WorldWideScience

Sample records for largest area detectors

  1. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  2. Television area detectors

    International Nuclear Information System (INIS)

    Arndt, V.W.

    1977-01-01

    This paper discusses the use of standard television camera tubes as X-ray detectors in X-ray diffraction studies. Standard tubes can be modified to detect X rays by depositing an external X-ray phosphor on the fibre optics face plate either of a highly sensitive television camera tube or of an image intensifier coupled to a camera tube. The author considers various X-ray phosphors and concludes that polycrystalline silver activated ZnS is most suitable for crystallographic applications. In the following sections various types of television camera tubes with adequate light sensitivity for use in an X-ray detection system are described, and also three types of image intensifiers. The digitization of the television output signals and their statistical precision are discussed and the electronic circuitry for the detector system is briefly described. (B.D.)

  3. Small area detectors at the European XFEL

    Science.gov (United States)

    Turcato, M.; Gessler, P.; Hauf, S.; Kuster, M.; Meyer, M.; Nordgren, J.; Sztuk-Dambietz, J.; Youngman, C.

    2014-05-01

    The detectors to be used at the European XFEL have to deal with the unique time structure of the machine, delivering up to 2700 pulses, with a repetition rate of 4.5 MHz, ten times per second, the very high photon flux and the need to combine single-photon sensitivity and a large dynamic range. This represents a challenge not only for the large-area 2D imaging detectors but also for the smaller-area detectors and makes the use of standard commercial devices impossible. Dedicated solutions are therefore envisaged for small imaging- or strip-detectors. In this contribution the focus is put on two particular small-area detector solutions which are planned to be used at the European XFEL, a strip detector for hard X-rays (with energy 3 < E < 25 keV) and an imaging detector for soft X-rays (0.25 < E < 3 keV). Hard X-rays photon-beam diagnostics as well as hard X-ray absorption and emission spectroscopy at the European XFEL make use of strip detectors as detectors for beam spectrometers or as energy-dispersive detectors in combination with an energy-dispersive element. The European XFEL is establishing cooperation with the Paul Scherrer Institute in Villigen to develop a new version of the Gotthard detector best suited to the European XFEL needs. The use case and the required detector specifications are illustrated. Starting from the present detector version, the modifications planned to adapt it to the European XFEL running conditions are described. These include the capability of running at an increased rate and to provide a veto signal to the large 2D imaging detectors, in order to be able to remove non-interesting images already at early stages of the DAQ system. In another particular application, resonant inelastic X-ray scattering, a Micro-Channel Plate detector matched to a delay-line readout is foreseen to be used. In this case the European XFEL is aiming for a highly customized solution provided by the German company Surface Concept. The use case is described

  4. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  5. Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-01-01

    Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.

  6. ISABELLE. Volume 3. Experimental areas, large detectors

    International Nuclear Information System (INIS)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors

  7. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte

    2013-01-01

    and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of similar to 10 m(2) at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment...... is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design...... an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than...

  8. Role of the protected area concept in protecting the world’s largest natural reserve : Antarctica

    NARCIS (Netherlands)

    Bastmeijer, C.J.; van Hengel, Steven

    2009-01-01

    Should the entire Antarctic continent and the surrounding islands be recognised as a ‘protected area’ or as a continent where certain areas, just like anywhere else, may be designated as protected areas? To find an answer to this question, this paper first discusses the most important agreements and

  9. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    Science.gov (United States)

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  10. Large-Area Liquid Scintillation Detector Slab

    International Nuclear Information System (INIS)

    Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W.; Reines, F.; Sobel, H.; Hruschka, A. A.

    1966-01-01

    A low-cost detector 18' x 2' x 5' has been developed for an underground cosmic ray neutrino experiment. The liquid employed is a high-clarity mineral oil-based mixture, and light is guided to the ends of the detector by total internal reflection at the surface of the Lucite container. Signals from 2 five-inch photomultipliers at each end give energy and event location for single penetrating particles, with relatively good discrimination against natural radioactivity by virtue of the substantial thickness. Data are presented on the response function of the tank, energy resolution, rates and thresholds. A number of modifications that have been tried are also described

  11. A large area transition radiation detector for the NOMAD experiment

    Science.gov (United States)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  12. A large area transition radiation detector for the NOMAD experiment

    CERN Document Server

    Bassompierre, Gabriel; Berthet, M; Bertozzi, T; Détraz, C; Dubois, J M; Dumps, Ludwig; Engster, Claude; Fazio, T; Gaillard, G; Gaillard, Jean-Marc; Gouanère, M; Manola-Poggioli, E; Mossuz, L; Mendiburu, J P; Nédélec, P; Palazzini, E; Pessard, H; Petit, P; Petitpas, P; Placci, Alfredo; Sillou, D; Sottile, R; Valuev, V Yu; Verkindt, D; Vey, H; Wachnik, M

    1997-01-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  13. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  14. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  15. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  16. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    Chen Jiabin

    2006-12-01

    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  17. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China.

    Science.gov (United States)

    Wang, Lingqing; Zhong, Buqing; Liang, Tao; Xing, Baoshan; Zhu, Yifang

    2016-12-01

    Exposure to radionuclide thorium (Th) has generated widespread public concerns, mainly because of its radiological effects on human health. Activity levels of airborne 232 Th in total suspended particulate (TSP) were measured in the vicinity of the largest rare earth mine in China in August 2012 and March 2013. The mean activity concentrations of 232 Th in TSP ranged from 820μBqm -3 in a mining area in August 2012 to 39,720μBqm -3 in a smelting area in March 2013, much higher than the world reference of 0.5μBqm -3 . Multistatistical analysis and Kohonen's self-organizing maps suggested that 232 Th in TSP was mainly derived from rare earth mining and smelting practices. In addition, personal inhalation exposures to 232 Th associated with respirable particulate (PM 10 ) were also measured among local dwellers via personal monitoring. The mean dose values for different age groups in the smelting and mining areas ranged from 97.86 to 417μSvyear - 1 and from 101.03 to 430.83μSvyear -1 , respectively. These results indicate that people living in the study areas are exposed to high levels of widespread 232 Th. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Digital radiography with large-area flat-panel detectors

    International Nuclear Information System (INIS)

    Kotter, E.; Langer, M.

    2002-01-01

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  19. A large area plastic Cherenkov detector

    International Nuclear Information System (INIS)

    Bernabei, R.; Bidoli, V.; Zorzi, G. de; Biagio, A. di

    1978-01-01

    A large area Cherenkov counter has been built up using as a radiator a sheet of Pilot 425 plastic, (180x20)cm 2 x2.5 cm. Experimental tests performed with a pion beam in order to measure the average number of photoelectrons collected by photomultipliers and the scintillation to Cherenkov light ratio. (Auth.)

  20. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.

    Science.gov (United States)

    Long, Jiumei; Tan, Di; Deng, Sihan; Lei, Ming

    2018-04-11

    To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg -1 ); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg -1 , respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg -1 ). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

  1. Uniformity studies in large area triple-GEM based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Akl, M. Abi [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Bouhali, O., E-mail: othmane.bouhali@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Qatar Computing Research Institute, Hamad Bin Khalifa University, PO Box 5825, Doha (Qatar); Castaneda, A.; Maghrbi, Y.; Mohamed, T. [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar)

    2016-10-01

    Gas Electron Multiplier (GEM) based detectors have been used in many applications since their introduction in 1997. Large areas, e.g. exceeding 30×30 cm{sup 2}, of GEM detectors are foreseen in future experiments which puts stringent requirements on the uniformity of response across the detection area. We investigate the effect of small variations of several parameters that could affect the uniformity. Parameters such as the anode pitch, the gas gap, the size and the shape of the holes are investigated. Simulation results are presented and compared to previous experimental data.

  2. Dispersal syndromes in the largest protection area of the Atlantic Forest in the state of Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Camila Ângelo Jerônimo Domingues

    2013-09-01

    Full Text Available The diaspore dispersal process is crucial for plant reproduction, since the diaspores must reach a suitable site to germinate. This paper aimed to study morphological aspects of diaspores and determine the dispersal syndromes of species occurring in the largest protection area of the Atlantic Forest in the state of Paraiba, Brazil, the Guaribas Biological Reserve. One conducted a monthly collection of fruits/seeds within the period from September 2007 to February 2009. All diaspores of the fruiting species were collected. After analyzing characteristics such as fruit and seed consistency, odor, color, size, and weight, one determined the dispersal syndrome of each species. One collected 3,080 diaspores belonging to 136 different species distributed into 27 families. Zoochory was the most abundant dispersal syndrome (58%, with 79 fruits adapted to it, followed by autochory (29%, and anemochory (13%. Throughout the study period, one found fruiting species, with a predominance of zoochoric fruits, a predictable fact in the Atlantic Forest, which provides fleshy fruits all the year round.

  3. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2015-01-01

    Resisitve strip Micromegas detectors behave discharge tolerant. They have been tested extensively as smaller detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100\\,kHz/cm$^2$ and above. Tracking resolutions well below 100\\,$\\mu$m have been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3\\,m$^2$ in size. To investigate possible differences between small and large detectors, a 1\\,m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Facility (CRF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. Segmentation of the resistive strip anode plane in 57.6\\,mm x 95\\,mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by 11 95\\,mm broad trigger scintillators placed along the readout strips.\\\\ This allows for mapping of homogenity in pulse height and efficiency, deter...

  4. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389527; The ATLAS collaboration

    2016-01-01

    Resistive strip Micromegas detectors are discharge tolerant. They have been tested extensively as small detectors of about 10 x 10 cm$^2$ in size and they work reliably at high rates of 100 kHz/cm$^2$ and above. Tracking resolution well below 100 $\\mu$m has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m$^2$ in size. To investigate possible differences between small and large detectors, a 1 m$^2$ detector with 2048 resistive strips at a pitch of 450 $\\mu$m was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4 $\\times$ 2.2 m$^2$ large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm x 93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, d...

  5. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  6. Polycrystalline scintillators for large area detectors in HEP experiments

    Science.gov (United States)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  7. Position reconstruction in large-area scintillating fibre detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mahata, K. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: kmahata@barc.gov.in; Johansson, H.T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Department of Fundamental Physics, Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Paschalis, S. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, L69 7ZE (United Kingdom); Simon, H.; Aumann, T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-09-11

    A new analysis procedure has been developed for the large-area scintillating fibre detectors with position-sensitive photomultiplier (PSPM) readout used for heavy ions in the LAND set-up at GSI. It includes gain matching of the PSPM, calibration of the PSPM fibre mask and hit reconstruction. This procedure allows for a quasi-online calibration of this tracking device. It also allows for a precise determination of the position close to the intrinsic detector resolution of 1 mm pitch together with careful treatment of individual event accuracies.

  8. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  9. Characterising large area silicon drift detectors with MOS injectors

    International Nuclear Information System (INIS)

    Bonvicini, V.; Rashevsky, A.; Vacchi, A.

    1999-01-01

    In the framework of the INFN DSI project, the first prototypes of a large-area Silicon Drift Detector (SDD) have been designed and produced on 5'' diameter wafers of Neutron Transmutation Doped (NTD) silicon with a resistivity of 3000 Ω·cm. The detector is a 'butterfly' bi-directional structure with a drift length of 32 mm and the drifting charge is collected by two arrays of anodes having a pitch of 200 μm. The high-voltage divider is integrated on-board and is realised with p + implantations. For test and calibration purposes, the detector has a new type of MOS injector. The paper presents results obtained to injecting charge at the maximum drift distance (32mm) from the anodes by means of the MOS injecting structure, As front-end electronics, the authors have used a 32-channels low-noise bipolar VLSI circuit (OLA, Omni-purpose Low-noise Amplifer) specifically designed for silicon drift detectors. The uniformity of the drift time in different regions of the sensitive area and its dependence on the ambient temperature are studied

  10. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  11. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  12. The role of the protected area concept in protecting the world’s largest natural reserve: Antarctica

    Directory of Open Access Journals (Sweden)

    Kees Bastmeijer

    2009-06-01

    Full Text Available Should the entire Antarctic continent and the surrounding islands be recognised as a ‘protected area’ or as a continent where certain areas, just like anywhere else, may be designated as protected areas? To find an answer to this question, this paper first discusses the most important agreements and declarations on environmental protection in Antarctica. Next, these instruments are compared with the components of IUCN’s ‘protected area’ definition (2008. In the light of this overall protection of Antarctica, the instrument of designating areas as Antarctic Specially Protected Areas (ASPAs is discussed on the basis of a quick scan of 42 management plans for existing ASPAs. It is concluded that Antarctica could indeed be considered as a protected area and that the ASPA instrument is so shaped to provide specific areas with ‘extra protection’ by regulating human activities in those areas with a high level of detail. However, the continuous increase in human activities in Antarctica raises concerns with respect to the scope and completeness of the existing legal instruments. These concerns regarding the overall protection of Antarctica could become an argument for applying the ASPA instrument in respect of larger areas to ensure the comprehensive protection of at least certain parts of Antarctica. This would make the ASPA system more comparable with protected area systems in other parts of the world; however, strengthening the overall protection of Antarctica – parallel to the further development of the ‘specially’ protected area system - would be more consistent with Antarctica’s protected status as has developed since the Antarctic Treaty was signed 50 years ago.

  13. A large area detector for x-ray applications

    International Nuclear Information System (INIS)

    Rodricks, B.; Huang, Qiang; Hopf, R.; Wang, Kemei.

    1993-01-01

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation

  14. Respiratory gated lung CT using 320-row area detector CT

    International Nuclear Information System (INIS)

    Sakamoto, Ryo; Noma, Satoshi; Higashino, Takanori

    2010-01-01

    Three hundred and twenty-row Area Detector CT (ADCT) has made it possible to scan whole lung field with prospective respiratory gated wide volume scan. We evaluated whether the respiratory gated wide volume scan enables to reduce motion induced artifacts in the lung area. Helical scan and respiratory gated wide volume scan were performed in 5 patients and 10 healthy volunteers under spontaneous breathing. Significant reduction of motion artifact and superior image quality were obtained in respiratory gated scan in comparison with helical scan. Respiratory gated wide volume scan is an unique method using ADCT, and is able to reduce motion artifacts in lung CT scans of patients unable to suspend respiration in clinical scenes. (author)

  15. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  16. A Prototype Large Area Detector Module for Muon Scattering Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)

  17. The GLAST Large Area Telescope Detector Performance Monitoring

    International Nuclear Information System (INIS)

    Borgland, A.W.; Charles, E.; SLAC

    2007-01-01

    The Large Area Telescope (LAT) is one of two instruments on board the Gamma-ray Large Area Telescope (GLAST), the next generation high energy gamma-ray space telescope. The LAT contains sixteen identical towers in a four-by-four grid. Each tower contains a silicon-strip tracker and a CsI calorimeter that together will give the incident direction and energy of the pair-converting photon in the energy range 20 MeV - 300 GeV. In addition, the instrument is covered by a finely segmented Anti-Coincidence Detector (ACD) to reject charged particle background. Altogether, the LAT contains more than 864k channels in the trackers, 1536 CsI crystals and 97 ACD plastic scintillator tiles and ribbons. Here we detail some of the strategies and methods for how we are planning to monitor the instrument performance on orbit. It builds on the extensive experience gained from Integration and Test and Commissioning of the instrument on ground

  18. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  19. Large area liquid argon detectors for interrogation systems

    International Nuclear Information System (INIS)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory; Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J.; Nikkel, James A.; McKinsey, Dan

    2013-01-01

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  20. A large area silicon UCN detector with the analysis of UCN polarization

    International Nuclear Information System (INIS)

    Lasakov, M.S.; Serebrov, A.P.; Khusainov, A.Kh.; Pustovoit, A.; Borisov, Yu.V.; Fomin, A.K.; Geltenbort, P.; Kon'kov, O.I.; Kotina, I.M.; Shablii, A.I.; Solovei, V.A.; Vasiliev, A.V.

    2005-01-01

    A silicon UCN detector with an area of 45cm 2 and with a 6 LiF converter was developed at PNPI. The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at ILL. The sandwich-type detector from two silicon plates with a 6 LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up to 75% for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new EDM spectrometer

  1. Development of large area si detectors based on planar technology for charged particles

    International Nuclear Information System (INIS)

    Zhang Wanchang; Sun Liang; Huang Xiaojian; Liu Yang; Chen Guozhu

    2009-01-01

    This paper describes the processing method of large area Si detectors fabricated by planar technology for charged particles. In order to decrease the detectors leakage current, the surface passivation technique was used. The paper gives the measurement results of the leakage current of 300μm thick, 20mm diameter detectors and 500μm thick, 40mm diameter detectors respectively. The spectra of the detectors for 241 Am 5.486MeV α particles are also provided at room temperature. (authors)

  2. Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis?

    International Nuclear Information System (INIS)

    Ng, Francesca; Kozarski, Robert; Ganeshan, Balaji; Goh, Vicky

    2013-01-01

    Objective: To determine if there is a difference between contrast enhanced CT texture features from the largest cross-sectional area versus the whole tumor, and its effect on clinical outcome prediction. Methods: Entropy (E) and uniformity (U) were derived for different filter values (1.0–2.5: fine to coarse textures) for the largest primary tumor cross-sectional area and the whole tumor of the staging contrast enhanced CT in 55 patients with primary colorectal cancer. Parameters were compared using non-parametric Wilcoxon test. Kaplan–Meier analysis was performed to determine the relationship between CT texture and 5-year overall survival. Results: E was higher and U lower for the whole tumor indicating greater heterogeneity at all filter levels (1.0–2.5): median (range) for E and U for whole tumor versus largest cross-sectional area of 7.89 (7.43–8.31) versus 7.62 (6.94–8.08) and 0.005 (0.004–0.01) versus 0.006 (0.005–0.01) for filter 1.0; 7.88 (7.22–8.48) versus 7.54 (6.86–8.1) and 0.005 (0.003–0.01) versus 0.007 (0.004–0.01) for filter 1.5; 7.88 (7.17–8.54) versus 7.48 (5.84–8.25) and 0.005 (0.003–0.01) versus 0.007 (0.004–0.02) for filter 2.0; and 7.83 (7.03–8.57) versus 7.42 (5.19–8.26) and 0.005 (0.003–0.01) versus 0.006 (0.004–0.03) for filter 2.5 respectively (p ≤ 0.001). Kaplan–Meier analysis demonstrated better separation of E and U for whole tumor analysis for 5-year overall survival. Conclusion: Whole tumor analysis appears more representative of tumor heterogeneity

  3. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  4. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  5. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  6. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area

    Science.gov (United States)

    SHEPPARD, C. R. C.; ATEWEBERHAN, M.; BOWEN, B. W.; CARR, P.; CHEN, C. A.; CLUBBE, C.; CRAIG, M. T.; EBINGHAUS, R.; EBLE, J.; FITZSIMMONS, N.; GAITHER, M. R.; GAN, C-H.; GOLLOCK, M.; GUZMAN, N.; GRAHAM, N. A. J.; HARRIS, A.; JONES, R.; KESHAVMURTHY, S.; KOLDEWEY, H.; LUNDIN, C. G.; MORTIMER, J. A.; OBURA, D.; PFEIFFER, M.; PRICE, A. R. G.; PURKIS, S.; RAINES, P.; READMAN, J. W.; RIEGL, B.; ROGERS, A.; SCHLEYER, M.; SEAWARD, M. R. D; SHEPPARD, A. L. S.; TAMELANDER, J.; TURNER, J. R.; VISRAM, S.; VOGLER, C.; VOGT, S.; WOLSCHKE, H.; YANG, J. M-C.; YANG, S-Y.; YESSON, C.

    2014-01-01

    The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km2, with more than 60 000 km2 shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25–50% of the Indian Ocean reef area remaining in excellent condition, as well as the world’s largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a ‘stepping-stone’ in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 ‘important bird areas’, coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several ‘strict nature reserves’. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose. PMID:25505830

  7. Large area silicon drift detectors for x-rays -- New results

    International Nuclear Information System (INIS)

    Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.; Segal, J.D.; Kenney, C.J.; Hedman, B.; Hodgson, K.O.

    1998-01-01

    Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range 75 to 25 C using Peltier cooling, and from 0.125 to 6 micros amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm 2 and 1 cm 2 detectors, respectively (at 5.9 keV, -75 C, 6 micros shaping time). The uniformity of the detector response over the entire active area (measured using 560 nm light) was < 0.5%

  8. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  9. IMAA (Integrated Measurements of Aerosol in Agri valley) campaign: Multi-instrumental observations at the largest European oil/gas pre-treatment plant area

    Science.gov (United States)

    Calvello, Mariarosaria; Caggiano, Rosa; Esposito, Francesco; Lettino, Antonio; Sabia, Serena; Summa, Vito; Pavese, Giulia

    2017-11-01

    A short-term intensive multi-instrumental measurement campaign (Integrated Measurements of Aerosol in Agri valley - IMAA) was carried out near the largest European oil and gas pre-treatment plant (Centro Olio Val d'Agri - COVA) in a populated area, where, so far, ample characterization of aerosol loading is missing. As such, between the 2 and 17 July in 2013, using a number of instruments analyses were carried out on physical, chemical, morphological and optical properties of aerosol at this distinctive site, at both ground and over the atmospheric column, including the investigation of the mixing and transformation of particles. The observation of slag silicates with a rough surface texture is consistent with the presence of oil-related activities which represent the only industrial activity in the area. Desulfurization/sulfur liquefaction processes occurring at COVA can explain the peculiar morphology of calcium-sodium-aluminum particles. The common COVA source was associated with high concentrations of sulfur, nickel and zinc, and with significant correlations between zinc-sulfur and zinc-nickel. The Optical Particle Sizer (OPS) data, hygroscopicity and optical properties of atmospheric aerosol are consistent with the typical oil-derived gaseous emissions (e.g. sulfur dioxide and methane) that strongly influence the mixing state of particles and their size distributions. Continuous combustion processes at COVA were found to be responsible for Equivalent Black Carbon (EBC) concentrations from their relevant contribution to the total number of fine particles. The expected significant contribution of WS (water soluble) and BC (Black Carbon) components to the total Aerosol Optical Depth (AOD) are consistent with the results from the radiometric model especially for July 3 and 16.

  10. Mapping geological at risk areas in the city of São Paulo: issues and results from the largest risk survey in Brazil

    Science.gov (United States)

    Pascarelli, Luciana; Macedo, Eduardo

    2013-04-01

    In the City of São Paulo, the first reports of accidents resulting from landslides are directly related to urban expansion that has been recorded since the 30s. Areas of major environmental fragility, such as slopes and stream-banks, have also ended up being occupied without proper planning. The increased number of deaths due to landslides in the 80s already indicated the need for intervention at these sites by the public authorities. It was important to act to prevent these disasters, not only emergency assistance to victimized families. Therefore, in 1989 the first systematic and official survey on the City's at-risk areas was made. At the time, the at-risk sites had been still unknown, except for the occurrence records and press reports. While some areas were evaluated by experts, others appeared or expanded without any control. The surveys pace could not definitely follow the growth and the density of favelas, and some communities started to trigger the first records of accidents in areas hitherto stable. Considering the universe to be studied and the detail level of the work, it was necessary to use specific methodology to enable evaluation of the entire City in a relatively short period of time. For that purpose,mapping activities were carried out in five phases and involved about 80 professionals in the fields of geology, engineering, architecture, geography, civil defense, and housing, who participated directly or indirectly in all stages of work. Thus, the mapping that has recently been completed by the Municipality of São Paulo and by the Institute for Technological Research of São Paulo State is today the largest geological-risk database in the country. Besides technical information, the survey also shows the types of intervention to be implemented according to the degree of risk and the type of verified occupation, vital data to prioritizing the public-authorities actions. Currently, among the 1,602 favelas and informal settlements in the city, 407

  11. The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, A.A.; Hartman, R.C.; Ormes, J.F.; Thompson, D.J.; Amato, M.J.; Johnson, T.E.; Segal, K.N.; Sheppard, D.A.

    2007-03-23

    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of {approx}8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.

  12. Development of large area silicon semiconductor detectors for use in the current mode

    CERN Document Server

    Ouyang Xia Opin; Li Zhen Fu; Zhang Guo Guang; Zhang Qi; Zhang Xia; Song Xian Cai; Jia Huan Yi; Lei Jian Hua; Sun Yuan Cheng

    2002-01-01

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of phi 40, phi 50 and phi 60 mm, their depletion thickness of 200-300 mu m, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  13. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellermann, E.W.; Bateman, J.E.; Connolly, J.F.

