WorldWideScience

Sample records for larger fullerene cages

  1. Study of the Si fullerene cage isomers

    NARCIS (Netherlands)

    Fthenakis, Z.G.; Havenith, R.W.A.; Menon, M.; Fowler, P.W.

    2005-01-01

    We present the results of a study on the structural and electronic properties of the Si38 fullerene isomers, which are constructed by making all possible permutations among their pentagons and hexagons. These structures were firstly fully optimized with a tight binding molecular dynamics method and

  2. Architecture of clathrin fullerene cages reflects a geometric constraint--the head-to-tail exclusion rule--and a preference for asymmetry.

    Science.gov (United States)

    Schein, Stan

    2009-03-27

    Fullerene cages have n trivalent vertices, 12 pentagonal faces, and (n-20)/2 hexagonal faces. The smallest cage in which all of the pentagons are surrounded by hexagons and thus isolated from each other has 60 vertices and is shaped like a soccer ball. The protein clathrin self-assembles into fullerene cages of a variety of sizes and shapes, including smaller ones with adjacent pentagons as well as larger ones, but the variety is limited. To explain the range of clathrin architecture and how these fullerene cages self-assemble, we proposed a hypothesis, the "head-to-tail exclusion rule" (the "Rule"). Of the 5769 small clathrin cage isomers with n< or =60 vertices and adjacent pentagons, the Rule permits just 15, three identified in 1976 and 12 others. A "weak version" of the Rule permits another 99. Based on cryo-electron tomography, Cheng et al. reported six raw clathrin fullerene cages. One was among the three identified in 1976. Here, (1) we identify the remaining five. (2) Four are new and are among the 12 others permitted by the Rule. (3) One, also new, is among the 99 weak version cages. (4) Of particular note, none of the remaining 5565 excluded cages has been identified. These findings provide powerful experimental confirmation of the Rule and the principle on which it is based. (5) Surprisingly, the newly identified clathrin cages are among the least symmetric of those permitted. (6) By devising a method for counting assembly paths, (7) we show that asymmetric cages can be assembled by larger numbers of paths, thus providing a kinetic explanation for the prevalence of asymmetric cages. (8) Finally, we show that operation during cage growth of the Rule greatly increases the likelihood of producing a closed fullerene cage, specifically one of those permitted, but efficient assembly still appears to require internal remodeling.

  3. Fullerene faraday cage keeps magnetic properties of inner cluster pristine.

    Science.gov (United States)

    Avdoshenko, Stanislav M

    2018-04-21

    Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF-L-Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand-effect. We have located multiple possible minima with different charge arrangements between EMF-L-Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Conjugation-promoted reaction of open-cage fullerene: a density functional theory study.

    Science.gov (United States)

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M

    2012-02-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    International Nuclear Information System (INIS)

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  6. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    Science.gov (United States)

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  7. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The encapsulation of trimetallic nitride clusters in fullerene cages

    International Nuclear Information System (INIS)

    Dorn, H.C.; Stevenson, S.; Craft, J.; Cromer, F.; Duchamp, J.; Rice, G.; Glass, T.; Harich, K.; Fowler, P.W.; Heine, T.; Hajdu, E.; Bible, R.; Olmstead, M.M.; Maitra, K.; Fisher, A.J.; Balch, A.L.

    2000-01-01

    The Kratschmer-Huffman electric-arc generator typically produces endohedral metallofullerenes in low yields with a wide array of different products, but the introduction of nitrogen leads to a new family of encapsulates. A family of endohedral metallofullerenes A n B 3-n N at C 2n (n=0-3, x=34, 39, and 40) where A and B are Group III and rare-earth metals is formed by a trimetallic nitride template (TNT) process in relatively high yields. The archetypal representative of this new class is the stable endohedral metallofullerene, Sc 3 N at C 80 containing a triscandium nitride cluster encapsulated in an icosahedron (I h ), C 80 cage. The Sc 3 N at C 80 is formed in yields even exceeding empty-cage C 84 . Other prominent scandium TNT members are Sc 3 N at C 68 and Sc 3 N at C 78 . The former Sc 3 N at C 68 molecule represents an exception to the well known isolated pentagon rule (IPR). These new molecules were purified by chromatography with corresponding characterization by various spectroscopic approaches. In this paper we focus on the characterization and properties of this fascinating new class of materials

  9. Quantum fluctuations of a fullerene cage modulate its internal magnetic environment.

    Science.gov (United States)

    Kawatsu, Tsutomu; Tachikawa, Masanori

    2018-01-17

    To investigate the effect of quantum fluctuations on the magnetic environment inside a C 60 fullerene cage, we have calculated the nuclear magnetic shielding constant of protons in H 2 @C 60 and HD@C 60 systems by on-the-fly ab initio path integral simulation, including both thermal and nuclear quantum effects. The most dominant upfield from an isolated hydrogen molecule occurs due to the diamagnetic current of the C 60 cage, which is partly cancelled by the paramagnetic current, where the paramagnetic contribution is enlarged by the zero-point vibrational fluctuation of the C 60 carbon backbone structure via a widely distributed HOMO-LUMO gap. This quantum modulation mechanism of the nuclear magnetic shielding constant is newly proposed. Because this quantum effect is independent of the difference between H 2 and HD, the H 2 /HD isotope shift occurs in spite of the C 60 cage. The nuclear magnetic constants computed for H 2 @C 60 and HD@C 60 are 32.047 and 32.081 ppm, respectively, which are in reasonable agreement with the corresponding values of 32.19 and 32.23 ppm estimated from the experimental values of the chemical shifts.

  10. Ionic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage

    DEFF Research Database (Denmark)

    Bähring, Steffen; Larsen, Karina R; Supur, Mustafa

    2017-01-01

    A cage molecule incorporating three electron donating monopyrrolotetrathiafulvalene units was synthesised to host electron accepting [60]fullerenes. Formation of a strong 1 : 1 donor-acceptor (D-A) complex C60⊂1 was confirmed by solid state X-ray analysis as well as (1)H NMR and absorption...... spectroscopic analyses of the arising charge-transfer (CT) band (λ = 735 nm, ε ≈ 840 M(-1) cm(-1)). Inserting Li(+) inside the [60]fullerene increased the binding 28-fold (Ka = 3.7 × 10(6) M(-1)) and a large bathochromic shift of the CT band to the near infrared (NIR) region (λ = 1104 nm, ε ≈ 4800 M(-1) cm(-1...

  11. Structural evolution of a uranyl peroxide nano-cage fullerene: U60, at elevated pressures

    Science.gov (United States)

    Turner, K. M.; Lin, Y.; Zhang, F.; McGrail, B.; Burns, P. C.; Mao, W. L.; Ewing, R. C.

    2015-12-01

    U60 is a uranyl peroxide nano-cage that adopts a highly symmetric fullerene topology; it is topologically identical to C60. Several studies on the aqueous-phase of U60 clusters, [UO2(O2)(OH)]6060-, have shown its persistence in complex solutions and over lengthy time scales. Peroxide enhances corrosion of nuclear fuel in a reactor accident-uranyl peroxides often form near contaminated sites. U60 (Fm-3) crystallizes with approximate formula: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310. Here, we have used the diamond anvil cell (DAC) to examine U60 to understand the stability of this cluster at high pressures. We used a symmetric DAC with 300 μm culet diamonds and two different pressure-transmitting media: a mixture of methanol+ethanol and silicone oil. Using a combination of in situ Raman spectroscopy and synchrotron XRD, and electrospray ionization mass spectroscopy (ESI-MS) ex situ, we have determined the pressure-induced evolution of U60. Crystalline U60 undergoes an irreversible phase transition to a tetragonal structure at 4.1 GPa, and irreversibly amorphizes at 13 GPa. The amorphous phase likely consists of clusters of U60. Above 15 GPa, the U60 cluster is irreversibly destroyed. ESI-MS shows that this phase consists of species that likely have between 10-20 uranium atoms. Raman spectroscopy complements the diffraction measurements. U60 shows two dominant vibrational modes: a symmetric stretch of the uranyl U-O triple bond (810 cm-1), and a symmetric stretch of the U-O2-U peroxide bond (820 cm-1). As pressure is increased, these modes shift to higher wavenumbers, and overlap at 4 GPa. At 15 GPa, their intensity decreases below detection. These experiments reveal several novel behaviors including a new phase of U60. Notably, the amorphization of U60 occurs before the collapse of its cluster topology. This is different from the behavior of solvated C60 at high pressure, which maintains a hcp structure up to 30 GPa, while the clusters disorder. These results suggest

  12. Behavior and Welfare of Domestic Cats Housed in Cages Larger than U.S. Norm.

    Science.gov (United States)

    Stella, Judith L; Croney, Candace C; Buffington, C Tony

    2017-01-01

    The effect of providing additional floor space on cat behavior and welfare is not well documented. This study involved replication of an investigation of cats' responses to enhanced cage and room environments using cages of 0.56 m 2 with the same methodology but an increased space allowance of 1.1 m 2 . Singly housed adult cats (n = 59) were randomly assigned to a treatment group that was a combination of a managed or unmanaged room and an enriched or unenriched cage environment. Cats were observed for 2 days for maintenance, affiliative, and avoidant behaviors using scan sampling and 5-min, continuous focal sampling. At the end of Day 2, cats' reactions to the approach of an unfamiliar person were assessed. Cats housed in enriched/managed environments exhibited more maintenance and affiliative behaviors and fewer avoidant behaviors than cats in unmanaged/unenriched environments, suggesting that macro and micro environments may be equally relevant to the cat. Increased space did not enhance the cats' welfare outcomes, suggesting that the provision of additional cage space may not be as important to the cat as a managed housing environment.

  13. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M.

    2012-01-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated

  14. Sc2O@Cs(126339)-C92: Di-scandium oxide cluster encapsulated into a large fullerene cage

    Science.gov (United States)

    Gu, Yong-Xin; Li, Qiao-Zhi; Li, De-Huai; Zhao, Rui-Sheng; Zhao, Xiang

    2018-04-01

    The geometric, electronic structure and thermodynamic stability of Sc2O@C92 has been characterized by using hybrid density functional theory calculations combined with statistical thermodynamic analyses. Results indicate that the isolated pentagon rule (IPR) isomers Sc2O@Cs(126339)-C92, Sc2O@C1(126367)-C92 and Sc2O@C1(126390)-C92 are favorable. Noteworthy, it is the first time to declare that fullerene isomer Cs(126339)-C92 could be considered as the suitable cage to encapsulate metallic cluster. The electronic properties of these three isomers were performed with frontier molecular orbital (HOMO and LUMO) analyses and bond order calculations. Finally, 13C NMR and UV-vis-NIR spectra were simulated to provide valuable information for future experiments.

  15. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  16. Unwilling U-U bonding in U-2@C-80: cage-driven metal-metal bonds in di-uranium fullerenes

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Vícha, J.; Marek, R.; Patzschke, M.; Straka, Michal

    2015-01-01

    Roč. 17, č. 37 (2015), s. 24182-24192 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : actinide-actinide bond * endohedral actinide fullerene * cage-driven bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04280a

  17. Encapsulation of a radiolabeled cluster inside a fullerene cage, (177)Lu(x)Lu((3-x))N@C(80): an interleukin-13-conjugated radiolabeled metallofullerene platform.

    Science.gov (United States)

    Shultz, Michael D; Duchamp, James C; Wilson, John D; Shu, Chun-Ying; Ge, Jiechao; Zhang, Jianyuan; Gibson, Harry W; Fillmore, Helen L; Hirsch, Jerry I; Dorn, Harry C; Fatouros, Panos P

    2010-04-14

    In this communication, we describe the successful encapsulation of (177)Lu into the endohedral metallofullerene (177)Lu(x)Lu(3-x)N@C(80) (x = 1-3) starting with (177)LuCl(3) in a modified quartz Kraschmer-Huffman electric generator. We demonstrate that the (177)Lu (beta-emitter) in this fullerene cage is not significantly released for a period of up to at least one-half-life (6.7 days). We also demonstrate that this agent can be conjugated with an interleukin-13 peptide that is designed to target an overexpressed receptor in glioblastoma multiforme tumors. This nanoparticle delivery platform provides flexibility for a wide range of radiotherapeutic and radiodiagnostic multimodal applications.

  18. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar g....... In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  19. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  20. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  1. The first stable lower fullerene: C36

    International Nuclear Information System (INIS)

    Piskoti, C.; Zettl, A.

    1998-01-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C 60 . However, unlike other known fullerenes, any closed, fullerene-like C 36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C 36 in arced graphite soot. copyright 1998 American Institute of Physics

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  3. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  4. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  5. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  6. Fullerenes and disk-fullerenes

    Science.gov (United States)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  7. Iron-fullerene mixture plasma

    International Nuclear Information System (INIS)

    Biri, S.; Fekete, E.

    2004-01-01

    can not tell at this moment whether the iron atoms are inside or outside the carbon cage. As a conclusion our experiment demonstrated that the ECR ion source generally can be used to produce mixed iron-fullerene plasma and FeC 60 molecules both in the plasma and in the beam. These results are encouraging, but at lower frequencies and with larger plasmas we expect to achieve better results. Very recently we replaced our 14.5GHz/2000W klystron based microwave generator by a variable 8-12GHz/20W TWT system. So far we studied He and Ar plasmas with this device, the investigation of fullerene plasmas follows at the beginning of 2005. Another project in the near future is the application of other methods (e.g oven) to produce the Fe component of the plasma. (author)

  8. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  9. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  10. Perturbed Angular Correlation Study of the Static and Dynamic Aspects of Cadmium and Mercury Atoms Inside and Attached to a C60 Fullerene Cage

    CERN Document Server

    Das, Satyendra K; Banerjee, Debasish; Johnston, Karl; Das, Parnika; Butz, Tilman; Amaral, Vitor S; Correia, Joao G; Barbosa, Marcelo B

    2014-01-01

    30 keV Cd-111m and 50 keV Hg-199m beams from ISOLDE were used to implant on preformed targets of C-60 with a thickness of 1 mg cm(-2). Endofullerene compounds, viz. Cd-111m@C-60 and Hg-199m@C-60 formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245 keV cascade of Cd-111m and the 374 158 keV cascade of Hg-199m on a six LaBr3(Ce) detector system coupled with digital electronics. The results for 111mCd@C60 indicate a single static component (27\\%) and a fast relaxing component (73\\%), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C60 are omega(Q) = 8.21(36) Mrad s(-1) and eta = 0.41(9), respectively. The fast relaxation con...

  11. Perturbed angular correlation study of the static and dynamic aspects of cadmium and mercury atoms inside and attached to a C{sub 60} fullerene cage

    Energy Technology Data Exchange (ETDEWEB)

    Das, Satyendra K.; Guin, Rashmohan; Banerjee, Debasish [Variable Energy Cyclotron Centre, Kolkata (India). Accelerator Chemistry Section (Bhabha Atomic Research Centre); Johnston, Karl [CERN, Geneva (Switzerland); Das, Parnika [Variable Energy Cyclotron Centre, Kolkata (India); Butz, Tilman [Leipzig Univ. (Germany). Faculty of Physics and Earth Sciences; Amaral, Vitor S. [Aveiro Univ. (Portugal). Physics Dept.; Aveiro Univ. (Portugal). CICECO; Correia, Joao G.; Barbosa, Marcelo B. [Instituto Tecnologico e Nuclear (ITN), Sacavem (Portugal); CERN, Geneva (Switzerland). ISOLDE

    2014-10-15

    30 keV {sup 111m}Cd and 50 keV {sup 199m}Hg beams from ISOLDE were used to implant on preformed targets of C{sub 60} with a thickness of 1 mg cm{sup -2}. Endofullerene compounds, viz. {sup 111m}Cd rate at C{sub 60} and {sup 199m}Hg rate at C{sub 60} formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245keV cascade of {sup 111m}Cd and the 374-158 keV cascade of {sup 199m}Hg on a six LaBr{sub 3}(Ce) detector system coupled with digital electronics. The results for {sup 111m}Cd rate at C{sub 60} indicate a single static component (27 %) and a fast relaxing component (73 %), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C{sub 60} are ω{sub Q} = 8.21(36) Mrad s{sup -1} and η = 0.41(9), respectively. The fast relaxation constant is 0.0031(4) ns{sup -1}. Similarly, mercury atoms also exhibit a single static and a fast component. The static site has a quadrupole frequency ω{sub Q} = 283.0(12.4) Mrad s{sup -1} and η = 0 with a fraction of 30 %. The fast relaxation constant is 0.045(8) ns{sup -1} with a fraction of 70 %, very similar to that of cadmium.

  12. Structure, stability, and electronic properties of AlP nanocages evolved from the world's smallest caged fullerene C20: A computational study at DFT

    Science.gov (United States)

    Baei, Mohammad T.; Koohi, Maryam; Shariati, Minoo

    2018-05-01

    The stability, geometry, and electronic properties of C20 and its AlnPnC20-2n heterofullerenic derivatives where n = 1-10 are probed, at density functional theory (DFT). Vibrational frequency calculations show that exclusive of Al6P6C8 and Al10P8C2, other species are true minima. Exploring of the optimized structures demonstrates the shrinkage of Cdbnd C double bonds to compensate for the longer Csbnd Al, Csbnd P and Alsbnd P single bonds. The calculated binding energy, HOMO-LUMO gap and nucleus independent chemical shift at the cage center (NICS (0)) of Al1P1C18 shows it the most stable structure. While substituting of 1, 2, 3, 4, 6, and 7 Alsbnd P units enhances kinetic stability of the resulting heterofullerenes against electronic excitations via increasing their HOMO-LUMO gap, doping of 5, 8, 9, and 10 Alsbnd P units increases the conductivity of heterofullerenes through decreasing their band gap. Substitutional doping leads to a high point charge upon the surfaces of all derivatives, especially the highest delocalization on Al6P6C8, with range of -2.056 to -1.261 charged carbons, +1.493 to +1.586 charged aluminums, and +0.513 to +0.801 charged phosphor atoms, followed by Al4P4C12. These high charge distributions on the surfaces of the studied analogous can develop their storage capacity and henceforth characterize them worthy of investigation for hydrogen storage. Also, Al1P1C18, Al2P2C16, and Al10P10 are shown as the most aromatic and anti-aromatic nanocages with NICS (0) of -41.60, -39.82, and +22.59 ppm, respectively, compared to C20 (-19.61 ppm). The computed higher dipole moment of Al1P1C18 and Al5P5C10 (4.06 and 3.29 Debye, respectively) exhibits higher reactivity potential and greater affinity of them to more polar solvents. Thus, in both gas phase and polar solvent, Al1P1C18 structure is expected to be stabilized to a greater extent than the other species, which has been confirmed by the thermodynamic and kinetic data.

  13. Experimental and computational studies of Si-doped fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boero, M.; Massobrio, C.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1999-12-01

    Silicon in-cage doped fullerenes result from laser-induced photofragmentation of mixed clusters of composition C{sub 60}Si{sub x}. These parent clusters are produced in a low pressure condensation cell, through the mixing of silicon vapor with a vapor containing the preformed C{sub 60} molecules. The geometric and the electronic structures of fullerenes substitutionally doped with one and two silicon atoms are studied by ab-initio calculations within density functional theory. (orig.)

  14. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    OpenAIRE

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  15. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  16. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    International Nuclear Information System (INIS)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2010-01-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC 60 endofullerene compound. (fast track communication)

  17. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    Energy Technology Data Exchange (ETDEWEB)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S [Center for Innovation and Entrepreneurship, Department of Chemistry and Physics, Northwest Missouri State University, Maryville, MO 64468 (United States); Madjet, Mohamed E, E-mail: himadri@nwmissouri.ed [Institute of Chemistry and Biochemistry, Free University, Fabeckstrasse 36a, D-14195 Berlin (Germany)

    2010-09-28

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC{sub 60} endofullerene compound. (fast track communication)

  18. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  19. C60 as a Faraday cage

    Science.gov (United States)

    Delaney, P.; Greer, J. C.

    2004-01-01

    Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius.

  20. C-60 as a Faraday cage

    OpenAIRE

    Delaney, Paul; Greer, J.C.

    2004-01-01

    Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom i...

  1. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  2. Electronic structure of single- and multiple-shell carbon fullerenes

    International Nuclear Information System (INIS)

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  3. Electronic structure of C and Si fullerenes and fullerides

    International Nuclear Information System (INIS)

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  4. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  5. Fulereno[C60]: química e aplicações Fullerene C60: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Leandro José dos Santos

    2010-01-01

    Full Text Available Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.

  6. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  7. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  8. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  9. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  10. Photophysical properties of fullerenes prepared in an atmosphere of pyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. (Temple Univ., Philadelphia, PA (United States))

    1994-10-01

    Samples of C[sub 60] and C[sub 70] containing a variety of nitrogen-doped species were prepared by arc vaporization of graphite in the presence of pyrrole. Cage-doped fractions were isolated by column chromatography and characterized by mass spectroscopy, optical absorption, and fluorescence measurements. Mass spectra were consistent with the substitution of an even number of carbon atoms of the C[sub 60] and C[sub 70] cages by nitrogen atoms. Carbonaceous clusters including fragmented fullerenes containing hydrogen atoms were also formed. UV-visible spectral analysis indicated that there is an influence of the molecular weight on the fundamental [pi]-[pi]* electronic transition. Fluorescence spectra showed a broad band containing vibrational fine structure that is attributed to photoseparated charges in the fragmented fullerenes and a shoulder on the low-energy side that is related to intrinsic excitation in the nitrogen-doped species. Fluorescence results imply a bandgap of 2.36 eV for the N doped fullerenes and the existence of intermediate excitonic transitions below the optical bandgap. Although it has not yet been possible to isolate a pure cage-doped material, the photophysical studies add credence to their existence and the importance of further attempts at their isolation. 17 refs., 4 figs., 1 tab.

  11. High stability of the goldalloy fullerenes: A density functional theory investigation of M12@Au20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters

    International Nuclear Information System (INIS)

    Zhang Meng; Feng Xiao-Juan; Zhao Li-Xia; Zhang Hong-Yu; Luo You-Hua

    2012-01-01

    Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene. La 12 @Au 20 is found to be particularly stable among these clusters. The binding energy of La 12 @Au 20 is 3.43 eV per atom, 1.05 eV larger than that in Au 32 . The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV, suggesting that it should be relatively chemically reactive. (condensed matter: structural, mechanical, and thermal properties)

  12. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  13. Electronic properties of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmany, H [ed.; Vienna Univ. (Austria). Inst. fuer Festkoerperphysik; Fink, J [ed.; Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik; Mehring, M [ed.; Stuttgart Univ. (Germany). Physikalisches Teilinstitut 2; Roth, S [ed.; Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C[sub 60] itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  14. Electronic properties of fullerenes

    International Nuclear Information System (INIS)

    Kuzmany, H.

