequency. To design a qualified controller, the model of the laser scanner is set up. The transfer function of the model is identified with MATLAB according to the tested data. After introducing of the controller, the nonlinearity decreases from 13.75% to 2.67% at 50 Hz. The laser scanner also has other advantages such as large deflection mirror, small mechanical structure, and high scanning speed.

  20. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Niidome, Yasuro; Nakazawa, Kohji; Nakashima, Naotoshi

    2011-06-28

    Unique near-IR optical properties of single-walled carbon nanotube (SWNTs) are of interest in many biological applications. Here we describe the selective cell detachment and collection from an SWNT-coated cell-culture dish triggered by near-IR pulse laser irradiation. First, HeLa cells were cultured on an SWNT-coated dish prepared by a spraying of an aqueous SWNT dispersion on a glass dish. The SWNT-coated dish was found to show a good cell adhesion behavior as well as a cellular proliferation rate similar to a conventional glass dish. We discovered, by near-IR pulse laser irradiation (at the laser power over 25 mW) to the cell under optical microscopic observation, a quick single-cell detachment from the SWNT-coated surface. Shockwave generation from the irradiated SWNTs is expected to play an important role for the cell detachment. Moreover, we have succeeded in catapulting the target single cell from the cultured medium when the depth of the medium was below 150 μm and the laser power was stronger than 40 mW. The captured cell maintained its original shape. The retention of the genetic information of the cell was confirmed by the polymerase chain reaction (PCR) technique. A target single-cell collection from a culture medium under optical microscopic observation is significant in wide fields of single-cell studies in biological areas.

  1. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings.

    Directory of Open Access Journals (Sweden)

    Robert Toth

    Full Text Available Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells without the harmful side effects (due to its precise localization. MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a laser-induced shape-based changes, and (b changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1 patient alignment, (2 changes due to surrounding organs such as the bladder and rectum, and (3 changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1 and (2 are first modeled and removed using a finite element model (FEM. A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate

  2. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Science.gov (United States)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  3. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  4. Experimental demonstration of a Fano laser based on photonic crystals

    DEFF Research Database (Denmark)

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten

    2017-01-01

    Conventional semiconductor laser mirrors are based on Fresnel reflection [1], Bragg reflection [2, 3] or total internal reflection [4]. Here we demonstrate a new laser concept using photonic crystals (PhC), with a mirror based on Fano interference between a waveguide continuum and a discrete...... resonance of a nanocavity [5]. We show that the very narrowband feature of the Fano resonance [6] can lead to single mode lasing. In addition, when combined with optical nonlinearity, the highly dispersive feature of the Fano resonance can promote self-pulsations at gigahertz frequencies [7], which...

  5. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  6. A pitfall of glomerular sieving: profibrotic and matrix proteins derive from the Bowman's capsule and not the glomerular tuft in rats with renovascular hypertension.

    Science.gov (United States)

    Steinmetz, O M; Panzer, U; Fehr, S; Meyer-Schwesinger, C; Stahl, R A K; Wenzel, U O

    2007-10-01

    The glomeruli in the non-clipped kidney of rats with 2-kidney, 1-clip hypertension are a classical model for studying the mechanisms of glomerular injury. In the present study, we compared the glomerular expression of PAI-1 and collagen I alpha1 mRNA from glomeruli isolated by the classic technique of sieving with the recently developed technique of tissue laser microdissection. For quantification of mRNA from both methods, real-time PCR was used. Real-time PCR revealed a 9.0 +/- 1.3- and a 7.1 +/- 0.2-fold induction of PAI-1 and collagen I alpha 1, respectively, in the glomeruli from hypertensive rats isolated by sieving. However, in situ hybridization and microdissection revealed that expression of both mRNAs was mainly from the Bowman's capsule and not from the glomerular tuft (10.7 +/- 1.3- and 7.2 +/- 0.6-fold higher induction in whole glomeruli compared with tuft alone). This emphasizes that studies focusing on processes in the mesangium, endothelial cells or podocytes should not rely on glomeruli obtained by sieving. Rather, a technique like the laser microdissection or in situ hybridization should be applied which allows the clear separation of different glomerular and periglomerular compartments.

  7. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    Science.gov (United States)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  8. High-brightness electron beam evolution following laser-based cleaning of a photocathode

    Directory of Open Access Journals (Sweden)

    F. Zhou

    2012-09-01

    Full Text Available Laser-based techniques have been widely used for cleaning metal photocathodes to increase quantum efficiency (QE. However, the impact of laser cleaning on cathode uniformity and thereby on electron beam quality are less understood. We are evaluating whether this technique can be applied to revive photocathodes used for high-brightness electron sources in advanced x-ray free-electron laser (FEL facilities, such as the Linac Coherent Light Source (LCLS at the SLAC National Accelerator Laboratory. The laser-based cleaning was applied to two separate areas of the current LCLS photocathode on July 4 and July 26, 2011, respectively. The QE was increased by 8–10 times upon the laser cleaning. Since the cleaning, routine operation has exhibited a slow evolution of the QE improvement and comparatively rapid improvement of transverse emittance, with a factor of 3 QE enhancement over five months, and a significant emittance improvement over the initial 2–3 weeks following the cleaning. Currently, the QE of the LCLS photocathode is holding constant at about 1.2×10^{-4}, with a normalized injector emittance of about 0.3  μm for a 150-pC bunch charge. With the proper procedures, the laser-cleaning technique appears to be a viable tool to revive the LCLS photocathode. We present observations and analyses for the QE and emittance evolution in time following the laser-based cleaning of the LCLS photocathode, and comparison to the previous studies, the measured thermal emittance versus the QE and comparison to the theoretical model.