    1978-03-01

    The properties of a prototype gas proportional scintillation detector, for use in large numbers, are examined. The detector is designed to focus a light signal, which is proportional to ionisation loss, into a fibre optic lightguide. It is shown that a single charged particle traversing the detector produces enough light out of the lightguide to be seen by a TV camera. Problems of lifetime and large scale detector production are discussed. Properties of saturation, linearity, position sensitivity, and operating limits are examined. It is shown that an array of gas proportional scintillation detectors when used with fibre optic lightguides and TV camera readout could offer significant improvements in cost per area and reliability over a scintillator plus photomultiplier or a wire proportional chamber array. (author)

  14. Performance of low-cost X-ray area detectors with consumer digital cameras

    International Nuclear Information System (INIS)

    Panna, A.; Gomella, A.A.; Harmon, K.J.; Chen, P.; Miao, H.; Bennett, E.E.; Wen, H.

    2015-01-01

    We constructed X-ray detectors using consumer-grade digital cameras coupled to commercial X-ray phosphors. Several detector configurations were tested against the Varian PaxScan 3024M (Varian 3024M) digital flat panel detector. These include consumer cameras (Nikon D800, Nikon D700, and Nikon D3X) coupled to a green emission phosphor in a back-lit, normal incidence geometry, and in a front-lit, oblique incidence geometry. We used the photon transfer method to evaluate detector sensitivity and dark noise, and the edge test method to evaluate their spatial resolution. The essential specifications provided by our evaluation include discrete charge events captured per mm 2 per unit exposure surface dose, dark noise in equivalents of charge events per pixel, and spatial resolution in terms of the full width at half maximum (FWHM) of the detector's line spread function (LSF). Measurements were performed using a tungsten anode X-ray tube at 50 kVp. The results show that the home-built detectors provide better sensitivity and lower noise than the commercial flat panel detector, and some have better spatial resolution. The trade-off is substantially smaller imaging areas. Given their much lower costs, these home-built detectors are attractive options for prototype development of low-dose imaging applications

  15. Impact of detector-element active-area shape and fill factor on super-resolution

    Directory of Open Access Journals (Sweden)

    Russell Craig Hardie

    2015-05-01

    Full Text Available In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF. Conventional focal plane arrays (FPAs utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR. However, the large active area works against super-resolution (SR image restoration by acting as an additional low pass filter in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to increase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element shape and fill factor on SR. A detailed modulation transfer function analysis is provided along with a number of experimental results with both simulated data and real data acquired with a midwave infrared (MWIR imaging system. We demonstrate the potential advantage of low fill factor detector elements when combined with SR image restoration. Our results suggest that low fill factor circular detector elements may be the best choice. New video results are presented using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR imaging system with both high and low detector element fill factors.

  16. Laboratory and test beam results from a large-area silicon drift detector

    CERN Document Server

    Bonvicini, V; Giubellino, P; Gregorio, A; Idzik, M; Kolojvari, A A; Montaño-Zetina, L M; Nouais, D; Petta, C; Rashevsky, A; Randazzo, N; Reito, S; Tosello, F; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A very large-area (6.75*8 cm/sup 2/) silicon drift detector with integrated high-voltage divider has been designed, produced and fully characterised in the laboratory by means of ad hoc designed MOS injection electrodes. The detector is of the "butterfly" type, the sensitive area being subdivided into two regions with a maximum drift length of 3.3 cm. The device was also tested in a pion beam (at the CERN PS) tagged by means of a microstrip detector telescope. Bipolar VLSI front-end cells featuring a noise of 250 e/sup -/ RMS at 0 pF with a slope of 40 e/sup -//pF have been used to read out the signals. The detector showed an excellent stability and featured the expected characteristics. Some preliminary results will be presented. (12 refs).

  17. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  18. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  19. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  20. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  1. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  2. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  3. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  4. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  5. ArCLight—A Compact Dielectric Large-Area Photon Detector

    Directory of Open Access Journals (Sweden)

    Martin Auger

    2018-02-01

    Full Text Available ArgonCube Light readout system (ArCLight is a novel device for detecting scintillation light over large areas with Photon Detection Efficiency (PDE of the order of a few percent. Its robust technological design allows for efficient use in large-volume particle detectors, such as Liquid Argon Time Projection Chambers (LArTPCs or liquid scintillator detectors. Due to its dielectric structure it can be placed inside volumes with high electric field. It could potentially replace vacuum PhotoMultiplier Tubes (PMTs in applications where high PDE is not required. The photon detection efficiency for a 10 × 10 cm2 detector prototype was measured to be in the range of 0.8% to 2.2% across the active area.

  6. A gas proportional scintillation counter for use in large area detector systems without photomultipliers

    International Nuclear Information System (INIS)

    Baruch, J.E.F.; Brooke, G.; Kellerman, E.W.; Bateman, J.E.; Connolly, J.F.

    1979-01-01

    The properties of a prototype gas proportional scintillation (GPS) detector module are described. The module (25X25X14cm 3 ) is intended to form the basic unit of large area (up to approximately 100 m 2 ) calorimetric cosmic ray burst detector. Ionisation from particle tracks in the module is collected onto a point electrode where the GPS signal is generated. A concave mirror focusses this point source onto the end of a fibre optic light guide. In the proposed large area detector these fibres are brought together onto a low light level TV camera which performs the readout. The prototype module has demonstrated an adequate light output for the detection of single muons by such a readout system and also permitted the investigation of the main operating parameters (gas mixture, EHT, pressure, etc) and operational requirements such as proportionality and long term stability. (Auth.)

  7. Largest College Endowments, 2011

    Science.gov (United States)

    Chronicle of Higher Education, 2012

    2012-01-01

    Of all endowments valued at more than $250-million, the UCLA Foundation had the highest rate of growth over the previous year, at 49 percent. This article presents a table of the largest college endowments in 2011. The table covers the "rank," "institution," "market value as of June 30, 2011," and "1-year change" of institutions participating in…

  8. Mapping the Large Area Straw Detectors of the COMPASS Experiment With X-Rays

    Science.gov (United States)

    Platzer, K.; Dunnweber, W.; Dedek, N.; Faessler, M.; Geyer, R.; Ilgner, C.; Peshekhonov, V.; Wellenstein, H.

    2005-06-01

    In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 /spl mu/m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 /spl mu/m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 /spl mu/m under realistic experimental conditions, which is sufficient in view of the intrinsic straw resolution of 200 /spl mu/m for minimum ionizing particles. The offline calibration was checked with particle tracks in the experimental setup, running COMPASS with 160 GeV/c muons. Tracks reconstructed with other detectors that cover a central angular range were used for this comparison. Good agreement is found between these in situ measurements and the X-ray calibration.

  9. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  10. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  11. Implementation of 'early alert system' area detector at patient from entrance in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Videla Valdebenito, R.

    2001-01-01

    A system of area monitors to detect the involuntary exit of the radiation sources used in low dose rate deferred brachytherapy treatment is being implemented in all facilities in Chile. The first implementation of this system, named 'Early Alert', was 5 years ago as a complement to the administrative procedures and verification measures by the medical physics carried out through visual verifications and by means of portable radiation detectors. This detector of the system should be located preferentially at the exit of the treatment room at a height not smaller than two meters. This has resulted in an increase of facilities safety in this practice. (author) [es

  12. Acceptance analysis for a large area monopole experiment using nuclear track detectors

    International Nuclear Information System (INIS)

    Hasegan, Monica; Popa, V.

    1998-01-01

    In this paper, we discuss the acceptance of a horizontal plane of 1000 m 2 nuclear track detector for an anisotropic flux of GUT magnetic monopoles (MM) with m MM ∼ 10 16 GeV and g = g D , 2g D , 3g D , considering the monopole energy loss in Earth. It is estimated that a large area experiment for the search of GUT monopoles that uses such detectors and would operate a reasonable number of years could reach a sensitivity of the order of few 10 -17 cm -2 s -1 sr -1 . (authors)

  13. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  14. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  15. First Test Of A New High Resolution Positron Camera With Four Area Detectors

    Science.gov (United States)

    van Laethem, E.; Kuijk, M.; Deconinck, Frank; van Miert, M.; Defrise, Michel; Townsend, D.; Wensveen, M.

    1989-10-01

    A PET camera consisting of two pairs of parallel area detectors has been installed at the cyclotron unit of VUB. The detectors are High Density Avalanche Chambers (HIDAC) wire-chambers with a stack of 4 or 6 lead gamma-electron converters, the sensitive area being 30 by 30 cm. The detectors are mounted on a commercial gantry allowing a 180 degree rotation during acquisition, as needed for a fully 3D image reconstruction. The camera has been interfaced to a token-ring computer network consisting of 5 workstations among which the various tasks (acquisition, reconstruction, display) can be distributed. Each coincident event is coded in 48 bits and is transmitted to the computer bus via a 512 kbytes dual ported buffer memory allowing data rates of up to 50 kHz. Fully 3D image reconstruction software has been developed, and includes new reconstruction algorithms allowing a better utilization of the available projection data. Preliminary measurements and imaging of phantoms and small animals (with 18FDG) have been performed with two of the four detectors mounted on the gantry. They indicate the expected 3D isotropic spatial resolution of 3.5 mm (FWHM, line source in air) and a sensitivity of 4 cps/μCi for a centred point source in air, corresponding to typical data rates of a few kHz. This latter figure is expected to improve by a factor of 4 after coupling of the second detector pair, since the coincidence sensitivity of this second detector pair is a factor 3 higher than that of the first one.

  16. Low energy response calibration of the BATSE large area detectors onboard the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Laird, C.E. [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)]. E-mail: Chris.Laird@eku.edu; Harmon, B.A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wilson, Colleen A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hunter, David [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States); Isaacs, Jason [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)

    2006-10-15

    The low-energy attenuation of the covering material of the Burst and Transient Source Experiment (BATSE) large area detectors (LADs) on the Compton Gamma Ray Observatory as well as the small-angle response of the LADs have been studied. These effects are shown to be more significant than previously assumed. The LAD entrance window included layers of an aluminum-epoxy composite (hexel) that acted as a collimator for the lowest energy photons entering the detector just above threshold (20-50 keV). Simplifying assumptions made concerning the entrance window materials and the angular response at incident angles near normal to the detector face in the original BATSE response matrix formalism had little effect on {gamma}-ray burst measurements; however, these assumptions created serious errors in measured fluxes of galactic sources, whose emission is strongest near the LAD energy threshold. Careful measurements of the angular and low-energy dependence of the attenuation due to the hexel plates only partially improved the response. A systematic study of Crab Nebula spectra showed the need for additional corrections: an angular-dependent correction for all detectors and an angular-independent correction for each detector. These corrections have been applied as part of an overall energy and angular-dependent correction to the BATSE response matrices.

  17. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  18. Mapping the large area straw detectors of the COMPASS experiment with X-rays

    CERN Document Server

    Platzer, Klaus; Dünnweber, Wolfgang; Faessler, Martin A; Geyer, Reiner; Ilgner, C; Peshekhonov, Vladimir D; Wellenstein, Hermann

    2005-01-01

    In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 mu m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 mu m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 mu m under realistic experimental conditions, which is sufficient...

  19. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    Science.gov (United States)

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of large area CsI photocathodes for the Alice/Humped Rich detector

    International Nuclear Information System (INIS)

    Hoedlmoser, H.

    2005-03-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film cesium iodide photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs and the use of this system to investigate the properties of these photon detectors. Among the investigated phenomena the most important ones were: - Post deposition treatment: from R and D studies it was known, that the PC response can be increased by heating the PC after the coating process. Within this thesis it was shown that the enhancement effect is mandatory to achieve the photon conversion efficiency required by the detector design and that any difference in PC quality is due to differences in this enhancement effect. - Ageing effects: CsI PCs age under exposure to humidity due to the hygroscopicity of CsI and under high photon flux and ion bombardment inside the Multi Wire Proportional Chamber (MWPC) of the detector. All three effects have been investigated with the VUV scanner. The first effect requires a careful treatment of the CsI PCs to avoid exposure to humid air. Furthermore this effect was found to be reversible if the PC is heated. High photon fluxes are irrelevant in a Cherenkov detector dealing with single photons, however, the problem needed to be investigated to verify that the measurement process itself does not damage the PCs. The third mechanism is very important as it occurs during normal detector operation and depends only on the radiation environment of the experiment. For a dose corresponding to 20 years of operation inside ALICE an accelerated test showed a clear degradation of up to 40 % of the PC response. With the results of these studies the first 17 PCs (of 42) for the detector

  1. Large area high quality silicon detectors for scientific research and radioactivity monitoring in the environment

    International Nuclear Information System (INIS)

    Frolov, D.; Perevertailo, V.; Frolov, O.; Kononenko, Yu.; Pugatch, V.; Rozenfeld, A.

    1995-01-01

    Full text: Investigation of detector and special test structures made on detector wafers was carried out. Si wafer with a diameter of 76 mm, n-type, specific resistance 2-6 kΩ·cm, made of Si produced at a titanium-magnesium factory in Zaporozh'e (Ukraine) were used. C-V curves were measured on p + -n-junctions of various areas (0.1 cm 2 to 20 cm 2 ) and various configuration. In coordinated C 3 (dC/dV) -1 vs V initial parts of the curves are horizontal lines, that indicates a uniform dopant concentration into the depth of a sample, while starting with some voltage a rise is observed associated with full depletion of the sample. However this rise is more smooth then one described by a simple model. The smooth rise is due to non-uniformity of the depletion depth over the p + -n-junction area caused by non-uniform distribution of dopant concentration over the wafer surface. As a results, full depletion doesn't occur simultaneously in all regions of the junction and is stretched along the voltage scale. A theory is developed to define a distribution of the sample areas over full depletion voltage V fd or over dopant concentration N and, given a fixed voltage, to define the distribution of non-depleted junction ares over a thickness of non-depleted area. Results show possibility of non uniform N and, correspondingly, V fd by up to 2 times with big junction sizes. A high level of non-uniformity was observed not only on Si made in Zaporozh'e, but also on Wacker Si. This method of measurements and analysis may be helpful both in working with detectors and detector Si quality control. Measurements of current and capacitance in a gate-controlled junction (a MOS structure partially overlapped with a p + -n-junction) allowed division of surface into the depth of the crystal. Some peculiarities are observed in current curves compared to previous reports associated with low dopant concentration in our experiments. Local defect areas near the p-n-junction encouraging avalanche

  2. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  3. The ''Flight Chamber'': A fast, large area, zero-time detector

    International Nuclear Information System (INIS)

    Trautner, N.

    1976-01-01

    A new, fast, zero-time detector with an active area of 20 cm 2 has been constructed. Secondary electrons from a thin self-supporting foil are accelerated onto a scinitllator. The intrinsic time resolution (fwhm) was 0.85 for 5.5 MeV α-particles and 0.42 ns for 17 MeV 16 O-ions, at an efficiency of 97.5% and 99.6%, respectively. (author)

  4. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  5. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    Alfonsi, M.; Bencivenni, G.; Brock, I.; Cerioni, S.; Croci, G.; David, E.; De Lucia, E.; De Oliveira, R.; De Robertis, G.; Domenici, D.; Duarte Pinto, S.; Felici, G.; Gatta, M.; Jacewicz, M.; Loddo, F.; Morello, G.; Pistilli, M.; Ranieri, A.; Ropelewski, L.; Sauli, F.

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm 2 . Now a single-mask technology is used allowing foils to be made as large as 450x2000mm 2 . The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm 2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  6. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  7. Development of Large Area CsI Photocathodes for the ALICE/HMPID RICH Detector

    CERN Document Server

    Hoedlmoser, H; Schyns, E

    2005-01-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film Cesium Iodide (CsI) photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs immediately after the thin film coating process and the use of this system to investigate the properties of these photon detectors. Prior to this work and prior to the finalization of the ALICE/HMPID detector design, R&D work investigating the properties of CsI PCs had been performed at CERN and at other laboratories in order to determine possible substrates and optimized thin film coating procedures. These R&D studies were usually carried out with small samples on different substrates and with various procedures with sometimes ambiguous result...

  8. TORCH: A Large-Area Detector for Precision Time-of-Flight Measurements at LHCb

    CERN Document Server

    Harnew, N

    2012-01-01

    The TORCH (Time Of internally Reflected CHerenkov light) is an innovative high-precision time-of-flight detector which is suitable for large areas, up to tens of square metres, and is being developed for the upgraded LHCb experiment. The TORCH provides a time-of-flight measurement from the imaging of photons emitted in a 1 cm thick quartz radiator, based on the Cherenkov principle. The photons propagate by total internal reflection to the edge of the quartz plane and are then focused onto an array of Micro-Channel Plate (MCP) photon detectors at the periphery of the detector. The goal is to achieve a timing resolution of 15 ps per particle over a flight distance of 10 m. This will allow particle identification in the challenging momentum region up to 20 GeV/c. Commercial MCPs have been tested in the laboratory and demonstrate the required timing precision. An electronics readout system based on the NINO and HPTDC chipset is being developed to evaluate an 8×8 channel TORCH prototype. The simulated performance...

  9. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    International Nuclear Information System (INIS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.

    2014-01-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures

  10. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  11. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery

    International Nuclear Information System (INIS)

    Bickman, S.; DeMille, D.

    2005-01-01

    Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mmx28 mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/√(Hz), can recover from a large scattered light pulse within 10 μs, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/√(Hz), also can recover from a large scattered light pulse within 10 μs, and has a bandwidth of 1 MHz

  12. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  13. Uncooled Radiation Hard Large Area SiC X-ray and EUV Detectors and 2D Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize large area, uncooled and radiative hard 4H-SiC EUV ? soft X-ray detectors capable of ultra...

  14. Sweden's largest Facebook study

    OpenAIRE

    Denti, Leif; Barbopoulus, Isak; Nilsson, Ida; Holmberg, Linda; Thulin, Magdalena; Wendeblad, Malin; Andén, Lisa; Davidsson, Emelie

    2012-01-01

    The emergence of the Internet has made it easier for people to socially interact than ever before. Today, the most popular channel is Facebook with over 845 million users world wide. In Sweden, the number of users amount to approximately half of the population. We had two aims with this study. First, we investigate which areas of Facebook usage that Swedish Facebook users consider more important vis-a-vis less important. We were also interested in how users convey their persona through t... m...

  15. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  16. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    International Nuclear Information System (INIS)

    Guerard, Bruno

    2015-01-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of

  17. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard

  18. Development of an area monitor for neutrons using solid state nuclear track detector; Desenvolvimento de um monitor de area para neutrons utilizando detector solido de tracos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, G.S.

    1994-12-31

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,{alpha}) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30{sup 0} C, under a 44,2 kV.cm{sup -1} electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10{sup -3} tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10{sup -4} tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a {sup 241} Am Be source, with a response of 4,4(2)x 10{sup 3} tr.mSv{sup -1}.cm{sup -2} and operational limits between 7(3){mu}Sv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app.

  19. Comparison of Peak-area Ratios and Percentage Peak Area Derived from HPLC-evaporative Light Scattering and Refractive Index Detectors for Palm Oil and its Fractions.

    Science.gov (United States)

    Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab

    2018-01-01

    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.

  20. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

    2013-08-21

    {sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  1. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  2. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  3. Large-area self-powered neutron-detectors for neutron-flux measurements in HTRs. Status of developmental work

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Serpekian, T.; Benninghofen, G.; Serafin, N.; Spillekothen, H.G.

    1982-06-01

    The development is described of the large-area SPN-detector as an out of core power monitoring system. Gadolinium or cobalt was used as the emitter. Response functions of the gadolinium SPN-detector were found with regard to the reactor power, the effect of the gamma field, its short-term behaviour following reactor shutdown and long-term behaviour during reactor operation. It was shown that a detector of 0.1 mm emitter thickness can withstand an integral thermal neutron flux of 2.10 20 nvt almost without efficiency loss thus indicating that the large-area gadolinium SPN-detector is a suitable means for power monitoring in large HTGR's

  4. Large-Area Silicon Detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Pree, Elias

    2017-01-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about \\mbox{1~cm$^{2}$}. Furthermore, Synopsys...

  5. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    Science.gov (United States)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  6. Large-Area Neutron Detector based on Li-6 Pulse Mode Ionization Chamber

    International Nuclear Information System (INIS)

    Chung, K.; Ianakiev, K.D.; Swinhoe, M.T.; Makela, M.F.

    2005-01-01

    Prototypes of a Li-6 Pulse Mode Ionization Chamber (LiPMIC) have been in development for the past two years for the purpose of providing large-area neutron detector. this system would be suitable for remote deployment for homeland security and counterterrorism needs at borders, ports, and nuclear facilities. A prototype of LiPMIC is expected to provide a similar level of performance to the current industry-standard, He-3 proportional counters, while keeping the initial cost of procurement down by an order of magnitude, especially where large numbers of detectors are required. The overall design aspect and the efficiency optimization process is discussed. Specifically, the MCNP simulations of a single-cell prototype were performed and benchmarked with the experimental results. MCNP simulations of a three dimensional array design show intrinsic efficiency comparable to that of an array of He-3 proportional counters. LiPMIC has shown steady progress toward fulfilling the design expectations and future design modification and optimization are discussed.

  7. Edgeless silicon sensors for Medipix-based large-area X-ray imaging detectors

    International Nuclear Information System (INIS)

    Bosma, M J; Visser, J; Koffeman, E N; Evrard, O; De Moor, P; De Munck, K; Tezcan, D Sabuncuoglu

    2011-01-01

    Some X-ray imaging applications demand sensitive areas exceeding the active area of a single sensor. This requires a seamless tessellation of multiple detector modules with edgeless sensors. Our research is aimed at minimising the insensitive periphery that isolates the active area from the edge. Reduction of the edge-defect induced charge injection, caused by the deleterious effects of dicing, is an important step. We report on the electrical characterisation of 300 μm thick edgeless silicon p + -ν-n + diodes, diced using deep reactive ion etching. Sensors with both n-type and p-type stop rings were fabricated in various edge topologies. Leakage currents in the active area are compared with those of sensors with a conventional design. As expected, we observe an inverse correlation between leakage-current density and both the edge distance and stop-ring width. From this correlation we determine a minimum acceptable edge distance of 50 μm. We also conclude that structures with a p-type stop ring show lower leakage currents and higher breakdown voltages than the ones with an n-type stop ring.

  8. A large area cosmic muon detector located at Ohya stone mine

    Science.gov (United States)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  9. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Nicola, E-mail: zorzi@fbk.eu [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy); Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy)

    2011-04-21

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of {approx}4x4 mm{sup 2} elements and an 8x8 array of 1.5x1.5 mm{sup 2} pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  10. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    International Nuclear Information System (INIS)

    Zorzi, Nicola; Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro

    2011-01-01

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of ∼4x4 mm 2 elements and an 8x8 array of 1.5x1.5 mm 2 pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  11. The Fermi Large Area Telescope as a cosmic-ray detector

    International Nuclear Information System (INIS)

    Sgrò, Carmelo

    2013-01-01

    The Fermi Large Area Telescope is an international observatory conceived to study high energy gamma-rays from the universe. It is designed to identify and reconstruct electromagnetic showers and it can collect cosmic-ray electrons and positrons thanks to its triggering and filtering capabilities. The Fermi LAT collaboration has published several results on charged cosmic rays. We measured the inclusive spectrum of electrons and positrons from 7 GeV to 1 TeV and searched for anisotropies in the electron incoming direction. We have recently published a measurement of cosmic-ray positron-only and electron-only spectra for energies between 20 GeV and 200 GeV exploiting the Earth's magnetic field as a charge separator. In this work we describe the techniques and capabilities of the LAT as a cosmic-ray detector and review the recent results and their interpretations. Prospects for future studies and observations will also be discussed

  12. Bioremediation of arsenic (As from mine effluent by a horizontal flow constructed wetland: A case study in largest borax reserve area in over the world, Kırka, Eskişehir

    Directory of Open Access Journals (Sweden)

    Onur Can Türker

    2016-12-01

    Full Text Available In this study, a horizontal flow constructed wetland (HFCW planted with Typha angustifolia, was tested to bioremediation potential for arsenic from mine effluent under the natural climatic conditions in largest boron mine reserve area over the world, Kırka (Eskişehir. Briefly, the objective of the present experiment was to investigate arsenic bioremediation capability of wetland system and asses the phytoremediation efficiency of T. angustifolia, selected as a donor plant in this study, with different initial arsenic concentrations. Our results indicated that HFCW has capability to decreased arsenic in mine effluent from 49 µg L-1 to 21.8 µg L-1 in a period of 84 days, suggesting that HFCW could be a reasonable bio-filter option to control arsenic pollution directly from mining effluent in largest borax reserve over the world. Furthermore, we found that arsenic concentration in outflow samples was stably below 10 µg L-1 (drinking water safety limit with an inflow range from 42.3 to 42.1 arsenic µg L-1 during the first 28 days. Our results also indicated that belowground parts of T.angustifolia accumulate more arsenic from mine effluent compared to aboveground parts during experiment period. Therefore, we suggested that belowground parts of the plants in HFCW play an important role for arsenic bioremediation from mine effluent which origin of Kırka Borax reserve area. In this respect, bioconcentration factor (BCF for the plants which grown in HFCW was found higher than those of control group. Moreover, results of the present experiment also showed that relatively high level of arsenic retained in the filtration media of HFCW during the experiment period, indicating that filtration media which was used in HFCW has potential to filter arsenic from mine effluent. Consequently, the scientific insight of the present study is to present an innovative, cost effective, and easy operating method for arsenic remediation from mine effluent.