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C 60 itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  15. The study of dielectric properties of the endohedral fullerenes

    Science.gov (United States)

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  16. Polyethene with pendant fullerene moieties

    NARCIS (Netherlands)

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  17. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  18. Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lingli; Sai, Linwei [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China and Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Qiu, Ruifeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China)

    2015-01-22

    Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  19. Transmutation of fullerenes.

    Science.gov (United States)

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  20. Prediction of the electron redundant SinNn fullerenes

    Science.gov (United States)

    Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan

    2018-05-01

    The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.

  1. Growth and Potential Damage of Human Bone-Derived Cells on Fresh and Aged Fullerene C60 Films

    Directory of Open Access Journals (Sweden)

    Jiri Vacik

    2013-04-01

    Full Text Available Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS. We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  2. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    Science.gov (United States)

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  3. Generation, Characterization and Applications of Fullerenes

    Science.gov (United States)

    Liu, Shengzhong

    structure of C _{70} was determined for the first time. C_{60} single crystals have been obtained from cyclohexane solution and X-ray diffraction has been successfully employed. Diffraction data sets collected with three crystals at different temperatures show that at these temperatures the molecules are statistically distributed in two molecular orientations within the cubic lattice. Fullerenes have been applied for diamond nucleation and second-harmonic generation. We have discovered that activated fullerenes, especially C_{70 } can be used as diamond nucleation sites on non-diamond substrates. A speculative diamond nucleation model is proposed which may provide a means of better understanding the mechanism of diamond nucleation. The second harmonic generation intensity of C_{60} thin films has been measured as a function of film temperature and poling field voltage. The largest value of chi_sp{rm pol} {(2)} is about fifteen times larger than that of quartz.

  4. Geochemie fullerenů

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Jehlička, J.; Vítek, P.; Juha, Libor; Hamplová, Věra; Pokorná, Zdeňka

    2010-01-01

    Roč. 104, č. 8 (2010), s. 762-769 ISSN 0009-2770 R&D Projects: GA ČR GA205/07/0772; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : geochemistry * fullerene s * geological materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.620, year: 2010

  5. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.

    Science.gov (United States)

    Chen, Jyi-Feng; Lee, Shih-Tseng

    2006-10-01

    In a previous article, we used the PMMA cervical cage in the treatment of single-level cervical disk disease and the preliminary clinical results were satisfactory. However, the mechanical properties of the PMMA cage were not clear. Therefore, we designed a comparative in vitro biomechanical study to determine the mechanical properties of the PMMA cage. The PMMA cervical cage and the Solis PEEK cervical cage were compressed in a materials testing machine to determine the mechanical properties. The compressive yield strength of the PMMA cage (7030 +/- 637 N) was less than that of the Solis polymer cervical cage (8100 +/- 572 N). The ultimate compressive strength of the PMMA cage (8160 +/- 724 N) was less than that of the Solis cage (9100 +/- 634 N). The stiffness of the PMMA cervical cage (8106 +/- 817 N/mm) was greater than that of the Solis cage (6486 +/- 530 N/mm). The elastic modulus of the PMMA cage (623 +/- 57 MPa) was greater than that of the Solis cage (510 +/- 42 MPa). The elongation of PMMA cage (43.5 +/- 5.7%) was larger than that of the Solis cage (36.1 +/- 4.3%). Although the compressive yield strength and ultimate compressive strength of the PMMA cervical cage were less than those of the Solis polymer cage, the mechanical properties are better than those of the cervical vertebral body. The PMMA cage is strong and safe for use as a spacer for cervical interbody fusion. Compared with other cage materials, the PMMA cage has many advantages and no obvious failings at present. However, the PMMA cervical cage warrants further long-term clinical study.

  6. Effects of cage density on behavior in young adult mice.

    Science.gov (United States)

    Davidson, Lauren P; Chedester, Alan L; Cole, Marlene N

    2007-08-01

    Optimal housing conditions for mice can be achieved by minimizing environmental variables, such as those that may contribute to anxiety-like behavior. This study evaluated the effects of cage size on juvenile mice through assessment of differences in weaning weight, locomotor skills, and anxiety-like behavior. Eighteen pairs of male and pregnant female Swiss-Webster (Cr:SW) mice were housed in 3 different caging scenarios, providing 429, 505, or 729 cm2 of space. Litters were standardized to 10 pups per litter in each cage. Mice reared in each caging scenario were assessed with the open-field, light-dark exploration, and elevated plus-maze tests. No differences in weaning weight were noted. Mice reared in the 505- and 729-cm2 cages explored a significantly larger area of the open-field arena than did those in the 429-cm2 cages. Those reared in the 505-cm2 cages spent more time in the center of the open field than did those in the 729-cm2 cages, suggesting that anxiety-like behavior may be increased in the animals housed in the larger cages. This study did not establish a consistent link between decreased floor space and increased anxiety-like behavior; neither does there appear to be a consistent effect of available floor area on the development of locomotor skills on mouse pups.

  7. Structural and optical properties of the M@C59X cages (X=N, B and ...

    Indian Academy of Sciences (India)

    energy and the charge is transferred to the carbon cage of M@C60. ... Here, (εn2 −εn1 ) is the transition energy which is obtained with respect to the ..... [22] E Osawa, Perspectives in fullerene nanotechnology (Springer, Berlin, Germany, 2002).

  8. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  9. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei; Amassian, Aram; Tajima, Keisuke

    2017-01-01

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene

  11. Naming polyhedra by general face-spirals - theory and applications to fullerenes and other polyhedral molecules

    DEFF Research Database (Denmark)

    Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil

    2018-01-01

    We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical...... polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can...... be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i. e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm...

  12. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L S.K.; Wilson, M A; Quezada, R A [CSIRO Petroleum, North Ryde (Australia); and others

    1996-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  13. Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry

    Science.gov (United States)

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.

    2014-12-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.

  14. LABORATORY FORMATION OF FULLERENES FROM PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castellanos, Pablo; Tielens, Alexander G. G. M.; Paardekooper, Daniel M.; Linnartz, Harold

    2014-01-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C 60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C 60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C 2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C 60 . These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space

  15. Tunable electronic transport properties of silicon-fullerene-linked nanowires: Semiconductor, conducting wire, and tunnel diode

    OpenAIRE

    Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro

    2010-01-01

    We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum ...

  16. Inorganic Nanotubes and Fullerene-Like Nanoparticles:. from the Lab to the Market Place

    Science.gov (United States)

    Tenne, R.

    2013-05-01

    Layered compounds, like MoS2 were shown by the author to be unstable in the nano-regime. Using new chemical strategies, closed-cage hollow nanostructures in the form of inorganic fullerene-like nanoparticles and inorganic nanotubes were synthesized. These nanostructures exhibit numerous interesting physico-chemical properties and are employed as superior solid lubricants, with numerous other applications currently being developed.

  17. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  18. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  19. Glycofullerenes: Sweet fullerenes vanquish viruses

    Science.gov (United States)

    Vidal, Sébastien

    2016-01-01

    Fullerene-based dendritic structures coated with 120 sugars can be made in high yields in a relatively short sequence of reactions. The mannosylated compound is shown to inhibit Ebola infection in cells more efficiently than monofullerene-based glycoclusters.

  20. Endohedral clusterfullerenes--playing with cluster and cage sizes.

    Science.gov (United States)

    Dunsch, Lothar; Yang, Shangfeng

    2007-06-28

    The family of endohedral fullerenes was significantly enlarged within the past six years by the clusterfullerenes containing structures like the M(2)C(2) carbides and the M(3)N nitrides. While the carbide clusters are generated under the standard arc burning conditions according to the stabilisation energy the nitride clusterfullerene type is formed by varying the composition of the cooling gas atmosphere in the arc burning process. The special situation in nitride clusterfullerene synthesis is described in detail and the optimum conditions for the production of nitride clusterfullerenes as the main product in fullerene synthesis are discussed. A review of new nitride clusterfullerenes reported recently is given summarizing the structures, properties and the stability of metal nitride clusterfullerenes. It is shown that all cages with even carbon atoms of C(68) and beyond are available as endohedral nitride clusterstructures. Furthermore the nitride clusterfullerenes are that class of endohedral fullerenes forming the largest number of non-IPR structures. Finally the prospects of this evolving field are briefly discussed taking the superior stability of these endohedral clusterfullerenes into account.

  1. Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction

    Science.gov (United States)

    Siadati, Seyyed Amir; Nami, Navabeh

    2016-10-01

    C20 fullerene, this novel species with all its pentagonal faces has displayed some unique operations in making fast pericyclic reactions. As an example, the high dienophile character of the C20 fullerene and the ability of this species in making an ultra-fast Diels-Alder reaction with 1,3-butadiene, has been recently reported. Moreover, new experimental reports claim that the C60 fullerene, one of the fullerene family, could make a Diels-Alder reaction with the central ring of anthracene and make the ring non-aromatic. These reports may encourage researchers to do more studies on the properties of this small carbon cage. To address this question, the present research has discussed all the reaction channels of the Diels-Alder cycloaddition of benzene molecule as a 1,3-diene with the C20 fullerene in order to answer this question: ;Is C20fullerene able to make a Diels-Alder reaction with this molecule?;.

  2. Permeability and storage ability of inorganic X12Y12 fullerenes for lithium atom and ion

    Science.gov (United States)

    Munsif, Sajida; Ayub, Khurshid

    2018-04-01

    In the current study, permeability and storage ability (exohedral and endohedral) of inorganic fullerenes X12Y12 (X = B, Al and Y = N, P) for lithium atom/ion (Li/Li+) is studied theoretically at M05-2X method. The translation of Li/Li+ through Al12P12 nano-cages is not only a kinetically feasible process but also has very high separation ratio in the favor of lithium atom over lithium ion. Adsorption/encapsulation energies of alkali metal on/in nano-cages show strong correlation with the size of the nano-cage. The percent changes in H-L gap for Li+-X12Y12 are about 1-25%, whereas the corresponding changes for Li-X12Y12 are 30-72%.

  3. Mobile Phone Faraday Cage

    OpenAIRE

    French, M M J

    2011-01-01

    A Faraday cage is an interesting physics phenomena where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can! The background of the physics behind this is described in some detail followed by a explanation of some demonstrations and experiments which I have used.

  4. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  5. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  6. Broadband electroluminescence in fullerene crystals

    International Nuclear Information System (INIS)

    Werner, A.T.; Anders, J.; Byrne, H.J.; Maser, W.K.; Kaiser, M.; Mittelbach, A.; Roth, S.

    1993-01-01

    The observation of electroluminescence from crystalline fullerenes is described. A broad band emission spectrum, extending from 400nm to 1100nm is observed. The spectrum has a primary maximum at 920nm and a weaker feature centered on 420nm. The spectral characteristics are independent of the applied field and the longer wavelength region is identical to that measured in the high excitation density photoluminescence spectrum. In addition, the electroluminescence intensity increases with the cube of the injection current, strengthening the association to the nonlinear phenomena observed in the highly excited state of fullerenes. (orig.)

  7. Self-organization processes in polysiloxane block copolymers, initiated by modifying fullerene additives

    Science.gov (United States)

    Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.

    2017-08-01

    Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.

  8. Fullerene genesis by ion beams

    International Nuclear Information System (INIS)

    Gamaly, E.G.; Chadderton, L.T.; Commonwealth Scientific and Industrial Research Organization, Lindfield, NSW

    1995-01-01

    Clearly detectable quantities of molecular fullerene (C 60 ), the most recently discovered allotrope of carbon, have been observed in graphite following irradiation with heavy projectile ions at energies of about 1 GeV using high pressure chromatography. Similar experiments using lower ion energies gave no corresponding signal, indicating an absence of fullerene. This clear difference suggests that there exists an energy threshold for fullerene genesis. Beginning with a microscopic description of deposition and transfer of energy from the ion to the target, a theoretical model is developed for interpretation of these and similar experiments. An important consequence is a description of the formation of large carbon clusters in the hot dense 'primeval soup' of single carbon atoms by means of random 'sticky' collisions. The ion energy threshold is seen as arising, physically, from a balance in the competition between the rate of primary energy deposition and the rate of system cooling. Rate equations for the basic clustering process allow calculations of the time-dependent number densities for the different carbon clusters produced. An important consequence of the theory is that it is established that the region for the specific phase transition from graphite to fullerene lies in the same pressure regime on the phase diagram as does the corresponding transition for graphite to diamond. (author)

  9. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei

    2017-04-06

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene substrates and annealing the deposited mixed films. Methods can further include one or more of exposing the annealed mixed film to UV light, and washing the annealed mixed film with a solvent. Fullerene compounds can include one or more of PCBM, PCBNB, and PCBA.

  10. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  11. Faraday Cage Protects Against Lightning

    Science.gov (United States)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  12. Building a better Faraday cage

    Science.gov (United States)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  13. Cage-based performance capture

    CERN Document Server

    Savoye, Yann

    2014-01-01

    Nowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this re...

  14. Memory effect in the deposition of C20 fullerenes on a diamond surface

    Science.gov (United States)

    Du, A. J.; Pan, Z. Y.; Ho, Y. K.; Huang, Z.; Zhang, Z. X.

    2002-07-01

    In this paper, the deposition of C20 fullerenes on a diamond (001)-(2×1) surface and the fabrication of C20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in ``C20-type'' films [P. Melion et al., Int. J. Mod. B 9, 339 (1995); P. Milani et al., Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp3 hybridization character, the same as that of a free C20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C20 film showed high stability even when the temperature was raised up to 1500 K.

  15. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  16. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  17. Vibrational Spectra of Tetrahedral Fullerenes.

    Science.gov (United States)

    Cheng; Li; Tang

    1999-01-01

    From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.

  18. Photodiodes based on fullerene semiconductor

    International Nuclear Information System (INIS)

    Voz, C.; Puigdollers, J.; Cheylan, S.; Fonrodona, M.; Stella, M.; Andreu, J.; Alcubilla, R.

    2007-01-01

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum

  19. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  20. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  1. Caging in high energy reactions

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  2. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  3. Why have microsaccades become larger?

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Nyström, Marcus; Andersson, Richard

    2014-01-01

    -trackers compared to the systems used in the classical studies, in combination with the lack of a systematic algorithmic treatment of the overshoot. We hope that awareness of these discrepancies in microsaccade dynamics across eye structures will lead to more generally accepted definitions of microsaccades....... experts. The main reason was that the overshoots were not systematically detected by the algorithm and therefore not accurately accounted for. We conclude that one reason to why the reported size of microsaccades has increased is due to the larger overshoots produced by the modern pupil-based eye...

  4. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering

    International Nuclear Information System (INIS)

    Robles Hernández, F.C.; Calderon, H.A.

    2012-01-01

    Highlights: ► Fullerene mix (C 60 + C 70 + soot) is effective to manufacture nanostructured Al/Al 4 C 3 . ► Carbon in the fullerene mix is more reactive with Al that that present in graphite. ► A complete transformation of carbon into Al 4 C 3 is observed in the Al/fullerene. ► Milling and sintering conditions preserve the nanostructured nature of the composites. ► Hardness improvement: 375% Al/graphite and 582% for Al/fullerene composites. - Abstract: Nanostructured Al matrix composites with reinforcements of graphite or fullerene (C 60 + C 70 + soot) have been produced by mechanical milling and spark plasma sintering (SPS). X-ray diffraction and transmission electron microscopy show that C 60 + C 70 withstand longer mechanical milling/alloying times than graphite. Fullerene is a good control agent during mechanical alloying resulting in a denser Al/fullerene composite when compared to the Al/graphite one. A refinement mechanism that takes place during mechanical alloying of fullerene and graphite is experimentally found and correspondingly discussed. Such a mechanism plays a major role in the amorphization of graphite. The larger surface area of the fullerene mix after milling promotes a better interaction with Al and hence allows its complete transformation into Al 4 C 3 during the SPS process. The sintered products show an increase in hardness for the Al/fullerene composite of 6 times and only 4 times for the Al/graphite composite. The SPS technique shows to be an excellent method to transform the fullerene into Al 4 C 3 while preserving its nanostructured nature.

  5. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  6. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries...

  7. Fullerenic structures and such structures tethered to carbon materials

    Science.gov (United States)

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  8. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation.

    Science.gov (United States)

    Acharyya, Koushik; Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-01-16

    Unprecedented self-sorting of three-dimensional purely organic cages driven by dynamic covalent bonds is described. Four different cages were first synthesized by condensation of two triamines and two dialdehydes separately. When a mixture of all the components was allowed to react, only two cages were formed, which suggests a high-fidelity self-recognition. The issue of the preference of one triamine for a particular dialdehyde was further probed by transforming a non-preferred combination to either of the two preferred combinations by reacting it with the appropriate triamine or dialdehyde.

  9. Physical properties of organic fullerene cocrystals

    Science.gov (United States)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  10. A plasma arc reactor for fullerene research

    Science.gov (United States)

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  11. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  12. C 60 as a chemical Faraday cage for three ferromagnetic Fe atoms

    Science.gov (United States)

    Gao, Guohua; Kang, Hong Seok

    2008-09-01

    Based on calculations using density functional theory, we show that C 60 can act as a chemical Faraday cage in which a highly magnetic metal cluster with a high chemical reactivity can be encapsulated. As an example, we find that C 60 can encapsulate a Fe 3 cluster, while it is much less likely to encapsulate a Fe 2 cluster. Spin multiplicity (=9) of the Fe 3@C 60 is very high, being comparable to that (=11) of a free Fe 3 cluster. Geometrically, the triangular plane of the cluster is perpendicular to a S6 axis of the fullerene.

  13. [Experiences with cage combinations for guinea pigs].

    Science.gov (United States)

    von Zychlinski, J

    1989-01-01

    Special cage units described in 1982 for guinea pigs have been used either as cages for small groups of breeding animals or for caging of growing animals. By using these cages the following advantages have been noted; the cage size can be adapted to number, age and body weight of the animals; aggression and panic are avoided by corners, walls and tunnels; economic use of breeding males by mating with more females.

  14. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  15. Segmental kyphosis after cervical interbody fusion with stand-alone polyetheretherketone (PEEK) cages: a comparative study on 2 different PEEK cages.

    Science.gov (United States)

    Kim, Chi Heon; Chung, Chun Kee; Jahng, Tae-Ahn; Park, Sung Bae; Sohn, Seil; Lee, Sungjoon

    2015-02-01

    Retrospective comparative study. Two polyetheretherketone (PEEK) cages of different designs were compared in terms of the postoperative segmental kyphosis after anterior cervical discectomy and fusion. Segmental kyphosis occasionally occurs after the use of a stand-alone cage for anterior cervical discectomy and fusion. Although PEEK material seems to have less risk of segmental kyphosis compared with other materials, the occurrence of segmental kyphosis for PEEK cages has been reported to be from 0% to 29%. There have been a few reports that addressed the issue of PEEK cage design. A total of 41 consecutive patients who underwent single-level anterior discectomy and fusion with a stand-alone cage were included. Either a round tube-type (Solis; 18 patients, S-group) or a trapezoidal tube-type (MC+; 23 patients, M-group) cage was used. The contact area between the cage and the vertebral body is larger in MC+ than in Solis, and anchoring pins were present in the Solis cage. The effect of the cage type on the segmental angle (SA) (lordosis vs. kyphosis) at postoperative month 24 was analyzed. Preoperatively, segmental lordosis was present in 12/18 S-group and 16/23 M-group patients (P=0.84). The SA was more lordotic than the preoperative angle in both groups just after surgery, with no difference between groups (P=0.39). At 24 months, segmental lordosis was observed in 9/18 S-group and 20/23 M-group patients (P=0.01). The patients in M-group were 7.83 times more likely than patients in S-group (P=0.04; odds ratio, 7.83; 95% confidence interval, 1.09-56.28) not to develop segmental kyphosis. The design of the PEEK cage used may influence the SA, and this association needs to be considered when using stand-alone PEEK cages.

  16. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  17. Fullerene C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Koruga, D; Hameroff, S; Sundareshan, M [Univ. of Arizona, Tucson, AZ (United States); Withers, J; Loutfy, R [MER Corp., Tucson, AZ (United States)

    1993-01-01

    This book, one of the first to be published in the exciting field of fullerenes, includes a short history of scientific discovery, as well as one possible answer to the question: for what purposes can C[sub 60] be utilized. The book opens with a review of the life of Buckminster Fuller. Modern history of fivefold symmetry and the icosahedron began between 1984 and 1985, when Shechtman and his research team opened a new branch in crystallography (fivefold symmetry) and when the Kroto/Smalley research team discovered the C[sub 60] molecule (truncated icosahedron). Production of solid C[sub 60] by the Huffman/Kraeschner research team in 1990 provided a new stimulus for research by producing C[sub 60] in macroscopic amounts for use by the scientific and technological community. This achievement led to developments such as Koruga's August 1992 creation of the dimer C[sub 116] using scanning tunneling engineering and Loutfy's hydrogenation of C[sub 60] and construction of the first Ni/C[sub 60] rechargeable batteries in December 1992. New inventions based on C[sub 60] will continue to be forthcoming, particularly in the areas of superconductivity, quantum devices, and molecular electronic devices. Discovery of the C[sub 60] molecule (Kroto/Smalley), production of solid C[sub 60] (Huffman/Kraeschmer) and technological inventions such as C[sub 116] (Koruga) have been chance discoveries. A short history of these discoveries is detailed in the book along with the results of the authors' Fullerene research efforts, including atomic resolution images of Fullerene C[sub 60], Ni/C[sub 60] batteries, nanotechnology of C[sub 60], comparison of C[sub 60] with biological systems, and others. As Fullerene C[sub 60] will require control engineering, an overview of control systems, in particular, general and optimal control of the Schroedinger equation, is contained. Some experimental and theoretical work of other researchers are also presented. 140 figs., 4 tabs., 342 refs.

  18. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  19. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  20. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    Science.gov (United States)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  1. The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Dmitry G. Deryabin

    2014-01-01

    Full Text Available We report a comparative investigation of the antibacterial activity of two water-soluble fullerene derivatives bearing protonated amine (AF and deprotonated carboxylic (CF groups appended to the fullerene cage via organic linkers. The negatively charged fullerene derivative CF showed no tendency to bind to the bacterial cells and, consequently, no significant antibacterial activity. In contrast, the compound AF loaded with cationic groups showed strong and partially irreversible binding to the negatively charged Escherichia coli K12 TG1 cells and to human erythrocytes, also possessing negative zeta potential. Adsorption of AF on the bacterial surface was visualized by atomic force microscopy revealing the formation of specific clusters (AF aggregates surrounding the bacterial cell. Incubation of E. coli K12 TG1 with AF led to a dose-dependent bactericidal effect with LD50 = 79.1 µM. The presence of human erythrocytes in the test medium decreased the AF antibacterial activity. Thus we reveal that the water-soluble cationic fullerene derivative AF possesses promising antibacterial activity, which might be utilized in the development of novel types of chemical disinfectants.