  9. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    Science.gov (United States)

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  10. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    Science.gov (United States)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  11. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  12. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  13. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  14. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  15. Reproducibility of Protein Identification of Selected Cell Types in Barrett's Esophagus Analyzed by Combining Laser-Capture Microdissection and Mass Spectrometry

    NARCIS (Netherlands)

    Stingl, Christoph; van Vilsteren, Frederike G. I.; Guzel, Coskun; ten Kate, Fiebo J. W.; Visser, Mike; Krishnadath, Kausilia K.; Bergman, Jacques J.; Luider, Theo M.

    2011-01-01

    Barrett's esophagus (BE) is associated with increased risk of esophageal adenocarcinoma (EAC) and characterized by replacement of normal esophageal squamous epithelium by columnar epithelium. These alterations are also reflected in changes in the protein-expression profiles of the cell types

  16. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  17. In-situ quality monitoring during laser brazing

    Science.gov (United States)

    Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan

    Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.

  18. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  19. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  20. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  1. Nonablative Fractional Laser Resurfacing in Skin of Color: Evidence-based Review.

    Science.gov (United States)

    Kaushik, Shivani B; Alexis, Andrew F

    2017-06-01

    Background: Nonablative laser resurfacing represents one of the major advances in procedural dermatology over the past decade. However, its use in darker skin types is limited by safety concerns and a relative lack of available data. Aim: To provide evidence-based recommendations for the use of fractional lasers in darker skin types. Evidence review: A broad literature search of PubMed/Medline database was conducted in April 2016 using the term fractional lasers. A free text search of keywords including fractional resurfacing, nonablative lasers, skin type, skin of color, ethnic skin, Fitzpatrick skin type, Asian skin, African Americans, Afro-Caribbean, and Hispanics was also executed. An in-depth review of all the relevant articles fitting the authors' inclusion/exclusion criteria was performed. Thereafter, each study was assigned levels of evidence per the Modified Criteria by Oxford Center of Evidence Based Medicine. A recommendation was made for a specific treatment based on the presence of at least one Level 1 study or more than three Level 2 or 3 studies that had concordant results. Findings: The available evidence strongly suggests that fractional lasers are a favorable treatment option for a variety of dermatological diseases in Fitzpatrick skin phototypes IV to VI. Level 1 evidence was found for the use of fractional lasers for treating acne, striae and skin rejuvenation. Level 2 evidence was found for their use in acne scars, melasma, and surgical/traumatic scars. Conclusion: Fractional resurfacing is a safe and efficacious treatment option for various dermatological disorders in darker skin types; however, there is a paucity of high-quality studies involving skin types V and VI.

  2. Past, Present and Future Aspects of Laser-Based Synchronization at FLASH

    OpenAIRE

    Schulz, Sebastian; Bousonville, Michael; Steffen, Bernd; Sydlo, Cezary; Zummack, Falco; Kozak, Tomasz; Predki, Pawel; Kuhl, Alexander; Czwalinna, Marie Kristin; Felber, Matthias; Heuer, Michael; Lamb, Thorsten; Mueller, Jost; Peier, Peter; Ruzin, Sergej

    2013-01-01

    Free-electron lasers, like FLASH and the upcoming European XFEL, are capable of producing XUV and X-ray pulses of a few femtoseconds duration. For time-resolved pump-probe experiments and the externally seeded operation mode it is crucial not only to stabilize the arrival time of the electron bunches, but also to achieve a synchronization accuracy of external lasers on the same timescale. This can only be realized with a laser-based synchronization infrastructure. At FLASH, a periodic femtose...

  3. CYLINDER-BASED SELF-CALIBRATION OF A PANORAMIC TERRESTRIAL LASER SCANNER

    Directory of Open Access Journals (Sweden)

    T. O. Chan

    2012-07-01

    Full Text Available Terrestrial Laser Scanners (TLSs have become state-of-the-art metrological sensors for many surveying purposes in recent years. Due to the demand for high precision surveying with TLSs, efficient, rigorous and in-situ calibration methodologies are always desired. Recent research on in-situ calibration with planar features has demonstrated improved cost-effectiveness and promising results (Glennie and Lichti, 2010; Chow et al., 2011; Chow et al., 2012. However, if there is a need for calibrating the scanners when sufficient plane surfaces with several orientations are not available, as commonly occurs indoors, other common geometric features, namely cylindrical structures, can be used as alternative geometric constraints for in-situ self-calibration. Cylindrical features can be found in indoor environments such as water pipes attached to the walls or suspended from ceilings, concrete pillars, metal poles and many others. In this paper, three 3D models of cylinders, with vertical and horizontal orientations containing one scaling, two rotational and two translational parameters are discussed. The cylinder models are parameterized with the sexternal orientation parameters and the additional parameters as the least-squares functional models for the self-calibration. The selfcalibration is examined with the real data obtained from the Lecia HDS6100 panoramic TLS. The results of vertical, horizontal and mixed cylinder-based calibration with data captured by different scanner position are analysed in detail in terms of the parameters correlations. The results show realistic estimation of calibration parameters for several cases. The results also suggest that using both vertical and horizontal cylinders for the calibration can effectively decorrelate the parameters especially for the case of lack of cylinder point cloud overlap. The concepts developed in this paper might also be extended to the hybrid type TLSs, as well as to the self-calibration of

  4. RADIOMETRIC CALIBRATION OF AIRBORNE LASER SCANNING DATA

    OpenAIRE

    Pilarska Magdalena

    2016-01-01

    Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 106 4 and 1550 nm) th...