  13. Development of a large area, curved two-dimensional detector for single-crystal neutron diffraction studies

    International Nuclear Information System (INIS)

    Moon, Myung-Kook; Lee, Chang-Hee; Kim, Shin-Ae; Noda, Yukio

    2013-01-01

    A new type of two-dimensional curved position-sensitive neutron detector has been developed for a high-throughput single-crystal neutron diffractometer, which was designed to cover 110° horizontally and 56° vertically. The prototype curved detector covering 70° horizontally and 45° vertically was first developed to test the technical feasibility of the detector parameters, the internal anode and cathode structures for the curved shape, technical difficulties in the assembly procedure, and so on. Then, based on this experience, a full-scale curved detector with twice the active area of the prototype was fabricated with newly modified anode and cathode planes and optimized design parameters in terms of mechanical and electric properties. The detector was installed in a dedicated diffractometer at the ST3 beam port of the research reactor HANARO. In this paper, the fabrication and application of the prototype and a new larger-area curved position-sensitive neutron detector for single crystal diffraction is presented

  14. Two large-area anode-pad MICROMEGAS chambers as the basic elements of a pre-shower detector

    CERN Document Server

    Aphecetche, L; D'Enterria, D G; Le Guay, M; Li, X; Martínez, G; Mora, M J; Pichot, P; Roy, D; Schutz, Y

    2001-01-01

    The design of a detector based on MICROMEGAS (MICRO MEsh GAseous Structure) technology is presented. Our detector is characterized by a large active area of 398(\\times)281 mm(^{2}), a pad read-out with 20(\\times)22 mm(^{2}) segmentation, and an uniform amplification gap obtained by insulating spacers (100 (\\mu)m high and 200 (\\mu)m in diameter). The performances of several prototypes have been evaluated under irradiation with secondary beams of 2 GeV/c momentum charged pions and electrons. We consider such a detector as the basic element for a pre-shower detector to equip the PHOton Spectrometer (PHOS) of the ALICE experiment. Its assets are modularity, small amount of material, robustness and low cost.

  15. A large-area scintillation detector with matrix readout for experiments at COSY

    International Nuclear Information System (INIS)

    Wolke, M.

    1993-12-01

    For the requirement of a time-of-flight measurement in the framework of the experiment E5 at the proton synchrotron COSY Juelich by means of a Monte-Carlo simulation the geometrical parameters of a large-area scintillator plane with matrix-arrangement of the read-out photomultipliers could be optimized. A system for the monitoring of the tube amplifications, basing on short light pulses emitted by luminescence diodes, was modificatedly transeferred to this application and successfully tested. For the time resolution of the detector values could be determined, which lie in the mean by about 30 % above the theoretical expectations. For minimally ionizing particles an accuracy of the time-of-flight information from the combination of start and stop scintillator of the experiment E5 in a range σ tof ∼240-260 ps dependent on the incident position of the particle to be analyzed, was measured. On the base of this measurement for protons of a momentum of 1 GeV/c at application of the detector in its second construction stage an upper limit of the time-of-flight resolution of correspondingly σ tof ∼195-220 ps is to be expected. From this a crude upper estimation of the momentum resolution of σ p /p∼1.0-1.2 % results. A position reconstruction by means of the c. m. method showed qualitatively an expected behaviour of the systematic deviations between reconstructed and real incidence positions. Quantitativeley a mean fluctuation of the reconstructed positions of 1.3 respectively 0.8 cm for the horizontal respectively vertical direction is reached

  16. Study of radon exhalation rates using solid state nuclear track detectors in stone mining area of Aravali range in Pali region, district Faridabad

    International Nuclear Information System (INIS)

    Raj Kumari; Yadav, A.S.; Kant, Krishan; Garg, Maneesha

    2013-01-01

    It is well established that indoor radon-thoron and daughters are the largest contributor to total radiation dose received by populations. They account for more than 50% of the total dose and the radiation exposure beyond permissible levels can lead to deleterious effects on health. This fact necessitates extensive studies of natural radioactivity levels in the stone mining area of Aravali range in Faridabad. The stone mining area of Aravali Range in Pali, District Faridabad bears significant geological features. Radon exhalation from ground plays an important role in enhanced indoor radon levels and can pose grave health hazards to the workers and the residents. Exhalation rates (mass and surface) from stone samples of the area have been studied using LR-115, Type II nuclear track detectors. The mass and surface exhalation rates from crushed stone samples, also called stone dust varied in the range 3.41-9.11 mBq kg -1 h - 1 and 75.9-202.7 mBq m -2 h -1 , respectively. The study has revealed substantial presence of radionuclides in the samples collected from the mining area. (author)

  17. A large area transition radiation detector to measure the energy of muons in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Mongelli, M.; Montaruli, T.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have designed and built a transition radiation detector of 36 m 2 area in order to measure the residual energy of muons penetrating in the Gran Sasso cosmic ray underground laboratory up to the TeV region. It consists of three adjacent modules, each of 2x6 m 2 area. Polystyrene square tubes, filled with a argon-carbon dioxide gas mixture, and polyethylene foam layers are used as proportional detectors and radiators respectively. We cover such a large surface with only 960 channels that provide adequate energy resolution and particle tracking for the astroparticle physics items to investigate. The detector has been calibrated using a reduced size prototype in a test beam. Results from one module exposed to cosmic rays at sea level are shown. (orig.)

  18. Calibrating an optical scanner for quality assurance of large area radiation detectors

    Science.gov (United States)

    Karadzhinova, A.; Hildén, T.; Berdova, M.; Lauhakangas, R.; Heino, J.; Tuominen, E.; Franssila, S.; Hæggström, E.; Kassamakov, I.

    2014-11-01

    A gas electron multiplier (GEM) is a particle detector used in high-energy physics. Its main component is a thin copper-polymer-copper sandwich that carries Ø =70  ±  5 µm holes. Quality assurance (QA) is needed to guarantee both long operating life and reading fidelity of the GEM. Absence of layer defects and conformity of the holes to specifications is important. Both hole size and shape influence the detector’s gas multiplication factor and hence affect the collected data. For the scanner the required lateral measurement tolerance is ± 5 µm. We calibrated a high aspect ratio optical scanning system (OSS) to allow ensuring the quality of large GEM foils. For the calibration we microfabricated transfer standards, which were imaged with the OSS and which were compared to corresponding scanning electron microscopy (SEM) images. The calibration fulfilled the ISO/IEC 17025 and UKAS M3003 requirements: the calibration factor was 1.01  ±  0.01, determined at 95% confidence level across a 950  ×  950 mm2 area. The proposed large-scale scanning technique can potentially be valuable in other microfabricated products too.

  19. Development of an area monitor for neutrons using solid state nuclear track detector

    International Nuclear Information System (INIS)

    Zahn, G.S.

    1994-01-01

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,α) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30 0 C, under a 44,2 kV.cm -1 electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10 -3 tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10 -4 tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a 241 Am Be source, with a response of 4,4(2)x 10 3 tr.mSv -1 .cm -2 and operational limits between 7(3)μSv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app

  20. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  1. Implementation of an image acquisition and processing system based on FlexRIO, CameraLink and areaDetector

    Energy Technology Data Exchange (ETDEWEB)

    Esquembri, S.; Ruiz, M. [Instrumentation and Applied Acoustic Research Group, Technical University of Madrid (UPM), Madrid (Spain); Barrera, E., E-mail: eduardo.barrera@upm.es [Instrumentation and Applied Acoustic Research Group, Technical University of Madrid (UPM), Madrid (Spain); Sanz, D.; Bustos, A. [Instrumentation and Applied Acoustic Research Group, Technical University of Madrid (UPM), Madrid (Spain); Castro, R.; Vega, J. [National Fusion Laboratory, CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • The system presented acquires and process images from any CameraLink compliant camera. • The frame grabber implanted with FlexRIO technology have image time stamping and preprocessing capabilities. • The system is integrated into EPICS using areaDetector for a flexible configuration of image the acquisition and processing chain. • Is fully compatible with the architecture of the ITER Fast Controllers. - Abstract: Image processing systems are commonly used in current physics experiments, such as nuclear fusion experiments. These experiments usually require multiple cameras with different resolutions, framerates and, frequently, different software drivers. The integration of heterogeneous types of cameras without a unified hardware and software interface increases the complexity of the acquisition system. This paper presents the implementation of a distributed image acquisition and processing system for CameraLink cameras. This system implements a camera frame grabber using Field Programmable Gate Arrays (FPGAs), a reconfigurable hardware platform that allows for image acquisition and real-time preprocessing. The frame grabber is integrated into Experimental Physics and Industrial Control System (EPICS) using the areaDetector EPICS software module, which offers a common interface shared among tens of cameras to configure the image acquisition and process these images in a distributed control system. The use of areaDetector also allows the image processing to be parallelized and concatenated using: multiple computers; areaDetector plugins; and the areaDetector standard type for data, NDArrays. The architecture developed is fully compatible with ITER Fast Controllers and the entire system has been validated using a camera hardware simulator that stream videos from fusion experiment databases.

  2. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  3. The Muon Portal Project: A large-area tracking detector for muon tomography

    Science.gov (United States)

    Riggi, F.

    2016-05-01

    The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m), so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  4. Large area nuclear particle detectors using ET materials, phase 2. Final report, 9 May 1988-9 May 1990

    International Nuclear Information System (INIS)

    Wrigley, C.Y.; Storti, G.M.; Walter, L.; Mathews, S.

    1990-05-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks

  5. Dose assessment of head CT examination by volume scanning with 320-area-detector

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Kobayashi, Masanao

    2009-01-01

    CT with the 320-area-detector (320-ADCT), first presented in 2007, still requires further basic studies, particularly in the field of dose assessment, as the CT has been widely spread in clinic due to its many advantages compared with the usual spiral CT. In this paper, the assessment in the title was thereby done in human phantom and a patient with suspicious acute cerebral infarction under different scanning modes (non-spiral, spiral and volume) for their comparison. Machines for 320-ADCT, and non-spiral and spiral CT were Toshiba Aquilion ONE, and Aquilion 64-MD, respectively. Scanning of the phantom and patient was individually conducted under similar conditions of tube voltage/ current, rotation time and length with the same field of view with defined nominal slice thicknesses. Alderson human body phantom in which 240 thermoluminescent dosimeters were indwelled, was used; doses were read by the thermoluminescence dosimeter (TLD) reader model 3000 (Kyokko Co.) after scanning; and effective doses were calculated with reference to ICRP publ. 102/103 equations for patient's head to be 4.2 (64-MDCT) and 6.6 (320-ADCT) mSv, which were respectively 6.4 and 5.4 mSv when estimated using the conversion coefficient and DLP (dose length product) in the texts. It was suggested that the exposure dose at the volume scanning by 320-ADCT can be reduced in the routine examination, and in the exact diagnosis, possibly increases. These doses can be reduced further by optimization of scanning conditions by additional basic investigations. (K.T.)

  6. The value of blood oxygenation level-dependent (BOLD MR imaging in differentiation of renal solid mass and grading of renal cell carcinoma (RCC: analysis based on the largest cross-sectional area versus the entire whole tumour.

    Directory of Open Access Journals (Sweden)

    Guang-Yu Wu

    Full Text Available To study the value of assessing renal masses using different methods in parameter approaches and to determine whether BOLD MRI is helpful in differentiating RCC from benign renal masses, differentiating clear-cell RCC from renal masses other than clear-cell RCC and determining the tumour grade.Ninety-five patients with 139 renal masses (93 malignant and 46 benign who underwent abdominal BOLD MRI were enrolled. R2* values were derived from the largest cross-section (R2*largest and from the whole tumour (R2*whole. Intra-observer and inter-observer agreements were analysed based on two measurements by the same observer and the first measurement from each observer, respectively, and these agreements are reported with intra-class correlation coefficients and 95% confidence intervals. The diagnostic value of the R2* value in the evaluation was assessed with receiver-operating characteristic analysis.The intra-observer agreement was very good for R2*largest and R2*whole (all > 0.8. The inter-observer agreement of R2*whole (0.75, 95% confidence interval: 0.69~0.79 was good and was significantly improved compared with the R2*largest (0.61, 95% confidence interval: 0.52~0.68, as there was no overlap in the 95% confidence interval of the intra-class correlation coefficients. The diagnostic value in differentiating renal cell carcinoma from benign lesions with R2*whole (AUC=0.79/0.78[observer1/observer2] and R2*largest (AUC=0.75[observer1] was good and significantly higher (p=0.01 for R2*largest[observer2] vs R2*whole[observer2], p 0.7 and were not significantly different (p=0.89/0.93 for R2*largest vs R2*whole[observer1/observer2], 0.96 for R2*whole[observer1] vs R2*largest[observer2] and 0.96 for R2*whole [observer2] vs R2*largest[observer1].BOLD MRI could provide a feasible parameter for differentiating renal cell carcinoma from benign renal masses and for predicting clear-cell renal cell carcinoma grading. Compared with the largest cross

  7. Electronics and readout of a large area silicon detector for LHC

    International Nuclear Information System (INIS)

    Borer, K.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Scampoli, P.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Bibby, J.H.; Hawkings, R.J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J.

    1994-01-01

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquisition systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10 C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture. (orig.)

  8. The Muon Portal Project: A large-area tracking detector for muon tomography

    Directory of Open Access Journals (Sweden)

    Riggi F.

    2016-01-01

    Full Text Available The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m, so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  9. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays.

    Science.gov (United States)

    Calva-Coraza, E; Alva-Sánchez, H; Murrieta-Rodríguez, T; Martínez-Dávalos, A; Rodríguez-Villafuerte, M

    2017-10-01

    We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137 Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Future IBM-BNL large-area superconducting inductive monopole detectors

    International Nuclear Information System (INIS)

    Bermon, S.; Chi, C.C.; Tsuei, C.C.; Chaudhari, P.; Ketchen, M.; Tesche, C.D.; Prodell, A.

    1986-01-01

    The observation of massive moving magnetic monopoles would have extremely important implications for grand unification theories and cosmological models for the creation of the universe. Among detection methods, the superconducting induction technique is unique in that it directly and unambiguously measures the sole property of the monopole of which the authors are certain--its magnetic charge--the detector response being independent of all other characteristics such as the monopole mass, its velocity, the presence of a companion electric charge, or the detailed nature of its interaction with matter. Described herein are plans for constructing an induction detector sufficiently large to reach the Parker bound in several years of operation

  11. X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1978-01-01

    Two-dimensional X-ray diffraction patterns may be recorded quantitatively by means of X-ray-to-electron converters which are scanned in a television-type raster scan. Detectors of this type are capable of operating over the whole range of counting rates from very low to higher than those with which other types of converters can deal. The component parts of an X-ray television detector are examined and the limits to the precision of the measurements are analysed. (Auth.)

  12. Flight activity and habitat preference of bats in a karstic area, as revealed by bat detectors

    Czech Academy of Sciences Publication Activity Database

    Zukal, Jan; Řehák, Z.

    2006-01-01

    Roč. 55, č. 3 (2006), s. 273-281 ISSN 0139-7893 Institutional research plan: CEZ:AV0Z60930519 Keywords : Moravian Karst * echolocation calls * bat community * detectoring Subject RIV: EG - Zoology Impact factor: 0.529, year: 2006 http://www.ivb.cz/folia/55/3/273-281.pdf

  13. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  14. EXPERIMENTAL AND MONTE CARLO INVESTIGATIONS OF BCF-12 SMALL‑AREA PLASTIC SCINTILLATION DETECTORS FOR NEUTRON PINHOLE CAMERA.

    Science.gov (United States)

    Bielecki, J; Drozdowicz, K; Dworak, D; Igielski, A; Janik, W; Kulinska, A; Marciniak, L; Scholz, M; Turzanski, M; Wiacek, U; Woznicka, U; Wójcik-Gargula, A

    2017-12-11

    Plastic organic scintillators such as the blue-emitting BCF-12 are versatile and inexpensive tools. Recently, BCF-12 scintillators have been foreseen for investigation of the spatial distribution of neutrons emitted from dense magnetized plasma. For this purpose, small-area (5 mm × 5 mm) detectors based on BCF-12 scintillation rods and Hamamatsu photomultiplier tubes were designed and constructed at the Institute of Nuclear Physics. They will be located inside the neutron pinhole camera of the PF-24 plasma focus device. Two different geometrical layouts and approaches to the construction of the scintillation element were tested. The aim of this work was to determine the efficiency of the detectors. For this purpose, the experimental investigations using a neutron generator and a Pu-Be source were combined with Monte Carlo computations using the Geant4 code. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Persistence in the WFC3 IR Detector: An Area Dependent Model

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-05-01

    When the IR detector on WFC3 is exposed to a bright source or sources, the sources not only appear in the original exposure, but can appear as afterimages in later exposures, a phenomenon known as persistence. The magnitude and duration of persistence for a fixed stimulus varies somewhat across the face of the detector. Our previous attempts to characterize this variation were limited to a correction that captures only the variation in the magnitude. Here we describe a simple model which allows for variations both in the magnitude and the duration of the persistence, and then evaluate quantitatively how much improvement this model provides. We conclude that while this was a useful experiment, it does not result in a marked improvement in our ability to predict persistence in the WFC3/IR array. We discuss why this was the case, and possible paths forward.

  16. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    International Nuclear Information System (INIS)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T.; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K.

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ∼5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ∼11 with a peaking time of 1.2 μs. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 μm. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized

  17. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T. E-mail: thierry.gys@cern.ch; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K

    2000-03-11

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of {approx}5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is {approx}11 with a peaking time of 1.2 {mu}s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 {mu}m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized.

  18. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    AUTHOR|(CDS)2079748; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  19. Performance of a large-area GEM detector read out with wide radial zigzag strips

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiwu, E-mail: azhang@fit.edu; Bhopatkar, Vallary; Hansen, Eric; Hohlmann, Marcus; Khanal, Shreeya; Phipps, Michael; Starling, Elizabeth; Twigger, Jessie; Walton, Kimberly

    2016-03-01

    A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run radially with an azimuthal pitch of 1.37 mrad to measure the azimuthal ϕ-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4±0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193±3) μrad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.

  20. Development of sub-nanosecond, high gain structures for time-of-flight ring imaging in large area detectors

    International Nuclear Information System (INIS)

    Wetstein, Matthew

    2011-01-01

    Microchannel plate photomultiplier tubes (MCPs) are compact, imaging detectors, capable of micron-level spatial imaging and timing measurements with resolutions below 10 ps. Conventional fabrication methods are too expensive for making MCPs in the quantities and sizes necessary for typical HEP applications, such as time-of-flight ring-imaging Cherenkov detectors (TOF-RICH) or water Cherenkov-based neutrino experiments. The Large Area Picosecond Photodetector Collaboration (LAPPD) is developing new, commercializable methods to fabricate 20 cm 2 thin planar MCPs at costs comparable to those of traditional photo-multiplier tubes. Transmission-line readout with waveform sampling on both ends of each line allows the efficient coverage of large areas while maintaining excellent time and space resolution. Rather than fabricating channel plates from active, high secondary electron emission materials, we produce plates from passive substrates, and coat them using atomic layer deposition (ALD), a well established industrial batch process. In addition to possible reductions in cost and conditioning time, this allows greater control to optimize the composition of active materials for performance. We present details of the MCP fabrication method, preliminary results from testing and characterization facilities, and possible HEP applications.

  1. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  2. A large area CsI RICH Detector in ALICE at LHC

    CERN Document Server

    Di Bari, D; Davenport, Martyn; Di Mauro, A; Elia, D; Ghidini, B; Grimaldi, A; Martinengo, P; Monno, E; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Santiard, Jean-Claude; Stucchi, S; Tomasicchio, G; Williams, T D

    1999-01-01

    A 1m2 CsI RICH prototype has been successfully tested in a hadron beam at CERN SPS. The prototype, fully equipped with 15k electronic channels, has been used to identify particles coming from pi-Be interactions. Track reconstruction has been performed by using a telescope consisting of four gas pad chambers. A detailed description of the detector will be presented and results from the test will be discussed.List of figuresFigure 1 Expected proton and antiproton yields including jet quenching mechanism in central Pb-Pb collisions at LHC.Figure 2 Schematic view of the HMPID CsI-RICHFigure 3 Experimental layout used at the SPS/H4 test beamFigure 4 Distributions of the mean number, per ring, of pad hits (Npad), electrons (Ntot) and Cherenkov photoelectrons (Nres) as a function of the single-electron mean pulse heightFigure 5 Mean single-electron pulse height as a function of high voltage measured at the centre of each of the four photocathodesFigure 6 Evaluation of the uniformity of the chamber gain for the photo...

  3. Mapping large areas of radioactively contaminated land with a self adapted, handheld, GPS coupled, scintillation detector

    International Nuclear Information System (INIS)

    Paridaens, Johan

    2008-01-01

    In Belgium, during several decennia, a phosphate plant discharged radium chloride containing waste water into two small rivers. One of those is part of a hydrographically very complex ecosystem with lots of small tributaries and hundreds of hectares of flooding zones. Hence, the river banks and large parts of these flooding zones have become contaminated with radium, heavy metals and chlorides. During a foot campaign, using a home made portable data logging system, consisting of a commercial 2.5 kg NaI detector, a computer mouse sized GPS, and a small pocket PC, the radioactive contamination of about 600 ha of sometimes very rough terrain was measured and mapped. The resulting very detailed radium contamination maps shed a whole new light on the water flow patterns of the ecosystem. The apparatus can also be used for efficiently guiding sampling campaigns for investigating other types of contamination. The ground maps are also compared to existing maps from helicopter measurements, evaluating strengths and weaknesses from both methods

  4. A Fire Detector for Monitoring Inaccessible Areas in Aircrafts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — En'Urga Inc. will evaluate the feasibility of utilizing reflected, multi-wavelength, near infrared radiation for detecting fires in inaccessible areas within...

  5. Higher operation temperature quadrant photon detectors of 2-11 μm wavelength radiation with large photosensitive areas

    Science.gov (United States)

    Pawluczyk, J.; Sosna, A.; Wojnowski, D.; Koźniewski, A.; Romanis, M.; Gawron, W.; Piotrowski, J.

    2017-10-01

    We report on the quadrant photon HgCdTe detectors optimized for 2-11 μm wavelength spectral range and Peltier or no cooling, and photosensitive area of a quad-cell of 1×1 to 4×4 mm. The devices are fabricated as photoconductors or multiple photovoltaic cells connected in series (PVM). The former are characterized by a relatively uniform photosensitive area. The PVM photovoltaic cells are distributed along the wafer surface, comprising a periodical stripe structure with a period of 20 μm. Within each period, there is an insensitive gap/trench spot of size close to the period, but becomes negligible for the optimal spot size comparable to a quadrant-cell area. The photoconductors produce 1/f noise with about 10 kHz knee frequency, due to bias necessary for their operation. The PVM photodiodes are typically operated at 0 V bias, so they generate no 1/f noise and operation from DC is enabled. At 230 K, upper corner frequency of 16 to 100 MHz is obtained for photoconductor and 60 to 80 MHz for PVM, normalized detectivity D* 6×107 cm×Hz1/2/W to >1.4×108 cm×Hz1/2/W for photoconductor and >1.7×108 cm·Hz1/2/W for PVM, allowing for position control of the radiation beam with submicron accuracy at 16 MHz, 10.6 μm wavelength of pulsed radiation spot of 0.8 mm dia at the close-to-maximal input radiation power density in a range of detector linear operation.

  6. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands)

    2013-07-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e{sup −} Å{sup −2}), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.