  2. Cage effect in recoil studies

    International Nuclear Information System (INIS)

    Berei, K.

    1983-09-01

    The role of cage effect is one of the most discussed questions of hot atom chemistry in condensed organic systems. So far no direct evidence is available for assessing the exact contribution of thermal recombinations occurring in the liquid cage to the stabilization processes of recoil atoms. However, some conclusions can be drawn from experimental observations concerning the influence on product yield of hot atom recoil spectra, the effects of density, phase and long range order of the medium as well as from comparisons with systems providing cage walls of different chemical reactivities towards the recoil atom. Recent developments in this field are reviewed based primarily on the investigations of recoil halogen reactions in aliphatic and aromatic hydrocarbons and their haloderivatives. (author)

  3. Contamination trapped in a cage

    International Nuclear Information System (INIS)

    Sender, E.

    2003-01-01

    Some abandoned industrial sites are so strongly contaminated that they threaten to contaminate underground waters. Pollutants are driven through the soil by raining waters. The principle of the ''hydro-Faraday'' cage is to prevent raining waters from flowing through the contaminated part of the soil. The cage is in fact a structure of buried drain tubes that envelop the contaminated zone. Physics make waters flow through the tubes rather than the soil, so the contaminated zone receives no more water and as a consequence pollutants are stopped in their way towards the phreatic bed. (A.C.)

  4. Recent progresses in application of fullerenes in cosmetics.

    Science.gov (United States)

    Lens, Marko

    2011-08-01

    Cosmetic industry is a fast growing industry with the continuous development of new active ingredients for skin care products. Fullerene C(60) and its derivates have been subject of intensive research in the last few years. Fullerenes display a wide range of different biological activities. Strong antioxidant capacities and effective quenching radical oxygen species (ROS) made fullerenes suitable active compounds in the formulation of skin care products. Published evidence on biological activities of fullerenes relevant for their application in cosmetics use and examples of published patents are presented. Recent trends in the use of fullerenes in topical formulations and patents are reviewed. Future investigations covering application of fullerenes in skin care are discussed.

  5. Diazo compounds in the chemistry of fullerenes

    International Nuclear Information System (INIS)

    Tuktarov, Airat R; Dzhemilev, Usein M

    2010-01-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  6. Diazo compounds in the chemistry of fullerenes

    Science.gov (United States)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  7. Diazo compounds in the chemistry of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Tuktarov, Airat R; Dzhemilev, Usein M [Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa (Russian Federation)

    2010-09-14

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  8. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean; Vandewal, Koen; Cho, Eunkyung; Risko, Chad; Coropceanu, Veaceslav; Salleo, Alberto; Bredas, Jean-Luc; McGehee, Michael D.

    2016-01-01

    the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular

  9. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh; Elroby, Shaaban Ali Kamel; Aziz, Saadullah G.; Risko, Chad; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2016-01-01

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous

  10. Stabilization of Si_60 Cage Structure: The Agony and the Ecstasy

    Science.gov (United States)

    Kawazoe, Y.; Sun, Q.; Wang, Q.; Rao, B. K.; Jena, P.

    2003-03-01

    The unique role of silicon in the micro-electronics industry has motivated many researchers to find ways to stabilize Si_60 with fullerene structure. In spite of numerous experimental attempts, synthesis of a theoretically predicted C_60-supported Si_60 cluster (C_60@Si_60) has not been possible. Using a state-of-the-art theoretical method, we provide the first answer for this long-standing contradiction between the experimental observation and the theoretical prediction. The flaws in earlier theoretical works are pointed out, and Si_60 is shown to be unstable in the fullerene structure either on its own or when supported on a C_60 fullerene (C_60@Si_60). On the other hand, we show that Si_60 cage can be stabilized by using magic clusters such as Al_12X (X = Si, Ge, Sn, Pb) as endohedral units, which have been identified in recent experiment as stable clusters and as suitable building blocks for cluster-assembled materials.

  11. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    Science.gov (United States)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  12. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Science.gov (United States)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  13. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    International Nuclear Information System (INIS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun’ichi

    2015-01-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C 60 ) and fullerene nanowhiskers (FNWs). C 60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C 60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C 60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C 60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C 60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C 60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C 60 . The theoretical simulations showed the bonding distance between C 60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C 60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C 60 . In our study Try and Tyr were hardly adsorbed by C 60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides. (paper)

  14. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward

    2007-08-01

    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  15. Ability of Fullerene to Accumulate Hydrogen

    Directory of Open Access Journals (Sweden)

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available In the present paper, using a modification of the LJ-potential and the continuum approach, we define С60-H2 (He potentials, as well as interaction energy of two fullerene particles. The proposed approach allows to calculate interactions between carbon structures of any character (wavy graphenes, nanotubes, etc.. The obtained results allowed to localize global sorption zones both inside the particle and on the outer surface of the fullerene.

  16. Enthalpies of sublimation of fullerenes by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Herrera, Melchor; Campos, Myriam; Torres, Luis Alfonso; Rojas, Aarón, E-mail: arojas@cinvestav.mx

    2015-12-20

    Graphical abstract: - Highlights: • Enthalpies of sublimation of fullerenes were measured by thermogravimetry. • Results of enthalpies of sublimation are comparable with data reported in literature. • Not previously reported enthalpy of sublimation of C{sub 78} is supplied in this work. • Enthalpies of sublimation show a strong dependence with the number of carbon atoms in the cluster. • Enthalpies of sublimation are congruent with dispersion forces ruling cohesion of solid fullerene. - Abstract: The enthalpies of sublimation of fullerenes, as measured in the interval of 810–1170 K by thermogravimetry and applying the Langmuir equation, are reported. The detailed experimental procedure and its application to fullerenes C{sub 60}, C{sub 70}, C{sub 76}, C{sub 78} and C{sub 84} are supplied. The accuracy and uncertainty associated with the experimental results of the enthalpy of sublimation of these fullerenes show that the reliability of the measurements is comparable to that of other indirect high-temperature methods. The results also indicate that the enthalpy of sublimation increases proportionally to the number of carbon atoms in the cluster but there is also a strong correlation between the enthalpy of sublimation and the polarizability of each fullerene.

  17. Cage culture of sea bass in Malaysia

    OpenAIRE

    1994-01-01

    The article discusses the cage culture practice of sea bass (Lates calcarifer) in Malaysia. Problems on feed and seed supply and overcrowding are also discussed. Despite these problems, seabass cage culture still continuously booms.

  18. Be a Cage-Buster

    Science.gov (United States)

    Hess, Frederick M.

    2013-01-01

    "A cage-buster can't settle for ambiguity, banalities, or imprecision," writes well-known educator and author Rick Hess. "These things provide dark corners where all manners of ineptitude and excuse-making can hide." Hess suggests that leaders need to clearly define the problems they're trying to solve and open…

  19. A Mobile Phone Faraday Cage

    Science.gov (United States)

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  20. Photoinduced energy and electron transfer in fullerene- oligothiophene-fullerene triads

    NARCIS (Netherlands)

    Hal, Paul A. van; Knol, Joop; Langeveld-Voss, Bea M.W.; Meskers, Stefan C.J.; Hummelen, J.C.; Janssen, René A.J.

    2000-01-01

    A series of fullerene-oligothiophene-fullerene (C60-nT-C60) triads with n = 3, 6, or 9 thiophene units has been synthesized, and their photophysical properties have been studied using photoinduced absorption and fluorescence spectroscopy in solution and in the solid state as thin films. The results

  1. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  2. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  3. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  4. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  5. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N. [Qatar Environment and Energy Research Institute (QEERI), Hamad Ben Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Harrabi, K. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Mehmood, U.; Hussein, I. A. [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261 Dharan (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Zhang, J. [Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ London (United Kingdom); McLachlan, M. A. [Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2AZ London (United Kingdom)

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.

  6. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  7. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  8. Freeing Maya Angelou's Caged Bird

    OpenAIRE

    Graham, Joyce L.

    1991-01-01

    This study involves a comprehensive examination of one book, Maya Angelou's autobiographical I Know Why Why the Caged Bird Sings, since it was first published in 1970. Recognized as an important literary work, the novel is used in many middle and secondary school classrooms throughout the united States. Additionally, the work often is challenged in public schools on the grounds of its sexual and/or racial content. The purpose of this study included establishing th...

  9. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  10. Disparities in Ammonia, Temperature, Humidity, and Airborne Particulate Matter between the Micro-and Macroenvironments of Mice in Individually Ventilated Caging

    Science.gov (United States)

    Rosenbaum, Matthew D; VandeWoude, Susan; Volckens, John; Johnson, Thomas E

    2010-01-01

    Animal room environmental parameters typically are monitored with the assumption that the environment within the cage closely mirrors the room environment. This study evaluated that premise by examining macro- (room) and microenvironmental (cage) parameters in individually ventilated cages housing mice with variable amounts of bedding over a period of 17 d without cage changes. Intracage ammonia levels remained within recommended human guidelines but were higher than room levels, confirming that microisolation caging is efficient at preventing ammonia generated from animal waste from escaping into the room. Humidity and temperature within cages were consistently higher than room levels. Particles in the room predominantly consisted of fine particles (diameter less than 2.5 µm), presumably from the ambient atmosphere; some of these particles were found in the cage microenvironment. In addition, mouse activity within cages produced larger particles, and these particles contributed to substantially higher aerosol mass concentrations within the cage. These findings demonstrate that, although cage and room environmental parameters differ, knowledge of room environmental conditions can be used to predict certain conditions within the cage. This association is relevant in that typical animal care standard operating procedures rely on room measurements, not intracage measurements, which arguably are more important for assessing animal welfare. Further, location and ambient climate can influence particle concentrations in the room, and consequently within the animal cage, suggesting local weather patterns and air quality may account for variability among studies conducted at sites that are geographically divergent. PMID:20353692

  11. Graphene macro-assembly-fullerene composite for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  12. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  13. Development of furnished cages for laying hens.

    Science.gov (United States)

    Appleby, M C; Walker, A W; Nicol, C J; Lindberg, A C; Freire, R; Hughes, B O; Elson, H A

    2002-09-01

    1. A 3-year trial was carried out of cages for laying hens, occupying a full laying house. The main cage designs used were 5000 cm2 in area, 50 cm high at the rear and furnished with nests and perches. F cages had a front rollaway nest at the side, lined with artificial turf. FD cages also had a dust bath containing sand over the nest. H cages had two nest hollows at the side, one in front of the other. They were compared with conventional cages 2500 cm2 in area and 38 cm high at the rear. 2. Cages were stocked with from 4 to 8 ISA Brown hens per cage, resulting in varied allowances of area, feeder and perch per bird. No birds were beak trimmed. In F and FD cages two further treatments were applied: nests and dust baths were sometimes fitted with gates to exclude birds from dust baths in the morning and from both at night; elevated food troughs, with a lip 33 cm above the cage floor, were compared with standard troughs. 3. Management of the house was generally highly successful, with temperature control achieved by ventilation. Egg production was above breeders' standards and not significantly affected by cage design. More eggs per bird were collected when there were fewer birds per cage but food consumption also then tended to be higher. 4. The number of downgraded eggs was variable, with some tendency for more in furnished cages. Eggs laid in dust baths were often downgraded. Those laid at the back of the cage were frequently dirty because of accumulation of droppings. H nests were unsuccessful, with less than 50% of eggs laid in the nest hollows. However, up to 93% of eggs were laid in front rollaways, and few of these were downgraded. 5. Feather and foot damage were generally less in furnished than in conventional cages, greater where there were more birds per cage. With an elevated food trough there was less feather damage but more overgrowth of claws. In year 2, mortality was greater in cages with more birds. 6. Pre-laying behaviour was mostly settled in

  14. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  15. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  16. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  17. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con

  18. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Zhang, Yang

    2013-01-01

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho x M 3-x N rate at C 80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13 C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho x M 3-x N from Sc to Lu and further to Y. The LnSc 2 N rate at C 80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13 C and 45 Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ PC and δ con from δ para was achieved by the primary 13 C and 45 Sc NMR analysis of LnSc 2 N rate at C 80 (I). The

  19. Laser controlled magnetism in hydrogenated fullerene films

    International Nuclear Information System (INIS)

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  20. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  1. Stability Criteria of Fullerene-like Nanoparticles: Comparing V2O5 to Layered Metal Dichalcogenides and Dihalides

    Directory of Open Access Journals (Sweden)

    Yehiam Prior

    2010-08-01

    Full Text Available Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5 synthesized by pulsed laser ablation (PLA, is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted.

  2. Unfolding the fullerene: nanotubes, graphene and poly-elemental varieties by simulations.

    Science.gov (United States)

    Penev, Evgeni S; Artyukhov, Vasilii I; Ding, Feng; Yakobson, Boris I

    2012-09-18

    Recent research progress in nanostructured carbon has built upon and yet advanced far from the studies of more conventional carbon forms such as diamond, graphite, and perhaps coals. To some extent, the great attention to nano-carbons has been ignited by the discovery of the structurally least obvious, counterintuitive, small strained fullerene cages. Carbon nanotubes, discovered soon thereafter, and recently, the great interest in graphene, ignited by its extraordinary physics, are all interconnected in a blend of cross-fertilizing fields. Here we review the theoretical and computational models development in our group at Rice University, towards understanding the key structures and behaviors in the immense diversity of carbon allotropes. Our particular emphasis is on the role of certain transcending concepts (like elastic instabilities, dislocations, edges, etc.) which serve so well across the scales and for chemically various compositions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sagittal Plane Correction Using the Lateral Transpsoas Approach: A Biomechanical Study on the Effect of Cage Angle and Surgical Technique on Segmental Lordosis.

    Science.gov (United States)

    Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William

    2016-09-01

    Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.

  4. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  5. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  6. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a

  7. Thiamakrocykly pro komplexaci fullerenů

    Czech Academy of Sciences Publication Activity Database

    Holý, Petr; Buchta, Michal; Rybáček, Jiří; Závada, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 186-187 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare] R&D Projects: GA AV ČR IAA400550704 Institutional research plan: CEZ:AV0Z40550506 Keywords : makrocycles * alkylation * fullerene s Subject RIV: CC - Organic Chemistry

  8. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  9. Fullerenes and fulleranes in circumstellar envelopes

    International Nuclear Information System (INIS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  10. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  11. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  12. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses.

    Science.gov (United States)

    Schein, Stan; Gayed, James Maurice

    2014-02-25

    The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry--tetrahedral, octahedral, and icosahedral--are the 5 Platonic polyhedra, the 13 Archimedean polyhedra--including the truncated icosahedron or soccer ball--and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, "Goldberg polyhedra," which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler's rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry.

  13. Furnished cage system and hen well-being: Comparative effects of furnished cages and battery cages on behavioral exhibitions in White Leghorn chickens.

    Science.gov (United States)

    Pohle, K; Cheng, H-W

    2009-08-01

    The battery cage system is being banned in the European Union before or by 2012, and the furnished cage system will be the only cage system allowed after 2012. This study was conducted to examine the different effects of caging systems, furnished cages vs. battery cages, on bird behaviors. One hundred ninety-two 1-d-old non-beak-trimmed Hy-Line W-36 White Leghorn chicks were reared using standard management practices in raised wire cages. At 19 wk of age, the birds were randomly assigned into battery cages or furnished cages. The battery cages were commercial wire cages containing 6 birds per cage, providing 645 cm(2) of floor space per birds. The furnished cages had wire floors and solid metal walls, with perches, a dustbathing area, scratch pads, and a nestbox area with a concealment curtain. Based on the company recommendations, 10 birds were housed per cage, providing a stocking density of 610 cm(2) of floor space per bird. Behavioral observations were conducted using the Noldus Observer software package. The birds were observed at 5-min intervals for the entire light period. The birds housed in battery cages had higher posture and behavioral transitions and increased time spent walking and performing exploratory behavior (P birds housed in furnished cages had higher levels of preening (P birds. These results may suggest that furnished cages may be a favorable alternative system for housing birds by allowing them to perform certain natural behaviors.

  14. Search for fullerenes in stone meteorites

    Science.gov (United States)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  15. COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE

    Science.gov (United States)

    The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...

  16. Jules Verne's Metaphor of the Iron Cage

    NARCIS (Netherlands)

    Ossewaarde, Marinus R.R.

    2010-01-01

    Max Weber's concept of the iron cage has become a byword in the scholarly world since the publication in 1930 of Talcott Parsons’ translation of The Protestant Ethic and the Spirit of Capitalism. What is less well-known is that Jules Verne had earlier used the iron cage metaphor in Twenty Thousand

  17. Memory operation mechanism of fullerene-containing polymer memory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki [Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  18. Rescue Implantation of Expandable Cages for Severe Osteolysis and Cage Dislocation in the Lumbosacral Junction.

    Science.gov (United States)

    Schatlo, Bawarjan; Rohde, Veit; Solomiichuk, Volodymyr; von Eckardstein, Kajetan; Behm, Timo

    2017-11-01

    Osteolysis and implant loosening are commonly encountered problems after spinal instrumentation. In a patient who had previously undergone a posterior lumbar interbody fusion procedure, fusion did not occur, and a secondary cage dislocation led to an impingement of the L5 nerve root with severe radiculopathy. Revision surgery was performed. Intraoperatively, osteolysis was found to be so severe that conventional cages did not fill the void to allow for sufficient anterior column support. We used expandable transforaminal lumbar interbody fusion cages and implanted them bilaterally to replace the dislodged posterior lumbar interbody fusion cages. Clinical follow-up was uneventful. Imaging performed at 1 year showed satisfactory cage position and fusion. We propose the use of cages with the ability of ventral distraction in similar rescue interventions with cage dislocation and bone resorption. This may prevent a second surgery via a ventral approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Theory of nanotube faraday cage

    Science.gov (United States)

    Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.

    2003-03-01

    Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.

  20. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  1. The role of fullerene shell upon stuffed atom polarization potential

    OpenAIRE

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  2. Supramolecular solubilization of fullerenes and radio-fullerenes in aqueous media

    International Nuclear Information System (INIS)

    Braun, T.

    1999-01-01

    In this paper we are dealing with the supramolecular complexation of fullerenes C 60 , C 70 , some functionalized fullerenes and of the dumbbell structured C 120 dimer, with two host molecules, namely γ-cyclo-dextrin (GCD), and sulfocalix[8]arene in order to make them soluble in water. Previous investigations by others have shown that the reactions of some mentioned fullerenes and cyclo-dextrins and calixarenes are very slow and tedious in liquid phase as a result of solvatation effects. That we have decided to pursue the supramolecular complexation as solid-solid reactions by using mechanochemical activation in a ball mill. A mechanochemical treatment was used to enhance chemical reactivity in solid-solid reactions in which GCD give a complex with the C 60 as 2:1 host-guest complex. The calix[8]arene complex with C 60 molecule has been prepared. The sulfonated form of the host is well soluble in water. Endohedral radio-fullerenes of the XandC60 type (where * X is a rare gas, e.g. Ar, Xe, Kr, radionuclide) were prepared by nuclear recoil after neutron irradiation, a method developed by the author The endohedrally labelled fullerenes were then mechanochemically complexed into a labelled supramolecular complex with cyclo-dextrin and calixarene hosts. (author)

  3. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  5. Oscillations of spherical fullerenes interacting with graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  6. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  7. Electron transport in doped fullerene molecular junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  8. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  9. Fullerenes, nanotubes, onions and related carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R.; Seshadri, Ram; Govindaraj, A; Sen, Rahul [Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Materials Research Centre, Indian Institute of Science, Bangalore (India)

    1995-12-01

    Fullerenes, containing five- and six-membered carbon rings, of which C{sub 6}0 and C{sub 7}0 are the prominent members, exhibit phase transitions associated with orientational ordering. When C{sub 6}0 is suitably doped with electrons, it shows novel superconducting and magnetic properties. We review these and other properties of fullerenes in bulk or in film form along with the preparative and structural aspects. Carbon nanotubes and onions (hyperfullerenes) are the other forms of carbon whose material properties have aroused considerable interest. Besides discussing these new forms of carbon, we briefly introduce other possible forms, such as those involving five-, six- and seven-membered rings and hybrids between diamond and graphite

  10. Lateral translation of covalently bound fullerenes

    International Nuclear Information System (INIS)

    Humphry, M J; Beton, P H; Keeling, D L; Fawcett, R H J; Moriarty, P; Butcher, M J; Birkett, P R; Walton, D R M; Taylor, R; Kroto, H W

    2006-01-01

    Lateral manipulation of fullerenes on clean silicon surfaces may be induced by either an attractive or repulsive interaction between adsorbed molecules and the tip of a scanning probe microscope, and can result in a complex response arising from molecular rolling. The model for rolling is supported by new results which show that manipulation is suppressed for adsorbed functionalized fullerenes due to the presence of phenyl sidegroups. The influence of varying the dwell time of the tip during manipulation is also reported. By reducing this time to a value which is less than the response time of the feedback control loop it is possible to induce manipulation in a quasi-constant height mode which is accompanied by large increases/decreases in current

  11. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  12. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  13. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Science.gov (United States)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  14. Redox potentials and binding enhancement of fullerene and fullerene-cyclodextrin systems in water and dimethylsulfoxide

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Filippone, S.; Yang, J.; Guan, Z.; Rassat, A.; Zhang, Y.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 153-162 ISSN 0008-6223 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk ME09114; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerene s * fullerene -cyclodextrin systems Subject RIV: CG - Electrochemistry Impact factor: 4.893, year: 2010

  15. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegné r, Jesper N.; Bjö rkegren, Johan L M; Ravasi, Timothy; Bajic, Vladimir

    2009-01-01

    and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical

  16. Is Parental Involvement Lower at Larger Schools?

    Science.gov (United States)

    Walsh, Patrick

    2010-01-01

    Parents who volunteer, or who lobby for improvements in school quality, are generally seen as providing a school-wide public good. If so, straightforward public-good theory predicts that free-riding will reduce average involvement at larger schools. This study uses longitudinal data to follow families over time, as their children move from middle…

  17. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  18. Nuclear reactions and radionuclides in the study of fullerenes

    International Nuclear Information System (INIS)

    Nakahara, H.; Sueki, K.; Sato, W.; Akiyama, K.