  5. An analysis of transient thermal properties for high power GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Seungtaek; Kang, Sung Bok; Kim, Young Jin; Jeong, Hoon; Lee, Kyeongkyun; Kim, Jongseok [Korea Institute of Industrial Technology, 35-3 Hongcheon-Ri, Ipjang-Myeon, Cheonan, Chungnam 331-825 (Korea); Lee, Sangdon; Suh, Dongsik [QSI Co., Ltd., 315-9 Cheonheung-Ri, Sungger-Eup, Cheonan, Chungnam 330-836 (Korea); Yi, Jeong Hoon; Choi, Yoonho; Jung, Seok Gu; Noh, Minsoo [LG Electronics Advanced Research Institute, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (Korea)

    2010-07-15

    Thermal properties of 405 nm GaN-based laser diodes were investigated by employing a transient heating response method based on the temperature dependence of diode forward voltage. Thermal resistances of materials consisting of packaged laser diodes were differentiated in transient thermal response curves at a current below threshold current. With a current above threshold current, no significant change in thermal resistances and difference between junction-up and junction-down laser diodes was observed at pulses shorter than 3 sec. From an analysis with long current injections, thermal resistance of a packaged laser diode with a junction-up bonding was {proportional_to}45 C/W which was higher than that of a junction-down bonded laser diode by {proportional_to}10 C/W. Further analyses based on parameters obtained from voltage recovery curves indicated that the time constant for cooling is directly related to the thermal resistance and thermal capacitance of a laser diode package. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  7. Laser based micro forming and assembly.

    Energy Technology Data Exchange (ETDEWEB)

    MacCallum, Danny O' Neill; Wong, Chung-Nin Channy; Knorovsky, Gerald Albert; Steyskal, Michele D.; Lehecka, Tom (Pennsylvania State University, Freeport, PA); Scherzinger, William Mark; Palmer, Jeremy Andrew

    2006-11-01

    It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

  8. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

    International Nuclear Information System (INIS)

    Pandeya, G.D.; Klaessens, J.H.G.M.; Greuter, M.J.W.; Oudkerk, M.; Schmidt, B.; Flohr, T.; Hillegersberg, R. van

    2011-01-01

    To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All tissues were imaged at least once before and 7 times during laser heating using CT and temperatures were simultaneously measured with 5 calibrated thermal sensors. The dependency of the average CT numbers as a function of temperature was analysed with regression analysis and a CT thermal sensitivity was derived. During laser heating, the growing hypodense area was observed around the laser source and that area showed an increase as a function of time. The formation of hypodense area was caused by declining in CT numbers at increasing temperatures. The regression analysis showed an inverse linear dependency between temperature and average CT number with -0.65 ± 0.048 HU/ C (R 2 = 0.75) for the range of 18-85 C in bovine liver. The non-invasive CT based thermometry during interstitial laser heating is feasible in the bovine liver. CT based thermometry could be further developed and may be of potential use during clinical LITT of the liver. (orig.)

  9. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.

    Science.gov (United States)

    Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki

    2016-04-01

    A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.

  11. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    Science.gov (United States)

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  12. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  13. CO2 capture from power plants. Part I : A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, M. R. M.; Schneiders, L. H. J.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F.

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  14. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, Mohammad R.M.; Schneiders, Léon H.J.; Niederer, John; Feron, Paul H.M.; Versteeg, Geert

    2007-01-01

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  15. Hydrate-based technology for CO2 capture from fossil fuel power plants

    International Nuclear Information System (INIS)

    Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhao, Yuechao; Ruan, Xuke; Zhang, Yi; Wang, Shanrong

    2014-01-01

    Graphical abstract: Application of hydrate based technology on carbon dioxide capture and storage (CCS). - Highlights: • Hydrate-based CO 2 –N 2 separation data was obtained for flow in porous media. • Tetrahydrofuran and sodium dodecyl sulphate are used as additives simultaneously. • Solution movement rarely occurs when residual solution saturations are low. • Bothe of pressure and temperature have remarkable impacts on gas compositions. • A suitable operation parameter choice is proposed for hydrate-based CO 2 capture. - Abstract: Hydrate-based CO 2 capture is a promising technology. To obtain fundamental data for a flowing system, we measured the distribution of pore solution to analyse hydrate formation/dissociation and gas separation properties. An orthogonal experiment was carried out to investigate the effects of glass beads, flow rates, pressures and temperatures on it. Magnetic resonance imaging (MRI) images were obtained using a spin echo multi-slice pulse sequence. Hydrate saturations were calculated quantitatively using an MRI mean intensity. The results show that hydrate blockages were frequently present. During the hydrate formation and dissociation process, the movement of the solution occurred in cycles. However, the solution movement rarely occurred for residual solution saturations obtained with a high backpressure. The solution concentrate phenomenon occurred mostly in BZ-04. The highest hydrate saturation was 30.2%, and the lowest was 0.70%. Unlike that in BZ-01, there was no stability present in BZ-02 and BZ-04. The different CO 2 concentrations for the three processes of each cycle verified hydrate formation during the gas flow process. The highest CO 2 concentration was 38.8%, and the lowest one was 11.4%. To obtain high hydrate saturation and good separation effects, the values of 5.00 MPa, 1.0 ml min −1 and 280.00 K were chosen. For the gas flow process, only the pressure had a significant impact on gas composition, and all

  16. Control of Reproduced Colour Using Laser Based Tristimulus Colorimetry

    OpenAIRE

    Oulton, David

    1999-01-01

    Tristimulus colorimetry based laser line reflectance measurement is proposed and exemplified by the construction and testing of a prototype abridged spectrometer.The intent is to enable rugged on-line colour measurement and improve on the instrument to instrument variability that is characteristic of filter based spectrometry

  17. Modeling of photoluminescence in laser-based lighting systems

    Science.gov (United States)

    Chatzizyrli, Elisavet; Tinne, Nadine; Lachmayer, Roland; Neumann, Jörg; Kracht, Dietmar