  7. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    International Nuclear Information System (INIS)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e − Å −2 ), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins

  8. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  9. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  10. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  11. Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Science.gov (United States)

    Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-01

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  12. arXiv Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    CERN Document Server

    Betancourt, C.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, Alexander; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-27

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  13. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Science.gov (United States)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  14. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  15. Abdominal multi-detector row CT: Effectiveness of determining contrast medium dose on basis of body surface area

    International Nuclear Information System (INIS)

    Onishi, Hiromitsu; Murakami, Takamichi; Kim, Tonsok; Hori, Masatoshi; Osuga, Keigo; Tatsumi, Mitsuaki; Higashihara, Hiroki; Maeda, Noboru; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tomoda, Kaname; Tomiyama, Noriyuki

    2011-01-01

    Purpose: To investigate the validity of determining the contrast medium dose based on body surface area (BSA) for the abdominal contrast-enhanced multi-detector row CT comparing with determining based on body weight (BW). Materials and methods: Institutional review committee approval was obtained. In this retrospective study, 191 patients those underwent abdominal contrast-enhanced multi-detector row CT were enrolled. All patients received 96 mL of 320 mg I/mL contrast medium at the rate of 3.2 mL. The iodine dose required to enhance 1 HU of the aorta at the arterial phase and that of liver parenchyma at portal venous phase per BSA were calculated (EU BSA ) and evaluated the relationship with BSA. Those per BW were also calculated (EU BW ) and evaluated. Estimated enhancement values (EEVs) of the aorta and liver parenchyma with two protocols for dose decision based on BSA and BW were calculated and patient-to-patient variability was compared between two protocols using the Levene test. Results: The mean of EU BSA and EU BW were 0.0621 g I/m 2 /HU and 0.00178 g I/kg/HU for the aorta, and 0.342 g I/m 2 /HU and 0.00978 g I/kg/HU for the liver parenchyma, respectively. In the aortic enhancement, EU BSA was almost constant regardless of BSA, and the mean absolute deviation of the EEV with the BSA protocol was significantly lower than that with the BW protocol (P < .001), although there was no significant difference between two protocols in the hepatic parenchymal enhancement (P = .92). Conclusion: For the aortic enhancement, determining the contrast medium dose based on BSA was considered to improve patient-to-patient enhancement variability.

  16. Loy Yang A - Australia's largest privatisation

    International Nuclear Information System (INIS)

    Yenckin, C.

    1997-01-01

    The recent A$4,746 million privatisation of the 2000MW Loy Yang A power station and the Loy Yang coal mine by the Victorian Government is Australia's largest privatisation and one of 1997's largest project financing deals. (author)

  17. A new method for measuring temporal resolution in electrocardiogram-gated reconstruction image with area-detector computed tomography

    International Nuclear Information System (INIS)

    Kaneko, Takeshi; Takagi, Masachika; Kato, Ryohei; Anno, Hirofumi; Kobayashi, Masanao; Yoshimi, Satoshi; Sanda, Yoshihiro; Katada, Kazuhiro

    2012-01-01

    The purpose of this study was to design and construct a phantom for using motion artifact in the electrocardiogram (ECG)-gated reconstruction image. In addition, the temporal resolution under various conditions was estimated. A stepping motor was used to move the phantom over an arc in a reciprocating manner. The program for controlling the stepping motor permitted the stationary period and the heart rate to be adjusted as desired. Images of the phantom were obtained using a 320-row area-detector computed tomography (ADCT) system under various conditions using the ECG-gated reconstruction method. For estimation, the reconstruction phase was continuously changed and the motion artifacts were quantitatively assessed. The temporal resolution was calculated from the number of motion-free images. Changes in the temporal resolution according to heart rate, rotation time, the number of reconstruction segments and acquisition position in z-axis were also investigated. The measured temporal resolution of ECG-gated half reconstruction is 180 ms, which is in good agreement with the nominal temporal resolution of 175 ms. The measured temporal resolution of ECG-gated segmental reconstruction is in good agreement with the nominal temporal resolution in most cases. The estimated temporal resolution improved to approach the nominal temporal resolution as the number of reconstruction segments was increased. Temporal resolution in changing acquisition position is equal. This study shows that we could design a new phantom for estimating temporal resolution. (author)

  18. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve

  19. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  20. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  1. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.

    2013-03-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  2. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    International Nuclear Information System (INIS)

    Marchal, J; Horswell, I; Willis, B; Plackett, R; Gimenez, E N; Spiers, J; Thompson, J A; Gibbons, P; Tartoni, N; Ballard, D; Booker, P; Burge, S R; Nicholls, T; Lipp, J

    2013-01-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  3. broken magnet highlights largest collider's engineering challenges

    CERN Multimedia

    Inman, Mason

    2007-01-01

    "Even at the world's soon-to-be largest particle accelerator - a device that promises to push the boundaries of physics - scientists need to be mindful of one of the most fundamental laws in the universe: Murphy's Law. (2 pages)

  4. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  5. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  6. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Science.gov (United States)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  7. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  8. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca [Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1 (Canada); Battista, Jerry J.; Jordan, Kevin J. [Departments of Medical Biophysics and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario N6A 4L6 (Canada)

    2016-08-15

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60

  9. Gamma Large Area Silicon Telescope (GLAST): Applying silicon strip detector technology to the detection of gamma rays in space

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1993-06-01

    The recent discoveries and excitement generated by space satellite experiment EGRET (presently operating on Compton Gamma Ray Observatory -- CGRO) have prompted an investigation into modern detector technologies for the next generation space based gamma ray telescopes. The GLAST proposal is based on silicon strip detectors as the open-quotes technology of choiceclose quotes for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggerable. The GLAST detector basically has two components: a tracking module preceding a calorimeter. The tracking module has planes of crossed strip (x,y) 300 μm pitch silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. The gap between the layers (∼5 cm) provides a lever arm for track fitting resulting in an angular resolution of <0.1 degree at high energy. The status of this R ampersand D effort is discussed including details on triggering the instrument, the organization of the detector electronics and readout, and work on computer simulations to model this instrument

  10. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  11. Comparison of quantitatively analyzed dynamic area-detector CT using various mathematic methods with FDG PET/CT in management of solitary pulmonary nodules.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2013-06-01

    The objective of our study was to prospectively compare the capability of dynamic area-detector CT analyzed with different mathematic methods and PET/CT in the management of pulmonary nodules. Fifty-two consecutive patients with 96 pulmonary nodules underwent dynamic area-detector CT, PET/CT, and microbacterial or pathologic examinations. All nodules were classified into the following groups: malignant nodules (n = 57), benign nodules with low biologic activity (n = 15), and benign nodules with high biologic activity (n = 24). On dynamic area-detector CT, the total, pulmonary arterial, and systemic arterial perfusions were calculated using the dual-input maximum slope method; perfusion was calculated using the single-input maximum slope method; and extraction fraction and blood volume (BV) were calculated using the Patlak plot method. All indexes were statistically compared among the three nodule groups. Then, receiver operating characteristic analyses were used to compare the diagnostic capabilities of the maximum standardized uptake value (SUVmax) and each perfusion parameter having a significant difference between malignant and benign nodules. Finally, the diagnostic performances of the indexes were compared by means of the McNemar test. No adverse effects were observed in this study. All indexes except extraction fraction and BV, both of which were calculated using the Patlak plot method, showed significant differences among the three groups (p method, pulmonary arterial perfusion calculated using the dual-input method, and perfusion calculated using the single-input method were significantly larger than that of SUVmax (p method (69.8%, p method has better potential for the diagnosis of pulmonary nodules than dynamic area-detector CT analyzed using other methods and than PET/CT.

  12. UC Riverside physicists contribute to state-of-the-art detector installed in Switzerland

    CERN Multimedia

    2008-01-01

    PMUC Riverside scientists led by Gail Hanson, a distinguished professor of physics, are part of a collaboration of approximately 2300 international physicists who announced Dec. 19 that the world 's largest silicon tracking detector at CERN in Geneva, Switzerland, had been successfully installed (see also ). Called the CMS (Compact Muon Solenoid) Silicon Strip Tracking Detector, the six-ton instrument has a total surface area of 205 square meters, about the same as a singles tennis court.

  13. UC Riverside physicists contribute to state-of-the-art detector installed in Switzerland

    CERN Multimedia

    2008-01-01

    UC Riverside scientists led by Gail Hanson, a distinguished professor of physics, are part of a collaboration of approximately 2300 international physicists who announced Dec. 19 that the world's largest silicon tracking detector at CERN in Geneva, Switzerland, had been successfully installed (see also ). Called the CMS (Compact Muon Solenoid) Silicon Strip Tracking Detector, the six-ton instrument has a total surface area of 205 square meters, about the same as a singles tennis court.

  14. Collaborative spectrum sensing based on the ratio between largest eigenvalue and Geometric mean of eigenvalues

    KAUST Repository

    Shakir, Muhammad

    2011-12-01

    In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.

  15. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  16. Overview of the CMS Pixel Detector

    CERN Document Server

    Cerati, Giuseppe B

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2009. It will investigate the proton-proton collisions at $14~TeV$. A robust tracking combined with a precise vertex reconstruction is crucial to address the physics challenge of proton collisions at this energy. To this extent an all-silicon tracking system with very fine granularity has been built and now is in the final commissioning phase. It represents the largest silicon tracking detector ever built. The system is composed by an outer part, made of micro-strip detectors, and an inner one, made of pixel detectors. The pixel detector consists of three pixel barrel layers and two forward disks at each side of the interaction region. Each pixel sensor, both for the barrel and forward detectors, has $100 \\times 150$ $\\mu m^2$ cells for a total of 66 million pixels covering a total area of about $1~m^2$. The pixel detector will play a crucial role in the pattern recognition and the track reconstruction both...

  17. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  18. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  19. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm².

    Science.gov (United States)

    Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song

    2017-10-13

    Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  20. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2

    Directory of Open Access Journals (Sweden)

    Lin-Yue Liu

    2017-10-01

    Full Text Available Silicon carbide (SiC detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1–4 cm2 were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  1. A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Nakamura, Shoichi

    2012-01-01

    We report a novel two- and three-dimensional (2-D, 3-D) imaging detector based on the radiophotoluminescence (RPL) phenomenon in silver-activated phosphate glass (PG:Ag) and evaluate its dosimetric characteristics. A compact disk-type PG:Ag detector with a diameter of 80 mm was rotated at a rate of 400 rpm to read out the accumulated dose information and then remove the images for reuse. After X-ray exposure, three RPL dosimeter processes, i.e., preheating, reading, and erasing, were carried out with only a UV laser at 375 nm by adjusting the stepwise output levels. The 3-D images and dose distributions were rapidly reconstructed with a high spatial resolution of 1 μm and a sensitivity of 1 mGy.

  2. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Czech Academy of Sciences Publication Activity Database

    Kumpová, Ivana; Vavřík, Daniel; Fíla, Tomáš; Koudelka_ml., Petr; Jandejsek, Ivan; Jakůbek, Jan; Kytýř, Daniel; Zlámal, Petr; Vopálenský, Michal; Gantar, A.

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku C02003. ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * pixelated detectors and associated VLSI electronics Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02003

  3. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  4. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  5. Crash testing the largest experiment on Earth

    OpenAIRE

    Cauchi, Marija

    2015-01-01

    Under Europe lies a 27 km tunnel that is both the coldest and hottest place on Earth. The Large Hadron Collider (LHC) has already found out what gives mass to all the matter in the Universe. It is now trying to go even deeper into what makes up everything we see around us. Dr Marija Cauchi writes about her research that helped protect this atom smasher from itself. Photography by Jean Claude Vancell. http://www.um.edu.mt/think/crash-testing-the-largest-experiment-on-earth/

  6. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Takeshi, E-mail: ogo.takeshi.hp@mail.ncvc.go.jp [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Department of Advanced Mediccal Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Centre, Osaka (Japan); Fukuda, Tetsuya [Department of Radiology, National Cerebral and Cardiovascular Centre, Osaka (Japan); Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Sanda, Yoshihiro [Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Morita, Yoshiaki [Department of Radiology, National Cerebral and Cardiovascular Centre, Osaka (Japan); Asano, Ryotaro; Konagai, Nao [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Yasuda, Satoshi [Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan)

    2017-04-15

    Highlights: • Recent advancement in CT enables distal CTEpH lesions to be visualized. • We investigated the efficacy and safety of BPA guided by CBCT or ECG-gated area detector CT. • BPA guided by CBCT or ECG-gated area detector CT is effective and safe in patients with CTEpH . • These new advanced CT techniques may be useful in pre-BPA target lesion assessment. - Abstract: Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. Methods: We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1 year after BPA. Results: Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1 year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. Conclusions: BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment.

  7. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography

    International Nuclear Information System (INIS)

    Ogo, Takeshi; Fukuda, Tetsuya; Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin; Sanda, Yoshihiro; Morita, Yoshiaki; Asano, Ryotaro; Konagai, Nao; Yasuda, Satoshi

    2017-01-01

    Highlights: • Recent advancement in CT enables distal CTEpH lesions to be visualized. • We investigated the efficacy and safety of BPA guided by CBCT or ECG-gated area detector CT. • BPA guided by CBCT or ECG-gated area detector CT is effective and safe in patients with CTEpH . • These new advanced CT techniques may be useful in pre-BPA target lesion assessment. - Abstract: Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. Methods: We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1 year after BPA. Results: Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1 year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. Conclusions: BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment.

  8. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  9. The world's largest LNG producer's next market

    International Nuclear Information System (INIS)

    Fuller, R.; Isworo Suharno; Simandjuntak, W.M.P.

    1996-01-01

    The development of the domestic gas market in Indonesia, the world's largest liquefied natural gas producing country, is described as part of the overall impact of the country's oil and gas production. The first large scale use of natural gas in Indonesia was established in 1968 when a fertiliser plant using gas as the feedstock was built. Ultimately, through increased yields, this has enabled Indonesia to be self-sufficient in rice and an exporter of fertiliser. Problems which stand in the way of further developments include: capital, though Pertamina and PGN are perceived as attractive for foreign investment; the lack of a regulatory framework for gas; geographical constraints, among them the fact that the gas deposits are remote from the largest population concentrations; lack of infrastructure. There are nevertheless plans for expansion and the provision of an integrated gas pipeline system. Pertamina, which has responsibility for all oil and gas developments, and PGN, whose primary role has been as a manufacturer and distributor of gas, are now working together in the coordination of all gas activities. (10 figures). (UK)

  10. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  11. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  12. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  13. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  14. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  15. Evolution of the Largest Mammalian Genome.

    Science.gov (United States)

    Evans, Ben J; Upham, Nathan S; Golding, Goeffrey B; Ojeda, Ricardo A; Ojeda, Agustina A

    2017-06-01

    The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae. ©The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  17. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    International Nuclear Information System (INIS)

    Zhang, L; Morel, F; Hu-Guo, Ch; Hu, Y

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm 2 .

  18. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  19. Canada's largest co-gen project

    International Nuclear Information System (INIS)

    Salaff, S.

    2000-01-01

    In November 2000, the TransAlta Energy Corp. began construction on its $400 million natural gas fuelled cogeneration project in Sarnia Ontario. The Sarnia Regional Cogeneration Project (SRCP) is designed to integrate a new 440 MW cogeneration facility to be built at the Sarnia Division of Dow Chemicals Canada Inc. with nearby existing generators totaling 210 MW at Dow and Bayer Inc. At 650 MW, the new facility will rank as Canada's largest cogeneration installation. Commercial operation is scheduled for October 2002. TransAlta owns three natural gas fuelled cogeneration facilities in Ontario (in Ottawa, Mississauga and Windsor) totaling 250 MW. The cost of electric power in Ontario is currently controlled by rising natural gas prices and the supply demand imbalance. This balance will be significantly affected by the possible return to service of 2000 MW of nuclear generating capacity. The SRCP project was announced just prior to the Ontario Energy Competition Act of October 1998 which committed the province to introduce competition to the electricity sector and which created major uncertainties in the electricity market. Some of the small, 25 MW projects which survived the market uncertainty included the Toronto-based Toromont Energy Ltd. project involving gas fuelled cogeneration and methane gas generation from landfill projects in Sudbury and Waterloo. It was emphasized that cogeneration and combined heat and power projects have significant environmental advantages over large combined cycle facilities. The Ontario Energy Board is currently considering an application from TransAlta to link the SRCP facility to Ontario's Hydro One Network Inc.'s transmission grid. 1 fig

  20. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    Energy Technology Data Exchange (ETDEWEB)

    Genderen, E. van; Clabbers, M. T. B. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Das, P. P. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Stewart, A. [Department of Physics and Energy, Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); Nederlof, I. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Amsterdam Scientific Instruments, Postbus 41882, 1009 DB Amsterdam (Netherlands); Barentsen, K. C. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Portillo, Q. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Centres Científics i Tecnològics de la Universitat de Barcelona, University of Barcelona, Carrer de Lluís Solé i Sabaris, 1-3, Barcelona (Spain); Pannu, N. S. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Nicolopoulos, S. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Gruene, T., E-mail: tim.gruene@psi.ch [Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Abrahams, J. P., E-mail: tim.gruene@psi.ch [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2016-02-05

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)

  1. Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Formery, Anne-Sophie; Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Hossu, Gabriela [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Winninger, Daniel [IDCmem, Nancy (France); Batch, Toufik [Hopital de Mercy, Service de Radiologie, Metz (France); Gervaise, Alban [Legouest Military Instruction Hospital, Medical Imaging Department, Metz (France)

    2017-02-15

    To establish evidence-based recommendations for musculoskeletal kinematic 4D-CT on wide area-detector CT. In order to assess factors influencing image quality in kinematic CT studies, a phantom consisting of a polymethylmethacrylate rotating disk with round wells of different sizes was imaged with various acquisition protocols. Cadaveric acquisitions were performed on the ankle joint during motion in two different axes and at different speeds to allow validation of phantom data. Images were acquired with a 320 detector-row CT scanner and were evaluated by two readers. Motion artefacts were significantly correlated with various parameters (movement axis, distance to centre, rotation speed and volume acquisition speed) (p < 0.0001). The relation between motion artefacts and distance to motion fulcrum was exponential (R{sup 2} 0.99). Half reconstruction led to a 23 % increase in image noise and a 40 % decrease in motion artefacts. Cadaveric acquisitions confirmed phantom data. Based on these findings, high tube rotation speed and half reconstruction are recommended for kinematic CT. The axis of motion significantly influences image artefacts and should be considered in patient training and evaluation of acquisition protocol suitability. This study provides evidence-based recommendations for musculoskeletal kinematic 4D-CT. (orig.)

  2. Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

    CERN Multimedia

    Piuz, F; Braem, A; Van beelen, J B; Lion, G; Gandi, A

    2002-01-01

    %RD26 %title\\\\ \\\\During the past two years, RD26 groups have focused their activities on the production of CsI-RICH prototypes of large area, up to a square meter, to demonstrate their application in High Energy experiments. Many large CsI-photocathodes (up to 40) were produced following the processing techniques furthermore developped in the collaboration. Taking the Quantum Efficiency (QE) measured at 180 nm as a comparative figure of merit of a CsI-PC. Figure 1 shows the increase of the performance while improvements were successively implemented in the PC processing sequence. Most efficient were the use of substrates made of nickel, the heat treatment and handling of the PCs under inert gas. Actually, three large systems based on CsI-RICH have got approval in the following HEP experiments: HADES at GSI, COMPASS/NA58 at CERN and HMPID/ALICE at LHC implying up to 14 square metres of CsI-PC. In addition, several CsI-RICH detectors have been successfully operated in the Threshold Imaging Detector at NA44 and ...

  3. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  4. Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing

    Science.gov (United States)

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, IN

    2012-01-24

    A method of making a large area conformable shape structure comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes of a predetermined shape. The cut drawn tubes have a first end and a second end along the longitudinal direction of the cut drawn tubes. The method further comprises conforming the first end of the cut drawn tubes into a predetermined curve to form the large area conformable shape structure, wherein the cut drawn tubes contain a material.

  5. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  6. The ALEPH detector

    CERN Multimedia

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  7. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  8. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  9. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  10. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  12. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  13. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  14. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  15. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  16. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  17. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  18. Development of a replacement technology for the standard {sup 3}He detector for the detection of thermal neutron on large areas; Entwicklung einer Ersatztechnologie fuer den Standard {sup 3}He Detektor zum Nachweis thermischer Neutronen auf grossen Flaechen

    Energy Technology Data Exchange (ETDEWEB)

    Modzel, Gerd

    2014-07-23

    The large area Jalousie detector concept has been developed as a replacement for {sup 3}He based neutron detectors. It is based on inclined and stacked layers coated with {sup 10}B, detecting the conversion products in a gas detector. Prototypes have been built based on the requirements of the POWTEX experiment. The spatial resolution has been measured as FWHM{sub z}=11.9 mm and FWHM{sub θ}=6.4 mm, slightly above the prediction due to the range of the conversion products in the gas. The correlated anode and cathode deliver an efficiency with the expected dependency on the inclination angle. The absolute efficiency of the anode wires has been measured as 93.6% of the predicted value at 1.17 Aa, validating the detector concept. Simulations in Garfield have been made to better understand the inner workings of the detector. Tools to analyze the raw detector data have been developed, which enabled further optimizations in the data processing chain and solving some problems. A test environment has been built for the n-XYTER 2.0 chip and some preliminary tests have been conducted. They showcase some problems, but a statement about the state of the chip cannot be made yet.

  19. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  20. Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Takenaka, Daisuke; Kaminaga, Shigeo; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2018-02-01

    The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81m Kr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV 1 ) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. Multivariate logistic regression showed that %FEV 1 was significantly affected (r = 0.77, r 2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). Xenon-enhanced ADCT is more effective than 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.

  1. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  2. The Next White (NEW) Detector

    Energy Technology Data Exchange (ETDEWEB)

    Monrabal, F.; et al.

    2018-04-06

    Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT- White (NEW) apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for $\\beta\\beta 0\

  3. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Seki, Shinichiro; Tsubakimoto, Maho; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2015-02-01

    To prospectively compare the capabilities of dynamic perfusion area-detector computed tomography (CT), dynamic magnetic resonance (MR) imaging, and positron emission tomography (PET) combined with CT (PET/CT) with use of fluorine 18 fluorodeoxyglucose (FDG) for the diagnosis of solitary pulmonary nodules. The institutional review board approved this study, and written informed consent was obtained from each subject. A total of 198 consecutive patients with 218 nodules prospectively underwent dynamic perfusion area-detector CT, dynamic MR imaging, FDG PET/CT, and microbacterial and/or pathologic examinations. Nodules were classified into three groups: malignant nodules (n = 133) and benign nodules with low (n = 53) or high (n = 32) biologic activity. Total perfusion was determined with dual-input maximum slope models at area-detector CT, maximum and slope of enhancement ratio at MR imaging, and maximum standardized uptake value (SUVmax) at PET/CT. Next, all indexes for malignant and benign nodules were compared with the Tukey honest significant difference test. Then, receiver operating characteristic analysis was performed for each index. Finally, sensitivity, specificity, and accuracy were compared with the McNemar test. All indexes showed significant differences between malignant nodules and benign nodules with low biologic activity (P Dynamic perfusion area-detector CT is more specific and accurate than dynamic MR imaging and FDG PET/CT in the diagnosis of solitary pulmonary nodules in routine clinical practice. © RSNA, 2014.

  4. A 2D MWPC area detector for use with synchrotron X-radiation at the Daresbury Laboratory for small angle diffraction and scattering

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Hughes, G.; Przybylski, M.M.; Ridley, P.A.; Sumner, I.; Bateman, J.E.; Connolly, J.F.; Stephenson, R.

    1982-01-01

    A 2D multiwire proportional chamber area detector is being developed to provide a real time data acquisition system for small angle scattering and diffraction experiments with synchrotron X-radiation at the Daresbury synchrotron radiation source (SRS). The chamber has a circular aperture, 200 mm diameter with an anode and cathode wire pitch of 1 mm; a front cathode-anode spacing of 6 mm and a 6 mm spacing between anode and rear cathode. A 1 mm thick front beryllium window and a rear aluminium cover plate with indium seals provide a gas-tight system. Previous experiments with a similar chamber design allowed continual use of the chamber for up to 2 years without refill. A digitising time of 2 μs is expected based on a 260 mm delay line and Lecroy TDC linked to a mass semiconductor memory of 512 x 256 elements. The experiment will be controlled by a PDP 11/04 computer with 28 K memory interfaced to a CAMAC create with 64 K fast access CAMAC memory. The system should be relatively easy to use with good order to order resolution and reasonable rate for small angle diffraction and scattering experiments on biological systems. Evaluation of the set-up for protein crystallography is planned though a TV based image intensifier (Enraf-Nonius) is preferred for this application at the SRS. (orig.)