    2000-01-01

    Radiochemical techniques have been applied in various ways to the study of fullerenes and metallofullerenes for the past several years, and they have provided invaluable information pertaining to the stability, structures, and formation of the novel carbon material. This paper reviews those experimental results that have fully shown the usefullness and uniqueness of radionuclides demonstrated in the field of fullerene science. (author)

  19. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...

  20. Cloning simulation in the cage environment.

    OpenAIRE

    Douthart, R J; Thomas, J J; Rosier, S D; Schmaltz, J E; West, J W

    1986-01-01

    The CAGE/GEM(TM) software toolkit for genetic engineering is briefly described. The system functionally uses color graphics and is menu driven. It integrates genetics and features information ("Overlays") with information based on sequence analysis ("Representations"). The system is structured around CAD (Computer Aided Design) principles. The CAGE (Computer Aided Genetic Engineering) aspects of the software are emphasized and illustrated by a simulated cloning of the hepatitis B core antigen...

  1. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    International Nuclear Information System (INIS)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C 60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C 60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C 60 fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C 60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  2. Homogenized boundary conditions and resonance effects in Faraday cages

    OpenAIRE

    Hewett, DP; Hewitt, IJ

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an e ective cage boundary. We show how the resulting models depend on key cage parameters such as the...

  3. Do Lordotic Cages Provide Better Segmental Lordosis Versus Nonlordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)?

    Science.gov (United States)

    Sembrano, Jonathan N; Horazdovsky, Ryan D; Sharma, Amit K; Yson, Sharon C; Santos, Edward R G; Polly, David W

    2017-05-01

    A retrospective comparative radiographic review. To evaluate the radiographic changes brought about by lordotic and nonlordotic cages on segmental and regional lumbar sagittal alignment and disk height in lateral lumbar interbody fusion (LLIF). The effects of cage design on operative level segmental lordosis in posterior interbody fusion procedures have been reported. However, there are no studies comparing the effect of sagittal implant geometry in LLIF. This is a comparative radiographic analysis of consecutive LLIF procedures performed with use of lordotic and nonlordotic interbody cages. Forty patients (61 levels) underwent LLIF. Average age was 57 years (range, 30-83 y). Ten-degree lordotic PEEK cages were used at 31 lumbar interbody levels, and nonlordotic cages were used at 30 levels. The following parameters were measured on preoperative and postoperative radiographs: segmental lordosis; anterior and posterior disk heights at operative level; segmental lordosis at supra-level and subjacent level; and overall lumbar (L1-S1) lordosis. Measurement changes for each cage group were compared using paired t test analysis. The use of lordotic cages in LLIF resulted in a significant increase in lordosis at operative levels (2.8 degrees; P=0.01), whereas nonlordotic cages did not (0.6 degrees; P=0.71) when compared with preoperative segmental lordosis. Anterior and posterior disk heights were significantly increased in both groups (Plordosis (lordotic P=0.86 vs. nonlordotic P=0.25). Lordotic cages provided significant increase in operative level segmental lordosis compared with nonlordotic cages although overall lumbar lordosis remained unchanged. Anterior and posterior disk heights were significantly increased by both cages, providing basis for indirect spinal decompression.

  4. Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase

    International Nuclear Information System (INIS)

    Hendrickson, Olga D.; Smirnova, Natalya I.; Zherdev, Anatoly V.; Dzantiev, Boris B.; Sveshnikov, Peter G.

    2016-01-01

    The article describes a highly sensitive single-step microplate enzyme immunoassay of the ELISA type for fullerene C 60 and its derivatives. Monoclonal anti-fullerene antibodies and a conjugate between fullerene and horseradish peroxidase were used as specific reagents. A direct competitive ELISA was carried out that was based on antibodies immobilized in the well of a microtiter plate, a peroxidase-labeled antigen, and detection via the dye formed from 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide. Both pristine fullerene C 60 and its water-soluble forms can be determined. The detection limits are 1.5 ng∙mL −1 for fullerene C 60 , and between 0.1 and 1.3 ng∙mL −1 for its derivatives. This ELISA format allows for almost two-fold reduction of the time needed for the assay in comparison to indirect scheme with labeled antibodies. (author)

  5. Fullerenes vs fulleroids. Understanding their relative energies

    Energy Technology Data Exchange (ETDEWEB)

    Warner, P.M. (Northeastern Univ., Boston, MA (United States))

    1994-11-30

    Both force-field (MMPI) and AMI (restricted and unrestricted HF) calculations are herein used to investigate the underlying reasons for the fullerene-fulleroid structural dichotomies observed in carbene, silylene, nitrene, and oxygen adducts of C[sub 60]. Via the investigation of a series of model systems, it is demonstrated that curvature actually favors the open, fulleroid structure; this effect of curvature on the norcaradiene-cycloheptatriene equilibrium is general. Strategies for the creation of 6,6-bridged fulleroids are suggested. 29 refs., 6 tabs.

  6. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  7. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  8. Simple method for determining fullerene negative ion formation★

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  9. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    Science.gov (United States)

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  10. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Venkataramanan, Natarajan Sathiyamoorthy; Belosludov, Rodion Vladimirovich; Note, Ryunosuke; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-01-01

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H 2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H 2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H 2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li 6 B 36 N 36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li 6 B 36 N 36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  11. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  12. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  13. Topological edge properties of C60+12n fullerenes

    Directory of Open Access Journals (Sweden)

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  14. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  15. Electron scattering on metal clusters and fullerenes

    International Nuclear Information System (INIS)

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  16. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals.

    Science.gov (United States)

    Li, Ying; Yang, Le; Liu, Chang; Hou, Qinghua; Jin, Peng; Lu, Xing

    2018-05-29

    Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC 74 as Th@ D 3 h (14246)-C 74 . We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D 3 h -C 74 cavity, as elucidated by the static computations and molecular dynamic simulations.

  17. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-01-01

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  18. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-06-16

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  19. J-V and C-V investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH3NH3PbI3 perovskite solar cell

    Science.gov (United States)

    Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi

    2017-11-01

    To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.

  20. More 'altruistic' punishment in larger societies.

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J Colette

    2008-03-07

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.

  1. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  2. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  3. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo; Chan, Alice; Wong, Him-Cheng; Higgins, Julia S.; Cabral, João T.

    2010-01-01

    ) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature

  4. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-01-01

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  5. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-11-25

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  6. Design and modeling of Faraday cages for substrate noise isolation

    Science.gov (United States)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  7. Role of four-membered rings in C32 fullerene stability and mechanisms of generalized Stone-Wales transformation: a density functional theory investigation.

    Science.gov (United States)

    Wang, Weiwei; Dang, Jingshuang; Zhao, Xiang

    2011-08-28

    Density functional theory (DFT) methods have been applied to study C(32) fullerenes built from four-, five-, and six-membered rings. The relative energies of pure C(32) fullerenes have been evaluated to locate three most stable structures, 32:D(4d) with two squares, 1:D(3) without square and 5:C(s) with one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer 1:D(3) and the lowest energy non-classical isomer 32:D(4d), and 5:C(s) behaves just as an intermediate between them. The kinetic processes of generalized Stone-Wales transformation (GSWT) with four-membered rings have been explored and two distinct reaction mechanisms are determined by all the transition states and intrinsic reaction coordinates with PBE1PBE/6-31G(d) approach for the first time. One mechanism is the concerted reaction with a rotating dimer closed to the cage surface and another is the stepwise reaction with a carbene-like sp(3) structure, whereas the latter is sorted into two paths based on four-membered ring vanishing before or after the formation of the carbene-like structure. It is indicated that there is no absolute preference for any mechanism, which depends on the adaptability of different reactants on the diverse mechanisms. Furthermore, it's found that the interconversion process with the participation of squares is more reactive than the rearrangement between C(60)_I(h) and C(60)_C(2v), implying some potential importance of non-classical small fullerenes in the fullerene isomerization.

  8. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  9. Fullerenes: prospects of using in medicine, biology and ecology

    OpenAIRE

    D. V. Schur; Z. Z. Matysina; S. Y. Zaginaichenko; N. P. Botsva; О. V. Elina

    2012-01-01

    Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydro...

  10. Optimizing Conditions for Ultrasound Extraction of Fullerenes from Coal Matrices

    Czech Academy of Sciences Publication Activity Database

    Vítek, P.; Jehlička, J.; Frank, Otakar; Hamplová, Věra; Pokorná, Zdeňka; Juha, Libor; Boháček, J.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 109-122 ISSN 1536-383X R&D Projects: GA ČR GA205/07/0772; GA ČR GA205/03/1468 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : fullerene C60 * Ultrasound -assisted extraction * Extraction yield * Fullerene decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.710, year: 2009

  11. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ya' akobovitz, A. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva (Israel); Bedewy, M. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. J. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  12. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  13. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    International Nuclear Information System (INIS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-01-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices

  14. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Science.gov (United States)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  15. Design and analysis of roll cage

    Science.gov (United States)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  16. Geomechanics of fracture caging in wellbores

    NARCIS (Netherlands)

    Weijermars, R.; Zhang, X.; Schultz-Ela, D.

    2013-01-01

    This study highlights the occurrence of so-called ‘fracture cages’ around underbalanced wellbores, where fractures cannot propagate outwards due to unfavourable principal stress orientations. The existence of such cages is demonstrated here by independent analytical and numerical methods. We explain

  17. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    OpenAIRE

    Boris Pinchuk; Rebecca Horbert; Alexander Döbber; Lydia Kuhl; Christian Peifer

    2016-01-01

    In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG) to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV) irradiation of the prodrug...

  18. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  19. Fullerenes and endohedrals as “big atoms”

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya., E-mail: amusia@vms.huji.ac.il

    2013-03-12

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes.

  20. Fullerenes and endohedrals as “big atoms”

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2013-01-01

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes

  1. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  2. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  3. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of space allowance and cage size on laying hens housed in furnished cages, Part I: Performance and well-being

    Science.gov (United States)

    Widowski, T. M; Caston, L. J; Hunniford, M. E; Cooley, L; Torrey, S

    2017-01-01

    Abstract There are few published data on the effects of housing laying hens at different densities in large furnished cages (FC; a.k.a. enriched colony cages). The objective of this study was to determine the effects of housing laying hens at 2 space allowances (SA) in 2 sizes of FC on measures of production and well-being. At 18 wk of age, 1,218 LSL-Lite hens were housed in cages furnished with a curtained nesting area, perches, and scratch mat, and stocked at either 520 cm2 (Low) or 748 cm2 (High) total floor space. This resulted in 4 group sizes: 40 vs. 28 birds in smaller FC (SFC) and 80 vs. 55 in larger FC (LFC). Data were collected from 20 to 72 wks of age. There was no effect of cage size (P = 0.21) or SA (P = 0.37) on hen day egg production, egg weight (PSize = 0.90; PSA = 0.73), or eggshell deformation (PSize = 0.14; PSA = 0.053), but feed disappearance was higher in SFC than LFC (P = 0.005). Mortality to 72 wk was not affected by cage size (P = 0.78) or SA (P = 0.55). BW (P = 0.006) and BW CV (P = 0.008) increased with age but were not affected by treatment. Feather cleanliness was poorer in FC with low SA vs. high (P hens housed at the lower space allowance may be compromised according to some welfare assessment criteria. PMID:29050408

  5. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Energy Technology Data Exchange (ETDEWEB)

    Hoffschulz, H [comp.

    1997-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  6. Specific features of fullerene-bearing thin film growth using ion beam vacuum sputtering of fullerene mixtures with B, Fe, Se, Gd and Na

    International Nuclear Information System (INIS)

    Semenov, A.P.; Semenova, I.A.; Bulina, N.V.; Lopatin, V.A.; Karmanov, N.S.; Churilov, G.N.

    2005-01-01

    A new approach to the growth of films containing fullerenes and doping elements is described. It is suggested that a cluster mechanism of the target sputtering by accelerated ions makes possible the deposition of fullerenes on a substrate with a certain probability for dopant atoms being introduced into the cavities of fullerene molecules and a higher probability of the doping element introduction between fullerene molecules. The proposed method has been experimentally implemented by using an Ar ion beam to sputter C 60 /C 70 fullerene mixtures, synthesized in a plasmachemical reactor at a pressure of 10 5 Pa and containing a doping element, i.e. Fe, Na, B, Gd or Se. Micron-thick films containing C 60 and C 70 fullerenes and the corresponding dopant element, i.e. Fe, Na, B, Gd or Se, were grown from dopant-containing fullerene mixtures by ion beam sputtering in a vacuum of ∼10 -2 Pa [ru

  7. Synthesis and Isolation of the Titanium-Scandium Endohedral Fullerenes-Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 and Sc2 TiC2 @Ih -C80 : Metal Size Tuning of the Ti(IV) /Ti(III) Redox Potentials.

    Science.gov (United States)

    Junghans, Katrin; Ghiassi, Kamran B; Samoylova, Nataliya A; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marilyn M; Balch, Alan L; Popov, Alexey A

    2016-09-05

    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed-metal Sc-Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4 C2 @C80 (the most abundant EMF from this synthesis), Sc3 C2 @C80 , isomers of Sc2 C2 @C82 , and the family Sc2 C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3 CH@C80 . The Sc-Ti/CH4 system produces the mixed-metal Sc2 TiC@C2 n (2 n=68, 78, 80) and Sc2 TiC2 @C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition-metal-containing endohedral fullerenes, Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 , and Sc2 TiC2 @Ih -C80 , were characterized by NMR spectroscopy. The structure of Sc2 TiC@Ih -C80 was also determined by single-crystal X-ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2 TiC- and Sc2 TiC2 -containing clusterfullerenes have Ti-localized LUMOs. Encapsulation of the redox-active Ti ion inside the fullerene cage enables analysis of the cluster-cage strain in the endohedral fullerenes through electrochemical measurements. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh

    2016-07-15

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.

  9. Towards a fullerene-based quantum computer

    International Nuclear Information System (INIS)

    Benjamin, Simon C; Ardavan, Arzhang; Briggs, G Andrew D; Britz, David A; Gunlycke, Daniel; Jefferson, John; Jones, Mark A G; Leigh, David F; Lovett, Brendon W; Khlobystov, Andrei N; Lyon, S A; Morton, John J L; Porfyrakis, Kyriakos; Sambrook, Mark R; Tyryshkin, Alexei M

    2006-01-01

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realizing such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input/output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed

  10. CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs.

    Science.gov (United States)

    Arenillas, David J; Forrest, Alistair R R; Kawaji, Hideya; Lassmann, Timo; Wasserman, Wyeth W; Mathelier, Anthony

    2016-09-15

    With the emergence of large-scale Cap Analysis of Gene Expression (CAGE) datasets from individual labs and the FANTOM consortium, one can now analyze the cis-regulatory regions associated with gene transcription at an unprecedented level of refinement. By coupling transcription factor binding site (TFBS) enrichment analysis with CAGE-derived genomic regions, CAGEd-oPOSSUM can identify TFs that act as key regulators of genes involved in specific mammalian cell and tissue types. The webtool allows for the analysis of CAGE-derived transcription start sites (TSSs) either provided by the user or selected from ∼1300 mammalian samples from the FANTOM5 project with pre-computed TFBS predicted with JASPAR TF binding profiles. The tool helps power insights into the regulation of genes through the study of the specific usage of TSSs within specific cell types and/or under specific conditions. The CAGEd-oPOSUM web tool is implemented in Perl, MySQL and Apache and is available at http://cagedop.cmmt.ubc.ca/CAGEd_oPOSSUM CONTACTS: anthony.mathelier@ncmm.uio.no or wyeth@cmmt.ubc.ca Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. The challenge of pelvic discontinuity: cup-cage reconstruction does better than conventional cages in mid-term.

    Science.gov (United States)

    Abolghasemian, M; Tangsaraporn, S; Drexler, M; Barbuto, R; Backstein, D; Safir, O; Kuzyk, P; Gross, A

    2014-02-01

    The use of ilioischial cage reconstruction for pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer, Warsaw, Indiana) cup-cage technique in our institution, due to the unsatisfactory outcome of using a cage alone in this situation. We report the outcome of 26 pelvic discontinuities in 24 patients (20 women and four men, mean age 65 years (44 to 84)) treated by the cup-cage technique at a mean follow-up of 82 months (12 to 113) and compared them with a series of 19 pelvic discontinuities in 19 patients (18 women and one man, mean age 70 years (42 to 86)) treated with a cage at a mean follow-up of 69 months (1 to 170). The clinical and radiological outcomes as well as the survivorship of the groups were compared. In all, four of the cup-cage group (15%) and 13 (68%) of the cage group failed due to septic or aseptic loosening. The seven-year survivorship was 87.2% (95% confidence interval (CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84) for the cage-alone group (p = 0.009). There were four major complications in the cup-cage group and nine in the cage group. Radiological union of the discontinuity was found in all successful cases in the cup-cage group and three of the successful cage cases. Three hips in the cup-cage group developed early radiological migration of the components, which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating pelvic discontinuity in mid-term follow-up and is preferred to ilioischial cage reconstruction. If the continuity of the bone graft at the discontinuity site is not disrupted, early migration of the components does not necessarily result in failure.

  12. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    KAUST Repository

    Tummala, Naga Rajesh; Aziz, Saadullah; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe

  13. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  14. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2017-11-01

    Full Text Available A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

  15. Preparation and characterization of stable aqueous higher-order fullerenes

    International Nuclear Information System (INIS)

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  16. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    International Nuclear Information System (INIS)

    Carboni, Andrea; Emke, Erik; Parsons, John R.; Kalbitz, Karsten; Voogt, Pim de

    2014-01-01

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg −1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L −1 and 15–24 μg L −1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg −1 and 10 μg kg −1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices

  17. Biology's built-in Faraday cages

    Science.gov (United States)

    Klee, Maurice M.

    2014-05-01

    Biological fluids are water-based, ionic conductors. As such, they have both high relative dielectric constants and substantial conductivities, meaning they are lossy dielectrics. These fluids contain charged molecules (free charges), whose movements play roles in essentially all cellular processes from metabolism to communication with other cells. Using the problem of a point source in air above a biological fluid of semi-infinite extent, the bound charges in the fluid are shown to perform the function of a fast-acting Faraday cage, which protects the interior of the fluid from external electric fields. Free charges replace bound charges in accordance with the fluid's relaxation time, thereby providing a smooth transition between the initial protection provided by the bound charges and the steady state protection provided by the free charges. The electric fields within the biological fluid are thus small for all times just as they would be inside a classical Faraday cage.

  18. Interaction of polyhydroxy fullerenes with ferrihydrite: adsorption and aggregation.

    Science.gov (United States)

    Liu, Jing; Zhu, Runliang; Xu, Tianyuan; Laipan, Mingwang; Zhu, Yanping; Zhou, Qing; Zhu, Jianxi; He, Hongping

    2018-02-01

    The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus, understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes (PHF) and ferrihydrite (Fh), a widespread iron (oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1mg/g. The adsorption mean free energy of 10.72kJ/mol suggested that PHF were chemisorbed on Fh. An increase in the solution pH and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution pH led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C-O stretching from 1075 to 1062cm -1 and a decrease of Fe-O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2nm to larger than 5nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh. Copyright © 2017. Published by Elsevier B.V.

  19. Cage for shield-type support. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Harryers, W; Blumenthal, G; Irresberger, H

    1981-08-13

    A cage for shield-type support containing a fracture shield supported by a hydraulic stamp and a projecting roof bar was constructed in such a way that no cellular shirt is needed to timber the caved room. The roof bar which is linked at a joint axis at the face-side end of the fracture shield is formed at the face side as a multiply foldable bar. (HGOE).

  20. CAGE IIIA Distributed Simulation Design Methodology

    Science.gov (United States)

    2014-05-01

    2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this

  1. Synthesis and characterization of M-fullerene/TiO2 photocatalysts designed for degradation azo dye

    International Nuclear Information System (INIS)

    Meng, Ze-Da; Zhang, Feng-Jun; Zhu, Lei; Park, Chong-Yeon; Ghosh, Trishs; Choi, Jong-Geun; Oh, Won-Chun

    2012-01-01

    Metal-fullerene/TiO 2 composites were prepared using a sol–gel method, and their photocatalytic activity was evaluated by degradation of methylene blue (MB) solutions under UV light. The surface area, surface structure, crystal phase and elemental identification of these composites were characterized by Brunauer–Emmett–Teller analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction and transmission electron microscopy, respectively. The degradation effect of MB was determined using UV/Vis spectrophotometry. Photocatalytic activity was increased because of the increase in photo-absorption effect by fullerene, and the cooperative effect of the metal introduced as a dopant. - Highlights: ► C 60 has good effect in photo-degradation process, added metal can improve this effect. ► C 60 have good effect in photo-degradation process. ► C 60 has larger pore sizes, volumes, conjugated structures, electron-accepting ability. ► Increase the photo-absorption effect by C 60 and cooperative effect of metal.

  2. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung, E-mail: mskang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  3. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  4. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  5. Carboxylated Fullerene at the Oil/Water Interface.

    Science.gov (United States)

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  6. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  7. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  8. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  9. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  10. Non-Gaussian nature of glassy dynamics by cage to cage motion

    International Nuclear Information System (INIS)

    Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.; Karatasos, K.

    2007-01-01

    A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages

  11. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  12. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  13. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  14. Simulating fullerene ball bearings of ultra-low friction

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Wei

    2007-01-01

    We report the direct molecular dynamics simulations for molecular ball bearings composed of fullerene molecules (C 60 and C 20 ) and multi-walled carbon nanotubes. The comparison of friction levels indicates that fullerene ball bearings have extremely low friction (with minimal frictional forces of 5.283 x 10 -7 and 6.768 x 10 -7 nN/atom for C 60 and C 20 bearings) and energy dissipation (lowest dissipation per cycle of 0.013 and 0.016 meV/atom for C 60 and C 20 bearings). A single fullerene inside the ball bearings exhibits various motion statuses of mixed translation and rotation. The influences of the shaft's distortion on the long-ranged potential energy and normal force are discussed. The phonic dissipation mechanism leads to a non-monotonic function between the friction and the load rate for the molecular bearings

  15. Preparation of Polyaniline-Doped Fullerene Whiskers

    Directory of Open Access Journals (Sweden)

    Bingzhe Wang

    2013-01-01

    Full Text Available Fullerene C60 whiskers (FWs doped with polyaniline emeraldine base (PANI-EB were synthesized by mixing PANI-EB/N-methyl pyrrolidone (NMP colloid and FWs suspension based on the nature of the electron acceptor of C60 and electron donor of PANI-EB. Scanning electron microscopy (SEM, Fourier transform infrared (FT-IR, and ultraviolet-visible (UV-Vis spectra characterized the morphology and molecular structure of the FWs doped with PANI-EB. SEM observation showed that the smooth surface of FWs was changed to worm-like surface morphology after being doped with PANI-EB. The UV-Vis spectra suggested that charge-transfer (CT complex of C60 and PANI-EB was formed as PANI-EBδ+-C60δ-. PANI-EB-doped FWs might be useful as a new type of antibacterial and self-cleaning agent as well as multifunctional material to improve the human health and living environment.