    2017-12-01

    The development of laser-based lighting systems has been the latest step towards a revolution in illumination technology brought about by solid-state lighting. Laser-activated remote phosphor systems produce white light sources with significantly higher luminance than LEDs. The weak point of such systems is often considered to be the conversion element. The high-intensity exciting laser beam in combination with the limited thermal conductivity of ceramic phosphor materials leads to thermal quenching, the phenomenon in which the emission efficiency decreases as temperature rises. For this reason, the aim of the presented study is the modeling of remote phosphor systems in order to investigate their thermal limitations and to calculate the parameters for optimizing the efficiency of such systems. The common approach to simulate remote phosphor systems utilizes a combination of different tools such as ray tracing algorithms and wave optics tools for describing the incident and converted light, whereas the modeling of the conversion process itself, i.e. photoluminescence, in most cases is circumvented by using the absorption and emission spectra of the phosphor material. In this study, we describe the processes involved in luminescence quantum-mechanically using the single-configurational-coordinate diagram as well as the Franck-Condon principle and propose a simulation model that incorporates the temperature dependence of these processes. Following an increasing awareness of climate change and environmental issues, the development of ecologically friendly lighting systems featuring low power consumption and high luminous efficiency is imperative more than ever. The better understanding of laser-based lighting systems is an important step towards that aim as they may improve on LEDs in the near future.

  18. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics

    Directory of Open Access Journals (Sweden)

    Marion Semmler

    2017-06-01

    Full Text Available Recently, we reported on the in vivo application of a miniaturized measuring device for 3D visualization of the superior vocal fold vibrations from high-speed recordings in combination with a laser projection unit (LPU. As a long-term vision for this proof of principle, we strive to integrate the further developed laserendoscopy as a diagnostic method in daily clinical routine. The new LPU mainly comprises a Nd:YAG laser source (532 nm/CW/2 ω and a diffractive optical element (DOE generating a regular laser grid (31 × 31 laser points that is projected on the vocal folds. By means of stereo triangulation, the 3D coordinates of the laser points are reconstructed from the endoscopic high-speed footage. The new design of the laserendoscope constitutes a compromise between robust image processing and laser safety regulations. The algorithms for calibration and analysis are now optimized with respect to their overall duration and the number of required interactions, which is objectively assessed using binary classifiers. The sensitivity and specificity of the calibration procedure are increased by 40.1% and 22.3%, which is statistically significant. The overall duration for the laser point detection is reduced by 41.9%. The suggested semi-automatic reconstruction software represents an important stepping-stone towards potential real time processing and a comprehensive, objective diagnostic tool of evidence-based medicine.

  19. Cascade Type-I Quantum Well GaSb-Based Diode Lasers

    Directory of Open Access Journals (Sweden)

    Leon Shterengas

    2016-05-01

    Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.

  20. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  1. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  2. Resonator design and performance estimation for a space-based laser transmitter

    Science.gov (United States)

    Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.

    2006-12-01

    Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.

  3. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  4. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  5. Designing and testing a laser-based vibratory sensor

    Science.gov (United States)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  6. Competency-Based Curriculum Guide for Laser Technology. September 1980-June 1981.

    Science.gov (United States)

    Fioroni, John J.

    This document contains materials developed by a project to provide a competency-based curriculum guide for laser technology at the community college level. An abstract of the final report is included. Next, the 17 job competencies determined as necessary to meet the job description of laser technician are listed. A career ladder and qualifications…

  7. Development of procedures for spectrometer brand Spectral Products to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada

    International Nuclear Information System (INIS)

    Arias Avendano, Fabio Andres

    2008-01-01

    The procedure to capture spectra of incoherent optical radiation for the Laboratorio de Fotonica y Tecnologia Laser Aplicada (LAFTLA), of the Escuela de Ingenieria Electrica de la Universidad de Costa Rica is developed through the use of a spectrometer brand Spectral Products. The thorough understanding of manuals spectrometer brand Spectral Products was necessary for the satisfactory development of the project. Spectrometer and the card National Instruments are installed and run both devices with a montage of suitable laboratory. Two catches of spectrum for two different sources of optical radiation are performanced, since damages to the files .ddl precluded that the SM 240 spectrometer worked properly to take more catches to other sources of optical radiation. A final report containing the two catches is produced with the respective analysis. (author) [es

  8. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  9. ERα and ERK1/2 MAP kinase expression in microdissected stromal and epithelial endometrial cells

    Directory of Open Access Journals (Sweden)

    Said Abu Alkhair Mohamed

    2014-03-01

    Total and phosphorylated levels for ERK1/2 and ERα were measured by quantitation of signals from Western blots using specific antibodies against the active and total forms of ERK1/2 and against ERα. When the level of the proteins was quantitated and normalized to β actin from microdissected stroma and epithelium, no significant difference was detected in the levels of these proteins between the two tissue compartments. There was a trend toward higher expression in the stroma vs. epithelium, respectively (active ERK1/2 0.45 ± 0.17 vs. 0.2 ± 0.65; total ERK1/2 0.54 ± 0.35 vs. 0.28 ± 0.23; ERα 0.82 ± 0.28 vs. 0.54 ± 0.18; n = 6. These data demonstrate that there are comparable levels of ERα (P = 0.41, total ERK1/2 (P = 0.18 and active ERK1/2 (P = 0.13 in the stroma and epithelium of proliferative phase endometrium with a trend toward higher expression of these proteins in the stromal compartment.

  10. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  11. Risk Factors for Retreatment Following Myopic LASIK with Femtosecond Laser and Custom Ablation for the Treatment of Myopia.