  5. Development Of Protocols For Simultaneous Measurements Of Rn, Tn Using Nuclear Track Detectors And Trial Application In Mining Areas Of Vietnam

    International Nuclear Information System (INIS)

    Bui Dac Dung; Trinh Van Giap; Le Dinh Cuong; Tran Khanh Minh; Nguyen Huu Quyet; Nguyen Van Khanh; Tran Ngoc Toan

    2013-01-01

    Radioactive gases Radon (Rn) and Thoron (Tn) contribute of more than 50% of natural radiation dose. However, separate measurements of Rn and Tn have not been paid enough attention. An Intergovernmental Cooperation Project was conducted at the Institute for Nuclear Science and Technology with the help from Hungarian experts. The main tasks of the project were to finalize 02 protocols for simultaneous measurements of Rn and Tn using nuclear track detectors and to test these protocols in investigating the concentrations of Rn and Tn, calculating the natural dose due to Rn and Tn, and evaluating the increased radiation dose and radiation safety due to mining activities. Main results of the project include 02 protocols for simultaneous measurements of Rn and Tn and the test results in the mining areas. Rn and Tn concentrations inside the coal mining tunnels are in the average level of Vietnam and the world. Tn concentration inside the factory for separating Zircon at the Ha Tinh Zircon Processing Plant was found to be very high, up to 2931 Bq/m 3 . Based on annual effective dose calculation, workers inside the factory for separating Zircon at the Ha Tinh Zircon Processing Plant could receive an annual effective dose due to Rn and Tn of 4.890 mSv/year, and the increasing dose of 4.710 mSv/year is for higher than 1 mSv/year recommended by the IAEA. (author)

  6. Feasibility of 320-row area detector CT coronary angiography using 40 mL of contrast material: assessment of image quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rihyeon; Park, Eun-Ah; Lee, Whal; Chung, Jin Wook [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2016-11-15

    To assess the image quality and diagnostic accuracy of 320-row area detector CT (320-ADCT) coronary angiography using 40 mL of contrast material in comparison with 60-mL protocol. This retrospective study included 183 patients who underwent 320-ADCT coronary angiography using 40 mL of contrast and additional 183 sex- and body mass index-matched patients using 60 mL of contrast constituting the control group. Both groups used the same 5-mL/sec injection rate. Quantitative image quality measurements and diagnostic accuracies were calculated and compared. Mean attenuation and contrast-to-noise ratio (CNR) at the aorta and all coronary arteries were lower in the 40-mL group than in the 60-mL group (all, p < 0.05), except for the CNR at proximal coronary arteries at 100 kVp (p = 0.073). However, the proportion of coronary segments with vessel attenuation >250 HU was not different between groups (all, p > 0.05), except for distal coronary arteries at 80 kVp (p = 0.001). Furthermore, there were no differences in per-patient and per-segment diagnostic accuracies between the groups (all, p > 0.05). 320-ADCT coronary angiography using 40 mL of contrast showed image quality and diagnostic accuracy comparable to the 60-mL protocol, demonstrating the clinical feasibility of lowering the risk of contrast-induced nephropathy through contrast volume reduction. (orig.)

  7. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography.

    Science.gov (United States)

    Ogo, Takeshi; Fukuda, Tetsuya; Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin; Sanda, Yoshihiro; Morita, Yoshiaki; Asano, Ryotaro; Konagai, Nao; Yasuda, Satoshi

    2017-04-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1year after BPA. Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  9. Silicon drift detectors, present and future prospects

    Science.gov (United States)

    Takahashi, J.; Bellwied, R.; Beuttenmuller, R.; Caines, H.; Chen, W.; Dyke, H.; Hoffmann, G. W.; Humanic, T.; Kotov, I.; Kuczewski, P.; Leonhardt, W.; Li, Z.; Lynn, D.; Minor, R.; Munhoz, M.; Ott, G.; Pandey, S. U.; Schambach, J.; Soja, R.; Sugarbaker, E.; Willson, R. M.

    2001-04-01

    Silicon drift detectors provide unambiguous two-dimensional position information for charged particle detection with a single detector layer. A large area silicon drift detector was developed for the inner tracking detector of the STAR experiment at RHIC. In this paper, we discuss the lessons learned and the future prospects of this technology.

  10. Generalized mean detector for collaborative spectrum sensing

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-04-01

    In this paper, a unified generalized eigenvalue based spectrum sensing framework referred to as Generalized mean detector (GMD) has been introduced. The generalization of the detectors namely (i) the eigenvalue ratio detector (ERD) involving the ratio of the largest and the smallest eigenvalues; (ii) the Geometric mean detector (GEMD) involving the ratio of the largest eigenvalue and the geometric mean of the eigenvalues and (iii) the Arithmetic mean detector (ARMD) involving the ratio of the largest and the arithmetic mean of the eigenvalues is explored. The foundation of the proposed unified framework is based on the calculation of exact analytical moments of the random variables of test statistics of the respective detectors. In this context, we approximate the probability density function (PDF) of the test statistics of the respective detectors by Gaussian/Gamma PDF using the moment matching method. Finally, we derive closed-form expressions to calculate the decision threshold of the eigenvalue based detectors by exchanging the derived exact moments of the random variables of test statistics with the moments of the Gaussian/Gamma distribution function. The performance of the eigenvalue based detectors is compared with the traditional detectors such as energy detector (ED) and cyclostationary detector (CSD) and validate the importance of the eigenvalue based detectors particularly over realistic wireless cognitive environments. Analytical and simulation results show that the GEMD and the ARMD yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed simple and tractable approximation approaches are in perfect agreement with the empirical results. © 1972-2012 IEEE.

  11. On the H8 beam line of the SPS in the North Area, a complete slice of the ATLAS detector is taking shape

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The Inner Detector and Calorimetry setup. The Liquid Argon electromagnetic calorimeter in its cryostat, and the tile calorimeter (centre) are mounted such that they can be repositioned in the beam, which travels from left to right. Also visible is the magnet housing the Pixel and SCT detectors (far left), the Transition Radiation Tracker (left) and part of a MDT/RPC Muon chamber (far right).

  12. VEGA: A low-power front-end ASIC for large area multi-linear X-ray silicon drift detectors: Design and experimental characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahangarianabhari, Mahdi; Macera, Daniele [Politecnico di Milano, Department of Electronics Engineering, Information Science and Bioengineering, P.za L. da Vinci 32, 20133 Milano (Italy); National Institute of Nuclear Physics, INFN sez. Milano (Italy); Bertuccio, Giuseppe, E-mail: Giuseppe.Bertuccio@polimi.it [Politecnico di Milano, Department of Electronics Engineering, Information Science and Bioengineering, P.za L. da Vinci 32, 20133 Milano (Italy); National Institute of Nuclear Physics, INFN sez. Milano (Italy); Malcovati, Piero; Grassi, Marco [University of Pavia, Department of Electrical Engineering, and National Institute of Nuclear Physics, INFN sez. Pavia, Pavia (Italy)

    2015-01-11

    We present the design and the first experimental characterization of VEGA, an Application Specific Integrated Circuit (ASIC) designed to read out large area monolithic linear Silicon Drift Detectors (SDD’s). VEGA consists of an analog and a digital/mixed-signal section to accomplish all the functionalities and specifications required for high resolution X-ray spectroscopy in the energy range between 500 eV and 50 keV. The analog section includes a charge sensitive preamplifier, a shaper with 3-bit digitally selectable shaping times from 1.6 µs to 6.6 µs and a peak stretcher/sample-and-hold stage. The digital/mixed-signal section includes an amplitude discriminator with coarse and fine threshold level setting, a peak discriminator and a logic circuit to fulfill pile-up rejection, signal sampling, trigger generation, channel reset and the preamplifier and discriminators disabling functionalities. A Serial Peripherical Interface (SPI) is integrated in VEGA for loading and storing all configuration parameters in an internal register within few microseconds. The VEGA ASIC has been designed and manufactured in 0.35 µm CMOS mixed-signal technology in single and 32 channel versions with dimensions of 200 µm×500 µm per channel. A minimum intrinsic Equivalent Noise Charge (ENC) of 12 electrons r.m.s. at 3.6 µs peaking time and room temperature is measured and the linearity error is between −0.9% and +0.6% in the whole input energy range. The total power consumption is 481 µW and 420 µW per channel for the single and 32 channels version, respectively. A comparison with other ASICs for X-ray SDD’s shows that VEGA has a suitable low noise and offers high functionality as ADC-ready signal processing but at a power consumption that is a factor of four lower than other similar existing ASICs.

  13. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    Science.gov (United States)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  14. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    Science.gov (United States)

    2009-07-01

    visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a

  16. Guaranteeing uptime at worl's largest particle physics lab

    CERN Multimedia

    Brodkin, Jon

    2007-01-01

    "As the European agency CERN was gearing up to build the world's largest particle accelerator, officials there knew they could not afford to have problems in their technical infrastructure cause any downtime." (1 page)

  17. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  18. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  19. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Namba, T.; Obayashi, Y.; Okada, A.; Oketa, M.; Okumura, K.; Oyabu, T.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Toshito, T.; Totsuka, Y.; Yamada, S.; Desai, S.; Earl, M.; Hong, J.T.; Kearns, E.; Masuzawa, M.; Messier, M.D.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Wang, W.; Scholberg, K.; Barszczak, T.; Casper, D.; Liu, D.W.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Mine, S.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Hayato, Y.; Ishii, T.; Ichikawa, A.; Kanzaki, J.; Kobayashi, T.; Maruyama, T.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Iwashita, T.; Kohama, M.; Suzuki, A.T.; Hasegawa, M.; Inagaki, T.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Yamamoto, S.; Haines, T.J.; Kim, B.K.; Sanford, R.; Svoboda, R.; Blaufuss, E.; Chen, M.L.; Conner, Z.; Goodman, J.A.; Guillian, E.; Sullivan, G.W.; Turcan, D.; Habig, A.; Ackerman, M.; Goebel, F.; Hill, J.; Jung, C.K.; Kato, T.; Kerr, D.; Malek, M.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Inaba, S.; Ito, K.; Kirisawa, M.; Kitaguchi, M.; Mitsuda, C.; Miyano, K.; Saji, C.; Takahata, M.; Takahashi, M.; Higuchi, K.; Kajiyama, Y.; Kusano, A.; Nagashima, Y.; Nitta, K.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, H.I.; Kim, S.B.; Yoo, J.; Okazawa, H.; Etoh, M.; Fujita, K.; Gando, Y.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Koga, M.; Nishiyama, I.; Ogawa, H.; Shirai, J.; Suzuki, A.; Takayama, T.; Tsushima, F.; Koshiba, M.; Ichikawa, Y.; Hashimoto, T.; Hatakeyama, Y.; Koike, M.; Horiuchi, T.; Nemoto, M.; Nishijima, K.; Takeda, H.; Fujiyasu, H.; Futagami, T.; Ishino, H.; Kanaya, Y.; Morii, M.; Nishihama, H.; Nishimura, H.; Suzuki, T.; Watanabe, Y.; Kielczewska, D.; Golebiewska, U.; Berns, H.G.; Boyd, S.B.; Doyle, R.A.; George, J.S.; Stachyra, A.L.; Wai, L.L.; Wilkes, R.J.; Young, K.K.; Kobayashi, H.

    2003-01-01

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  20. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  1. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  2. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  3. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  4. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  5. Proportional gas scintillation detectors and their applications

    International Nuclear Information System (INIS)

    Petr, I.

    1978-01-01

    The principle is described of a gas proportional scintillation detector and its function. Dependence of Si(Li) and xenon proportional detectors energy resolution on the input window size is given. A typical design is shown of a xenon detector used for X-ray spetrometry at an energy of 277 eV to 5.898 keV and at a gas pressure of 98 to 270 kPa. Gas proportional scintillation detectors show considerable better energy resolution than common proportional counters and even better resolution than semiconductor Si(Li) detectors for low X radiation energies. For detection areas smaller than 25 mm 2 Si(Li) detectors show better resolution, especially for higher X radiation energies. For window areas 25 to 190 mm 2 both types of detectors are equal, for a window area exceeding 190 mm 2 the proportional scintillation detector has higher energy resolution. (B.S.)

  6. Digital radiography of the skeleton using a large-area detector based on amorphous silicon technology: Image quality and potential for dose reduction in comparison with screen-film radiography

    International Nuclear Information System (INIS)

    Volk, M.; Strotzer, M.; Holzkneckt, N.; Manke, C.; Lenhart, M.; Gmeinwieser, J.; Link, J.; Reiser, M.; Feuerback, S.

    2000-01-01

    AIM: The purpose of this study was to evaluate a large-area, flat-panel X-ray detector (FD), based on caesium-iodide (CsI) and amorphous silicon (a-Si) with respect to skeletal radiography. Conventional images were compared with digital radiographs using identical and reduced radiation doses. MATERIALS AND METHODS: Thirty consecutive patients were studied prospectively using conventional screen-film radiography (SFR; detector dose 2.5 μGy). Digital images were taken from the same patients with detector doses of 2.5, 1.25 and 0.625 μGy, respectively. The active-matrix detector had a panel size of 43 x 43 cm, a matrix of 3 x 3K, and a pixel size of 143 μm. All hard copies were presented in a random order to eight independent observers, who rated image quality according to subjective quality criteria. Results were assessed for significance using the Student's t -test (confidence level 95%). RESULTS: A statistically significant preference for digital over conventional images was revealed for all quality criteria, except for over-exposure (detector dose 2.5 μGy). Digital images with a 50% dose showed a small, statistically not significant, inferiority compared with SFR. The FD-technique was significantly inferior to SFR at 75% dose reduction regarding bone cortex and trabecula, contrast and overall impression. No statistically significant differences were found with regard to over- and under-exposure and soft tissue presentation. CONCLUSION: Amorphous silicon-based digital radiography yields good image quality. The potential for dose reduction depends on the clinical query. Volk, M. (2000)

  7. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  8. Neutron detector development at Brookhaven

    International Nuclear Information System (INIS)

    Yu, B.; Harder, J.A.; Mead, J.A.; Radeka, V.; Schaknowski, N.A.; Smith, G.C.

    2003-01-01

    Two-dimensional thermal neutron detectors have been the subject of research and development at Brookhaven for over 20 years. Based primarily on multi-wire chambers filled with a gas mixture containing 3 He, these detectors have been used in wide-ranging studies of molecular biology and material science samples. At each phase of development, experimenters have sought improvements in key parameters such as position resolution, counting rate, efficiency, solid-angle coverage and stability. A suite of detectors has been developed with sensitive areas ranging from 5x5 to 50x50 cm 2 . These devices incorporate low-noise-position readout and the best position resolution for thermal neutron gas detectors. Recent developments include a 1.5 mx20 cm detector containing multiple segments with continuously sensitive readout, and detectors with unity gain for ultra-high rate capability and long-term stability

  9. Joint Asymptotic Distributions of Smallest and Largest Insurance Claims

    Directory of Open Access Journals (Sweden)

    Hansjörg Albrecher

    2014-07-01

    Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.

  10. Challenges with the largest commercial hydrogen station in the world

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, Thomas; Gauthier, Pierre [Air Liquide Canada (Canada)

    2010-07-01

    This abstract's objective is to share with the participants the story of the largest hydrogen fueling station made to this date and to kick-start the story, we will cover the challenges; first the technical ones; the operational ones; the distribution ones and; the financial ones. We will then move on to review the logistic (geographic) issues raised by the project and conclude our presentation by sharing the output values of the largest fueling station built so far in the world. (orig.)

  11. World's largest air shower array now on track of super-high-energy cosmic-rays Pierre Auger Observatory seeks source of highest-energy extraterrestrial particles

    CERN Multimedia

    2003-01-01

    "With the completion of its hundredth surface detector, the Pierre Auger Observatory, under construction in Argentina, this week became the largest cosmic-ray air shower array in the world. Managed by scientists at the Department of Energy's Fermi National Accelerator Laboratory, the Pierre Auger project so far encompasses a 70-square-mile array of detectors that are tracking the most violent-and perhaps most puzzling- processes in the entire universe" (1 page).

  12. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  13. High P/sub T/ detectors for the SSC

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1987-11-01

    Summarized in this report is some of the work done at the recent Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider held at Berkeley. The major goal was to develop an understanding of what complement of detectors would provide the capability for a well-balanced physics program at the SSC. Unlike earlier studies which had emphasized individual components such as tracking, calorimetry, etc., the intention was to focus on complete detectors. The particular detectors discussed in this paper are: the large solenoid detectors, the compact solenoid detectors, the non-magnetic detectors, the dipole detectors and muon detectors. 10 refs., 6 figs., 2 tabs

  14. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  15. NAFTA: The World's Largest Trading Zone Turns 20

    Science.gov (United States)

    Ferrarini, Tawni Hunt; Day, Stephen

    2014-01-01

    Everyone under the age of 20 who has grown up in North America has lived in the common market created by NAFTA--the North American Free Trade Agreement. In a zone linking the United States, Canada, and Mexico, most goods and investments flow freely across borders to users, consumers, and investors. In 1994, NAFTA created the largest relatively…

  16. Synchrotron Emission on the Largest Scales: Radio Detection of the ...

    Indian Academy of Sciences (India)

    Abstract. Shocks and turbulence generated during large-scale structure formation are predicted to produce large-scale, low surface-brightness synchrotron emission. On the largest scales, this emission is globally correlated with the thermal baryon distribution, and constitutes the 'syn- chrotron cosmic-web'. I present the ...

  17. Building Earth's Largest Library: Driving into the Future.

    Science.gov (United States)

    Coffman, Steve

    1999-01-01

    Examines the Amazon.com online bookstore as a blueprint for designing the world's largest library. Topics include selection; accessibility and convenience; quality of Web sites and search tools; personalized service; library collection development, including interlibrary loan; library catalogs and catalog records; a circulation system; costs;…

  18. Analysis of Human Standing Balance by Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-01-01

    Full Text Available The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.

  19. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)

  20. PNNL supercomputer to become largest computing resource on the Grid

    CERN Multimedia

    2002-01-01

    Hewlett Packard announced that the US DOE Pacific Northwest National Laboratory will connect a 9.3-teraflop HP supercomputer to the DOE Science Grid. This will be the largest supercomputer attached to a computer grid anywhere in the world (1 page).

  1. Toward sustainable harvesting of Africa's largest medicinal plant ...

    African Journals Online (AJOL)

    Global demand for treating prostate disorders with Prunus africana bark extract has made P. africana Africa's largest medicinal plant export. Unsustainable harvesting practices can lead to local extirpations of this multipurpose tree. Survey research targeting P. africana harvesters in a Tanzania forest reserve revealed that ...

  2. Detector frontier: Theoretical expectations and dreams

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1992-01-01

    The new large detector systems are certain to shed new light on many aspects of nuclear structure. Some of these areas for future studies are discussed. In this contribution the author concentrates on several aspects of nuclear spectroscopy, that will be accessible by modern detector systems (e.g., γ-ray crystal balls or new-generation particle detectors)

  3. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  4. AEi systems designing power sstem for world's largest particle accelerator

    CERN Multimedia

    Weinberg, Lee

    2007-01-01

    "AEi Systems, a world leader in power systems analysis and design, announced today that the Large Hadron Collider (LHC) at CERN (the European Centre for Nuclear Research) near Geneva, Switzerland, has engaged AEi Systems to design and develop a radiation-hard power supply for CERN's giant ATLAS particle detector." (1 page)

  5. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  6. Watching the Creation of Southern California's Largest Reservoir

    Science.gov (United States)

    2001-01-01

    The new Diamond Valley Lake Reservoir near the city of Hemet in Riverside County is billed as the largest earthworks construction project in U.S.history. Construction began in 1995 and involved 31 million cubic meters of foundation excavation and 84 million cubic meters of embankment construction. This set of MISR images captures the most recent phase in the reservoir's activation. At the upper left is a natural-color view acquired by the instrument's vertical-viewing (nadir) camera on March 14, 2000 (Terra orbit 1273), shortly after the Metropolitan Water District began filling the reservoir with water from the Colorado River and Northern California. Water appears darker than the surrounding land. The image at the upper right was acquired nearly one year later on March 1, 2001 (Terra orbit 6399), and shows a clear increase in the reservoir's water content. When full, the lake will hold nearly a trillion liters of water.According to the Metropolitan Water District, the 7 kilometer x 3 kilometer reservoir nearly doubles Southern California's above-groundwater storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a major aqueduct. In the face of electrical power shortages, it is also expected to reduce dependence on the pumping of water from northern mountains during the high-demand summer months. An unexpected result of site excavation was the uncovering of mastodon and mammoth skeletons along with bones from extinct species not previously thought to have been indigenous to the area, such as the giant long-horned bison and North American lion. A museum and interpretive center is being built to protect these finds.The lower MISR image, from May 20, 2001 (Terra orbit 7564), is a false-color view combining data from the instrument's 26-degree forward view (displayed as blue) with data from the 26-degree backward view

  7. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  8. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  9. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  10. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Radon detectors for continuous environmental monitoring applications

    International Nuclear Information System (INIS)

    Sisoutham, O.; Werczynski, S.; Chambers, S.; Zahorowski, W.

    2003-01-01

    The two-filter method is presently the best technique available for real-time low-level counting of atmospheric 222 Rn. The Australian Nuclear Science and Technology Organisation has developed and deployed a range of dual flow loop, two-filter radon detectors around the world for various applications. The detectors have a response time of 45 minutes, and can be custom built for specific purposes. The largest detectors have a lower limit of detection of ∼10 mBq m -3

  12. Silicon microstrip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Masciocchi, S.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.S.; Timm, S.; Vorwalter, K.; Werding, R.

    1995-01-01

    A new silicon strip detector has been designed for the fixed target experiment WA89 at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into a FASTBUS memory. The detector provides a fast readout by offering zero-suppressed data extraction on the chip. The silicon counters are the largest detectors built on a monocrystal so far in order to achieve good transversal acceptance. Construction and performance during the 1993 data taking run are discussed. ((orig.))

  13. Temporal properties of seismicity and largest earthquakes in SE Carpathians

    Directory of Open Access Journals (Sweden)

    S. Byrdina

    2006-01-01

    Full Text Available In order to estimate the hazard rate distribution of the largest seismic events in Vrancea, South-Eastern Carpathians, we study temporal properties of historical and instrumental catalogues of seismicity. First, on the basis of Generalized Extreme Value theory we estimate the average return period of the largest events. Then, following Bak et al. (2002 and Corral (2005a, we study scaling properties of recurrence times between earthquakes in appropriate spatial volumes. We come to the conclusion that the seismicity is temporally clustered, and that the distribution of recurrence times is significantly different from a Poisson process even for times largely exceeding corresponding periods of foreshock and aftershock activity. Modeling the recurrence times by a gamma distributed variable, we finally estimate hazard rates with respect to the time elapsed from the last large earthquake.

  14. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  15. Upgrade and modernization of the six largest HPPs in Macedonia

    International Nuclear Information System (INIS)

    Hadzievska, M.

    2002-01-01

    In 1998, Electric Power Company of Macedonia and the International Bank for Development and Reconstruction, started the Power System Improvement Project a part of which is the Project for rehabilitation of the six largest Hydro Power Plants (HPPs) in the Republic of Macedonia. The six largest Hydro Power Plants (HPP Vrutok, HPP Raven, HPP Globocica, HPP Tikves and HPP Spilje and HPP Vrben) represent 91% of the country's hydropower capacity. The rehabilitation program is divided in five parts (contracts) and covers the refurbishment of: turbine runners, turbine and generator bearings, governors, inlet valves; butterfly valves, including accessories and control systems; generators, excitation system and voltage regulation; control system, protection and LV auxiliaries; switch gears and control gears in 220 kV, 110 kV and 35 kV substations. At the moment, only the implementation of switch gears has started, the first phase is already finished, and 50 % of the rehabilitation works for HPP Vrutok, the largest HPP, has been finished. With the realization of this project, greater hydropower production is expected. It also expected that HPPs will become a more vital part of the Macedonian power system

  16. Kabob report. Pt. 3. Chevron plant largest in Canada

    Energy Technology Data Exchange (ETDEWEB)

    1971-01-18

    Canada's largest fully integrated primary natural- gas processing and sulfur recovery plant is heading for physical completion by mid-summer of 1971. The Ralph M. Parsons Construction Co. of Canada Ltd., contractor for the S. Kaybob Beaverhill Lake Unit No. 3 gas-processing plant, to be operated by Chevron Standard Ltd., estimates completion by June 30. After that the $80 million complex will have tests and running in time. With any reasonable luck, it should be fully on stream by late summer. Preliminary construction on the 200-acre site started in Jan. 1969 with clearing and contouring of the main plant and sulfur storage sites. Initial rough grading started in the early summer, after spring breakup was over. Delivery of most of the big items was made by rail because the local secondary roads were inadequate for them. Concrete has been a large item. The contractor has its own batch plant on the site for the estimated 28,000 cu yd which will be needed for the whole job. Dominating the construction site from the start has been the high sulfur plant stack, first of the major items to be finished. It will serve to dispose of effluent from the largest sulfur recovery unit in Canada. It is 465 ft high, one of the largest in Alberta, and a significant contribution to pollution control and environmental protection.

  17. Final Status Survey for the Largest Decommissioning Project on Earth

    International Nuclear Information System (INIS)

    Dubiel, R.W.; Miller, J.; Quayle, D.