  16. Toxicity of polyhydroxylated fullerene to mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li-Yun [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Gao, Jia-Ling [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China); Gao, Tian; Dong, Ping; Ma, Long; Jiang, Feng-Lei [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Yi, E-mail: yiliuchem@whu.edu.cn [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2016-01-15

    Highlights: • Fullerenol-induced mitochondrial dysfunction was investigated at mitochondrial level. • Fullerenol disturbed mitochondrial inner membrane in polar protein regions. • Fullerenol affected the inner membrane and respiration chain of mitochondria. - Abstract: Mitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C{sub 60}(OH){sub 44}, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H{sup +} and K{sup +} and induced mitochondrial permeability transition (MPT). The fullerenol-induced swelling was dose-dependent and could be effectively inhibited by MPT inhibitors such as cyclosporin A (CsA), adenosine diphosphate (ADP), ruthenium red (RR) and ethylenediaminetetraacetic acid (EDTA). After treating the mitochondria with fullerenol, the mitochondrial membrane potential (MMP) was found collapsed in a concentration-independent manner. The fluorescence anisotropy of hematoporphyrin (HP) changed significantly with the addition of fullerenol, while that of 1,6-diphenyl-hexatriene (DPH) changed slightly. Moreover, a decrease of respiration state 3 and increase of respiration state 4 were observed when mitochondria were energized with complex II substrate succinate. The results of transmission electron microscopy (TEM) provided direct evidence that fullerenol damaged the mitochondrial ultrastructure. The investigations can provide comprehensive information to elucidate the possible toxic mechanism of fullerenols at subcellular level.

  17. Excess electron is trapped in a large single molecular cage C60F60.

    Science.gov (United States)

    Wang, Yin-Feng; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung; Gu, Feng-Long

    2010-01-15

    A new kind of solvated electron systems, sphere-shaped e(-)@C60F60 (I(h)) and capsule-shaped e(-)@C60F60 (D6h), in contrast to the endohedral complex M@C60, is represented at the B3LYP/6-31G(d) + dBF (diffusive basis functions) density functional theory. It is proven, by examining the singly occupied molecular orbital (SOMO) and the spin density map of e(-)@C60F60, that the excess electron is indeed encapsulated inside the C60F60 cage. The shape of the electron cloud in SOMO matches with the shape of C60F60 cage. These cage-like single molecular solvated electrons have considerably large vertical electron detachment energies VDE of 4.95 (I(h)) and 4.67 eV (D6h) at B3LYP/6-31+G(3df) + dBF level compared to the VDE of 3.2 eV for an electron in bulk water (Coe et al., Int Rev Phys Chem 2001, 20, 33) and that of 3.66 eV for e(-)@C20F20 (Irikura, J Phys Chem A 2008, 112, 983), which shows their higher stability. The VDE of the sphere-shaped e(-)@C60F60 (I(h)) is greater than that of the capsule-shaped e(-)@C60F60 (D6h), indicating that the excess electron prefers to reside in the cage with the higher symmetry to form the more stable solvated electron. It is also noticed that the cage size [7.994 (I(h)), 5.714 and 9.978 A (D6h) in diameter] is much larger than that (2.826 A) of (H2O)20- dodecahedral cluster (Khan, Chem Phys Lett 2005, 401, 85). Copyright 2009 Wiley Periodicals, Inc.

  18. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  19. Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells

    International Nuclear Information System (INIS)

    Ding, Ning; Kunugita, Naoki; Ichinose, Takamichi; Song, Yuan; Yokoyama, Mitsuru; Arashidani, Keiichi; Yoshida, Yasuhiro

    2011-01-01

    Highlights: → Fullerene administration triggered splenic responses. → Splenic responses occurred at different time-points than in the lung tissue. → CD11b + cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-α. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-κB and NFAT in splenocytes at 6 days post-administration. Finally, CD11b + cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  20. Biomechanics of an Expandable Lumbar Interbody Fusion Cage Deployed Through Transforaminal Approach

    Science.gov (United States)

    Mica, Michael Conti; Voronov, Leonard I.; Carandang, Gerard; Havey, Robert M.; Wojewnik, Bartosz

    2017-01-01

    Introduction A novel expandable lumbar interbody fusion cage has been developed which allows for a broad endplate footprint similar to an anterior lumbar interbody fusion (ALIF); however, it is deployed from a minimally invasive transforaminal unilateral approach. The perceived benefit is a stable circumferential fusion from a single approach that maintains the anterior tension band of the anterior longitudinal ligament. The purpose of this biomechanics laboratory study was to evaluate the biomechanical stability of an expandable lumbar interbody cage inserted using a transforaminal approach and deployed in situ compared to a traditional lumbar interbody cage inserted using an anterior approach (control device). Methods Twelve cadaveric spine specimens (L1-L5) were tested intact and after implantation of both the control and experimental devices in two (L2-L3 and L3-L4) segments of each specimen; the assignments of the control and experimental devices to these segments were alternated. Effect of supplemental pedicle screw-rod stabilization was also assessed. Moments were applied to the specimens in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). The effect of physiologic preload on construct stability was evaluated in FE. Segmental motions were measured using an optoelectronic motion measurement system. Results The deployable expendable TLIF cage and control devices significantly reduced FE motion with and without compressive preload when compared to the intact condition (p0.05). Adding bilateral pedicle screws resulted in further reduction of ROM for all loading modes compared to intact condition, with no statistical difference between the two constructs (p>0.05). Conclusions The ability of the deployable expendable interbody cage in reducing segmental motions was equivalent to the control cage when used as a stand-alone construct and also when supplemented with bilateral pedicle screw-rod instrumentation. The larger footprint of the fully

  1. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  2. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  3. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  4. Stereodivergent-at-metal synthesis of [60]fullerene hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Martinez, Juan; Vidal, Sara; Fernandez, Israel; Filippone, Salvatore [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Martin, Nazario [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); IMDEA-Nanociencia, C/Faraday, Universidad Autonoma de Madrid (Spain)

    2017-02-13

    Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Properties of Natural Rubber-Based Composites Containing Fullerene

    Directory of Open Access Journals (Sweden)

    Omar A. Al-Hartomy

    2012-01-01

    Full Text Available In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM.

  6. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  7. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  8. Extended cage adjustable speed electric motors and drive packages

    Science.gov (United States)

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  9. Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency

    Science.gov (United States)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2011-12-01

    The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  10. Larger men have larger prostates: Detection bias in epidemiologic studies of obesity and prostate cancer risk.

    Science.gov (United States)

    Rundle, Andrew; Wang, Yun; Sadasivan, Sudha; Chitale, Dhananjay A; Gupta, Nilesh S; Tang, Deliang; Rybicki, Benjamin A

    2017-06-01

    Obesity is associated with risk of aggressive prostate cancer (PCa), but not with over-all PCa risk. However, obese men have larger prostates which may lower biopsy accuracy and cause a systematic bias toward the null in epidemiologic studies of over-all risk. Within a cohort of 6692 men followed-up after a biopsy or transurethral resection of the prostate (TURP) with benign findings, a nested case-control study was conducted of 495 prostate cancer cases and controls matched on age, race, follow-up duration, biopsy versus TURP, and procedure date. Data on body mass index and prostate volume at the time of the initial procedure were abstracted from medical records. Prior to consideration of differences in prostate volume, overweight (OR = 1.41; 95%CI 1.01, 1.97), and obese status (OR = 1.59; 95%CI 1.09, 2.33) at the time of the original benign biopsy or TURP were associated with PCa incidence during follow-up. Prostate volume did not significantly moderate the association between body-size and PCa, however it did act as an inverse confounder; adjustment for prostate volume increased the effect size for overweight by 22% (adjusted OR = 1.52; 95%CI 1.08, 2.14) and for obese status by 23% (adjusted OR = 1.77; 95%CI 1.20, 2.62). Larger prostate volume at the time of the original benign biopsy or TURP was inversely associated with PCa incidence during follow-up (OR = 0.92 per 10 cc difference in volume; 95%CI 0.88, 0.97). In analyses that stratified case-control pairs by tumor aggressiveness of the case, prostate volume acted as an inverse confounder in analyses of non-aggressive PCa but not in analyses of aggressive PCa. In studies of obesity and PCa, differences in prostate volume cause a bias toward the null, particularly in analyses of non-aggressive PCa. A pervasive underestimation of the association between obesity and overall PCa risk may exist in the literature. © 2017 Wiley Periodicals, Inc.

  11. Advanced behavioural screening: automated home cage ethology.

    Science.gov (United States)

    Spruijt, Berry M; DeVisser, Leonie

    2006-01-01

    Animal behaviour has been studied using two approaches, (1) well-controlled experiments focusing on specific responses and (2) those with natural - fuzzy - but biologically relevant conditions. Ideally, one behavioural test should be able to address both. The home cage provided with various stimuli is proposed as an all-in-one possibility. This, however, results in an exponential increase in complexity regarding observation and analysis tools. It seems difficult to accept that behavioural expressions need a mathematical approach to unravel its organisation and meaning. Developments in artificial intelligence and data mining are essential to accelerate this necessary evolution in behavioural sciences.: � 2006 Elsevier Ltd . All rights reserved.

  12. Improvements in nuclear fuel assembly cages

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-03-12

    The fuel pin/guide tube supporting grids of an assembly cage for a multi pin fuel element or a reflector element for a stringer are mounted in the moderator sleeve by way of mounting assemblies engaged in grooves machined into the interior surface of the sleeve, each mounting assembly including a split ring which is assembled into its groove by being radially contracted, pushed along the sleeve into registry with the groove and allowed to radially expand. The split ring may carry burnable neutron absorber. The region of the sleeve between two adjacent grids may be of smaller internal diameter than the remainder of the sleeve.

  13. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Evolution of the Cup-Cage Technique for Major Acetabular Defects: Full and Half Cup-Cage Reconstruction.

    Science.gov (United States)

    Sculco, Peter K; Ledford, Cameron K; Hanssen, Arlen D; Abdel, Matthew P; Lewallen, David G

    2017-07-05

    Complex acetabular reconstruction for major bone loss can require advanced methods such as the use of a cup-cage construct. The purpose of this study was to review outcomes after the initial development of the cup-cage technique and the subsequent evolution to the use of a half cup-cage construct. We performed a retrospective, single-center review of 57 patients treated with cup-cage reconstruction for major acetabular bone loss. All patients had major acetabular defects graded as Paprosky Type 2B through 3B, with 34 (60%) having an associated pelvic discontinuity. Thirty patients received a full cup-cage construct and 27, a half cup-cage construct. The mean follow-up was 5 years. Both the full and half cup-cage cohorts demonstrated significantly improved Harris hip score (HHS) values, from 36 to 72 at a minimum of 2 years of follow-up (p cup-cage constructs and 6 (22%) of the half cup-cage constructs. One patient with a full cup-cage construct underwent re-revision of the acetabular component for progressive migration and aseptic loosening. Short-term survivorship free from re-revision for any cause or reoperation was 89% (83% and 96% for full and half cup-cage cohorts, respectively). Both full and half cup-cage constructs demonstrated successful clinical outcomes and survivorship in the treatment of major acetabular defects and pelvic discontinuity. Each method is utilized on the basis of individual intraoperative findings, including the extent and pattern of bone loss, the quality and location of host bone remaining after preparation, and the presence of pelvic discontinuity. Longer-term follow-up is required to understand the durability of these constructs in treating major acetabular defects and pelvic discontinuity. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  15. Effects of the fullerene (C{sub 60}) potential and position of the atom (A) on spectral characteristics of endohedral atoms A and C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Baltenkov, A S [Arifov Institute of Electronics, 100125 Tashkent (Uzbekistan); Becker, U [Fritz-Haber-Institute der Max-Planck-Gesellschaft, D-14195 Berlin (Germany); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z, E-mail: arkbalt@mail.r, E-mail: becker@fhi-berlin.mpg.d, E-mail: manson@phy-astr.gsu.ed, E-mail: amsezane@cau.ed [Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2010-06-14

    Within the framework of a model representing the potential of a C{sub 60} cage as a spherical electro-neutral layer U(r) formed by smeared carbon atoms, the effect of the details of the potential on spectral characteristics of atoms localized inside the fullerene shell has been studied. Using examples of encapsulated H and He atoms, it is shown that for potential shell thickness not exceeding 1.3-1.5 au, confinement resonance oscillations in the photoionization cross section weakly depend on the shape of the function U(r). With increasing width of the potential well, the confinement resonances in the energy dependence of the photoionization cross section disappear. In addition, it is demonstrated that displacing the doped atom from the centre of the cavity also diminishes the amplitude of the confinement resonance.

  16. Structures, stabilities, aromaticity, and electronic properties of C66 fullerene isomers, anions (C662-, C664-, C666-), and metallofullerenes (Sc2-C66)

    International Nuclear Information System (INIS)

    Cui Yanhong; Tian, Wei Quan; Feng Jikang; Chen Deli

    2010-01-01

    Among all the 4478 classical isomers of C 66 , C 66 (C s :0060) with the lowest number of pentagon-pentagon fusions was predicted to be the most stable isomer, followed by isomers C 66 (C 2v :0011) and C 66 (C 2 :0083). The infrared spectra and aromaticity of the most stable isomers were predicted. The relative stabilities of C 66 isomers change with charges or doping of metals. The structures and relative stabilities of the most stable metallofullerenes were delineated and compared with experiment. Sc 2 -C 66 (C 2 :0083) was predicted to be the most stable metallofullerene, although Sc 2 -C 66 (C 2v :0011) was observed. Charge-transfer from Sc 2 to the fused pentagons and the bonding between these two moieties significantly decrease the strain energies caused by the pair of fused pentagons thereby stabilizing the fullerene cage.

  17. Bulletproof Love : Luke Cage (2016 and Religion

    Directory of Open Access Journals (Sweden)

    Derry, Ken

    2017-05-01

    Full Text Available There are many ways to think about religion and popular culture. One method is to ask where and when we see what might be commonly understood as “religious tradition(s” explicitly on display. Another is to think about superhero narratives themselves as “religious”, using this term as a conceptual tool for categorizing and thereby better understanding particular dimensions of human experience. This article takes a variety of approaches to understanding religion in relation to the recent television series LUKE CAGE (Netflix, US 2016. These approaches take their hermeneutical cues from a range of disciplines, including studies of the Bible; Hip Hop; gender; Black Theology; African American religion; and philosophy. The results of this analysis highlight the polysemic nature of popular culture in general, and of superhero stories in particular. Like religious traditions themselves, the show is complex and contradictory: it is both progressive and reactionary; emphasizes community and valorizes an individual; critiques and endorses Christianity; subverts and promotes violence. Depending on the questions asked, LUKE CAGE (2016 provides a range of very different answers.

  18. 1/f Noise Inside a Faraday Cage

    Science.gov (United States)

    Handel, Peter H.; George, Thomas F.

    2009-04-01

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  19. 1/f Noise Inside a Faraday Cage

    International Nuclear Information System (INIS)

    Handel, Peter H.; George, Thomas F.

    2009-01-01

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  20. Method of fitting a cage structure

    International Nuclear Information System (INIS)

    Takeuchi, Mamoru; Iwasaki, Tsutomu; Ishida, Akira; Yokota, Hirakazu.

    1971-01-01

    Herein disclosed is a method of fitting together cage structures, each made of a different material. The cage structure may be an ultrahigh speed rotary drum for a centrifuge. An inner cylinder of, for example, Al alloy, to be inserted in an outer cylinder made of a material such as carbon fiber reinforced plastic is filament-wound with a resin-impregnated carbon fiber under application of an axial tensile force to the inner cylinder so as to contract the radius thereof, and then after-cured to cool down to room temperature. The tensile force is then released to permit the radially contracted inner cylinder to elastically recover its original form and to thereby eliminate a gap formed between both cylinders due to aftercure, providing that the width of the gap is equal to that of the radial contraction, determined by Poisson's ratio, of the Al alloy material. Thus, the inner cylinder can be firmly fitted within the outer cylinder in accordance with the elastic deformation of the material. (Ohno, Y.)

  1. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  2. Computed tomography measurement of rib cage morphometry in emphysema.

    Directory of Open Access Journals (Sweden)

    Nicola Sverzellati

    Full Text Available BACKGROUND: Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. METHODS: Rib cage diameters and areas (calculated from the inner surface of the rib cage in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT. CTs were analyzed with software, which allows quantification of total emphysema (emphysema%. The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. RESULTS: A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1%, and forced vital capacity (FVC% fit best with the rib cage measurements (R(2 = 64% for the rib cage area variation at the lower anatomical level. Gender had the biggest impact on rib cage diameter and area (105.3 cm(2; 95% CI: 111.7 to 98.8 for male lower area. Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm(2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%. Lower rib cage areas decreased as FVC% decreased (5.1 cm(2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation. CONCLUSIONS: This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema.

  3. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    Science.gov (United States)

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  4. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  5. Fullerene derivatives as components for 'plastic' photovoltaic cells

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  6. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  7. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  8. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  9. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  10. APPLICATION FULLERENE FOR IDENTIFICATION OF MEAT PRODUCTS CONTAINING KLENBUTEROL

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available Summary. In modern conditions the majority of developing livestock complexes, various chemical additives, apply to cattle feeding. One of such preparations is clenbuterol. Clenbuterol is β-2-adrenostimulyator belonging to group β-agonist who stimulate growth of muscular weight and regulate a ratio of fatty and muscular tissue at cultivation of agricultural animals and birds. In Russia results of researches in which it is recommended to apply clenbuterol as a growth factor at cattle cultivation are published. Thus the risk of influences of the residual maintenance of a preparation in animal husbandry production on health of consumers wasn't estimated. We conducted researches in the field of studying of properties fullerene and clenbuterol and their opportunities interaction among themselves. For identification clenbuterol in meat raw materials the synthesis of Prato based on a functionalization fullerene by C60 and C70 consisting in its transformation in fullerene on reactions of a 1,3-dipolar cycloaddition of azomethine ylide on multiple communications of C=C of a fulleren kernel was moved. Reaction took place with allocation of a deposit of the dark color which analysis proved that is a product of interaction of substances investigated by us. This experiment gives the chance to identify clenbuterolfullerene.

  11. Fullerene nanoparticles in soil: Analysis, occurrence and fate

    NARCIS (Netherlands)

    Carboni, A.

    2016-01-01

    Fullerenes are carbon-based nanomaterials that can occur in the environment due to both natural events and human production. Recently, the increasing use in novel nanotechnologies raised concern for the possible adverse effects on humans and the environment. However, the assessment is complicated by

  12. Raman spectroelectrochemistry of ordered C-60 fullerene layers

    Czech Academy of Sciences Publication Activity Database

    Krause, M.; Deutsch, D.; Dunsch, L.; Janda, Pavel; Kavan, Ladislav

    2005-01-01

    Roč. 13, - (2005), s. 159-166 ISSN 1536-383X R&D Projects: GA AV ČR IAA4040306 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerenes * thin films * nanostructuring * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 0.776, year: 2005

  13. Thermodynamics of association of water soluble fullerene derivatives

    Indian Academy of Sciences (India)

    SONANKI KESHRI

    2017-08-31

    Aug 31, 2017 ... Entropic and enthalpic contributions to the association of solute molecules are calculated ... authors.7,46–70 The association of fullerene in aque- ous media is ..... The main mechanism accounting for the stabiliza- tion of the ...

  14. Photoconducting properties of fullerene derivatized with a biphenil moiety

    Czech Academy of Sciences Publication Activity Database

    Corvis, Y.; Trzcinska, K.; Rink, R.; Bílková, Petra; Gorecka, E.; Bilewicz, R.; Rogalska, E.

    2006-01-01

    Roč. 80, č. 3 (2006), s. 1899-1907 ISSN 0137- 5083 Grant - others:Research Training Network(XE) HPRN-CT-2002-00171 Institutional research plan: CEZ:AV0Z10100520 Keywords : fullerene * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.491, year: 2006

  15. In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

    Directory of Open Access Journals (Sweden)

    Mohammad Teimouri

    2015-08-01

    Full Text Available Fullerene C60 is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So fullerene application is hindered in medical field. In this study a literature search was performed and all derivatives were collected. The fullerene binding protein previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel estrogenic 17beta-hydroxysteroid dehydrogenase and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

  16. Fullerene-like CP x: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth

    International Nuclear Information System (INIS)

    Furlan, A.; Gueorguiev, G.K.; Hoegberg, H.; Stafstroem, S.; Hultman, L.

    2006-01-01

    Inherently nanostructured CP x compounds were studied by first-principles calculations. Geometry optimizations and cohesive energy comparisons show stability for C 3 P, C 2 P, C 3 P 2 , CP, and P 4 (P 2 ) species in isolated form as well as incorporated in graphene layers. The energy cost for structural defects, arising from the substitution of C for P and intercalation of P atoms in graphene, was also evaluated. We find a larger curvature of the graphene sheets and a higher density of cross-linkage sites in comparison to fullerene-like (FL) CN x , which is explained by differences in the bonding between P and N. Thus, the computational results extend the scope of fullerene-like thin film materials with FL-CP x and provide insights for its structural properties

  17. Comparative architecture of octahedral protein cages. I. Indexed enclosing forms

    Science.gov (United States)

    Janner, A.

    2008-07-01

    The architecture of four protein cages (bacterio ferritin, human mitochondrial ferritin, sulfur oxygenase reductase and small heat-shock protein) are compared top-to-bottom, starting from polyhedra with vertices at cubic lattice points enclosing the cage down to indexed polyhedral forms of single monomers.

  18. Teaching in the Institutional Cage: Metaphor and Collateral Oppression

    Science.gov (United States)

    Noël Smith, Becky L.

    2014-01-01

    This analysis is a philosophical exploration of Marilyn Frye's metaphor of the cage and Patricia Hill Collins' theory of intersecting oppressions. It argues that social structures and forms of oppressive knowledge make up the individual wires on each person's cage and that these work to confine individuals, particularly those in the…

  19. Polymers containing borane or carborane cage compounds and related applications

    Science.gov (United States)

    Bowen, III, Daniel E.; Eastwood, Eric A [Raymore, MO

    2012-06-05

    Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.