    Science.gov (United States)

    Kruh, Jonathan N; Garrett, Kenneth A; Huntington, Brian; Robinson, Steve; Melki, Samir A

    2017-01-01

    To identify risks factors for retreatment post-laser in situ keratomeliusis (LASIK). A retrospective chart review from December 2008 to September 2012 identified 1,402 patients (2,581 eyes) that underwent LASIK treatment for myopia with the Intralase™ FS, STAR S4 IR™ Excimer Laser, and WaveScan WaveFront™ technology. In this group, 83 patients were retreated. All charts were reviewed for preoperative age, gender, initial manifest refraction spherical equivalent (MRSE), total astigmatism, and iris registration. Increased incidence rates of retreatment post-LASIK were preoperative age >40 years (p -3.0 D (p = 0.02), and astigmatism >1D (p = 0.001). Iris registration capture did not significantly reduce the retreatment rate (p = 0.12). Risk factors for retreatment included preoperative age >40 years, initial MRSE > -3.0 D, and astigmatism >1D. There was no difference in retreatment rate for patients based on gender or iris registration capture.

  12. Implementation of the laser-based femtosecond precision synchronization system at FLASH

    International Nuclear Information System (INIS)

    Schulz, Sebastian

    2011-05-01

    FLASH, the high-gain free-electron laser (FEL) in Hamburg, enables the generation of light pulses with wavelengths in the soft X-ray region and durations down to a few femtoseconds. To fully exploit this capability in time-resolved pump-probe experiments, and for the projected externally seeded operation, the critical components of the accelerator and several external laser systems have to be synchronized with a temporal accuracy at least in the same order of magnitude. This can not be realized purely with established RF-based systems and therefore, an optical, laser-based synchronization system is required. In this thesis, the optical synchronization system of FLASH has been, based on previous successful proof-of-principle experiments, massively extended. One major topic is the comprehensive characterization of the timing reference of the system and a comparison of different types of such master laser oscillators, as well as studies on their short- and long-term stability. Similar investigations have been carried out for the upgraded and newly installed length-stabilized fiber links, which connect the remote locations at the accelerator to the optical timing reference. The successful demonstration of an all-optical synchronization of a Ti:sapphire oscillator with sub-10 femtosecond timing jitter and the connection of the photo injector laser system to the synchronization system mark further important key experiments of this thesis. The robustness of the actual implementations played a key role, as the synchronization system forms the basis for the future, operator-friendly arrival time feedback.

  13. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    Science.gov (United States)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  14. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    Science.gov (United States)

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  15. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  16. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    Science.gov (United States)

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  17. Laser-based sensor for a coolant leak detection in a nuclear reactor

    Science.gov (United States)

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  18. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    International Nuclear Information System (INIS)

    Sirotkin, A A; Garnov, Sergei V; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Vlasov, V I; Shcherbakov, Ivan A

    2009-01-01

    The luminescent and lasing properties of the neo-dymium ion at the 4 F 3/2 - 4 I 11/2 transition in c-cut vanadate crystals (Nd:YVO 4 , Nd:GdVO 4 , and Nd:Gd 1-x Y x VO 4 ) are studied. Tuning of the laser radiation wavelength (Δλ = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO 4 crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  19. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  20. Quantitative analysis of chromium concentration in nickel based alloys by laser induced breakdown spectroscopy at atmospheric pressure using a nanosecond ultraviolet Nd:YAG laser

    International Nuclear Information System (INIS)

    Gupta, G.P.; Suri, B.M.; Verma, A.; Sundararaman, M.; Unnikrishnan, V.K.; Alti, K.; Kartha, V.B.; Santhosh, C.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been well recognized as a simple, fast and direct analytical technique of elemental analysis of multi-element materials by a number of research groups all over the world. It is based on the focusing of a high-power pulsed laser beam with a power density > 100 MW/cm 2 onto a sample surface followed by optical emission spectroscopy of the plasma produced over the surface. In the present work, they have carried out the quantitative analysis of chromium in nickel-based-alloys using laser-induced breakdown spectroscopy (LIBS) in air at atmospheric pressure. In the present work the quantitative analysis of chromium in nickel-based-alloys using laser-induced break-down spectroscopy (LIBS) in air at atmospheric pressure has been carried out

  1. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  2. Integrated vision-based GNC for autonomous rendezvous and capture around Mars

    Science.gov (United States)

    Strippoli, L.; Novelli, G.; Gil Fernandez, J.; Colmenarejo, P.; Le Peuvedic, C.; Lanza, P.; Ankersen, F.

    2015-06-01

    Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end-to-end simulator, in a real-time avionics-representative test bench and, finally, in a dynamic HW in the loop test bench for assessing the feasibility, performances and figure of merits of the baseline approach defined during the MSRO study, for both nominal and contingency scenarios. The on-board software (OBSW) is tailored to work with the sensors, actuators and orbits baseline proposed in MSRO. The whole rendezvous is based on optical navigation, aided by RF-Doppler during the search and first orbit determination of the orbiting sample. The simulated rendezvous phase includes also the non-linear orbit synchronization, based on a dedicated non-linear guidance algorithm robust to Mars ascent vehicle (MAV) injection accuracy or MAV failures resulting in elliptic target orbits. The search phase is very demanding for the image processing (IP) due to the very high visual magnitude of the target wrt. the stellar background, and the attitude GNC requires very high pointing stability accuracies to fulfil IP constraints. A trade-off of innovative, autonomous navigation filters indicates the unscented Kalman filter (UKF) as the approach that provides the best results in terms of robustness, response to non-linearities and performances compatibly with computational load. At short range, an optimized IP based on a convex hull algorithm has been developed in order to guarantee LoS and range measurements from hundreds of metres to capture.

  3. Simultaneous multi-state stimulated emission in quantum dot lasers: experiment and analytical approach

    Science.gov (United States)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.; Shernyakov, Yu. M.