    2006-01-01

    To assist the United States Department of Energy's (US DOE's) re-industrialization efforts at its gaseous diffusion site in Oak Ridge, Tennessee, known as the East Tennessee Technology Park (ETTP), the US DOE awarded a 6-year Decontamination and Decommissioning (D and D) contract to BNG America (formerly BNFL Inc.) in 1997. The ETTP 3-Building D and D Project included the removal and disposition of the materials and equipment from the K-33, K-31, and K-29 Gaseous Diffusion Plant buildings. The three buildings comprise more than 4.8 million square feet (446,000 square meters) of floor surface area and more than 350 million pounds (148 million kilograms) of hazardous and radioactively contaminated material, making it the largest nuclear D and D project in progress anywhere in the world. The logistical hurdles involved in a project of this scope and magnitude required an extensive amount of Engineering and Health Physics professionals. In order to accomplish the Final Status Survey (FSS) for a project of this scope, the speed and efficiency of automated survey equipment was essential. Surveys of floors, structural steel and ceilings up to 60 feet (18 meters) were required. The FSS had to be expanded to include additional remediation and surveys due to characterization surveys and assumptions regarding the nature and extent of contamination provided by the US DOE. Survey design and technical bases had to consider highly variable constituents; including uranium from depleted to low enrichment, variable levels of Technetium-99 and transuranic nuclides, which were introduced into the cascade during the 1960's when recycled uranium (RU) from Savannah River was re-enriched at the facility. The RU was transported to unexpected locations from leaks in the cascade by complex building ventilation patterns. The primary survey tool used for the post remediation and FSS was the Surface Contamination Monitor (SCM) and the associated Survey Information Management System (SIMS

  18. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  20. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  1. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  2. Report of the specialized detector group

    International Nuclear Information System (INIS)

    Witherell, M.S.

    1984-01-01

    The Specialized Detector Group was assigned the task of studying the types of detectors, other than general purpose detectors, that might be suitable for the SSC. At the start of the Snowmass workshop, a number of physics topics were identified which could call for a specialized detector. The modest size of the specialized detector group dictated that we concentrate on a few of these detectors, and not try to consider all candidates. Subgroups were formed for each type of detector, and they worked completely independently on their very different problems. The members of a subgroup were also members of the corresponding group within the Physics area. Because of the wide variety of problems faced by the various subgroups, the detectors will be described in separate papers within these proceedings (some of them within the Physics group reports). Thus, this report gives a summary of these designs and discusses some general considerations

  3. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  4. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  5. Detector on wheel system (flying spot)

    International Nuclear Information System (INIS)

    Annis, M.

    1980-01-01

    An arc-shaped x-ray beam penetrates an arcual cross-sectional area of a body and the attentuated transmitted beam irradiates a portion of a circular array of detectors on a rotating disc. The detectors operate to generate signals proportional to the intensity of the incident transmitted radiation. The beam and detectors are moved along the axis of the body during rotation of the disc to irradiate adjacent cross-sectional areas of the body. A computer operated crt receives the detector signals and displays an image of the radiation attentuation characteristics of the scanned arcual areas

  6. The Environmental Responsibility of the World’s Largest Banks

    Directory of Open Access Journals (Sweden)

    Ryszawska Bożena

    2018-03-01

    Full Text Available Sustainability transition is changing the role and function of banks, specially their products and services also in relation to stakeholders. Banks are one of the main actors supporting the transition to sustainable economy. The purpose of this study is to emphasise the role of world’s largest banks in that process. Banks are slowly responding to the new demand of sustainability and responsibility, and they try to align with it. The paper is based on an overview of the world’s five largest banks that employ corporate social responsibility (CSR reporting standards, together with detailed enumeration of pro-environmental activities included in the reports. The first section of this paper presents the most popular approaches to the problem at hand, as reported in professional literature. Section two presents the characteristics of the CSR actions in banks. The third section discusses the environmental actions of the biggest banks in Global Reporting Initiative (GRI reporting the most popular standard for reporting non-financial information. And the last part of the paper presents the conclusions resulting from the article. The research was conducted using a variety of sources, such as scientific articles, statistical data, CSR reports of the world’s largest banks, as well reporting principles and standard disclosures. The basic method used in the process of writing was a critical analysis of literature and reports concerning the CSR reporting standards, environmental responsibilities of different kinds of entities, as well as own observations based on special reports of banks. In the article, also the analysis of financial market data, induction method and comparison method have been used. The main conclusions of the analysis of the CSR reports disclosed by the world’s largest banks confirm all three of the theses presented in the article. The findings suggest that the banks under study can be regarded as environmentally responsible

  7. Longevity in Calumma parsonii, the World's largest chameleon.

    Science.gov (United States)

    Tessa, Giulia; Glaw, Frank; Andreone, Franco

    2017-03-01

    Large body size of ectothermic species can be correlated with high life expectancy. We assessed the longevity of the World's largest chameleon, the Parson's chameleon Calumma parsonii from Madagascar by using skeletochronology of phalanges taken from preserved specimens held in European natural history museums. Due to the high bone resorption we can provide only the minimum age of each specimen. The highest minimum age detected was nine years for a male and eight years for a female, confirming that this species is considerably long living among chameleons. Our data also show a strong correlation between snout-vent length and estimated age. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Environmental isotope signatures of the largest freshwater lake in Kerala

    International Nuclear Information System (INIS)

    Unnikrishnan Warrier, C.

    2007-01-01

    Sasthamkotta lake, the largest freshwater lake in Kerala, serves as a source for drinking water for more than half a million people. Environmental 137 Cs analysis done on undisturbed sediment core samples reveals that the recent rate of sedimentation is not uniform in the lake. The useful life of lake is estimated as about 800 years. The δD and δ 18 O values of the lake waters indicate that the lake is well mixed with a slight variation horizontally. The stable isotope studies on well waters from the catchment indicate hydraulic communication with the lake and lake groundwater system is flow-through type. Analytical model also supports this view. (author)

  9. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  11. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  12. Carbon and energy fluxes from China's largest freshwater lake

    Science.gov (United States)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  13. SSC RIAR is the largest centre of research reactors

    International Nuclear Information System (INIS)

    Kalygin, V.V.

    1997-01-01

    The State Scientific Centre (SSC) ''Research Institute of Atomic Reactors'' (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs

  14. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  15. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  16. Opportunities for biodiversity gains under the world's largest reforestation programme

    Science.gov (United States)

    Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W.; Wilcove, David S.

    2016-01-01

    Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households. PMID:27598524

  17. SSC RIAR is the largest centre of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalygin, V V [State Scientific Centre, Research Inst. of Atomic Reactors (Russian Federation)

    1997-10-01

    The State Scientific Centre (SSC) ``Research Institute of Atomic Reactors`` (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs.

  18. The largest Silurian vertebrate and its palaeoecological implications

    Science.gov (United States)

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  19. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  20. The largest glitch observed in the Crab pulsar

    Science.gov (United States)

    Shaw, B.; Lyne, A. G.; Stappers, B. W.; Weltevrede, P.; Bassa, C. G.; Lien, A. Y.; Mickaliger, M. B.; Breton, R. P.; Jordan, C. A.; Keith, M. J.; Krimm, H. A.

    2018-05-01

    We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of Δν = 1.530 × 10-5 Hz, corresponding to a fractional increase of Δν/ν = 0.516 × 10-6 making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of ˜1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by Δ \\dot{ν } / \\dot{ν } = 7 × 10^{-3}. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as \\dot{ν } slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to \\dot{ν }. We continue to monitor the long-term recovery with frequent, high quality observations.

  1. The 150 ns detector project: progress with small detectors

    International Nuclear Information System (INIS)

    Warburton, W.K.; Russell, S.R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-01-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  2. The 150 ns detector project: progress with small detectors

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Russell, S.R. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Kleinfelder, Stuart A. (VLSI Physics, 19 Drury Lane, Berkeley, CA 94705 (United States)); Segal, Julie (Integrated Ckts Lab., Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States))

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 [mu]m CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  3. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  4. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  5. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  6. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  7. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    International Nuclear Information System (INIS)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873

  8. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.

  9. WISMUT AG: Past, present and future of the largest uranium producer in Europe

    International Nuclear Information System (INIS)

    Madel, J.

    1990-01-01

    The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made

  10. Scintillation detectors of Alborz-I experiment

    International Nuclear Information System (INIS)

    Pezeshkian, Yousef; Bahmanabadi, Mahmud; Abbasian Motlagh, Mehdi; Rezaie, Masume

    2015-01-01

    A new air shower experiment of the Alborz Observatory, Alborz-I, located at the Sharif University of Technology, Iran, will be constructed in near future. An area of about 30×40 m 2 will be covered by 20 plastic scintillation detectors (each with an area of 50×50 cm 2 ). A series of experiments have been performed to optimize the height of light enclosures of the detectors for this array and the results have been compared to an extended code simulation of these detectors. Operational parameters of the detector obtained by this code are cross checked by the Geant4 simulation. There is a good agreement between the extended-code and Geant4 simulations. We also present further discussions on the detector characteristics, which can be applicable for all scintillation detectors with a similar configuration

  11. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  12. Oceans of Opportunity. Harnessing Europe's largest domestic energy resource

    International Nuclear Information System (INIS)

    Fichaux, N.; Wilkes, J.

    2009-09-01

    Europe's offshore wind potential is enormous and able to power Europe seven times over. Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU's electricity whilst avoiding 200 million tonnes of CO2 emissions each year. EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 - what the wind energy industry has achieved on land can be repeated at sea. EWEA's proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Strong political support and action from Europe's policy-makers will allow a new, multi-billion euro industry to be built. This new industry will deliver thousands of green collar jobs and a new renewable energy economy and establish Europe as world leader in offshore wind power technology. A single European electricity market with large amounts of wind power will bring affordable electricity to consumers, reduce import dependence, cut CO2 emissions and allow Europe to access its largest domestic energy source.

  13. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  14. El Paso natural gas nearing completion of system's largest expansion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    El Paso Natural Gas Co.'s largest expansion program in its 64-year history will be completed along its northern system this spring or early summer. According to the company, the three-tiered, $241.5 million expansion program will increase El Paso's gas-transport capacity by 835 MMcfd to 2.5 bcfd of conventional and coal-seam gas from the San Juan basin in northwestern New Mexico. That's enough natural gas, says the company, to supply the needs of a city of more than 800,000 residents. This paper reports that the expansion involves the San Juan Triangle system, the company's northern main line, and the Permian-San Juan crossover line. The company also filed with the Federal Energy Regulatory Commission (FERC) in October 1991 to construct a new $15.2 million compressor station, Rio Vista, south of Bloomfield, N.M. The station would be used to move additional gas to the main line

  15. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  16. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  17. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  18. When clusters collide: constraints on antimatter on the largest scales

    International Nuclear Information System (INIS)

    Steigman, Gary

    2008-01-01

    Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the ∼Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clusters of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 × 10 −9 to −6 , strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be −6 , can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order ∼20 Mpc (M∼5×10 15 M sun )

  19. Preoperative volume calculation of the hepatic venous draining areas with multi-detector row CT in adult living donor liver transplantation: impact on surgical procedure

    International Nuclear Information System (INIS)

    Frericks, Bernd B.J.; Kirchhoff, Timm D.; Shin, Hoen-Oh; Stamm, Georg; Merkesdal, Sonja; Abe, Takehiko; Galanski, Michael; Schenk, Andrea; Peitgen, Heinz-Otto; Klempnauer, Juergen; Nashan, Bjoern

    2006-01-01

    The purpose was to assess the volumes of the different hepatic territories and especially the drainage of the right paramedian sector in adult living donor liver transplantation (ALDLT). CT was performed in 40 potential donors of whom 28 underwent partial living donation. Data sets of all potential donors were postprocessed using dedicated software for segmentation, volumetric analysis and visualization of liver territories. During an initial period, volumes and shapes of liver parts were calculated based on the individual portal venous perfusion areas. After partial hepatic congestion occurring in three grafts, drainage territories with special regard to MHV tributaries from the right paramedian sector, and the IRHV were calculated additionally. Results were visualized three-dimensionally and compared to the intraoperative findings. Calculated graft volumes based on hepatic venous drainage and graft weights correlated significantly (r=0.86,P<0.001). Mean virtual graft volume was 930 ml and drained as follows: RHV: 680 ml, IRHV: 170 ml (n=11); segment 5 MHV tributaries: 100 ml (n=16); segment 8 MHV tributaries: 110 ml (n=20). When present, the mean aberrant venous drainage fraction of the right liver lobe was 28%. The evaluated protocol allowed a reliable calculation of the hepatic venous draining areas and led to a change in the hepatic venous reconstruction strategy at our institution. (orig.)

  20. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    25 mm square and are assembled in 26 light-tight box modules. Each fibre matrix of 38 rows and 50 columns is read out using an image intensifier and CCD camera system. At present the PMD uses 26 readout cameras from the old UA2 experiment, including 20 units on loan from CERN. The detector covers an area of 21 square metres in the forward region. Its total weight with the stand and lead converter plates is about 6 tons. A central hole about 1 metre square avoids problems with overlapping showers. The detector took its first data during the lead ion run late last year (December 1994, page 15)

  1. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    square and are assembled in 26 light-tight box modules. Each fibre matrix of 38 rows and 50 columns is read out using an image intensifier and CCD camera system. At present the PMD uses 26 readout cameras from the old UA2 experiment, including 20 units on loan from CERN. The detector covers an area of 21 square metres in the forward region. Its total weight with the stand and lead converter plates is about 6 tons. A central hole about 1 metre square avoids problems with overlapping showers. The detector took its first data during the lead ion run late last year (December 1994, page 15)

  2. The DELPHI Microvertex detector

    International Nuclear Information System (INIS)

    Bingefors, N.; Borner, H.; Boulter, R.; Caccia, M.; Chabaud, V.; Dijkstra, H.; Eerola, P.; Gross, E.; Horisberger, R.; Hubbeling, L.; Hyams, B.; Karlsson, M.; Maehlum, G.; Ratz, K.; Roditi, I.; Straver, J.; Trischuk, W.; Weilhammer, P.; Dufour, Y.; Brueckman, P.; Jalocha, P.; Kapusta, P.; Turala, M.; Zalewska, A.; Lindgren, J.; Orava, R.; Oesterberg, K.; Ronnqvist, C.; Saarikko, H.; Saarikko, J.P.; Tuuva, T.; Almagne, B. d'; Bambade, P.; Couchot, F.; Fulda, F.; Amery, A.; Booth, P.S.L.; Campion, A.R.; McNulty, R.; Smith, N.A.; Andreazza, A.; Battaglia, M.; Biffi, P.; Bonvicini, V.; Kucewicz, W.; Meroni, C.; Redaelli, N.; Stocchi, A.; Troncon, C.; Vegni, G.; Dauncey, P.; Mazzucato, M.; Pegoraro, M.; Peisert, A.; Baubillier, M.; Chauveau, J.; Silva, W. da; Genat, J.F.; Rossel, F.; Adye, T.; Apsimon, R.; Bizell, J.; Denton, L.; Kalmus, G.E.; Lidbury, J.; Seller, P.; Tyndel, M.; Dulinski, W.; Husson, D.; Lounis, A.; Schaeffer, M.; Turchetta, R.; Brenner, R.; Sundell, E.

    1993-01-01

    The DELPHI Microvertex detector, which has been in operation since the start of the 1990 LEP run, consists of three layers of silicon microstrip detectors at average radii of 6.3, 9.0 and 11.0 cm. The 73 728 readout strips, oriented along the beam, have a total active area of 0.42 m 2 . The strip pitch is 25 μm and every other strip is read out by low power charge amplifiers, giving a signal to noise ratio of 15:1 for minimum ionizing particles. On-line zero suppression results in an average data size of 4 kbyte for Z 0 events. After a mechanical survey and an alignment with tracks, the impact parameter uncertainty as determined from hadronic Z 0 decays is well described by √(69/p t ) 2 +24 2 μm, with p t in GeV/c. For the 45 GeV/c tracks from Z 0 →μ + μ - decays we find an uncertainty of 21 μm for the impact parameter, which corresponds to a precision of 8 μm per point. The stability during the run is monitored using light spots and capacitive probes. An analysis of tracks through sector overlaps provides an additional check of the stability. The same analysis also results in a value of 6 μm for the intrinsic precision of the detector. (orig.)

  3. High performance visual display for HENP detectors

    International Nuclear Information System (INIS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations

  4. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  5. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  6. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  7. Reach and messages of the world's largest ivory burn.

    Science.gov (United States)

    Braczkowski, Alexander; Holden, Matthew H; O'Bryan, Christopher; Choi, Chi-Yeung; Gan, Xiaojing; Beesley, Nicholas; Gao, Yufang; Allan, James; Tyrrell, Peter; Stiles, Daniel; Brehony, Peadar; Meney, Revocatus; Brink, Henry; Takashina, Nao; Lin, Ming-Ching; Lin, Hsien-Yung; Rust, Niki; Salmo, Severino G; Watson, James Em; Kahumbu, Paula; Maron, Martine; Possingham, Hugh P; Biggs, Duan

    2018-03-01

    Recent increases in ivory poaching have depressed African elephant populations. Successful enforcement has led to ivory being stockpiled. Stockpile destruction is becoming increasingly popular, and most destruction has occurred in the last five years. Ivory destruction is intended to send a strong message against ivory consumption, both in promoting a taboo on ivory use and catalyzing policy change. However, there has been no effort to establish the distribution and extent of media reporting on ivory destruction events globally. We analyze media coverage across eleven important nation states of the largest ivory destruction event in history (Kenya, 30 April 2016). We used a well-accepted online media crawling tool and key language translations to search online and print newspapers. We found most online news on the ivory burn came from the US (81% of articles), while print news was dominated by Kenya (61% of articles). We subjected online articles from five key countries and territories to content analysis and found 86-97% of all online articles reported the burn as a positive conservation action, while between 4-50% discussed ivory burning as having a negative impact on elephant conservation. Most articles discussed law enforcement and trade bans as effective for elephant conservation. There was more relative search interest globally on the 2016 Kenyan ivory burn than any other in five years. Our study is the first attempt to track the spread of media around an ivory burn and is a case study in tracking the effects of a conservation-marketing event. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Genome size analyses of Pucciniales reveal the largest fungal genomes.

    Science.gov (United States)

    Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro

    2014-01-01

    Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  9. Meteoroid Measurements in the Deep Space Cruising and the Jupiter Trojan Rendezvous Phases of the Solar Power Sail Mission by the Arrayed Large-Area Dust Detectors in INterplanetary Space (ALADDIN)-II

    Science.gov (United States)

    Yano, H.; Hirai, T.; Arai, K.; Fujii, M.

    2017-12-01

    The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.

  10. Long-range alpha detector

    International Nuclear Information System (INIS)

    MacArthur, D.W.; McAtee, J.L.

    1991-01-01

    Historically, alpha-particle and alpha-contamination detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity even if the particles are intercepted. Alpha detectors have had to be operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. Alpha particles interact with the ambient air, producing ionization in the air at the rate of ∼30,000 ion pairs per mega-electron-volt of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The long-range alpha detector (LRAD) offers several advantages over more traditional alpha detectors. First and foremost, it can operate efficiently even if the contamination is not easily accessible. Second, ions generated by contamination in crevices and other unmonitorable locations can be detected if the airflow penetrates those areas. Third, all of the contamination on a large surface will generate ions that can be detected in a single detector; hence, the detector's sensitivity to distributed sources is not limited by the size of the probe. Finally, a simple ion chamber can detect very small electric currents, making this technique potentially quite sensitive

  11. Status and problems of semiconductor detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions

  12. Status and problems of semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions.

  13. The Antarctic is a region where the largest human- induced ...

    African Journals Online (AJOL)

    induced perturbation of the marine ecosystem in the world has ... and minke whales feed mainly on krill, and they share a similar feeding area near the Antarctic ice edge. In the .... a result of improved analytical techniques). ...... of this functional response, and further field studies ... ASH, C. E. 1962 — The Whaler's Eye.

  14. GIS learning tool for world's largest earthquakes and their causes

    Science.gov (United States)

    Chatterjee, Moumita

    The objective of this thesis is to increase awareness about earthquakes among people, especially young students by showing the five largest and two most predictable earthquake locations in the world and their plate tectonic settings. This is a geographic based interactive tool which could be used for learning about the cause of great earthquakes in the past and the safest places on the earth in order to avoid direct effect of earthquakes. This approach provides an effective way of learning for the students as it is very user friendly and more aligned to the interests of the younger generation. In this tool the user can click on the various points located on the world map which will open a picture and link to the webpage for that point, showing detailed information of the earthquake history of that place including magnitude of quake, year of past quakes and the plate tectonic settings that made this place earthquake prone. Apart from knowing the earthquake related information students will also be able to customize the tool to suit their needs or interests. Students will be able to add/remove layers, measure distance between any two points on the map, select any place on the map and know more information for that place, create a layer from this set to do a detail analysis, run a query, change display settings, etc. At the end of this tool the user has to go through the earthquake safely guidelines in order to be safe during an earthquake. This tool uses Java as programming language and uses Map Objects Java Edition (MOJO) provided by ESRI. This tool is developed for educational purpose and hence its interface has been kept simple and easy to use so that students can gain maximum knowledge through it instead of having a hard time to install it. There are lots of details to explore which can help more about what a GIS based tool is capable of. Only thing needed to run this tool is latest JAVA edition installed in their machine. This approach makes study more fun and

  15. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  16. Development and Evaluation of the Muon Trigger Detector Using a Resistive Plate Chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon; Kim, Yong Kyun; Kang, Jeong Soo; Kim, Young Jin; Choi, Ihn Jea; Kim, Chong; Hong, Byung Sik

    2011-01-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system

  17. Development and evaluation of the muon trigger detector using a resistive plate chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon

    2010-08-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction experiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications,such as diagnosis and customs inspection system

  18. The status of the ATLAS inner detector

    CERN Document Server

    Moser, H G

    2004-01-01

    The ATLAS inner detector uses three subdetectors for tracking of charged particles from r = 5 cm to r = 107 cm inside a solenoid magnet of 2 T. The innermost detector is a high resolution silicon pixel detector. It provides precise 3D tracking information close to the interaction point allowing secondary vertex reconstruction and hence b identification. It is followed by the SCT, a large area tracking device based on silicon strip detectors. The TRT, based on straw tubes, provides continuous tracking and improves electron identification due to its ability to detect transition radiation. These detectors are presently under construction. This report presents a brief report on the design, construction status and expected performance of the inner detector.

  19. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  20. Drilling the Bushveld Complex- the world's largest layered mafic intrusion

    Science.gov (United States)

    Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

    2013-12-01

    The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will

  1. North Andean origin and diversification of the largest ithomiine butterfly genus

    Science.gov (United States)

    Lisa De-Silva, Donna; Mota, Luísa L.; Chazot, Nicolas; Mallarino, Ricardo; Silva-Brandão, Karina L.; Piñerez, Luz Miryam Gómez; Freitas, André V.L.; Lamas, Gerardo; Joron, Mathieu; Mallet, James; Giraldo, Carlos E.; Uribe, Sandra; Särkinen, Tiina; Knapp, Sandra; Jiggins, Chris D.; Willmott, Keith R.; Elias, Marianne

    2017-01-01

    The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species’ elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others. PMID:28387233

  2. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  3. The OPAL muon barrel detector

    International Nuclear Information System (INIS)

    Akers, R.J.; Allison, J.; Ashton, P.; Bahan, G.A.; Baines, J.T.M.; Banks, J.N.; Barlow, R.J.; Barnett, S.; Beeston, C.; Chrin, J.T.M.; Clowes, S.G.; Davies, O.W.; Duerdoth, I.P.; Hinde, P.S.; Hughes-Jones, R.E.; Lafferty, G.D.; Loebinger, F.K.; Macbeth, A.A.; McGowan, R.F.; Moss, M.W.; Murphy, P.G.; Nijjhar, B.; O'Dowd, A.J.P.; Pawley, S.J.; Phillips, P.D.; Richards, G.E.; Skillman, A.; Stephens, K.; Tresillian, N.J.; Wood, N.C.; Wyatt, T.R.

    1995-01-01

    The barrel part of the OPAL muon detector consists of 110 drift chambers forming four layers outside the hadron absorber. Each chamber covers an area of 1.2 m by up to 10.4 m and has two cells with wires parallel to the beam and a drift distance of 297 mm. A detailed description of the design, construction, operation and performance of the sub-detector is given. The system has been operating successfully since the start of LEP in 1989. ((orig.))

  4. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  5. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  6. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  7. Collapse above the world's largest potash mine (Ural, Russia.