  20. A pseudoatom in a cage: trimetallofullerene Y(3)@C(80) mimics y(3)n@c(80) with nitrogen substituted by a pseudoatom.

    Science.gov (United States)

    Popov, Alexey A; Zhang, Lin; Dunsch, Lothar

    2010-02-23

    Y(3)C(80) obtained in the synthesis of nitride clusterfullerenes Y(3)N@C(2n) (2n = 80-88) by the reactive atmosphere method is found to be a genuine trimetallofullerene, Y(3)@C(80), with low ionization potential and divalent state of yttrium atoms. DFT studies of the electronic structure of Y(3)@C(80) show that this molecule mimics Y(3)N@C(80) with the pseudoatom (PA) instead of the nitrogen atom. Topology analysis of the electron density and electron localization function show that yttrium atoms form Y-PA bonds rather than direct Y-Y bonds. Molecular dynamics simulations show that the Y(3)PA cluster is as rigid as Y(3)N and rotates inside the fullerene cage as a single entity.

  1. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  2. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Boris Pinchuk

    2016-04-01

    Full Text Available In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV irradiation of the prodrugs original inhibitory activity was completely restored and even distinctly reinforced, as was the case for the prodrug 4. The presented results are a further evidence for caging technique being an interesting approach in the protein kinase field. It could enable spatial and temporal control for the inhibition of VEGFR-2. The described photoactivatable prodrugs might be highly useful as biological probes for studying the VEGFR-2 signal transduction.

  3. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  4. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Nguyen Hoang; Hai, Nguyen Hoang; Phu, Nguyen Dang [Center for Materials Science, Faculty of Physics, Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam); MacLaren, D A, E-mail: luongnh@vnu.edu.vn [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2011-07-15

    Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm{sup -2}. However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700 deg. C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.

  5. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  6. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  7. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    Science.gov (United States)

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  8. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.

    Science.gov (United States)

    Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon

    2018-03-19

    The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  10. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  11. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.; Wang, Wenhu; Kollins, Kaitlin N; Altalebi, Hasanain; Schwingenschlö gl, Udo

    2018-01-01

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  12. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  13. Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.

    Science.gov (United States)

    Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk

    2011-12-01

    A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.

  14. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.

    2018-04-03

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  15. Implanting very low energy atomic ions into surface adsorbed cage molecules: the formation/emission of Cs/C60+

    International Nuclear Information System (INIS)

    Kolodney, Eli; Kaplan, Andrey; Manor, Yoni; Bekkerman, Anatoly; Tsipinyuk, Boris

    2004-01-01

    Full Text: We demonstrate the formation of an endo-complex via a collision of energetic ions with molecular overlayers on a surface. An incoming atomic ion is encapsulated inside a very large molecule or cluster by implanting the primary ion into the target species, which then recovers its original structure or rearrange itself around the implanted ion in some stable configuration. Here we describe an experiment resulting in the formation and ejection of an endo-complex, within a single collision. We study the formation and emission of endohedral fullerenes, Cs/C 60 + and Cs/C 70 + , following a single collision of Cs + ion with a sub-monolayer of C 60 (steady state coverage) on gold and silicon surfaces and with a sub-monolayer of C 70 on gold. A continuous low energy (E 0 =35-220 eV) Cs + ion beam hit the Cs + covered surface and the collisional formation and ejection of the endohedral Cs/Cs 60 + complex, within a single Cs + /C 60 collision was observed and characterized. Several experimental observations clearly demonstrate the single collision nature of the combined atom penetration endo-complex ejection event. The fullerene molecule is actually being picked up off the surface by the penetrating Cs + ion. The evidence for the trapping of the Cs + ion inside the fullerene cage is given both by the appearance of the Cs/Cs (602-2n) + (n=1-5) sequence and its termination at Cs/Cs 50 + . Kinetic Energy Distributions (KEDs) of the outgoing Cs/Cs 60 + were measured for two different Cs + impact energies under field-free conditions. The most striking observation is the near independence of the KEDs on the impact energy. Both KEDs peak around 1.2 eV with similar line shapes. A simple model for the formation/ejection/fragmentation dynamics of the endohedral complex is proposed and is found to be in good agreement with the experimental results

  16. Challenges in the Structure Determination of Self-Assembled Metallacages: What Do Cage Cavities Contain, Internal Vapor Bubbles or Solvent and/or Counterions?

    Science.gov (United States)

    Givelet, Cecile C; Dron, Paul I; Wen, Jin; Magnera, Thomas F; Zamadar, Matibur; Čépe, Klára; Fujiwara, Hiroki; Shi, Yue; Tuchband, Michael R; Clark, Noel; Zbořil, Radek; Michl, Josef

    2016-05-25

    Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.

  17. Adverse effects of fullerenes (nC{sub 60}) spiked to sediments on Lumbriculus variegatus (Oligochaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, K., E-mail: kukka.tervonen@uef.fi [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Leppaenen, M.T.; Akkanen, J.; Kukkonen, J.V.K. [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland)

    2011-12-15

    Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes' disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants. - Highlights: > Effects of fullerene-spiked sediment on black worms were investigated. > Survival, growth, reproduction, and feeding rates were measured. > Exposure did not impact worm survival or reproduction. > Feeding rates and depuration efficiency were decreased. > Worms transferred fullerenes from the sediment to the sediment surface. - Exposure to fullerene-spiked sediment decreased black worms' feeding and depuration efficiency, but fullerenes did not appear to be absorbed into the microvilli.

  18. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  19. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    International Nuclear Information System (INIS)

    Adamopoulos, G.; Heiser, T.; Giovanella, U.; Ould-Saad, S.; Wetering, K.I. van de; Brochon, C.; Zorba, T.; Paraskevopoulos, K.M.; Hadziioannou, G.

    2006-01-01

    A series of polystyrene (PS) and fullerene (C 60 ) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient α, refractive index n, extinction coefficient k as well as in the dielectric constant ε ∝ within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10 -9 cm 2 /V s to 2 x 10 -7 cm 2 /V s

  20. Detection of fullerenes (C60 and C70) in commercial cosmetics

    International Nuclear Information System (INIS)

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2011-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C 60 and C 70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C 60 . Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C 60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C 70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C 60 , demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. - Highlights: → Fullerenes were detected in cosmetics up to 1.1 μg/g. → Liquid-liquid extraction efficiently recovers fullerenes in cosmetic matrices. → Solid-phase extraction reduces LC-MS detection interferences for C60. → Cosmetics can increase human and environmental fullerene exposures. - Fullerenes were detected in cosmetics with liquid chromatography-mass spectrometry up to 1.1 μg/g, demonstrating a source for human/environmental exposure.

  1. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  2. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)]. E-mail: geo_adamo@yahoo.fr; Heiser, T. [Institut d' Electronique du Solide et des Systemes (IN.E.S.S.), CNRS/ULP, 23 Rue du Loess, BP 20, 67037 Strasbourg Cedex 02 (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Ould-Saad, S. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Wetering, K.I. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Zorba, T. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)

    2006-07-26

    A series of polystyrene (PS) and fullerene (C{sub 60}) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient {alpha}, refractive index n, extinction coefficient k as well as in the dielectric constant {epsilon} {sub {proportional_to}} within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10{sup -9} cm{sup 2}/V s to 2 x 10{sup -7} cm{sup 2}/V s.

  3. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    Science.gov (United States)

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  4. A library of protein cage architectures as nanomaterials.

    Science.gov (United States)

    Flenniken, M L; Uchida, M; Liepold, L O; Kang, S; Young, M J; Douglas, T

    2009-01-01

    Virus capsids and other structurally related cage-like proteins such as ferritins, dps, and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, it is an advantage to utilize protein cages from extreme environments. In this chapter, we review recent studies on discovering novel protein cages from harsh natural environments such as the acidic thermal hot springs at Yellowstone National Park (YNP) and on utilizing protein cages as nano-scale platforms for developing nanomaterials with wide range of applications from electronics to biomedicine.

  5. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages.

    Science.gov (United States)

    Niu, Chi-Chien; Liao, Jen-Chung; Chen, Wen-Jer; Chen, Lih-Huei

    2010-07-01

    A prospective study was performed in case with cervical spondylosis who underwent anterior cervical discectomy and fusion (ACDF) with titanium or polyetheretherketone (PEEK) cages. To find out which fusion cage yielded better clinical and radiographic results. Although use of autogenous iliac-bone grafts in ACDF for cervical disc diseases remain standard surgical procedure, donor site morbidity and graft collapse or breakage are concerns. Cage technology was developed to prevent these complications. However, there is no comparison regarding the efficacy between titanium and PEEK cage. January 2005 to January 2006, 53 patients who had 1 and 2-levels ACDF with titanium or PEEK cages were evaluated. We measured the rate and amount of interspace collapse, segmental sagittal angulations, and the radiographic fusion success rate. Odom criteria were used to assess the clinical results. The fusion rate was higher in the PEEK group (100% vs. 86.5%, P=0.0335). There was no significant difference between both groups in loss of cervical lordosis (3.2 + or - 2.4 vs. 2.8 + or - 3.4, P=0.166). The mean anterior interspace collapse (1.6 + or - 1.0 mm) in the titanium group was significantly higher than the collapse of the PEEK group (0.5 + or - 0.6 mm) (PPEEK group (PPEEK group achieved an 80% rate of successful clinical outcomes, compared with 75% in the titanium group (P=0.6642). The PEEK cage is superior to the titanium cage in maintaining cervical interspace height and radiographic fusion after 1 and 2-levels anterior cervical decompression procedures.

  6. Folding Dynamics of the Trp-Cage Miniprotein: Evidence for a Native-Like Intermediate from Combined Time-Resolved Vibrational Spectroscopy and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Meuzelaar, H.; Marino, K.A.; Huerta-Viga, A.; Panman, M.R.; Smeenk, L.E.J.; Kettelarij, A.J.; van Maarseveen, J.H.; Timmerman, P.; Bolhuis, P.G.; Woutersen, S.

    2013-01-01

    Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding

  7. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  8. New insights in low-energy electron-fullerene interactions

    Science.gov (United States)

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  9. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    Science.gov (United States)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  10. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  11. Investigation of fullerene ions in crossed-beams experiments

    International Nuclear Information System (INIS)

    Hathiramani, D.; Scheier, P.; Braeuning, H.; Trassl, R.; Salzborn, E.; Presnyakov, L.P.; Narits, A.A.; Uskov, D.B.

    2003-01-01

    Employing the crossed-beams technique, we have studied the interaction of fullerene ions both with electrons and He 2+ -ions. Electron-impact ionization cross sections for C 60 q+ (q=1,2,3) have been measured at electron energies up to 1000 eV. Unusual features in shape and charge state dependence have been found, which are not observed for atomic ions. The evaporative loss of neutral C 2 fragments in collisions with electrons indicates the presence of two different mechanisms. In a first-ever ion-ion crossed-beams experiment involving fullerene ions a cross section of (1.05 ± 0.06) x 10 -15 cm 2 for charge transfer in the collision C 60 + + He 2+ at 117.2 keV center-of-mass energy has been obtained

  12. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    International Nuclear Information System (INIS)

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.

    2017-01-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  13. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  14. Single or functionalized fullerenes interacting with heme group

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  15. Thermal Effect on Structure Organizations in Cobalt-Fullerene Nanocomposition

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Sakai, S.

    2010-01-01

    Roč. 10, č. 4 (2010), s. 2624-2629 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR IAA200480702; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : cobalt * fullerene * simultaneous deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.351, year: 2010

  16. Imaging of fullerene-like structures in CNx thin films by electron microscopy; sample preparation artefacts due to ion-beam milling

    International Nuclear Information System (INIS)

    Czigany, Zs.; Neidhardt, J.; Brunell, I.F.; Hultman, L.

    2003-01-01

    The microstructure of CN x thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200 kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5 nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN x surfaces. The thickness of the damaged surface layer at 5 deg. grazing incidence was 13 and 10 nm at 3 and 0.8 keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25 keV, was less than 1 nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN x films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN x was observed at 200 kV

  17. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    International Nuclear Information System (INIS)

    Nitta, Norihisa; Seko, Ayumi; Sonoda, Akinaga; Ohta, Shinichi; Tanaka, Toyohiko; Takahashi, Masashi; Murata, Kiyoshi; Takemura, Shizuki; Sakamoto, Tsutomu; Tabata, Yasuhiko

    2008-01-01

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atherosclerotic light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery

  18. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  19. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  20. THERMOOXIDATIVE STABILITY OF JET FUEL WITH FULLERENES AS AN ADDITIVE

    Directory of Open Access Journals (Sweden)

    С.В. Іванов

    2012-10-01

    Full Text Available  Heating of fuels in presence of oxygen reduces their thermal-oxidative stability, leads to a solid phase in the form of sludge and tar, which, sedimented at the details of the fuel system, change its characteristics and cause contamination of fuel filters and injectors, spool control sticking, reduce efficiency of heat exchangers. Nanomaterials, performance of which is considerably superior to the natural materials, are the basis for the movement of humanity's progress. Therefore, with a develpoment of technologies it has become necessary to carry out a research of modified additives – fullerens, to improve an oxidative stability of fuels. We have carried out an investigation of thermal-oxidative stability of fuel RT as a function of additive C60 concentration. The results has shown that even 0,043 g/l fullerene addition as an antioxidant, reduces the amount of sediment in the fuel almost by half. Usage of fullerenes for improvement of petroleum products performance properties is a promising area of research.

  1. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  2. Features of interaction of fullerenes with microwave radiation

    International Nuclear Information System (INIS)

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  3. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  4. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    Astefanei, A.; Núñez, O.; Galceran, M.T.; Kok, W.Th.; Schoenmakers, P.J.

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid

  5. Packaging DNA Origami into Viral Protein Cages.

    Science.gov (United States)

    Linko, Veikko; Mikkilä, Joona; Kostiainen, Mauri A

    2018-01-01

    The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.

  6. Net-bottom Cage Inserts for Water Bird Casualties

    Directory of Open Access Journals (Sweden)

    Jackie Belle

    2017-10-01

    Full Text Available My Bright Idea is a net-bottomed cage insert, which is used to support pelagic avian casualties. The idea was designed and modified by the International Bird Rescue in California (Bird Rescue.

  7. variations in dimensions and shape of thoracic cage with aging

    African Journals Online (AJOL)

    the rib cage dimensions, the shape and cross- ..... Figure 6: CT axial section of thorax, showing the internal thoracic dimensions and shape at different age .... Dean J, Koehler R, Schleien C, Michael J, Chantarojanasiri T, Rogers M, Traystman ...

  8. Environmental impact analysis of aquaculture in net cages in a ...

    African Journals Online (AJOL)

    Environmental impact analysis of aquaculture in net cages in a Brazilian water reservoir, based in zooplankton communities. Maria Cristina Crispim, Karla Patrícia Ponte Araújo, Hênio do Nascimento Melo Júnior ...

  9. La cage qui cache : La Cage Dorée de Ruben Alves

    Directory of Open Access Journals (Sweden)

    Cristina Marinho

    2015-01-01

    Full Text Available The French Comedy La Cage Dorée (produced by the luso descendant Ruben Alves, 2013 success seems to be mainly due to its clichés of Portuguese epics in Paris, and its miseries may not have been underlined enough. Thus, under this apparently naif portrait an intriguing painting of Portuguese immigrants’ French dis-integration may really be hiding, which is the aim of this essay, on one hand, to bring out and, on the other one, to clarify, by questioning comparative critical common denominators of the two countries.

  10. La cage qui cache : La Cage Dorée de Ruben Alves

    Directory of Open Access Journals (Sweden)

    Cristina Marinho

    2015-12-01

    Full Text Available The French Comedy La Cage Dorée (produced by the luso descendant Ruben Alves, 2013 success seems to be mainly due to its clichés of Portuguese epics in Paris, and its miseries may not have been underlined enough. Thus, under this apparently naif portrait an intriguing painting of Portuguese immigrants’ French dis-integration may really be hiding, which is the aim of this essay, on one hand, to bring out and, on the other one, to clarify, by questioning comparative critical common denominators of the two countries.

  11. A striking performance improvement of fullerene n-channel field-effect transistors via synergistic interfacial modifications

    International Nuclear Information System (INIS)

    Du, Lili; Luo, Xiao; Wen, Zhanwei; Zhang, Jianping; Sun, Lei; Lv, Wenli; Li, Yao; Zhao, Feiyu; Zhong, Junkang; Ren, Qiang; Huang, Fobao; Xia, Hongquan; Peng, Yingquan

    2015-01-01

    For fullerene based n-channel transistors, remarkably improved device characteristics were achieved via charge injection and transport interfacial synergistic modifications using low-cost aluminium source/drain electrodes. Compared with the reference device without any modifications (device A), the as-fabricated transistor (device H) showed a dramatic improvement of saturation mobility from 0.0026 to 0.3078 cm 2 V −1 s −1 with a maximum on–off current ratio of 10 6 and a minimum subthreshold slope of 1.52 V decade −1 . AFM and XRD analysis manifested that the deposited C 60 films on PVA/OTS successive-modified SiO 2 substrate were highly dense polycrystalline and uniform with larger crystalline grain and less grain boundary. A gap state assisted electron injection mechanism was proposed to explicate the enhanced electrical conductivity considering BCP modification for charge injection interface, which has been well corroborated by a diode-based injection experiment and a theoretical calculation of contact resistances. We further demonstrated the application of the concept modification method to enable comparative time-stable operation of fullerene n-channel transistors. Given many key merits, we believed that this general method using multi-interface modifications could be extended to fabricate other n-channel OFETs with superior electrical performance and stability. (paper)

  12. Mice Do Not Habituate to Metabolism Cage Housing

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Jacobsen, Kirsten Rosenmaj; Darusman, Huda Shalahudin

    2013-01-01

    The metabolism cage is a barren, non-enriched, environment, combining a number of recognized environmental stressors. We investigated the ability of male BALB/c mice to acclimatize to this form of housing. For three weeks markers of acute and oxidative stress, as well as clinical signs of abnorma...... metabolism warrant caution when interpreting data obtained from metabolism cage housed mice, as their condition cannot be considered representative of a normal physiology....

  13. Caged molecular beacons: controlling nucleic acid hybridization with light.

    Science.gov (United States)

    Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong

    2011-05-28

    We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs. © The Royal Society of Chemistry 2011

  14. Musica come divenire. Il paesaggio sonoro secondo John cage

    Directory of Open Access Journals (Sweden)

    Francesca Aste

    2008-12-01

    Full Text Available John Cage ha dedicato tutta la sua vita all’indagine delle possibilità di relazione dell’uomo con i suoni che lo circondano, allargando il campo dell’arte musicale a quello dell’etica e dell’ecologia. Cage non si è occupato di soundscape come un genere compositivo specifico, come forse oggi potremmo identificarlo, tuttavia l’ambiente occupa un ruolo centrale in relazione al suo modo di comporre.

  15. A Squirrel Cage Type Electric Motor Rotor Assembly.

    Science.gov (United States)

    1996-09-05

    cage motor, but also provides efficiencies approaching those of permanent magnet motors . With the above and other objects in view, as will...and active motor life relative to known permanent magnet motors . Referring to FIG. 4, there is illustrated an alternative embodiment in which...part the.known advantages of a squirrel cage motor, and further provides improved efficiencies approaching those of permanent magnet motors . It is to

  16. Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    Science.gov (United States)

    Sirianni, Andrea; Krokowski, Sina; Lobato-Márquez, Damián; Buranyi, Stephen; Pfanzelter, Julia; Galea, Dieter; Willis, Alexandra; Culley, Siân; Henriques, Ricardo; Larrouy-Maumus, Gerald; Hollinshead, Michael; Sancho-Shimizu, Vanessa; Way, Michael; Mostowy, Serge

    2016-07-01

    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    Energy Technology Data Exchange (ETDEWEB)

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D. (Duke); (UMM)

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  18. Homogenized boundary conditions and resonance effects in Faraday cages

    Science.gov (United States)

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  19. Homogenized boundary conditions and resonance effects in Faraday cages

    Science.gov (United States)

    Hewett, D. P.; Hewitt, I. J.

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  20. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  1. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  2. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...

  3. Ultra-low friction and excellent elastic recovery of fullerene-like ...

    Indian Academy of Sciences (India)

    Multilayer fullerene-like hydrogenated carbon (FL-C:H) films were synthesized by using the chemical vapourdeposition technique with a different flow rate of methane. The typical fullerene-like structure of as-prepared films wasinvestigated by using transmission electron microscopy and Raman spectra. The prepared ...

  4. Annual spatiotemporal migration schedules in three larger insectivorous birds

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo; Jensen, Niels Odder; Willemoes, Mikkel

    2017-01-01

    Background: Knowledge of spatiotemporal migration patterns is important for our understanding of migration ecology and ultimately conservation of migratory species. We studied the annual migration schedules of European nightjar, a large nocturnal insectivore and compared it with two other larger ...

  5. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1976-03-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed by NSSS supply. (M.S.)

  6. TiN thin film deposition by cathodic cage discharge: effect of cage configuration and active species

    International Nuclear Information System (INIS)

    De Freitas Daudt, N; Cavalcante Braz, D; Alves Junior, C; Pereira Barbosa, J C; Barbalho Pereira, M

    2012-01-01

    Plasma cathodic cage technique was developed recently in order to eliminate phenomena such as edge effects and overheating, which occur during conventional nitriding processes. In this work, the effect of plasma active species and cage configurations during thin film deposition of TiN were studied. This compound was chosen because its properties are very sensitive to slight variations in chemical composition and film thickness, becoming a good monitoring tool in fabrication process control. In order to verify the effect of cage geometry on the discharge and characteristics of the grown film, a cage made of titanium was used with different numbers and distribution of holes. Furthermore, different amounts of hydrogen were added to the Ar + N2 plasma atmosphere. Flow rates of Ar and N2 gas were fixed at 4 and 3 sccm, respectively and flow rates of H 2 gas was 0, 1 and 2 sccm. Plasma species, electrical discharge and physical characteristics of the grown film were analyzed by Optical Emission Spectroscopy (OES), Atomic Force Microscopy (AFM), X-Ray Diffraction. It was observed by OES that the luminous intensity associated to Hα species is not proportional to flow rate of H 2 gas. Electrical efficiency of the system, crystal structure and topography of the TiN film are strongly influenced by this behavior. For constant flow rate of H 2 gas, it was found that with more holes at the top of the cage, deposition rate, crystallinity and roughness are higher, if compared to cages with a small number of holes at the top of cage. On the other hand, the opposite behavior was observed when more holes were located at the sidewall of cage.