    2012-06-01

    The theoretical investigation of the double-state lasing phenomena in InAs/InGaAs quantum dot lasers has been carried out. The new mechanism of the ground-state lasing quenching, which takes place in quantum dot (QD) laser operating in double-state lasing regime at high pump level, was proposed. The difference between electron and hole capture rates causes the depletion of the hole levels and consequently leads to the decrease of an output lasing power via QD ground state with the growth of injection. Moreover, it was shown that the hole-to-electron capture rates ratio strongly affects both the light-current curve and the key laser parameters. The model of the simultaneous lasing through the ground and excited QD states was developed which allows to describe the observed quenching quantitatively.

  4. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz , M.; Pelletier , J.; Vannes , A.; Bignonnet , A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  5. Optically-Based Diagnostics for Gas-Phase Laser Development

    Science.gov (United States)

    2010-08-01

    Laser (COIL), Electric Oxygen Iodine Laser (EOIL), Diode-Pumped Alkali Laser (DPAL), and Exciplex Alkali Laser (XPAL). The papers at this Symposium... exciplex -assisted absorption and laser-induced fluorescence, and multi-photon excitation of infrared atomic alkali transitions.11,12 In this paper... EXCIPLEX LASER SYSTEMS Proper review and discussion of the DPAL and XPAL laser systems can be found elsewhere,11,12 and in the paper by Carroll and

  6. Application of a Chilled Ammonia-based Process for CO2 Capture to Cement Plants

    NARCIS (Netherlands)

    Pérez-Calvo, José Francisco; Sutter, Daniel; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    The chilled ammonia process (CAP) is considered one of the most promising alternatives to amine-based absorption processes for post-combustion carbon capture applied to power plants. This work provides an insight on the CAP adaptations required to meet the conditions found in the flue gas emitted in

  7. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    Science.gov (United States)

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  8. Analysis of laser remote fusion cutting based on a mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R. S. [Department of Engineering Sciences and Mathematics, Luleå University of Technology, S-971 87 Luleå (Sweden); Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul (Iraq); Ilar, T.; Kaplan, A. F. H. [Department of Engineering Sciences and Mathematics, Luleå University of Technology, S-971 87 Luleå (Sweden)

    2013-12-21

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

  9. Analysis of laser remote fusion cutting based on a mathematical model

    International Nuclear Information System (INIS)

    Matti, R. S.; Ilar, T.; Kaplan, A. F. H.

    2013-01-01

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too

  10. Creating compact and microscale features in paper-based devices by laser cutting.

    Science.gov (United States)

    Mahmud, Md Almostasim; Blondeel, Eric J M; Kaddoura, Moufeed; MacDonald, Brendan D

    2016-11-14

    In this work we describe a fabrication method to create compact and microscale features in paper-based microfluidic devices using a CO 2 laser cutting/engraving machine. Using this method we are able to produce the smallest features with the narrowest barriers yet reported for paper-based microfluidic devices. The method uses foil backed paper as the base material and yields inexpensive paper-based devices capable of using small fluid sample volumes and thus small reagent volumes, which is also suitable for mass production. The laser parameters (power and laser head speed) were adjusted to minimize the width of hydrophobic barriers and we were able to create barriers with a width of 39 ± 15 μm that were capable of preventing cross-barrier bleeding. We generated channels with a width of 128 ± 30 μm, which we found to be the physical limit for small features in the chromatography paper we used. We demonstrate how miniaturizing of paper-based microfluidic devices enables eight tests on a single bioassay device using only 2 μL of sample fluid volume.

  11. 2.3 µm laser potential of TeO2 based glasses

    Science.gov (United States)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  12. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  13. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table

  14. Vendor-based laser damage metrology equipment supporting the National Ignition Facility

    International Nuclear Information System (INIS)

    Campbell, J. H; Jennings, R. T.; Kimmons, J. F.; Kozlowski, M. R.; Mouser, R. P.; Schwatz, S.; Stolz, C. J.; Weinzapfel, C. L.

    1998-01-01

    A sizable laser damage metrology effort is required as part of optics production and installation for the 192 beam National Ignition Facility (NIF) laser. The large quantities, high damage thresholds, and large apertures of polished and coated optics necessitates vendor-based metrology equipment to assure component quality during production. This equipment must be optimized to provide the required information as rapidly as possible with limited operator experience. The damage metrology tools include: (1) platinum inclusion damage test systems for laser amplifier slabs, (2) laser conditioning stations for mirrors and polarizers, and (3) mapping and damage testing stations for UV transmissive optics. Each system includes a commercial Nd:YAG laser, a translation stage for the optics, and diagnostics to evaluate damage. The scanning parameters, optical layout, and diagnostics vary with the test fluences required and the damage morphologies expected. This paper describes the technical objectives and milestones involved in fulfilling these metrology requirements

  15. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus.

    Science.gov (United States)

    Ginsberg, Stephen D; Che, Shaoli

    2004-08-01

    The use of five histochemical stains (cresyl violet, thionin, hematoxylin & eosin, silver stain, and acridine orange) was evaluated in combination with an expression profiling paradigm that included regional and single cell analyses within the hippocampus of post-mortem human brains and adult mice. Adjacent serial sections of human and mouse hippocampus were labeled by histochemistry or neurofilament immunocytochemistry. These tissue sections were used as starting material for regional and single cell microdissection followed by a newly developed RNA amplification procedure (terminal continuation (TC) RNA amplification) and subsequent hybridization to custom-designed cDNA arrays. Results indicated equivalent levels of global hybridization signal intensity and relative expression levels for individual genes for hippocampi stained by cresyl violet, thionin, and hematoxylin & eosin, and neurofilament immunocytochemistry. Moreover, no significant differences existed between the Nissl stains and neurofilament immunocytochemistry for individual CA1 neurons obtained via laser capture microdissection. In contrast, a marked decrement was observed in adjacent hippocampal sections stained for silver stain and acridine orange, both at the level of the regional dissection and at the CA1 neuron population level. Observations made on the cDNA array platform were validated by real-time qPCR using primers directed against beta-actin and glyceraldehyde-3 phosphate dehydrogenase. Thus, this report demonstrated the utility of using specific Nissl stains, but not stains that bind RNA species directly, in both human and mouse brain tissues at the regional and cellular level for state-of-the-art molecular fingerprinting studies.