    Directory of Open Access Journals (Sweden)

    Andrejchuk Vjacheslav

    2002-01-01

    Full Text Available This paper reports the results of the study of a huge collapse that occurred in June 1986 within the area of the 3rd Berezniki potash mine (the Verkhnekamsky potash deposit, Ural. Processes that took place between the first appearance of a water inflow through the mine roof and the eventual collapse are reconstructed in detail. The origin and development of a cavity that induced the collapse are revealed. Two factors played a major role in the formation of the collapse: the presence of a tectonic fold/rupture zone with in both the salt sequence and the overburden (the zone of crush and enhanced permeability, and the ductile pillars mining system.

  8. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  9. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  10. Gas pixel detectors

    International Nuclear Information System (INIS)

    Bellazzini, R.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Massai, M.M.; Minuti, M.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Costa, E.; Soffitta, P.

    2007-01-01

    With the Gas Pixel Detector (GPD), the class of micro-pattern gas detectors has reached a complete integration between the gas amplification structure and the read-out electronics. To obtain this goal, three generations of application-specific integrated circuit of increased complexity and improved functionality has been designed and fabricated in deep sub-micron CMOS technology. This implementation has allowed manufacturing a monolithic device, which realizes, at the same time, the pixelized charge-collecting electrode and the amplifying, shaping and charge measuring front-end electronics of a GPD. A big step forward in terms of size and performances has been obtained in the last version of the 0.18 μm CMOS analog chip, where over a large active area of 15x15 mm 2 a very high channel density (470 pixels/mm 2 ) has been reached. On the top metal layer of the chip, 105,600 hexagonal pixels at 50 μm pitch have been patterned. The chip has customable self-trigger capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way, by limiting the output signal to only those pixels belonging to the region of interest, it is possible to reduce significantly the read-out time and data volume. In-depth tests performed on a GPD built up by coupling this device to a fine pitch (50 μm) gas electron multiplier are reported. Matching of the gas amplification and read-out pitch has let to obtain optimal results. A possible application of this detector for X-ray polarimetry of astronomical sources is discussed

  11. Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi

    2017-11-01

    The objective of our study was to directly compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion area-detector CT (ADCT) and FDG PET/CT for differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with non-small cell lung carcinoma (NSCLC). Seventy-seven consecutive patients, 45 men (mean age ± SD, 70.4 ± 5.9 years) and 32 women (71.2 ± 7.7 years), underwent dynamic first-pass CE-perfusion ADCT at two or three different positions for covering the entire thorax, FDG PET/CT, surgical treatment, and pathologic examination. From all ADCT data for each of the subjects, a whole-chest perfusion map was computationally generated using the dual- and single-input maximum slope and Patlak plot methods. For quantitative N stage assessment, perfusion parameters and the maximum standardized uptake value (SUV max ) for each lymph node were determined by measuring the relevant ROI. ROC curve analyses were performed for comparing the diagnostic capability of each of the methods on a per-node basis. N stages evaluated by each of the indexes were then statistically compared with the final pathologic diagnosis by means of chi-square and kappa statistics. The area under the ROC curve (A z ) values of systemic arterial perfusion (A z = 0.89), permeability surface (A z = 0.78), and SUV max (A z = 0.85) were significantly larger than the A z values of total perfusion (A z = 0.70, p Dynamic first-pass CE-perfusion ADCT is as useful as FDG PET/CT for the differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with NSCLC.

  12. 3D IC for future HEP detectors

    International Nuclear Information System (INIS)

    Thom, J; Badman, R; Lipton, R; Johnson, M; Spiegel, L; Deptuch, G; Ye, Z; Heintz, U; Narain, M; Triphati, M; Kenney, C; Parker, S; Siddons, D P

    2014-01-01

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. We describe ongoing R and D efforts to demonstrate functionality of components of such detectors. This includes the study of integrated 3D electronics with active edge sensors to produce ''active tiles'' which can be tested and assembled into arrays of arbitrary size with high yield

  13. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS

    CERN Multimedia

    D. Acosta

    The commissioning effort is presently addressing two main areas: the commissioning of the hardware components at the pit and the coordination of the activities of the newly constituted Detector Performance groups (DPGs). At point 5, a plan regarding the service cavern and the commissioning of the connections of the off-detector electronics (for the data collection line and trigger primitive generation) to the central DAQ and the central Trigger has been defined. This activity was started early February and will continue until May. It began with Tracker electronics followed so far by HCAL and CSC. The goal is to have by May every detector commission, as much as possible, their data transfer paths from FED to Central DAQ as well as their trigger setups between TPGs and Global Level 1 trigger. The next focus is on connections of front-ends to the service cavern. This depends strongly on the installations of services. Presently the only detector which has its link fibers connected to the off-detector electr...

  14. Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in

    Science.gov (United States)

    North Carolina America's Largest Home Runs on Biodiesel in North Carolina to someone by E-mail Share Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North Carolina on Facebook Tweet about Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North

  15. Field Note: Threatening Tonle Sap: Challenges for Southeast-Asia’s largest Freshwater Lake

    Directory of Open Access Journals (Sweden)

    Kuenzer, Claudia

    2013-09-01

    Full Text Available The Tonle Sap ecosystem in Cambodia is Southeast Asia’s largest freshwater lake; strongly impacted by the Mekong river flood pulse. The lake is home to exceptional biodiversity, and rural communities living in free floating villages on the lake and on its shores. The fragile niche ecosystems as well as the rural livelihoods of Tonle Sap are under severe threat. Overfishing, illegal wood harvesting, further resource exploitation, and water quality deterioration all impact the stability of the socio-ecological system of Tonle Sap. At the same time, expected flood pulse changes due to regulatory measures in the context of hydropower development upstream on the Mekong are a severe threat for Tonle Sap’s ecosystem stability. The area needs to shift into the focus of attention of national and international re-searchers, stakeholders, and decision makers, to find suitable pathways for a future sustainable development of this unique and pristine region.

  16. From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111

    International Nuclear Information System (INIS)

    Veen, Walter van; Lawrence, Dave

    2013-01-01

    The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties. This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)

  17. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  18. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    Science.gov (United States)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  19. Gamma ray and neutrino detector facility (GRANDE), Task C

    International Nuclear Information System (INIS)

    Sobel, H.W.; Yodh, G.B.

    1991-08-01

    GRANDE is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. We proposed that the detector be constructed in phases, beginning with an active detector area of 31,000 m 2 (GRANDE-I) 2 and expanding to a final size of 100,000--150,00 m 2 . Some of the characteristics of GRANDE-I are discussed in this paper

  20. Reference handbook: Level detectors

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this handbook is to provide Rocky Flats personnel with the information necessary to understand level measurement and detection. Upon completion of this handbook you should be able to do the following: List three reasons for measuring level. Describe the basic operating principles of the sight glass. Demonstrate proper techniques for reading a sight glass. Describe the basic operating principles of a float level detector. Describe the basic operating principles of a bubbler level indicating system. Explain the differences between a wet and dry reference leg indicating system, and describe how each functions. This handbook is designed for use by experienced Rocky Flats operators to reinforce and improve their current knowledge level, and by entry-level operators to ensure that they possess a minimum level of fundamental knowledge. Level Detectors is applicable to many job classifications and can be used as a reference for classroom work or for self-study. Although this reference handbook is by no means all-encompassing, you will gain enough information about this subject area to assist you in contributing to the safe operation of Rocky Flats Plant

  1. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  2. Detectors for X-ray diffraction and scattering: a user's overview

    International Nuclear Information System (INIS)

    Bruegemann, Lutz; Gerndt, E.K.E.

    2004-01-01

    An overview of the applications of X-ray detectors to material research is given. Four experimental techniques and their specific detector requirements are described. Detector types are classified and critical parameters described in the framework of X-ray diffraction and X-ray scattering experiments. The article aims at building a bridge between detector end-users and detector developers. It gives limits of critical detector parameters, like angular resolution, energy resolution, dynamic range, and active area

  3. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  4. The Rewards of Research at an Undergraduate Institution and Lessons Learned in Building Detector Systems that Work

    Science.gov (United States)

    Isenhower, Donald

    2015-04-01

    This talk addresses primary lessons learned during 28 years of work leading to the awarding of this prize for work on designing, building and operating detectors, with most of the work involving over 150 undergraduates during this time period. There are a wide range of skills and knowledge to be learned if a young scientist is interested in following this career route, so the most important subset of these will be described. Part will be how to involve undergraduate students at their fullest potential, and important differences of ACU from many programs, which has led to collaborators to make inquiries as to when will the ``ACU Army'' arrive so that they can time when their detector components will be shipped to the experiments for the testing and setup to be handed over to these students. The size of the detectors constructed have varied from small hodoscopes to the world's largest active cathode strip chambers. The science knowledge needed for detector construction is extremely multidisciplinary, and this must be learned by the professor directing the work as they will not have an engineering or support staff to lean on usually. This will include fields often considered unimportant to physics; however, ignorance of them can lead to failure. Knowing the primary question to ask will show where a significant area of concern will lie in what is being done by a person, group or company on a subsystem for a detector. Textbook descriptions of detectors, electronics, and materials can lead young experimenters astray. It has been learning the correct, fundamental physical processes that determine actual detector performance that has allowed the awardee to make his most important contributions over many years of research. A final lesson to be described will be how to make your undergraduate research program self-sustaining, so that critical knowledge is not lost as students graduate. Research supported in part by grants from the U.S. DOE Office of Science, the NSF, and

  5. Status of the Silicon Strip Detector at CMS

    CERN Document Server

    Simonis, H J

    2008-01-01

    The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\\&D studies for more robust detector materials and a new Tracker layout have started.

  6. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  7. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  8. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  9. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  10. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean.

    Science.gov (United States)

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix; Valdivia, Abel

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  11. Hydrodynamic and Inundation Modeling of China’s Largest Freshwater Lake Aided by Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-04-01

    Full Text Available China’s largest freshwater lake, Poyang Lake, is characterized by rapid changes in its inundation area and hydrodynamics, so in this study, a hydrodynamic model of Poyang Lake was established to simulate these long-term changes. Inundation information was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS remote sensing data and used to calibrate the wetting and drying parameter by assessing the accuracy of the simulated inundation area and its boundary. The bottom friction parameter was calibrated using current velocity measurements from Acoustic Doppler Current Profilers (ADCP. The results show the model is capable of predicting the inundation area dynamic through cross-validation with remotely sensed inundation data, and can reproduce the seasonal dynamics of the water level, and water discharge through a comparison with hydrological data. Based on the model results, the characteristics of the current velocities of the lake in the wet season and the dry season of the lake were explored, and the potential effect of the current dynamic on water quality patterns was discussed. The model is a promising basic tool for prediction and management of the water resource and water quality of Poyang Lake.

  12. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  13. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  14. Neutron television camera detector

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1976-01-01

    A neutron area detector system is being developed at the Institut Laue-Langevin which is based on a system for x-rays. The system has a large counting rate capability; this is extremely important where the total background count exceeds the total counts in the signals of interest. Its spatial resolution is of the order of one mm, while the screen size is 400 mm. The main limitation of the system is its limited counting efficiency, and this is directly attributable to the optical self-absorption of the neutron phosphor. All coherent noise in the system, i.e., all noise synchronized with the TV scans, has to be kept lower than the first bit threshold. However, this requirement can be relaxed when dealing with diffraction patterns, such as those from single crystals, for which a local background is subtracted from the pattern

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  16. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  17. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  18. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  19. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  20. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  1. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  2. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  3. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  4. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B. [Brookhaven National Laboratory, Upton, New York 11793 (United States); Hodges, D. [University of Texas at El Paso, El Paso, Texas 79968 (United States); Lee, W. [Korea University, Seoul 136-855 (Korea, Republic of); Petryk, M. [SUNY Binghamton, Vestal, New York 13902 (United States)

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  5. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan); Fujisawa, Yasuko [Toshiba Medical Systems Corporation, Otawara (Japan); Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Sugihara, Naoki [Toshiba Medical Systems Corporation, Otawara (Japan); Yoshikawa, Takeshi [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan)

    2017-01-15

    Purpose: To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Materials and methods: Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR + PR) and 2) stable or progressive disease (SD + PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV{sub max}, and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. Results: The step-wise regression test showed that therapeutic effect (r{sup 2} = 0.63, p = 0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV{sub max}. Mean overall survival showed a significant difference for total perfusion (p = 0.003) and systemic arterial perfusion (p = 0.04). Conclusion: Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy.

  6. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    Purpose: To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Materials and methods: Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR + PR) and 2) stable or progressive disease (SD + PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. Results: The step-wise regression test showed that therapeutic effect (r 2 = 0.63, p = 0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p = 0.003) and systemic arterial perfusion (p = 0.04). Conclusion: Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy.

  7. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR+PR) and 2) stable or progressive disease (SD+PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. The step-wise regression test showed that therapeutic effect (r 2 =0.63, p=0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p=0.003) and systemic arterial perfusion (p=0.04). Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  9. CALDER: High-sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Casali, N.; Bellini, F.; Cardani, L.

    2017-01-01

    The current bolometric experiments searching for rare processes such as neutrinoless double-beta decay or dark matter interaction demand for cryogenic light detectors with high sensitivity, large active area and excellent scalability and radio-purity in order to reduce their background budget. The CALDER project aims to develop such kind of light detectors implementing phonon-mediated Kinetic Inductance Detectors (KIDs). The goal for this project is the realization of a 5 × 5 cm"2 light detector working between 10 and 100mK with a baseline resolution RMS below 20 eV. In this work the characteristics and the performances of the prototype detectors developed in the first project phase will be shown.

  10. Electromagnetic interactions in the MINOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, Patricia LaVern [Univ. of Texas, Austin, TX (United States)

    2004-08-01

    MINoS is a long-baseline neutrino experiment designed to observe the oscillation of neutrinos traveling between two detectors, a Near Detector at Fermi National Accelerator Laboratory and a Far Detector at the Soudan Underground Laboratory in northern Minnesota. Precision measurement of the oscillation parameters requires a better than 5% absolute energy calibration with is derived using a dedicated calibration detector, called CalDet. A smaller version of the MINOS detectors, the CalDet was exposed to particular beams in the CERN PS East Area test beams in 2001-2003. This document describes the conditions under which the CalDet beam data were taken, establishes selection criteria to identify a sample of electrons, and discusses the characteristics of electromagnetic interactions in the CalDet.

  11. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  12. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  13. Mapping Biomass for REDD in the Largest Forest of Central Africa: the Democratic Republic of Congo

    Science.gov (United States)

    Shapiro, Aurelie; Saatchi, Sassan

    2014-05-01

    With the support of the International Climate Initiative (ICI) of the Federal Ministry of the Environment, Conservation, and Nuclear Security, the implementation of the German Development Bank KfW, the World Wide Fund for Nature (WWF) Germany, the University of California Los Angeles (UCLA) and local DRC partners will produce a national scale biomass map for the entire forest coverage of the Democratic Republic of Congo (DRC) along with feasibility assessments of different forest protection measures within a framework of a REDD+ model project. The « Carbon Map and Model (CO2M&M) » project will produce a national forest biomass map for the DRC, which will enable quantitative assessments of carbon stocks and emissions in the largest forest of the Congo Basin. This effort will support the national REDD (Reducing Emissions from Deforestation and Degradation) program in DRC, which plays a major role in sustainable development and poverty alleviation. This map will be developed from field data, complemented by airborne LiDAR (Light Detection and Ranging) and aerial photos, systematically sampled throughout the forests of the DRC and up-scaled to satellite images to accurately estimate carbon content in all forested areas. The second component of the project is to develop specific approaches for model REDD projects in key landscapes. This project represents the largest LiDAR-derived mapping effort in Africa, under unprecedented logistical constraints, which will provide one of the poorest nations in the world with the richest airborne and satellites derived datasets for analyzing forest structure, biomass and biodiversity.

  14. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    Science.gov (United States)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  15. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  16. Rewriting the Landform History of One of Africa's Three Largest Basins

    Science.gov (United States)

    Wilkinson, Justin

    2014-01-01

    The Kalahari Basin in southern Africa - one of the largest basins in Africa, along with the Congo and Chad basins - has attracted attention since David Livingstone traveled through the area in the 1840s. It is a semiarid desert with a large freshwater swampland known as the Okavango Swamp (150 km radius). This prominent megafan (a fan with radii >100 km), with its fingers of dark green forests projecting into the dun colors of the dunes of the Kalahari semi-desert, has been well photographed by astronauts over the years. The study area in the northern Kalahari basin is centered on the Okavango megafan of northwest Botswana, whose swampland has become well known as an African wildlife preserve of importance to biology and tourism alike. The Okavango River is unusual because it has deposited not one but two megafans along its course: the Okavango megafan and the Cubango megafan. The Okavango megafan is one of only three well-known megafans in Africa. Megafans on Earth were once thought to be rare, but recent research has documented 68 in Africa alone. Eleven megafans, plus three more candidates, have been documented in the area immediately surrounding the Okavango feature. These 11 megafans occupy the flattest and smoothest terrains adjacent to the neighboring upland and stand out as the darkest areas in the roughness map of the area. Megafan terrains occupy at least 200,000 sq km of the study area. The roughness map shown is based on an algorithm used first on Mars to quantify topographic roughness. Research of Earth's flattest terrains is just beginning with the aid of such maps, and it appears that these terrains are analogous to the flattest regions of Mars. Implications: 1. The variability in depositional style in each subbasin may apply Africa-wide: rift megafan length is dominated by rift width, whereas Owambo subbasin megafans are probably controlled by upland basin size; Zambezi subbasin megafans appear more like foreland basin types, with the position of

  17. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  18. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  19. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  20. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  1. Scaling relationships among drivers of aquatic respiration from the smallest to the largest freshwater ecosystems

    Science.gov (United States)

    Hall, Ed K; Schoolmaster, Donald; Amado, A.M; Stets, Edward G.; Lennon, J.T.; Domaine, L.; Cotner, J.B.

    2016-01-01

    To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value 1, others respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems.

  2. DISCOVERY OF THE LARGEST KNOWN LENSED IMAGES FORMED BY A CRITICALLY CONVERGENT LENSING CLUSTER

    International Nuclear Information System (INIS)

    Zitrin, Adi; Broadhurst, Tom

    2009-01-01

    We identify the largest known lensed images of a single spiral galaxy, lying close to the center of the distant cluster MACS J1149.5+2223 (z = 0.544). These images cover a total area of ≅150 mbox '' and are magnified ≅200 times. Unusually, there is very little image distortion, implying that the central mass distribution is almost uniform over a wide area (r ≅ 200 kpc) with a surface density equal to the critical density for lensing, corresponding to maximal lens magnification. Many fainter multiply lensed galaxies are also uncovered by our model, outlining a very large tangential critical curve, of radius r ≅ 170 kpc, posing a potential challenge for the standard LCDM cosmology. Because of the uniform central mass distribution, a particularly clean measurement of the mass of the brightest cluster galaxy is possible here, for which we infer stars contribute most of the mass within a limiting radius of ≅30 kpc, with a mass-to-light ratio of M/L B ≅ 4.5(M/L) sun . This cluster with its uniform and central mass distribution acts analogously to a regular magnifying glass, converging light without distorting the images, resulting in the most powerful lens yet discovered for accessing the faint high-z universe.

  3. Monitoring coastal pollution associated with the largest oil refinery complex of Venezuela

    Directory of Open Access Journals (Sweden)

    Aldo Croquer

    2016-06-01

    Full Text Available This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela.

  4. DETECTORS: Vienna - beyond the wire

    International Nuclear Information System (INIS)

    Krammer, Manfred; Regler, Meinhard

    1995-01-01

    presentations. Both ATLAS and CMS demonstrated different approaches to mastering the difficulties of covering large areas with precise detectors capable of resolving consecutive bunches. Proposed techniques included thin gap chambers, straw drift tubes, pressurized drift tubes, resistive plate chambers...

  5. Intravascular imaging with a storage phosphor detector

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L II; Fritz, Shannon G [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Bujenovic, L Steven [PET Imaging Center, Our Lady of the Lake Medical Center, Baton Rouge, LA (United States); Xu Tong, E-mail: pshikhal@lsu.ed [Department of Physics, Carleton University, Ottawa (Canada)

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm{sup 3} volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 {mu}Ci cm{sup -3} activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm{sup -2} were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360{sup 0} circumference. Spatial

  6. ISABELLE. Volume 4. Detector R and D

    International Nuclear Information System (INIS)

    1981-01-01

    Workshop participants were asked to assess the current status of detector R and D in terms of the specific needs for ISABELLE experiments: the demands of high particle rates, extremely selective triggers on complex and rare events, and the economics of large detector systems. The detailed results of working groups convened to consider specific areas of detector development are presented. The key points of this assessment, as regards the continuing R and D program for ISABELLE are summarized here. Twenty-six items from the volume were prepared separately for the data base, along with five items previously prepared

  7. ISABELLE. Volume 4. Detector R and D

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Workshop participants were asked to assess the current status of detector R and D in terms of the specific needs for ISABELLE experiments: the demands of high particle rates, extremely selective triggers on complex and rare events, and the economics of large detector systems. The detailed results of working groups convened to consider specific areas of detector development are presented. The key points of this assessment, as regards the continuing R and D program for ISABELLE are summarized here. Twenty-six items from the volume were prepared separately for the data base, along with five items previously prepared. (GHT)

  8. Avalanche photodiodes for ISABELLE detectors

    International Nuclear Information System (INIS)

    Strand, R.C.

    1979-01-01

    At ISABELLE some requirements for detecting bursts of photons are not met by standard photomultiplier tubes. The characteristics of immunity to magnetic fields, small size (few mm), low power consumption (approx. 100 mW), insensitivity to optical overloads, and wide dynamic range (approx. 60 dB) are achieved with difficulty, if at all, with PMTs. These are characteristics of the solid state avalanche photodiode (APD), the preferred detector for light-wave communications. Successful field tests with APD detectors stimulated the design of standard optical-fiber communication systems to replace wire carriers by the early 1980's. In other characteristics, i.e., counting rate, pulse-height resolution, effective quantum efficiency, detection efficiency, and reliability, bare APDs are equivalent to standard PMTs. APDs with currently available amplifiers cannot resolve single photoelectrons but they could provide reasonable detection efficiencies and pulse-height resolution for packets of approx. > 100 photons. Commercially available APDs can cost up to 100 times as much as PMTs per active area, but they are potentially much cheaper. Six topics are discussed: (1) detectors for light-wave communication and detectors for particles, (2) avalanche photodiodes, (3) commercially available APDs, (4) dynamic response of PMTs and bare APDs, (5) photon counting with cold APDs, and (6) conclusions and recommendations

  9. Physics and Detectors at CLIC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CLIC represents an attractive option for the future particle physics programme at the energy frontier. CLIC is a proposed electron-positron linear collider, based on a novel two beam accelerating structure, with the capability of operating at centre-of-mass energies of up to 3 TeV. The Physics and Detector volume of the CLIC conceptual design report was recently published as a CERN yellow report. In this seminar, I will review the conclusions of this report, focussing on four main areas. Firstly, I will give an overview of the physics potential at CLIC, and will place this in the context of a possible scenario for the staged construction of the machine. Secondly, I will discuss the challenges for a detector operating in the CLIC machine environment. I will then present detailed studies of possible detector concepts, based on high granularity particle flow calorimetry, which demonstrate that the required detector performance goals at CLIC can be met. Finally, I will highlight the main issues for the future R&a...

  10. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  11. Plasma measurements with surface barrier detectors

    International Nuclear Information System (INIS)

    Futch, A.H. Jr.; Bradley, A.E.

    1969-01-01

    A surface barrier detector system for measuring the loss rate of protons from a hydrogen plasma and their energy spectrum is described. A full width at half maximum (FWHM) resolution of 1.4 keV for 15-keV hydrogen atoms was obtained using a selected detector having a sensitive area of 3 mm 2 and a depletion depth of 700 microns

  12. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  13. A radiation detector fabricated from silicon photodiode.

    Science.gov (United States)

    Yamamoto, H; Hatakeyama, S; Norimura, T; Tsuchiya, T

    1984-12-01

    A silicon photodiode is converted to a low energy charged particle radiation detector. The window thickness of the fabricated detector is evaluated to be 50 micrograms/cm2. The area of the depletion region is 13.2 mm2 and the depth of it is estimated to be about 100 microns. The energy resolution (FWHM) is 14.5 ke V for alpha-particles from 241Am and 2.5 ke V for conversion electrons from 109Cd, respectively.

  14. The largest Fresco in Europe on cooling tower of nuclear power station of Cruas Meysse in Ardeche, France

    International Nuclear Information System (INIS)

    Di Mayo, J.L.