  7. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  8. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Directory of Open Access Journals (Sweden)

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  9. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    International Nuclear Information System (INIS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  10. Multicomponent Protein Cage Architectures for Photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Arunava [Univ. of Alabama, Tuscaloosa, AL (United States); Prevelige, Peter E [Univ. of Alabama, Birmingham, AL (United States)

    2016-01-04

    The primary goal of the project was to develop protein-templated approaches for the synthesis and directed assembly of semiconductor nanomaterials that are efficient for visible light absorption and hydrogen production. In general, visible-light-driven photocatalysis reactions exhibit low quantum efficiency for solar energy conversion primarily because of materials-related issues and limitations, such as the control of the band gap, band structure, photochemical stability, and available reactive surface area of the photocatalyst. Synthesis of multicomponent hierarchical nano-architectures, consisting of semiconductor nanoparticles (NPs) with desired optical properties fabricated to maximize spatial proximity for optimum electron and energy transfer represents an attractive route for addressing the problem. Virus capsids are highly symmetrical, self-assembling protein cage nanoparticles that exist in a range of sizes and symmetries. Selective deposition of inorganic, by design, at specific locations on virus capsids affords precise control over the size, spacing, and assembly of nanomaterials, resulting in uniform and reproducible nano-architectures. We utilized the self-assembling capabilities of the 420 subunit, 60 nm icosahedral, P22 virus capsid to direct the nucleation, growth, and proximity of a range of component materials. Controlled fabrication on the exterior of the temperature stable shell was achieved by genetically encoding specific binding peptides into an externally exposed loop which is displayed on each of the 420 coat protein subunits. Localization of complimentary materials to the interior of the particle was achieved through the use “scaffolding-fusion proteins. The scaffolding domain drives coat protein polymerization resulting in a coat protein shell surrounding a core of approximately 300 scaffolding/fusion molecules. The fusion domain comprises a peptide which specifically binds the semiconductor material of interest.

  11. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.; Parida, Manas R.; Tosato, Alberto; AbdulHalim, Lina G.; Usman, Anwar; Alsulami, Qana; Banavoth, Murali; Alarousu, Erkki; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum

  12. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.

    Science.gov (United States)

    de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M

    2005-05-28

    This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.

  13. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  14. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  15. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  16. CAGE BREEDING OF WARM WATER FRESHWATER FISH SPECIES

    Directory of Open Access Journals (Sweden)

    Roman Safner

    2008-10-01

    Full Text Available In the 1970s, Croatia became actively involved in the contemporary trend of breeding fish in floating cages. In addition to various species of marine fishes, breeding was attempted with trout, carp, catfish, cisco and salmon. Of the above freshwater fish species, specific standards were established only for the cage breeding of rainbow trout. Cage breeding of the remaining species remained at the level of occasional attempts, with more of an experimental than a commercial character. The regular attempts to master this technique for cage breeding of warm water freshwater fish species were aimed at achieving the known benefits of such breeding, such as simplicity of implementing technological measures, easier establishment of the breeding system, simpler manipulation, the possibility of denser colonies per unit volume with a high level of production, easier adaptations to market conditions and fewer initial structural investments. Despite the many advantages, the main reasons for the lack of greater implementation of the cage breeding technology for warm water species of freshwater fish include problems in obtaining the appropriate category and quantity of healthy fry, the specificity and applicability of physical and chemical properties of the recipients and human error. In evaluating the advantages and disadvantages, the final decision on the justification of cage breeding for individual warm water freshwater species must be based on both biological and economic factors. Based on the knowledge of cage breeding acquired to date, the rule for virtually all intensive breeding systems is that it is only recommended for those species with high market demand and a high market price. The technology that demands nutrition with highly concentrated feed and other production expenditures is costly, and is therefore not profitable with less expensive fish species. Furthermore, production must be market oriented, i.e. the appropriate market research measures

  17. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.

    Directory of Open Access Journals (Sweden)

    Marine E Bozdaganyan

    Full Text Available Oxidative stress induced by excessive production of reactive oxygen species (ROS has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3 and D3-tris-malonyl-C60-fullerene (D3-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.

  18. Synthesis and Characterization of Polyfunctional Polyhedral Silsesquioxane Cages

    Science.gov (United States)

    Sulaiman, Santy

    Recent studies on octameric polyhedral silsesquioxanes, (RSiO1.5 )8, indicate that the silsesquioxane cage is not just a passive component but appears to be involved in electron delocalization with conjugated organic tethers in the excited state. This dissertation presents the synthesis and characterization of (RSiO1.5)8 molecules with unique photophysical properties that provide support for the existence of conjugation that involves the (RSiO1.5)8 cage. The dissertation first discusses the elaboration of octavinylsilsesquioxane via cross-metathesis to form styrenyl-functionalized octasilsesquioxane molecules. Subsequent Heck coupling reactions of p-bromostyrenyl derivative provides vinylstilbene-functionalized octasilsesquioxane. The amino derivative, NH2VinylStilbeneOS, show highly red-shifted emission spectrum (100 nm from the simple organic analog p-vinylstilbene) and high two-photon absorption (TPA) cross-section value (100 GM/moiety), indicating charge-transfer processes involving the silsesquioxane cage as the electron acceptor. The unique photophysical properties of polyfunctional luminescent cubic silsesquioxanes synthesized from ortho-8-, (2,5)-16-, and 24-brominated octaphenylsilsesquioxane (OPS) via Heck coupling show how the steric interactions of the organic tethers at the silsesquioxane cage corner affect conjugation with the silsesquioxane cage. Furthermore, the high TPA cross-section (10 GM/moiety) and photoluminescence quantum yield (20%) of OPS functionalized with 24 acetoxystyrenyl groups suggest that the existence excited states in these molecules with similar energies and decay rates: normal radiative pi- pi* transition and charge transfer involving the silsesquioxane cage. The fluoride ion-catalyzed rearrangement reactions of cage and polymeric silsesquioxanes provide a convenient route to a mixture of deca- and dodecameric silsesquioxane molecules in high yields, giving us the opportunity to investigate the effect of silsesquioxane cage

  19. Contrasting bonding behavior of thiol molecules on carbon fullerene structures

    International Nuclear Information System (INIS)

    Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.

    2003-01-01

    We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms

  20. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  1. Effects of symmetrical voltage sags on squirrel-cage induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain)

    2007-10-15

    This paper analyzes the symmetrical voltage sag consequences on the induction motor behavior when single- and double-cage models are considered, namely current and torque peaks, and speed loss. These effects depend on several variables like sag type, duration and depth. Voltage sag effects are studied by using single- and double-cage models for three motors of different rated power. The double-cage model always predicts torque and current peaks higher than those of the single-cage model. The single-cage model predicts that voltage sags can produce motor instability, whereas the double-cage model is always stable. Therefore, the double-cage model must be used for the simulation of the squirrel-cage induction motor, because the single-cage model can give erroneous results in some situations. (author)

  2. PROBLEMS OF BIOFOULING ON FISH–CAGE NETS IN AQUACULTURE

    Directory of Open Access Journals (Sweden)

    Merica Slišković

    2002-09-01

    Full Text Available Biofouling on fish–cage netting is a serious technical and economical problem to aquaculture worldwide. Compensation for the effects of biofouling must be included in cage system design and planning, as fouling can dramatically increase both weight and drag. Settlements of sessile plants and animals, with accumulation of the detritus diminish the size of mesh and can rapidly occlude mesh. Negative effect of smaller mesh size is changing in water flow trough the cages. Biofouling problems necessitating purchase of a second sets of nets or more, and frequent cleaning and changing of biofouling. Changing and cleaning frequency depend on many factors such as: location of cages (near the coast or off shore, productivity of that location, time of the year, time period in which the cages are placed on that location (cause of loading of phosphorus and nitrogen from the unconsumed food in the sediment. Net changing and cleaning procedures are labor and capital intensive. Process of the cleaning of the nets is inadequate, especially when there isnžt adequate equipment available as it is case in smaller aquaculture industry. Chemical control of biofouling e. g. use of antifoulants is questioningly cause of their possible negative effects on breeding species and environment.

  3. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Fabrizio Marinelli

    2009-08-01

    Full Text Available Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.

  4. Peculiarities of fullerenes condensation from molecular beam in vacuum

    Directory of Open Access Journals (Sweden)

    Neluba P. L.

    2011-12-01

    Full Text Available There was investigated С60 fullerenes condensation in vacuum on unheated Si, GaAs, isinglass stone substrates. There were used atomic-force microscopy, Raman scattering and measurement of mechanical stresses in films. It is established that the С60 molecule can decay on the substrates with the formation of other carbon structures in the condensate without supplementary physical effects on the sublimated beam in «evaporator — substrate» space. The possibility was found to increase the grain size and reduce the mechanical stresses in the condensate.

  5. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  6. Synthesis of endohedral iron-fullerenes by ion implantation

    International Nuclear Information System (INIS)

    Minezaki, H.; Ishihara, S.; Uchida, T.; Muramatsu, M.; Kitagawa, A.; Rácz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.

    2014-01-01

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe + ion beam was irradiated to C 60 thin film by using a deceleration system. Fe + -irradiated C 60 thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe + beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe + -irradiated C 60 thin film by high performance liquid chromatography

  7. Synthesis of endohedral iron-fullerenes by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  8. Adsorption characteristics of heat-treated fullerene nano-whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z-M [Energy Storage Materials Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kato, R; Hotta, K; Miyazawa, K [Fullerene Engineering Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: zm-wang@aist.go.jp

    2009-04-01

    Fullerene nanowhiskers (FNWs) were synthesized by the liquid-liquid interfacial precipitation method and the adsorption properties of their heat-treated samples were characterized. It was found that vacuum-annealed FNWs at a high temperature are of microporous materials and, especially, ultramicropores are highly developed in these materials. Porosities even remain in samples after heat treatment at a temperature higher than 2273 K. The presence of ultramicroporosity is indicative of the molecular sieving properties of the vacuum-annealed FNW materials, suggesting the possibilities of their application as new materials for gas separation and gas storage.

  9. On the Stability of Fullerene C60 in Aqueous Medium

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Kolivoška, Viliam; Kavan, Ladislav; Kocábová, Jana; Pospíšil, Lubomír; Hromadová, Magdaléna; Zukalová, Markéta; Sokolová, Romana; Kielar, F.

    2012-01-01

    Roč. 20, č. 8 (2012), s. 737-742 ISSN 1536-383X R&D Projects: GA ČR GP203/09/P502; GA ČR GA203/09/1607; GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional support: RVO:61388955 Keywords : fullerene s * AFM * dispersion Subject RIV: CG - Electrochemistry Impact factor: 0.764, year: 2012

  10. Disorder effect on carrier mobility in Fullerene organic semiconductor

    International Nuclear Information System (INIS)

    Mendil, N; Daoudi, M; Berkai, Z; Belghachi, A

    2015-01-01

    The critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this context, we have studied the effects of disorder on carrier mobility in organic Schottky diode of electrons for the fullerene (C 60 ). Our results show that the mobility is sensitive probes of structural phase transitions and order-disorder underlying C 60 . Where it is one reason behind the low mobility which it take as value 1.4x10 -2 cm 2 /V.s above critical temperature Tc =289K. (paper)

  11. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Scully, Shawn R.; McGehee, Michael D.

    2009-01-01

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  12. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  13. Dispersal, phenology and predicted abundance of the larger grain ...

    African Journals Online (AJOL)

    The phenology and dispersal of the larger grain borer (LGB) in Africa is described, and comparisons are made between prediction of LGB numbers from laboratory studies and predictions from multiple linear models derived from trapping data in the field. The models were developed in Mexico and Kenya, using ...

  14. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1975-06-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed alphabetically. The report contains also a plant ranking list, where the plants are listed by the load factor (12 months) (M.S.)

  15. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1975-12-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed by country. The report contains also a plant ranking list, where the plants are listed by the load factor (12 months). (M.S.)

  16. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  17. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  18. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    Science.gov (United States)

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Density functional calculations on the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (M = Sc–Ni)

    International Nuclear Information System (INIS)

    Chun-Mei, Tang; Wei-Hua, Zhu; Kai-Ming, Deng

    2010-01-01

    This paper uses the generalised gradient approximation based on density functional theory to analyse the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C 20 F 20 (M = Sc–Ni). The geometric optimization shows that the cage centre is the most stable position for M, forming the structure named as M@C 20 F 20 -4. The inclusion energy, zero-point energy, and energy gap calculations tell us that N@C 20 F 20 -4 should be thermodynamically and kinetically stablest. M@C 20 F 20 -4 (M = Sc–Co) possesses high magnetic moments varied from 1 to 6 μ B , while Ni@C 20 F 20 -4 is nonmagnetic. The Ni–C bond in Ni@C 20 F 20 -4 contains both the covalent and ionic characters

  20. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  1. An optimized Faraday cage design for electron beam current measurements

    International Nuclear Information System (INIS)

    Turner, J.N.; Hausner, G.G.; Parsons, D.F.

    1975-01-01

    A Faraday cage detector is described for measuring electron beam intensity for use with energies up to 1.2 Mev, with the present data taken at 100 keV. The design features a readily changeable limiting aperture and detector cup geometry, and a secondary electron suppression grid. The detection efficiency of the cage is shown to be limited only by primary backscatter through the detector solid angle of escape, which is optimized with respect to primary backscattered electrons and secondary electron escape. The geometry and stopping material of the detection cup are varied, and the results show that for maximum detection efficiency with carbon as the stopping mateiral, the solid angle of escape must be equal to or less than 0.05πsr. The experimental results are consistent within the +-2% accuracy of the detection electronics, and are not limited by the Faraday cage detection efficiency. (author)

  2. A laboratory cage for foster nursing newborn mice

    Directory of Open Access Journals (Sweden)

    S. Marques-de-Araújo

    1999-03-01

    Full Text Available We describe a cage to be used for foster nursing in order to guarantee that original mother's colostrum is not ingested by the newborn mice. A common (30.5 cm x 19.5 cm x 12.0 cm mouse cage was fitted with a wire net tray with a mesh (1 cm x 1 cm, which divides the cage into an upper and a lower compartment. Mice born to females placed in the upper compartment pass through the mesh and fall into the lower compartment, where another lactating female with one or two of its own pups are. Of a total of 28 newborn mice of C3H/He and Swiss strains, 23 were successfully fostered. Important observations are presented to show that this is a valuable alternative for foster studies without great suffering on the part of the female.

  3. Chaotic Dynamics of Cage Behavior in a High-Speed Cylindrical Roller Bearing

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available This paper presents a mathematical model to investigate the nonlinear dynamic behavior of cage in high-speed cylindrical bearing. Variations of cage behavior due to varying cage eccentricity and cage guidance gap are observed. Hydrodynamic behavior in cage contacts is taken into consideration for a more realistic calculation of acting forces owing to high working speed. Analysis of real-time cage dynamic behavior on radial plane is carried out using chaos theory based on the theoretical and mathematical model established in the paper. The analytical results of this paper provide a solid foundation for designing and manufacturing of high-speed cylindrical roller bearing.

  4. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    Science.gov (United States)

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  5. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review.

    Science.gov (United States)

    Kersten, Roel Frederik Mark Raymond; van Gaalen, Steven M; de Gast, Arthur; Öner, F Cumhur

    2015-06-01

    Polyetheretherketone (PEEK) cages have been widely used during the past decade in patients with degenerative disorders of the cervical spine. Their radiolucency and low elastic modulus make them attractive attributes for spinal fusion compared with titanium and bone graft. Still, limitations are seen such as pseudoarthrosis, subsidence, and migration of the cages. Limited evidence on the clinical outcome of PEEK cages is found in the literature other than noncomparative cohort studies with only a few randomized controlled trials. To assess the clinical and radiographic outcome of PEEK cages in the treatment of degenerative disc disorders and/or spondylolisthesis in the cervical spine. Systematic review of all randomized controlled trials and prospective and retrospective nonrandomized comparative studies with a minimum follow-up of 6 months and all noncomparative cohort studies with a long-term follow-up of more than 5 years. The primary outcome variable was clinical performance. Secondary outcome variables consisted of radiographic scores. The MEDLINE, EMBASE, and Cochrane Library databases were searched according to the Preferred Reporting Items of Systematic reviews and Meta-Analyses statement and Meta-analysis Of Observational Studies in Epidemiology guidelines. No conflict of interest reported. No funding received. A total of 223 studies were identified, of which 10 studies were included. These comprised two randomized controlled trials, five prospective comparative trials, and three retrospective comparative trials. Minimal evidence for better clinical and radiographic outcome is found for PEEK cages compared with bone grafts in the cervical spine. No differences were found between PEEK, titanium, and carbon fiber cages. Future studies are needed to improve methodology to minimize bias. Publication of lumbar interbody fusion studies needs to be promoted because differences in clinical and/or radiographic scores are more likely to be demonstrated in this part

  6. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  7. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  8. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  9. Effect of fullerene C(60 on ATPase activity and superprecipitation of skeletal muscle actomyosin

    Directory of Open Access Journals (Sweden)

    K. S. Andreichenko

    2013-04-01

    Full Text Available Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.

  10. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    International Nuclear Information System (INIS)

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  11. Procedure of identification of fullerenes isolated from iron-carbon alloys

    International Nuclear Information System (INIS)

    Zakirnichnaya, M.M.

    2001-01-01

    A method of fullerenes isolation from the structure of iron-carbon alloys and their identification using physical methods which provide determination of the different parameters of nanoobjects is developed. Qualitative (mass-spectrometry of positive and negative ions, small angle X-ray scattering) and quantitative (IR-spectrometry, liquid chromatography) evaluation of fullerenes in the samples obtained from iron-carbon alloys and their visual observation using scanning tunnel microscopy are performed. It is found that the method provides isolation and identification of fullerenes present in the structure of steels and irons [ru

  12. SME routes for innovation collaboration with larger enterprises

    DEFF Research Database (Denmark)

    Brink, Tove

    2017-01-01

    The research in this paper reveals how Small and Medium-sized Enterprises (SMEs) can contribute to industry competiveness through collaboration with larger enterprises. The research is based on a longitudinal qualitative case study starting in 2011 with 10 SME offshore wind farm suppliers...... and follow-up interviews in 2013. The research continued with a second approach in 2014 within operation and maintenance (O&M) through focus group interviews and subsequent individual interviews with 20 enterprises and a seminar in May 2015. The findings reveal opportunities and challenges for SMEs according...... to three different routes for cooperation and collaboration with larger enterprises: demand-driven cooperation, supplier-driven cooperation and partnerdriven collaboration. The SME contribution to innovation and competiveness is different within the three routes and ranges from providing specific knowledge...

  13. Collision cascades and sputtering induced by larger cluster ions

    International Nuclear Information System (INIS)

    Sigmund, P.

    1988-01-01

    Recent experimental work on larger cluster impact on solid surfaces suggests large deviations from the standard case of additive sputter yields both in the nuclear and electronic stopping regime. The paper concentrates on elastic collision cascades. In addition to very pronounced spike effects, two phenomena are pointed out that are specific to cluster bombardment. Multiple hits of cluster atoms on one and the same target atom may result in recoil atoms that move faster than the maximum recoil speed for monomer bombardment at the same projectile speed. This effect is important when the atomic mass of a beam atom is less than that of a target atom, M 1 2 . In the opposite case, M 1 >> M 2 , collisions between beam particles may accelerate some beam particles and slow down others. Some consequences are mentioned. Remarks on the nuclear stopping power of larger clusters and on electronic sputtering by cluster bombardment conclude the paper. 38 refs., 2 figs

  14. Study for elevator cage position during the braking period

    Science.gov (United States)

    Ungureanu, M.; Crăciun, I.; Bănică, M.; Dăscălescu, A.

    2016-08-01

    An important problem in order to study an elevator cage position for its braking period is to establish a correlation between the studies in the fields of mechanics and electric. The classical approaches to establish the elevator kinematic parameters are position, velocity and acceleration, but the last studies performed in order to determine the positioning performed by introducing supplementary another parameter - the jerk- which is derived with respect to time of acceleration. Thus we get a precise method for cage motion control for third-order trajectory planning.

  15. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  16. How do environmental policies fit within larger strategic planning processes

    OpenAIRE

    Crowe, Lynn

    2015-01-01

    This chapter explores how environmental policies fit within larger strategic processes relevant to sport management and development. It identifies key policy areas such as environmental impact assessment, sustainable land use planning, environmental protection and visitor impact management. Good practice and guidelines which will enable sport managers to integrate their work with these environmental policies are explored. Detailed guidance on design and longer term management and maintenance ...

  17. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  18. Negative differential resistance observation in complex convoluted fullerene junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  19. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  20. Making and exploiting fullerenes, graphene, and carbon nanotubes

    International Nuclear Information System (INIS)

    Marcaccio, Massimo; Paolucci, Francesco

    2014-01-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene-Stoppered Bistable Rotaxanes'' by Aurelio Mateo-Alonso, which presents an

  1. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice

    Science.gov (United States)

    Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345

  2. Base stock policies with degraded service to larger orders

    DEFF Research Database (Denmark)

    Du, Bisheng; Larsen, Christian

    We study an inventory system controlled by a base stock policy assuming a compound renewal demand process. We extend the base stock policy by incorporating rules for degrading the service of larger orders. Two specific rules are considered, denoted Postpone(q,t) and Split(q), respectively. The aim...... of using these rules is to achieve a given order fill rate of the regular orders (those of size less than or equal to the parameter q) having less inventory. We develop mathematical expressions for the performance measures order fill rate (of the regular orders) and average on-hand inventory level. Based...

  3. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Directory of Open Access Journals (Sweden)

    Roy L Caldwell

    Full Text Available Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  4. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Science.gov (United States)

    Caldwell, Roy L; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L

    2015-01-01

    Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  5. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents.

    Science.gov (United States)

    Obermayr, U; Rose, A; Geier, M

    2010-11-01

    We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests.

  6. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  7. Soluble fullerene derivatives : The effect of electronic structure on transistor performance and air stability

    NARCIS (Netherlands)

    Ball, James M.; Bouwer, Ricardo K.M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Buchaca Domingo, Ester; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D.C.; Anthopoulos, Thomas D.

    2011-01-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic

  8. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  9. Understanding triplet formation pathways in bulk heterojunction polymer : fullerene photovoltaic devices

    NARCIS (Netherlands)

    Tedla, B.; Zhu, F.; Cox, M.; Drijkoningen, J.; Manca, J.V.; Koopmans, B.; Goovaerts, E.

    2015-01-01

    Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) "super yellow" poly(p-phenylene vinylene) (SY-PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance

  10. Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Directory of Open Access Journals (Sweden)

    Hieu Nguyen

    2011-01-01

    Full Text Available Abstract The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8 nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.