  16. Thermal crosstalk in arrays of III-N-based Lasers

    International Nuclear Information System (INIS)

    Kuc, Maciej; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-01-01

    This paper presents a 3D comprehensive thermal-electrical self-consistent model of the continuous-wave (CW) operation of one-dimensional arrays of III-N-based laser diodes at room-temperature (RT). Their performance is mostly limited by thermal processes, in particular by thermal crosstalk between array emitters. Based on data collected from a range of secondary sources, the temperature dependence of the thermal and electrical conductivities of III-N materials used to manufacture nitride-based devices is shown to be a function of the thickness, aluminum mole fractions and Si- and Mg-doping levels of the nitride layers. The impact of substrate width and thickness on increasing the efficiency of heat-flux transport and reducing thermal crosstalk is investigated. As expected, the application of a top-mounted diamond heat spreader was found to have considerable influence on the thermal crosstalk between array emitters, enabling the RT CW operation of laser diode arrays with additional emitters

  17. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  18. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  19. All-polarization maintaining erbium fiber laser based on carbon nanowalls saturable absorber

    Science.gov (United States)

    Kurata, Shintaro; Izawa, Jun; Kawaguchi, Norihito

    2018-02-01

    We report a soliton mode locked femtosecond oscillation with all-polarization maintaining erbuim doped fiber laser based on Carbon Nanowalls saturable absorber (CNWs SA). To improve the stability and the capability of the oscillator, the all-polarization maintaining(all-PM) fiber is generally used since PM fiber is tolerant of stretches and bends. The saturable absorber is an optical device that placed in a laser cavity to suppress continuous wave operation to promote cooperation between many modes to sustain ultrashort pulse operation. We apply CNWs for the material of SAs in our oscillator. CNWs are one of the nanocarbon materials, which are a high-aspect-ratio structure in the cross-section, where, although their width and height range in a few micrometers, the thickness is as small as ten nanometers or so. A sheet of CNWs is made up of nano-size graphite grain aggregates. Then CNWs structure is expected to have a high absorption to the incident light and large modulation depth due to a small number of carbon layers as well as CNT and Graphene. With this all-PM fiber laser oscillator based on CNWs SA, the soliton mode-locked laser oscillated with 66.3MHz repetition frequency and its spectrum width is 5.6nm in FWHM. Average output power is 8.1mW with 122.5mW laser diode pump power. In addition, the laser amplification system with erbium-doped fiber is constructed and amplifies the femtosecond pulse laser into 268.2mW and 3000mW pumping power.

  20. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    Science.gov (United States)

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  1. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  2. Space base laser torque applied on LEO satellites of various geometries at satellite’s closest approach

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2013-12-01

    Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.

  3. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    Science.gov (United States)

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  4. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    Science.gov (United States)

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  5. Laser-plasma accelerator-based single-cycle attosecond undulator source

    Science.gov (United States)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  6. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  7. Fundamentals of metasurface lasers based on resonant dark states

    International Nuclear Information System (INIS)

    Droulias, Sotiris; Technology - Hellas; Jain, Aditya; Koschny, Thomas; Soukoulis, Costas M.; Technology - Hellas; Ames Laboratory and Iowa State University, Ames, IA

    2017-01-01

    Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, such as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.

  8. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  9. Prototype of an energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general mask based laser material processing (MBLMP) is a process which suffers from a low energy efficiency, because the majority of the laser light is absorbed in or reflected by the mask. We have developed a device called an energy enhancer which is capable of improving the energy efficienc...... component reflectivity and alignment sensitivity are investigated in order to evaluate the possibility of making commercial use of the device. The obtainable image quality and how this is influenced by the focusing and imaging system is discussed in some detail....... by a factor of 2 - 4 for a typical TEA-CO2 system for mask based laser marking. A simple ray-tracing model has been built in order to design and optimise the energy enhancer. Thus we present experimental results as well as simulations and show fine accordance between the two. Important system parameters like...

  10. Multiplatform Mobile Laser Scanning: Usability and Performance

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2012-08-01

    Full Text Available Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  11. Physics and engineering of compact quantum dot-based lasers for biophotonics

    CERN Document Server

    Rafailov, Edik U

    2013-01-01

    Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

  12. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  13. Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers

    Science.gov (United States)

    Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.

    2018-02-01

    Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system

  14. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    International Nuclear Information System (INIS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-01-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected. (papers)

  15. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    Science.gov (United States)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  16. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the

  17. Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

    DEFF Research Database (Denmark)

    Piels, Molly; Iglesias Olmedo, Miguel; Xue, Weiqi

    2015-01-01

    We formulate a semiconductor laser rate equationbased approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser...... characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber...

  18. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  19. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  20. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  1. Laser tattoo removal as an ablation process monitored by acoustical and optical methods

    Science.gov (United States)

    Cencič, Boris; Gregorčič, Peter; Možina, Janez; Jezeršek, Matija

    2013-07-01

    Strength of the laser-tissue interaction varies even within a single tattoo because of the inhomogeneous distribution of the tattoo pigment embedded in the skin. A monitoring system is therefore developed for simultaneous monitoring of the laser tattoo removal process based on acoustical and optical techniques. A laser-beam-deflection probe is used for measuring the acoustical signals accompanying the breakdown, and a CCD camera captures the level and the spatial distribution of the plasma radiation. Using these methods we examine the degree of excitation-pulse absorption within the pigment and the degree of the structural changes of the skin. A Nd:YAG laser with a top-hat beam profile, designed for tattoo removal, is used as the excitation source in our experiments. Special attention is given to structural changes in the skin, which depend on the applied fluence. Tattoo removal with multiple pulses is also analyzed. Experiments are made in vitro (skin phantoms) and ex vivo (marking tattoos on the pig skin). The presented results are important for the understanding and optimization of the process used in medical therapies.