    1993-01-01

    The Nuclear Power Station Cruas Meysse is on the most important communication way of France, in the Rhone Valley, between the Rhin and the Mediterranean Sea. In the South of the Rhone Valley, the Nuclear Power Plant is situated near the very important site of 'Tricastin', the largest nuclear area in France. Cruas Meysse has a very good integration to the economy, social, and cultural scheme ; that's why EDF and the Ardeche Department had enter into partnership to associate art and technology of our time, and offer a work for everybody - 'Le Verseau' is the largest fresco in Europe - It gives a gigantic signalling system to the Ardeche Department, because the Nuclear Power Station has a very interesting position, close the motor way A7, the National 7 road, and the way of high speed train (TGV) an another symbol of the high French technology

  15. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  16. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    Directory of Open Access Journals (Sweden)

    Fabián Pina-Amargós

    2014-02-01

    Full Text Available Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope, inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  17. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    CERN Document Server

    Pöttgens, Michael

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  18. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  19. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  20. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  1. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  2. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  3. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  4. Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales)

    Science.gov (United States)

    Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten. Lumbsch; NO-VALUE

    2014-01-01

    We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...

  5. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  6. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  7. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  8. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  9. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  10. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    Science.gov (United States)

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A study on the regionalization of tornadogenesis for the domestic largest scale of tornado

    International Nuclear Information System (INIS)

    Sugimoto, Soichiro; Nohara, Daisuke; Hirakuchi, Hiromaru

    2014-01-01

    A new regulatory guide has been issued by the Nuclear Regulation Authority of Japan since the last year. According to this guide, electric power companies have to assess the influence of tornadoes on their nuclear power plants for operation. The purpose of this study is to evaluate the likelihood of the occurrence of F3 tornadoes, which are the largest encountered in Japan, and to consider the possibility of the regionalization of the maximum wind speed. Then, mesoscale analysis with a numerical meteorological model and re-analysis data is performed along with synoptic scale analysis. Especially, tornado parameters such as SReH (Storm Relative Helicity) and CAPE (Convective Available Potential Energy) are used for evaluating the potential tornadogenesis of F3 tornado. Both analyses indicate that favorable meteorological condition tends to occur in the coastal zones in the Pacific side west of Ibaraki and around Kyushu island. The frequency in these zones is different from the one in the other area in the order of 1 or 2, which is large enough for regionalization. (author)

  12. Vascular access in lipoprotein apheresis: a retrospective analysis from the UK's largest lipoprotein apheresis centre.

    Science.gov (United States)

    Doherty, Daniel J; Pottle, Alison; Malietzis, George; Hakim, Nadey; Barbir, Mahmoud; Crane, Jeremy S

    2018-01-01

    Lipoprotein apheresis (LA) has proven to be an effective, safe and life-saving therapy. Vascular access is needed to facilitate this treatment but has recognised complications. Despite consistency in treatment indication and duration there are no guidelines in place. The aim of this study is to characterise vascular access practice at the UK's largest LA centre and forward suggestions for future approaches. A retrospective analysis of vascular access strategies was undertaken in all patients who received LA treatment in the low-density lipoprotein (LDL) Apheresis Unit at Harefield Hospital (Middlesex, UK) from November 2000 to March 2016. Fifty-three former and current patients underwent 4260 LA treatments. Peripheral vein cannulation represented 79% of initial vascular access strategies with arteriovenous (AV) fistula use accounting for 15%. Last used method of vascular access was peripheral vein cannulation in 57% versus AV fistula in 32%. Total AV fistula failure rate was 37%. Peripheral vein cannulation remains the most common method to facilitate LA. Practice trends indicate a move towards AV fistula creation; the favoured approach receiving support from the expert body in this area. AV fistula failure rate is high and of great concern, therefore we suggest the implementation of upper limb ultrasound vascular mapping in all patients who meet treatment eligibility criteria. We encourage close ties between apheresis units and specialist surgical centres to facilitate patient counselling and monitoring. Further prospective data regarding fistula failure is needed in this expanding treatment field.

  13. Level of patient and operator dose in the largest cardiac centre in Greece

    International Nuclear Information System (INIS)

    Tsapaki, V.; Patsilinakos, S.; Voudris, V.; Magginas, A.; Pavlidis, S.; Maounis, T.; Theodorakis, G.; Koutelou, M.; Vrantza, T.; Nearchou, M.; Nikolaki, N.; Kollaros, N.; Kyrozi, E.; Kottou, S.; Karaiskos, P.; Neofotistou, E.; Cokkinos, D.

    2008-01-01

    The objective of this study was to investigate the patient and staff doses in the most frequent interventional cardiology (IC) procedures performed in Onassio, the largest Cardiac Centre in Greece. Data were collected from three digital X-ray systems for 212 coronary angiographies, 203 percutaneous transluminal coronary angio-plasties (PTCA) and 134 various electrophysiological studies. Patient skin dose was measured using suitably calibrated slow radiotherapy films and cardiologist dose using suitably calibrated thermoluminescent dosemeters placed on left arm, hand and foot. Patient median dose area product (DAP) (all examinations) ranged between 6.7 and 83.5 Gy cm 2 . Patient median skin dose in PTCA was 799 mGy (320-1660 mGy) and in RF ablation 160 mGy (35-1920 mGy). Median arm, hand and foot dose to the cardiologist were 12.6, 27 and 13 μSv, respectively, per procedure. The great range of radiation doses received by both patients and operators confirms the need for continuous monitoring of all IC techniques. (authors)

  14. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  15. Probe station for testing of ALICE silicon drift detectors

    CERN Document Server

    Humanic, T J; Piemonte, C; Rashevsky, A; Sugarbaker, E R; Vacchi, A

    2003-01-01

    Large area, 7.25 cm multiplied by 8.76 cm silicon drift detectors have been developed and are in production for the ALICE experiment at LHC. An active area of the detector of more than 50 cm**2 imposes high demands on the quality of processing and raw material. Automated testing procedures have been developed to test detectors before mounting them on the ladders. Probe stations for ALICE SDD testing were designed and built at INFN, Trieste and Ohio State University (OSU). Testing procedures, detector selection criteria and some details of the OSU probe station design are discussed.

  16. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  17. Solar energy potential of the largest buildings in the United States

    Science.gov (United States)

    Wence, E. R.; Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Sustainable pathways of land use for energy are necessary to mitigate climate change and limit conversion of finite land resources needed for conservation and food production. Large, commercial buildings (LCBs) are increasing in size and number throughout the United States (US) and may serve as suitable recipient environments for photovoltaic (PV) solar energy infrastructure that may support a low carbon, low land footprint energy transition. In this study, we identified, characterized, and evaluated the technical potential of the largest, commercial building rooftops (i.e., exceeding 110,000 m2) and their associated parking lots in the US for PV solar energy systems using Aurora, a cloud-based solar optimization platform. We also performed a case study of building-specific electricity generation: electricity consumption balance. Further, we quantified the environmental co-benefit of land sparing and associated avoided emissions (t-CO2-eq) conferred under the counterfactual scenario that solar development would otherwise proceed as a ground-mounted, utility-scale PV installation of equal nominal capacity. We identified and mapped 37 LCBs (by rooftop area) across 18 states in the US, spanning from as far north as the state of Minnesota to as far south as Florida. Rooftop footprints range from 427,297 to 113,689 m2 and have a cumulative surface area of 99.8 million ft2. We characterize the LCBs as either: distribution/warehouse, factory, shopping center, or administrative office/facility. Three of the 37 LCBs currently support rooftop PV and the numbers of associated, detached buildings number up to 38. This study elucidates the extent to which LCBs and their respective parking lots can serve as suitable sites for PV solar energy generation. Lastly, this study demonstrates research-based applications of the Aurora energy modeling platform and informs decision-making focused on redirecting energy development towards human-modified landscapes to prioritize land use for

  18. Negotiating place and gendered violence in Canada's largest open drug scene.

    Science.gov (United States)

    McNeil, Ryan; Shannon, Kate; Shaver, Laura; Kerr, Thomas; Small, Will

    2014-05-01

    Vancouver's Downtown Eastside is home to Canada's largest street-based drug scene and only supervised injection facility (Insite). High levels of violence among men and women have been documented in this neighbourhood. This study was undertaken to explore the role of violence in shaping the socio-spatial relations of women and 'marginal men' (i.e., those occupying subordinate positions within the drug scene) in the Downtown Eastside, including access to Insite. Semi-structured qualitative interviews were conducted with 23 people who inject drugs (PWID) recruited through the Vancouver Area Network of Drug Users, a local drug user organization. Interviews included a mapping exercise. Interview transcripts and maps were analyzed thematically, with an emphasis on how gendered violence shaped participants' spatial practices. Hegemonic forms of masculinity operating within the Downtown Eastside framed the everyday violence experienced by women and marginal men. This violence shaped the spatial practices of women and marginal men, in that they avoided drug scene milieus where they had experienced violence or that they perceived to be dangerous. Some men linked their spatial restrictions to the perceived 'dope quality' of neighbourhood drug dealers to maintain claims to dominant masculinities while enacting spatial strategies to promote safety. Environmental supports provided by health and social care agencies were critical in enabling women and marginal men to negotiate place and survival within the context of drug scene violence. Access to Insite did not motivate participants to enter into "dangerous" drug scene milieus but they did venture into these areas if necessary to obtain drugs or generate income. Gendered violence is critical in restricting the geographies of men and marginal men within the street-based drug scene. There is a need to scale up existing environmental interventions, including supervised injection services, to minimize violence and potential drug

  19. NEGOTIATING PLACE AND GENDERED VIOLENCE IN CANADA’S LARGEST OPEN DRUG SCENE

    Science.gov (United States)

    McNeil, Ryan; Shannon, Kate; Shaver, Laura; Kerr, Thomas; Small, Will

    2014-01-01

    Background Vancouver’s Downtown Eastside is home to Canada’s largest street-based drug scene and only supervised injection facility (Insite). High levels of violence among men and women have been documented in this neighbourhood. This study was undertaken to explore the role of violence in shaping the socio-spatial relations of women and ‘marginal men’ (i.e., those occupying subordinate positions within the drug scene) in the Downtown Eastside, including access to Insite. Methods Semi-structured qualitative interviews were conducted with 23 people who inject drugs (PWID) recruited through the Vancouver Area Network of Drug Users, a local drug user organization. Interviews included a mapping exercise. Interview transcripts and maps were analyzed thematically, with an emphasis on how gendered violence shaped participants’ spatial practices. Results Hegemonic forms of masculinity operating within the Downtown Eastside framed the everyday violence experienced by women and marginal men. This violence shaped the spatial practices of women and marginal men, in that they avoided drug scene milieus where they had experienced violence or that they perceived to be dangerous. Some men linked their spatial restrictions to the perceived 'dope quality' of neighbourhood drug dealers to maintain claims to dominant masculinities while enacting spatial strategies to promote safety. Environmental supports provided by health and social care agencies were critical in enabling women and marginal men to negotiate place and survival within the context of drug scene violence. Access to Insite did not motivate participants to enter into “dangerous” drug scene milieus but they did venture into these areas if necessary to obtain drugs or generate income. Conclusion Gendered violence is critical in restricting the geographies of men and marginal men within the street-based drug scene. There is a need to scale up existing environmental interventions, including supervised injection

  20. Iceland as the largest source of natural air pollution in the Arctic

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Meinander, Outi; Olafsson, Haraldur; Arnalds, Olafur

    2017-04-01

    Arctic aerosols are often attributed to the Arctic Haze and long-range transport tracers. There is, however, an important dust source in the Arctic/Sub-arctic region which should receive more attention. The largest desert in the Arctic as well as in the Europe is Iceland with > 40,000 km2 of desert areas. The mean dust suspension frequency was 135 dust days annually in 1949-2012 with decreasing numbers in 2013-2015. The annual dust deposition was calculated as 31-40 million tons yr-1 affecting the area of > 500,000 km2. Satelite MODIS pictures have revealed dust plumes traveling > 1000 km at times. The physical properties of Icelandic dust showed differences in mineralogy, geochemical compositions, shapes, sizes, and colour, compared to the crustal mineral dust. Icelandic dust is of volcanic origin, dark in colour with sharp-tipped shards and large bubbles. About 80% of the particulate matter is volcanic glass rich in heavy metals, such as iron and titanium. Suspended dust measured at the glacial dust source consisted of such high number of close-to-ultrafine particles as concentrations during active eruptions. Generally, about 50% of the suspended PM10 are submicron particles in Iceland. Contrarily, suspended grains > 2 mm were captured during severe dust storm after the 2010 Eyjafjallajokull eruption when the aeolian transport exceeded 11 t m-1 of materials and placed this storms among the most extreme wind erosion events recorded on Earth. Our reflectance measurements showed that Icelandic dust deposited on snow lowers the snow albedo and reduces the snow density as much as Black Carbon. Icelandic volcanic dust tends to act as a positive climate forcing agent, both directly and indirectly, which is different to what generally concluded for crustal dust in the 2013 IPCC report. The high frequency, severity and year-round activity of volcanic dust emissions suggest that Icelandic dust may contribute to Arctic warming.

  1. Advances on micro-RWELL gaseous detector

    CERN Document Server

    Morello, Gianfranco; Benussi, L; De Simone, P; Felici, G; Gatta, M; Poli Lener, M; De Oliveira, R; Ochi, A; Borgonovi, L; Giacomelli, P; Ranieri, A; Valentino, V; Ressegotti, M; Vai, I

    2017-01-01

    The R&D; on the micro-Resistive-WELL ($\\mu$-RWELL) detector technology aims in developing a new scalable, compact, spark-protected, single amplification stage Micro-Pattern Gas Detectors (MPGD) for large area HEP applications as tracking and calorimeter device as well as for industrial and medical applications as X-ray and neutron imaging gas pixel detector. The novel micro- structure, exploiting several solutions and improvements achieved in the last years for MPGDs, in particular for GEMs and Micromegas, is an extremely simple detector allowing an easy engineering with consequent technological transfer toward the photolithography industry. Large area detectors (up $1 \\times 2 m^2$) can be realized splicing $\\mu$-RWELL_PCB tiles of smaller size (about $0.5 \\times 1 m^2$ - typical PCB industrial size). The detector, composed by few basic elements such as the readout-PCB embedded with the amplification stage (through the resistive layer) and the cathode defining the gas drift-conversion gap has been largel...

  2. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T.

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  3. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  4. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  5. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  6. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  7. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  8. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  9. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  10. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  11. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  12. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  13. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  14. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  15. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  16. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  17. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  18. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  19. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  20. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  1. The CMS detector magnet

    CERN Document Server

    Hervé, A

    2000-01-01

    CMS (Compact Muon Solenoid) is a general-purpose detector designed to run in mid-2005 at the highest luminosity at the LHC at CERN. Its distinctive features include a 6 m free bore diameter, 12.5 m long, 4 T superconducting solenoid enclosed inside a 10,000 tonne return yoke. The magnet will be assembled and tested on the surface by the end of 2003 before being transferred by heavy lifting means to a 90 m deep underground experimental area. The design and construction of the magnet is a `common project' of the CMS Collaboration. It is organized by a CERN based group with strong technical and contractual participation by CEA Saclay, ETH Zurich, Fermilab Batavia IL, INFN Geneva, ITEP Moscow, University of Wisconsin and CERN. The return yoke, 21 m long and 14 m in diameter, is equivalent to 1.5 m of saturated iron interleaved with four muon stations. The yoke and the vacuum tank are being manufactured. The indirectly-cooled, pure- aluminium-stabilized coil is made up from five modules internally wound with four ...

  2. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  3. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  4. Superconducting nano-striplines as quantum detectors

    International Nuclear Information System (INIS)

    Casaburi, A.; Ejrnaes, M.; Mattioli, F.; Gaggero, A.; Leoni, R.; Martucciello, N.; Pagano, S.; Ohkubo, M.; Cristiano, R.

    2011-01-01

    The recent progress in the nanofabrication of superconducting films opens the road toward detectors with highly improved performances. This is the case for superconducting nano-striplines where the thickness and the width are pushed down to the extreme limits to realize detectors with unprecedented sensitivity and ultra fast response time. In this way quantum detectors for single photons at telecommunication wavelengths and for macromolecules such as proteins can be realized. As is often the case in applied nanotechnology, it is a challenge to make devices with the necessary macroscopic dimensions that are needed to interface present technologies, while maintaining the performance improvements. For nano-stripline detectors, both the fast temporal response and the device sensitivity is generally degraded when the area is increased. Here, we present how such detectors can be scaled up to macroscopic dimensions without losing the performance of the nano-structured active elements by using an innovative configuration. In order to realize ultrathin superconducting film the nano-layer is growth with a careful setup of the deposition technique which guarantees high quality and thickness uniformity at the nano-scale size. The active nano-strips are defined with the state-of-the-art electron beam nanolithography to achieve a highly uniform linewidth. We present working detectors based on nano-strips with thicknesses 9–40 nm and widths of 100–1000 nm which exhibit unprecedented speed and area coverage (40 × 40 μm 2 for single photon detectors and 1 × 1 mm 2 for single molecule detectors) based on niobium nitride thus enabling practical use of this nanotechnology.

  5. Status of the HISS MUSIC detector

    International Nuclear Information System (INIS)

    Crawford, H.J.; Flores, F.; Bieser, F.

    1984-01-01

    This note describes the status of a new type of high resolution large area charged particle detector constructed for use at the Bevalac HISS facility. High charge resolution is attained by measuring many samples of the ionization produced along the path of a particle as it traverses 144 cm of P10 gas. A Multiple Sampling Ionization Chamber (MUSIC) detector was selected for use at HISS because it can cover a large area(1M x 1M) at relatively low cost and return individual charge identification for multiple fragments emitted from relativistic heavy ion interactions

  6. Development of Large-Area GEM Detectors for the Forward Muon Endcap Upgrade of the CMS Experiment and Search for SM Higgs Boson Decay in the $H\\to\\tau^{+}\\tau^{-}\\to\\mu^{+}\\mu^{-}\\bar{\

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00366476; Gallo, Elisabetta; Raspereza, Alexei

    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the Compact Muon Solenoid (CMS) experiment in \\mbox{Phase II} of the CERN LHC. The first GEM Endcap (GE1/1) is going to be installed in the $1.5 < \\mid\\eta\\mid < 2.2$ region of the muon endcapˆ’ mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 453 $\\mu$rad pitch arranged in eight $\\eta$-sectors. A meter-long GE1/1 prototype-III was assembled at Florida Tech and tested in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 Scalable Readout System (SRS). Four GEM detectors with 2-D readout and an average measured azimuthal resolution of 36$\\mu$rad provided precise reference tracks. Construction of this GE1/1 prototype-III detector and its performance in the test beam are described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltag...

  7. The Martian Oasis Detector

    Science.gov (United States)

    Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.

    2000-07-01

    The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the

  8. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, Ariane; Serrano, Oscar; Masqué , Pere; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà , N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, Carlos M.

    2018-01-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass

  9. New Chicago-Indiana computer network will handle dataflow from world's largest scientific experiment

    CERN Multimedia

    2006-01-01

    "Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an international netword of computer centers, including one operated jointly by the University of Chicago and Indiana University." (1,5 page)

  10. Lagisza, world's largest CFB boiler, begins commercial operation

    Energy Technology Data Exchange (ETDEWEB)

    Nuortimo, K. [Foster Wheeler, Varkaus (Finland)

    2010-04-15

    Early operating experience with the Lagisza circulating fluidised bed (CFB) boiler in Poland - the world's largest such boiler to date, and also the first one with supercritical steam conditions - has been positive. 3 figs., 4 tabs.

  11. Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix

    CSIR Research Space (South Africa)

    Vlok, JD

    2012-08-14

    Full Text Available offers largely simplified computation and provides statistics such as the mean value and region of support of the largest eigenvalue distribution. Numeric results from the literature are compared with the approximation and Monte Carlo simulation results...

  12. The Phenix Detector magnet subsystem

    International Nuclear Information System (INIS)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R.

    1995-01-01

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status

  13. The Phenix Detector magnet subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  14. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  15. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  16. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  17. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  18. Development of sodium leak detectors for PFBR

    International Nuclear Information System (INIS)

    Sylvia, J.I.; Rao, P. Vijayamohana; Babu, B.; Madhusoodanan, K.; Rajan, K.K.

    2012-01-01

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  19. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  20. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  1. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  2. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  3. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  4. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  5. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  6. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  7. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  8. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  9. Geochemical characterization of the largest upland lake of the Brazilian Amazonia: Impact of provenance and processes

    Science.gov (United States)

    Sahoo, Prafulla Kumar; Guimarães, José Tasso Felix; Souza-Filho, Pedro Walfir Martins; da Silva, Marcio Sousa; Nascimento, Wilson, Júnior; Powell, Mike A.; Reis, Luiza Santos; Pessenda, Luiz Carlos Ruiz; Rodrigues, Tarcísio Magevski; da Silva, Delmo Fonseca; Costa, Vladimir Eliodoro

    2017-12-01

    Lake Três Irmãs (LTI), the largest upland lake in the Brazilian Amazonia, located in Serra dos Carajás, was characterized using multi-elemental and isotope geochemistry (δ13C and δ15N) to understand the significance of organic and inorganic sources, weathering and sedimentary processes on the distribution of elements in lake bottom (surficial) sediments. Carbon and nitrogen isotopes from sedimentary organic matter suggest C3 terrestrial plants (forests > canga vegetation), macrophytes and freshwater DOC as the main sources. Sediments are depleted in most of the major oxides (except Fe2O3 and P2O5) when compared to upper continental crust (UCC) and their spatial distribution is highly influenced by catchment lithology. Principal Component Analysis revealed that most of the trace elements (Ba, Sr, Rb, Sc, Th, U, Zr, Hf, Nb, Y, V, Cr, Ga, Co, Ni) and REEs are closely correlated with Al and Ti (PC1; Group-1), so their redistribution is less influenced by post-depositional process. This is due to their relative immobility and being hosted by Al-bearing minerals during laterization. High Chemical Index of Alteration (CIA), Mafic Index of Alteration (MIA) and Index of Laterization (IOL) values indicate intense chemical weathering at source areas, but the weathering transformation was better quantified by IOL. A-CN-K plot along with elemental ratios (Al/K, Ti/K, Ti/Zr, La/Al, Cr/Th, Co/Th, La/Sm, La/Gd, Zr/Y, and Eu/Eu*) as well as chondrite-normalized REE patterns show that the detritic sediments are mainly sourced from ferruginous laterites and soils in the catchment, which may have characteristics similar to mafic rocks.

  10. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    International Nuclear Information System (INIS)

    Post, Thomas C.; Strom, Dean; Beulow, Laura

    2013-01-01

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  11. Solomon Islands largest hawksbill turtle rookery shows signs of recovery after 150 years of excessive exploitation.

    Directory of Open Access Journals (Sweden)

    Richard J Hamilton

    Full Text Available The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands' future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet.

  12. Lessons Learned in Deploying the World s Largest Scale Lustre File System

    Energy Technology Data Exchange (ETDEWEB)

    Dillow, David A [ORNL; Fuller, Douglas [ORNL; Wang, Feiyi [ORNL; Oral, H Sarp [ORNL; Zhang, Zhe [ORNL; Hill, Jason J [ORNL; Shipman, Galen M [ORNL

    2010-01-01

    The Spider system at the Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) is the world's largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF's diverse computational environment, the project had a number of ambitious goals. To support the workloads of the OLCF's diverse computational platforms, the aggregate performance and storage capacity of Spider exceed that of our previously deployed systems by a factor of 6x - 240 GB/sec, and 17x - 10 Petabytes, respectively. Furthermore, Spider supports over 26,000 clients concurrently accessing the file system, which exceeds our previously deployed systems by nearly 4x. In addition to these scalability challenges, moving to a center-wide shared file system required dramatically improved resiliency and fault-tolerance mechanisms. This paper details our efforts in designing, deploying, and operating Spider. Through a phased approach of research and development, prototyping, deployment, and transition to operations, this work has resulted in a number of insights into large-scale parallel file system architectures, from both the design and the operational perspectives. We present in this paper our solutions to issues such as network congestion, performance baselining and evaluation, file system journaling overheads, and high availability in a system with tens of thousands of components. We also discuss areas of continued challenges, such as stressed metadata performance and the need for file system quality of service alongside with our efforts to address them. Finally, operational aspects of managing a system of this scale are discussed along with real-world data and observations.

  13. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  14. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  15. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen

    International Nuclear Information System (INIS)

    Okamura, Terue; Tanaka, Saori; Koyama, Koichi; Norihumi, Nishida; Daikokuya, Hideo; Matsuoka, Toshiyuki; Yamada, Ryusaku; Kishimoto, Kenji; Hatagawa, Masakatsu; Kudoh, Hiroaki

    2002-01-01

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography. (orig.)

  16. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  17. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  18. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  19. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  20. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.