  11. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  12. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Directory of Open Access Journals (Sweden)

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  13. Realization of large area flexible fullerene - conjugated polymer photocells: a route to plastic solar cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor — acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  15. Extreme ultraviolet patterning of tin-oxo cages

    Science.gov (United States)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  16. Mooring Design Selection of Aquaculture Cage for Indonesian Ocean

    Science.gov (United States)

    Mulyadi, Y.; Syahroni, N.; Sambodho, K.; Zikra, M.; Wahyudi; Adia, H. B. P.

    2018-03-01

    Fish production is important for the economy in fishing community and for ensuring food security. Climate change will lead a threat to fish productivity. Therefore, a solution offered is to cultivate certain fish, especially those with high economic value by using offshore aquaculture technology. A Sea Station cage is one of the offshore aquaculture cage model that has been used in some locations. As a floating structure, the Sea Station cage need a mooring system to maintain its position. This paper presents the selection analysis of the mooring system designs of the Sea Station cage model that it is suitable with Indonesia Ocean. There are 3 mooring configurations that are linear array, rectangular array, and 4 points mooring type. The nylon mooring rope type has been selected to be used on the 3 mooring configurations and the rope has a diameter of 104 mm with a breaking force of 2.3 MN. Based on results from comparing the 3 mooring configurations, the best mooring configuration is linear array with the tension on the rope of 217 KN and has the safety factor of 0.2 based on DNVGL OS-E301

  17. Business plan Tilapia cage farming in Tete Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Meer, van der Magnus; Brouwer, Herman

    2015-01-01

    Tete province offers great opportunities for cage farming of tilapia in Lake Cahora Bassa. The climate and water quality are favourable for fish production, and the fast economic developments in the region will facilitate fish sales. In Tete tilapia (pende) is highly valued food. Major markets for

  18. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei

    2017-08-29

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  19. Microbial control of caged population of Zonocerus variegatus using ...

    African Journals Online (AJOL)

    Microbial control of caged populations of Zonocerus variegatus was carried out using indigenous fungal entomopathogens isolated from the grasshopper's cadaver. Bioassay response indicated a dose-dependent mortality coupled with drastic reduction in food consumption among spores infected grasshoppers. Lethal time ...

  20. FANTOM5 CAGE profiles of human and mouse samples

    NARCIS (Netherlands)

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S. B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples,

  1. Photolysis of caged phosphatidic acid induces flagellar excision in Chlamydomonas.

    NARCIS (Netherlands)

    Goedhart, J.; Gadella, Th.W.J.

    2004-01-01

    Phosphatidic (PtdOH) acid formation is recognized as an important step in numerous signaling pathways in both plants and mammals. To study the role of this lipid in signaling pathways, it is of major interest to be able to increase the amount of this lipid directly. Therefore, "caged" PtdOH was

  2. Sex effect in mutual olfactory relationships of individually caged rabbits

    Directory of Open Access Journals (Sweden)

    Alessandro Finzi

    2015-12-01

    Full Text Available To assess the sex influence on sniffing behavior of rabbits, sets of three rabbits each were located for seven days in contiguous cages divided by a metal wall with holes that prevented the neighboring rabbits to see each other. A buck was located in the central cage, with a doe at each side. Rabbit behavior was video recorded to observe animals sniffing with the muzzle near the wall. The bucks displayed an olfactory preference towards one of the two does, which decreased in few days. The significance was p  0.05. The interest of bucks towards the does was also characterized by a frenetic scratching of the separation wall, contemporary with intense sniffing, displayed only for the first 35 min of the first day. The sniffing behavior of does at the central cage housing the male was not so marked as in bucks, and it progressively changed across the trial (p < 0.01. In conclusion, rabbits establish a transitory sex-oriented olfactory relationship with the conspecifics housed in contiguous cages, which looks no longer necessary once the rabbits have recognized each other.

  3. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Mummery, Christine L.; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Nakachi, Yutaka; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Nakahara, Fumio; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Nakamura, Toshiyuki; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Nakamura, Yukio; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Orlando, Valerio; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Nozaki, Tadasuke; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Ogishima, Soichi; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Kojima, Miki; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Kubosaki, Atsutaka; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Manabe, Ri-ichiroh; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Murata, Mitsuyoshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Nagao-Sato, Sayaka; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Nakazato, Kenichi; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Ninomiya, Noriko; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  4. Pathogen Prevalence From Traditional Cage and Free Range Production

    Science.gov (United States)

    Overview: A study was conducted to determine if differences in pathogen prevalence occurred between a sister flock of conventional cage and free range laying hens. Both environmental and egg microbiology was monitored throughout 20 – 79 weeks of age. Salmonella, Campylobacter, and Listeria preval...

  5. Assessment of the Usability of the Workbench Faraday Cage Method

    OpenAIRE

    Sørensen, Morten; Franek, Ondrej; Christensen, Søren K.; Pedersen, Gert Frølund; Ebert, Hans

    2011-01-01

    The workbench Faraday Cage method (WBFC) is a time efficient module pre-compliance test regarding radiated emission. This work investigates the method’s usability and credibility and concludes that for this particular case the WBFC perform a tolerable compliance test for frequencies below 360 MHz while it is essentially useless for higher frequencies.

  6. Assessment of the Usability of the Workbench Faraday Cage Method

    DEFF Research Database (Denmark)

    Sørensen, Morten; Franek, Ondrej; Christensen, Søren K.

    2011-01-01

    The workbench Faraday Cage method (WBFC) is a time efficient module pre-compliance test regarding radiated emission. This work investigates the method’s usability and credibility and concludes that for this particular case the WBFC perform a tolerable compliance test for frequencies below 360 MHz...

  7. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  8. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    Science.gov (United States)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  9. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  10. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  11. Effect of С(60 fullerene on metabolic and proliferative activity of PKE cell line

    Directory of Open Access Journals (Sweden)

    I. V. Belochkina

    2014-04-01

    Full Text Available The effect of С60 fullerene aqueous colloid solution (C60FAS on activity of redox and proliferative processes in PKE (transplantable cell line of pig kidney embryo cells has been studied. In particular, it was established that the presence of С60 fullerene (127 μМ in culturing medium of PKE cells during 48 h did not change their ability to reduce non-toxic АlamarBlue redox indicator and proliferative acti­vity.

  12. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  13. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  14. Social communication in mice--are there optimal cage conditions?

    Directory of Open Access Journals (Sweden)

    Allain-Thibeault Ferhat

    Full Text Available Social communication is heavily affected in patients with neuropsychiatric disorders. Accordingly, mouse models designed to study the mechanisms leading to these disorders are tested for this phenotypic trait. Test conditions vary between different models, and the effect of these test conditions on the quantity and quality of social interactions and ultrasonic communication is unknown. The present study examines to which extent the habituation time to the test cage as well as the shape/size of the cage influence social communication in freely interacting mice. We tested 8 pairs of male mice in free dyadic social interactions, with two habituation times (20 min and 30 min and three cage formats (rectangle, round, square. We tested the effect of these conditions on the different types of social contacts, approach-escape sequences, follow behavior, and the time each animal spent in the vision field of the other one, as well as on the emission of ultrasonic vocalizations and their contexts of emission. We provide for the first time an integrated analysis of the social interaction behavior and ultrasonic vocalizations. Surprisingly, we did not highlight any significant effect of habituation time and cage shape/size on the behavioral events examined. There was only a slight increase of social interactions with the longer habituation time in the round cage. Remarkably, we also showed that vocalizations were emitted during specific behavioral sequences especially during close contact or approach behaviors. The present study provides a protocol reliably eliciting social contacts and ultrasonic vocalizations in adult male mice. This protocol is therefore well adapted for standardized investigation of social interactions in mouse models of neuropsychiatric disorders.

  15. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Science.gov (United States)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  16. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  17. 48 CFR 252.204-7001 - Commercial and Government Entity (CAGE) code reporting.

    Science.gov (United States)

    2010-10-01

    ... Entity (CAGE) code reporting. 252.204-7001 Section 252.204-7001 Federal Acquisition Regulations System... Entity (CAGE) Code Reporting (AUG 1999) (a) The offeror is requested to enter its CAGE code on its offer... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.204-7001 Commercial and Government Entity...

  18. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    Directory of Open Access Journals (Sweden)

    Taras Chutora

    2017-05-01

    Full Text Available We report on the formation of fullerene-derived nanostructures on Au(111 at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111, bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111 surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.

  19. Automatic production of fullerenes by a JxB arc jet discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu

    1995-01-01

    Effective production of many kinds of fullerenes including higher fullerenes and endohedral metallo-fullerenes are necessary to advance fullerene science and technology. Currently, the DC arc discharge method is the most effective method to produce fullerenes. However, carbon atoms evaporated from the anode tend to deposit on the cathode, which grow towards the anode, and obstruct the control of the arc discharge. Furthermore, deposited carbon should be removed to maintain continuous fullerene production. Here, to reduce the deposition of carbon on the cathode, a new discharge method is introduced and the experiment performed. When steady magnetic field is applied perpendicular to the DC current of the arc, ions and electrons are accelerated by JxB force as a plasma jet in the vertical direction. This plasma flow also accelerates helium convection due to the viscosity effect. Therefore, the carbon atoms and carbon neutrals are both blown up by the arc jet before arriving at the cathode. The arc flame in the experiment is actually observed to extend upwards, which dearly indicates the effect of the JxB force

  20. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin

    OpenAIRE

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-01-01

    Background Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Findings Fullerene lotion significantly decreased conspicuous pores by 17.6% (p 

  1. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    DEFF Research Database (Denmark)

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...... for by a single model structure defined in terms of the dimensions of an average cell and its chemical composition. This model ascribes a total thickness of about 29 angstrom to the molecular interface layer with the following internal structure. The fullerenes (with several alkyl chains attached) form a central...... stratum and the remainder alkyl tails are located close to both the air and the water interfaces. The alkyl moieties close to the aqueous substrate are hydrated. The reflection experiments and the isotherms suggest that on average 8 +/- 3 dodecylamine molecules are present per fullerene, consistent within...

  2. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  3. Can forced hot air quickly dry feces on transport cage flooring and eliminate campylobacter before cage re-use?

    Science.gov (United States)

    Allowing feces left on transport coops to dry is an effective way to reduce numbers of viable Campylobacter left by positive flocks. The problem with this approach is that poultry processors do not have the time, space or resources to maintain several times the minimum number of transport cages that...

  4. HIPAA is larger and more complex than Y2K.

    Science.gov (United States)

    Tempesco, J W

    2000-07-01

    The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a larger and more complex problem than Y2K ever was. According to the author, the costs associated with a project of such unending scope and in support of intrusion into both information and operational systems of every health care transaction will be incalculable. Some estimate that the administrative simplification policies implemented through HIPAA will save billions of dollars annually, but it remains to be seen whether the savings will outweigh implementation and ongoing expenses associated with systemwide application of the regulations. This article addresses the rules established for electronic data interchange, data set standards for diagnostic and procedure codes, unique identifiers, coordination of benefits, privacy of individual health care information, electronic signatures, and security requirements.

  5. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  6. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  7. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  8. Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-05-01

    Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.

  9. Polychiral semiconducting carbon nanotube-fullerene solar cells.

    Science.gov (United States)

    Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C

    2014-09-10

    Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.

  10. Comparison Between Acrylic Cage and Polyetheretherketone (PEEK) Cage in Single-level Anterior Cervical Discectomy and Fusion: A Randomized Clinical Trial.

    Science.gov (United States)

    Farrokhi, Majid R; Nikoo, Zahra; Gholami, Mehrnaz; Hosseini, Khadijeh

    2017-02-01

    Prospective, single-blind randomized-controlled clinical study. To compare polyetheretherketone (PEEK) cage with a novel Acrylic cage to find out which fusion cage yielded better clinical outcomes following single-level anterior cervical discectomy and fusion (ACDF). ACDF is considered a standard neurosurgical treatment for degenerative diseases of cervical intervertebral disks. There are many options, including bone grafts, bone cement, and spacers made of titanium, carbon fiber, and synthetic materials, used to restore physiological disk height and enhance spinal fusion, but the ideal device, which would provide immediate structural support and subsequent osteointegration and stability, has not been identified yet. To overcome this, we designed a new, inexpensive Acrylic cage. A total of 64 patients were eligible to participate and were randomly allocated to undergo ACDF either with Acrylic interbody fusion cage filled with bone substitute (n=32) or PEEK cage (n=32). Nurick's grading was used for quantifying the neurological deficit. Clinical and radiologic outcome was assessed preoperatively, immediately after surgery, and subsequently at 2, 6, and 12 months of follow-up using Odom's criteria and dynamic radiographs (flexion-extension) and computed tomography scans, respectively. There was a statistically significant improvement in the clinical outcomes of the Acrylic cage group compared with the PEEK cage group (mean difference: -0.438; 95% confidence interval, -0.807 to -0.068; P=0.016). There was a statistically significant difference in disk space height increase between the 2 groups at the 6- and 12-month follow-up. The Acrylic cage achieved higher fusion rate (good fusion) than the PEEK cage (96.9% vs. 93.8%). Intervertebral angle demonstrated a significant difference among the 2 treated groups throughout the follow-up period. This study suggests that the use of Acrylic cage is associated with good clinical and radiologic outcomes and it can be therefore a

  11. Anterior lumbar fusion with titanium threaded and mesh interbody cages.

    Science.gov (United States)

    Rauzzino, M J; Shaffrey, C I; Nockels, R P; Wiggins, G C; Rock, J; Wagner, J

    1999-12-15

    The authors report their experience with 42 patients in whom anterior lumbar fusion was performed using titanium cages as a versatile adjunct to treat a wide variety of spinal deformity and pathological conditions. These conditions included congenital, degenerative, iatrogenic, infectious, traumatic, and malignant disorders of the thoracolumbar spine. Fusion rates and complications are compared with data previously reported in the literature. Between July 1996 and July 1999 the senior authors (C.I.S., R.P.N., and M.J.R.) treated 42 patients by means of a transabdominal extraperitoneal (13 cases) or an anterolateral extraperitoneal approach (29 cases), 51 vertebral levels were fused using titanium cages packed with autologous bone. All vertebrectomies (27 cases) were reconstructed using a Miami Moss titanium mesh cage and Kaneda instrumentation. Interbody fusion (15 cases) was performed with either the BAK titanium threaded interbody cage (in 13 patients) or a Miami Moss titanium mesh cage (in two patients). The average follow-up period was 14.3 months. Seventeen patients had sustained a thoracolumbar burst fracture, 12 patients presented with degenerative spinal disorders, six with metastatic tumor, four with spinal deformity (one congenital and three iatrogenic), and three patients presented with spinal infections. In five patients anterior lumbar interbody fusion (ALIF) was supplemented with posterior segmental fixation at the time of the initial procedure. Of the 51 vertebral levels treated, solid arthrodesis was achieved in 49, a 96% fusion rate. One case of pseudarthrosis occurred in the group treated with BAK cages; the diagnosis was made based on the patient's continued mechanical back pain after undergoing L4-5 ALIF. The patient was treated with supplemental posterior fixation, and successful fusion occurred uneventfully with resolution of her back pain. In the group in which vertebrectomy was performed there was one case of fusion failure in a patient with

  12. Effects of separation of resources on behaviour, physical condition and production of laying hens in furnished cages.

    Science.gov (United States)

    Shimmura, T; Azuma, T; Eguchi, Y; Uetake, K; Tanaka, T

    2009-01-01

    1. Based on our previous studies, we designed a medium-sized furnished cage with a dust bath and nest box on both sides of the cage (MFS) and evaluated its usefulness. 2. We used 180 White Leghorn layers. At the age of 17 weeks, the birds were distributed at random into one of the 4 cage designs: conventional cages (CC; 6 cages and 5 hens per cage), small (SF; 6 cages and 5 hens per cage) and medium furnished cages (MFL; 6 cages and 10 hens per cage) with a 'localised' dust bath and nest box on one side of the cage, and MFS (6 cages and 10 hens per cage). The total allocation of resources per bird was similar for all furnished cage designs. Behaviour, physical condition and production were measured in each cage. 3. Moving was more frequent in MFS and MFL than in CC and SF. The proportion of hens performing aggressive pecking and severe feather pecking was higher in MFL than CC and SF. These aggressive interactions occurred frequently in the dust bath area in MFL; however, these tendencies were not found in MFS. Egg production and egg mass were lower in MFL than in SF, while the production in MFS was similar to those in CC and SF. MFS hens laid eggs on the cage floor more often than in MFL. 4. In conclusion, these results demonstrate the possible usefulness of MFS. However, some inconsistent results and ways of improving MFS design were also identified.

  13. Research on vibration properties of auxiliary bearing cage used in HTR-10 GT project

    International Nuclear Information System (INIS)

    Qin Qingquan; Yang Guojun; Shi Zhengang; Yu Suyuan

    2009-01-01

    Auxiliary Bearings (ABs) is one of the most important parts in Active Magnetic Bearing (AMB) system, which was used in HTR-10 GT project. This paper uses finite element method to analyze the centrifugal stress and free vibration properties of the cage according to its work condition. And different geometric parameters of the cage that has effects on its vibration performance are discussed. The results show that the highest centrifugal stress is in the middle of the cage side sill. The low odder vibration modes of the cage can be induced when the auxiliary bearings are working. Proper geometric parameters and ball pocket number can enhance the performance of the cage. (authors)

  14. The cause of larger local magnitude (Mj) in western Japan

    Science.gov (United States)

    Kawamoto, H.; Furumura, T.

    2017-12-01

    The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a

  15. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene

    Czech Academy of Sciences Publication Activity Database

    Chua, C. K.; Sofer, Z.; Šimek, P.; Jankovský, O.; Klímová, K.; Bakardjieva, Snejana; Hrdličková-Kučková, Š.; Pumera, M.

    2015-01-01

    Roč. 9, č. 3 (2015), s. 2548-2555 ISSN 1936-0851 Institutional support: RVO:61388980 Keywords : fullerenes * graphene * luminescence * oxidation * quantum dots Subject RIV: CA - Inorganic Chemistry Impact factor: 13.334, year: 2015

  16. Groups have a larger cognitive capacity than individuals.

    Science.gov (United States)

    Sasaki, Takao; Pratt, Stephen C

    2012-10-09

    Increasing the number of options can paradoxically lead to worse decisions, a phenomenon known as cognitive overload [1]. This happens when an individual decision-maker attempts to digest information exceeding its processing capacity. Highly integrated groups, such as social insect colonies, make consensus decisions that combine the efforts of many members, suggesting that these groups can overcome individual limitations [2-4]. Here we report that an ant colony choosing a new nest site is less vulnerable to cognitive overload than an isolated ant making this decision on her own. We traced this improvement to differences in individual behavior. In whole colonies, each ant assesses only a small subset of available sites, and the colony combines their efforts to thoroughly explore all options. An isolated ant, on the other hand, must personally assess a larger number of sites to approach the same level of option coverage. By sharing the burden of assessment, the colony avoids overtaxing the abilities of its members. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. More ‘altruistic’ punishment in larger societies

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J. Colette; Barr, Abigail; Barrett, Clark; Bolyanatz, Alexander; Cardenas, Juan Camilo; Ensminger, Jean; Gurven, Michael; Gwako, Edwins; Henrich, Joseph; Henrich, Natalie; Lesorogol, Carolyn; McElreath, Richard; Tracer, David

    2007-01-01

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies. PMID:18089534

  18. The cavity-nest ant Temnothorax crassispinus prefers larger nests.

    Science.gov (United States)

    Mitrus, S

    Colonies of the ant Temnothorax crassispinus inhabit mostly cavities in wood and hollow acorns. Typically in the field, nest sites that can be used by the ant are a limited resource. In a field experiment, it was investigated whether the ants prefer a specific size of nest, when different ones are available. In July 2011, a total of 160 artificial nests were placed in a beech-pine forest. Four artificial nests (pieces of wood with volume cavities, ca 415, 605, 730, and 980 mm 3 , respectively) were located on each square meter of the experimental plot. One year later, shortly before the emergence of new sexuals, the nests were collected. In July 2012, colonies inhabited more frequently bigger nests. Among queenright colonies, the ones which inhabited bigger nests had more workers. However, there was no relationship between volume of nest and number of workers for queenless colonies. Queenright colonies from bigger nests produced more sexual individuals, but there was no correlation between number of workers and sex allocation ratio, or between volume of nest and sex allocation ratio. In a laboratory experiment where ant colonies were kept in 470 and 860 mm 3 nests, larger colonies allocated more energy to produce sexual individuals. The results of this study show the selectivity of T. crassispinus ants regarding the size of nest cavity, and that the nest volume has an impact on life history parameters.

  19. Ecological tolerances of Miocene larger benthic foraminifera from Indonesia

    Science.gov (United States)

    Novak, Vibor; Renema, Willem

    2018-01-01

    To provide a comprehensive palaeoenvironmental reconstruction based on larger benthic foraminifera (LBF), a quantitative analysis of their assemblage composition is needed. Besides microfacies analysis which includes environmental preferences of foraminiferal taxa, statistical analyses should also be employed. Therefore, detrended correspondence analysis and cluster analysis were performed on relative abundance data of identified LBF assemblages deposited in mixed carbonate-siliciclastic (MCS) systems and blue-water (BW) settings. Studied MCS system localities include ten sections from the central part of the Kutai Basin in East Kalimantan, ranging from late Burdigalian to Serravallian age. The BW samples were collected from eleven sections of the Bulu Formation on Central Java, dated as Serravallian. Results from detrended correspondence analysis reveal significant differences between these two environmental settings. Cluster analysis produced five clusters of samples; clusters 1 and 2 comprise dominantly MCS samples, clusters 3 and 4 with dominance of BW samples, and cluster 5 showing a mixed composition with both MCS and BW samples. The results of cluster analysis were afterwards subjected to indicator species analysis resulting in the interpretation that generated three groups among LBF taxa: typical assemblage indicators, regularly occurring taxa and rare taxa. By interpreting the results of detrended correspondence analysis, cluster analysis and indicator species analysis, along with environmental preferences of identified LBF taxa, a palaeoenvironmental model is proposed for the distribution of LBF in Miocene MCS systems and adjacent BW settings of Indonesia.

  20. Males that drop a sexually selected weapon grow larger testes.

    Science.gov (United States)

    Joseph, Paul N; Emberts, Zachary; Sasson, Daniel A; Miller, Christine W

    2018-01-01

    Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf-footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind-limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind-limb weapon can, in some cases, lead to greater fertilization success. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.