  2. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  3. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  4. Secondary scattering on the intensity dependence of the capture velocity in a magneto-optical trap

    International Nuclear Information System (INIS)

    Loos, M.R.; Massardo, S.B.; Zanon, R.A. de S; Oliveira, A.L. de

    2005-01-01

    In this work, we consider a three-dimensional model to simulate the capture velocity behavior in a sample of cold-trapped sodium atoms as a function of the trapping laser intensity. We expand on previous work [V. S. Bagnato, L. G. Marcassa, S. G. Miranda, S. R. Muniz, and A. L. de Oliveira, Phys. Rev. A 62, 013404 (2000)] by calculating the capture velocity over a broad range of light intensities considering the secondary scattering in a magneto-optical trap. Our calculations are in a good agreement with recent measured values [S. R. Muniz et al., Phys. Rev. A 65, 015402 (2001)

  5. Secondary scattering on the intensity dependence of the capture velocity in a magneto-optical trap

    Science.gov (United States)

    Loos, M. R.; Massardo, S. B.; de S. Zanon, R. A.; de Oliveira, A. L.

    2005-08-01

    In this work, we consider a three-dimensional model to simulate the capture velocity behavior in a sample of cold-trapped sodium atoms as a function of the trapping laser intensity. We expand on previous work [V. S. Bagnato, L. G. Marcassa, S. G. Miranda, S. R. Muniz, and A. L. de Oliveira, Phys. Rev. A 62, 013404 (2000)] by calculating the capture velocity over a broad range of light intensities considering the secondary scattering in a magneto-optical trap. Our calculations are in a good agreement with recent measured values [S. R. Muniz , Phys. Rev. A 65, 015402 (2001)].

  6. Capturing CO2: conventional versus ionic-liquid based technologies

    International Nuclear Information System (INIS)

    Privalova, E I; Mäki-Arvela, P; Murzin, Dmitry Yu; Mikkhola, J P

    2012-01-01

    Since CO 2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO 2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging 'green' solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO 2 capture is provided. The bibliography includes 136 references.

  7. Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2014-01-01

    Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.

  8. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an excellent tool for imaging the gastrointestinal tract, as well as surrounding structures. EUS-guided fine-needle aspiration (EUS-FNA) has become the standard of care for the tissue sampling of a variety of masses and lymph nodes within and around...... the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  9. Indirect measurement of molten steel level in tundish based on laser triangulation

    Science.gov (United States)

    Su, Zhiqi; He, Qing; Xie, Zhi

    2016-03-01

    For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.

  10. Indirect measurement of molten steel level in tundish based on laser triangulation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhiqi; He, Qing, E-mail: heqing@ise.neu.edu.cn; Xie, Zhi [State Key Laboratory of Synthetical Automation for Process Industries, School of Information Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2016-03-15

    For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.

  11. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-(micro)m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  12. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review

    Science.gov (United States)

    Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao

    2018-06-01

    The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

  13. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  14. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  15. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  16. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    Science.gov (United States)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  17. Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks

    OpenAIRE

    Laine, Samuli; Karras, Tero; Aila, Timo; Herva, Antti; Saito, Shunsuke; Yu, Ronald; Li, Hao; Lehtinen, Jaakko

    2016-01-01

    We present a real-time deep learning framework for video-based facial performance capture -- the dense 3D tracking of an actor's face given a monocular video. Our pipeline begins with accurately capturing a subject using a high-end production facial capture pipeline based on multi-view stereo tracking and artist-enhanced animations. With 5-10 minutes of captured footage, we train a convolutional neural network to produce high-quality output, including self-occluded regions, from a monocular v...

  18. Calibration method for a vision guiding-based laser-tracking measurement system

    International Nuclear Information System (INIS)

    Shao, Mingwei; Wei, Zhenzhong; Hu, Mengjie; Zhang, Guangjun

    2015-01-01

    Laser-tracking measurement systems (laser trackers) based on a vision-guiding device are widely used in industrial fields, and their calibration is important. As conventional methods typically have many disadvantages, such as difficult machining of the target and overdependence on the retroreflector, a novel calibration method is presented in this paper. The retroreflector, which is necessary in the normal calibration method, is unnecessary in our approach. As the laser beam is linear, points on the beam can be obtained with the help of a normal planar target. In this way, we can determine the function of a laser beam under the camera coordinate system, while its corresponding function under the laser-tracker coordinate system can be obtained from the encoder of the laser tracker. Clearly, when several groups of functions are confirmed, the rotation matrix can be solved from the direction vectors of the laser beams in different coordinate systems. As the intersection of the laser beams is the origin of the laser-tracker coordinate system, the translation matrix can also be determined. Our proposed method not only achieves the calibration of a single laser-tracking measurement system but also provides a reference for the calibration of a multistation system. Simulations to evaluate the effects of some critical factors were conducted. These simulations show the robustness and accuracy of our method. In real experiments, the root mean square error of the calibration result reached 1.46 mm within a range of 10 m, even though the vision-guiding device focuses on a point approximately 5 m away from the origin of its coordinate system, with a field of view of approximately 200 mm  ×  200 mm. (paper)

  19. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    International Nuclear Information System (INIS)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-01-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansion and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.

  20. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator