WorldWideScience

Sample records for large weather balloon

  1. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  2. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  3. Predictable pollution: an assessment of weather balloons and associated impacts on the marine environment--an example for the Great Barrier Reef, Australia.

    Science.gov (United States)

    O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi

    2014-02-15

    Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    Science.gov (United States)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  5. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  6. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  7. Fatal crashes involving large numbers of vehicles and weather.

    Science.gov (United States)

    Wang, Ying; Liang, Liming; Evans, Leonard

    2017-12-01

    Adverse weather has been recognized as a significant threat to traffic safety. However, relationships between fatal crashes involving large numbers of vehicles and weather are rarely studied according to the low occurrence of crashes involving large numbers of vehicles. By using all 1,513,792 fatal crashes in the Fatality Analysis Reporting System (FARS) data, 1975-2014, we successfully described these relationships. We found: (a) fatal crashes involving more than 35 vehicles are most likely to occur in snow or fog; (b) fatal crashes in rain are three times as likely to involve 10 or more vehicles as fatal crashes in good weather; (c) fatal crashes in snow [or fog] are 24 times [35 times] as likely to involve 10 or more vehicles as fatal crashes in good weather. If the example had used 20 vehicles, the risk ratios would be 6 for rain, 158 for snow, and 171 for fog. To reduce the risk of involvement in fatal crashes with large numbers of vehicles, drivers should slow down more than they currently do under adverse weather conditions. Driver deaths per fatal crash increase slowly with increasing numbers of involved vehicles when it is snowing or raining, but more steeply when clear or foggy. We conclude that in order to reduce risk of involvement in crashes involving large numbers of vehicles, drivers must reduce speed in fog, and in snow or rain, reduce speed by even more than they already do. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  8. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  9. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  10. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  11. The next generation balloon-borne large aperture submillimeter telescope (BLAST-TNG)

    Science.gov (United States)

    Dober, Bradley Jerald

    Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born. The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors

  12. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  13. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as

  14. Large-break LOCA studies. Computational analysis of clad ballooning and thermohydraulics in a PWR

    International Nuclear Information System (INIS)

    Ammirabile, L.; Walker, S.

    2002-01-01

    A new multi-pin model of the re-flood phase of a large break loss of coolant accident has been created through the dynamic coupling between the thermal-hydraulic code RELAP5 and multiple instances of the single-pin thermal-mechanics code MABEL. After a brief description of the codes and their linkage, a series of tests to assess the capabilities of the linked codes is described, and their results analysed. It is shown that the current coupled multi-pin code is a stable and reliable tool for ballooning transient analysis. A complete validation process with the simulation of the MT-3 test in the NRU reactor at Chalk River is in progress.(author)

  15. The balloon dilatation and large profile catheter maintenance method for the management of the bile duct stricture following liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Sung Wook; Shin, Sung Wook; Do, Young Soo; Park, Kwang Bo; Sung, Yon Mi; Choo, In Wook [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Liu, Wei Chiang [Sungae General Hospital, Seoul (Korea, Republic of)

    2006-03-15

    We wanted to evaluate the therapeutic efficacy of the percutaneous balloon dilatation and large profile catheter maintenance method for the management of patients with anastomotic biliary strictures following liver transplant. From May 1999 to June 2003, 12 patients with symptomatic benign biliary stricture complicated by liver transplantation were treated with the percutaneous balloon dilatation and large profile catheter maintenance method (1-6 months). The patients were eight males and four females, and their ages ranged from 20 to 62 years (mean age: 44 years). Ten patients underwent living donor liver transplantation and two underwent cadaveric liver transplantation. Postoperative biliary strictures occurred from two to 21 months (mean age: 18 months) after liver transplantation. The initial technical success rate was 92%. Patency of the bile duct was preserved for eight to 40 months (mean period: 19 months) in 10 of 12 (84%) patients. When reviewing two patients (17%), secondary balloon dilatations were needed for treating the delayed recurrence of biliary stricture. In one patients, no recurrent stenosis was seen during the further 10 months follow-up after secondary balloon dilatation. Another patient did not response to secondary balloon dilatation, and he was treated by surgery. Eleven of 12 patients (92%) showed good biliary patency for 8-40 months (mean period: 19 months) of follow-up. The percutaneous balloon dilatation and large profile catheter maintenance method is an effective therapeutic alterative for the treatment of most biliary strictures that complicate liver transplantation. It has a high success rate and it should be considered before surgery.

  16. Large deformation and mechanics of flexible isotropic membrane ballooning in three dimensions by differential quadrature method

    International Nuclear Information System (INIS)

    Mozaffari, M.; Atai, A. A.; Mostafa, N.

    2009-01-01

    This paper presents a computationally efficient and accurate new methodology in the differential quadrature analysis of structural mechanics for flexible membranes ballooning in three dimensions under a negative air pressure differential. The differential quadrature method is employed to discretize the resulting equations in the axial direction as well as for the solution procedure. The weighting coefficients employed are not exclusive, and any accurate and efficient method such as the generalized differential quadrature method may be used to produce the methods weighting coefficients. A second-order paraboloid of revolution is assumed to describe the ballooning shape. This study asserts the accuracy, convergency, and efficiency of the methodology by solving some typical stability, straining analysis membrane problems, and comparing the results with those of the exact solutions and/or those of physical tests

  17. Large deformation and mechanics of flexible isotropic membrane ballooning in three dimensions by differential quadrature method

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M.; Atai, A. A.; Mostafa, N. [Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2009-11-15

    This paper presents a computationally efficient and accurate new methodology in the differential quadrature analysis of structural mechanics for flexible membranes ballooning in three dimensions under a negative air pressure differential. The differential quadrature method is employed to discretize the resulting equations in the axial direction as well as for the solution procedure. The weighting coefficients employed are not exclusive, and any accurate and efficient method such as the generalized differential quadrature method may be used to produce the methods weighting coefficients. A second-order paraboloid of revolution is assumed to describe the ballooning shape. This study asserts the accuracy, convergency, and efficiency of the methodology by solving some typical stability, straining analysis membrane problems, and comparing the results with those of the exact solutions and/or those of physical tests

  18. US Daily Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot Balloon observational forms for the United States. Taken by Weather Bureau and U.S. Army observers. Period of record 1918-1960. Records scanned from the NCDC...

  19. 3-D acoustic waveform simulation and inversion supplemented by infrasound sensors on a tethered weather balloon at Yasur Volcano, Vanuatu

    Science.gov (United States)

    Iezzi, A. M.; Fee, D.; Matoza, R. S.; Jolly, A. D.; Kim, K.; Christenson, B. W.; Johnson, R.; Kilgour, G.; Garaebiti, E.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Gomez, C.; Key, N.

    2017-12-01

    Well-constrained acoustic waveform inversion can provide robust estimates of erupted volume and mass flux, increasing our ability to monitor volcanic emissions (potentially in real-time). Previous studies have made assumptions about the multipole source mechanism, which can be represented as the combination of pressure fluctuations from a volume change, directionality, and turbulence. The vertical dipole has not been addressed due to ground-based recording limitations. In this study we deployed a high-density seismo-acoustic network around Yasur Volcano, Vanuatu, including multiple acoustic sensors along a tethered balloon that was moved every 15-60 minutes. Yasur has frequent strombolian eruptions every 1-4 minutes from any one of three active vents within a 400 m diameter crater. Our experiment captured several explosions from each vent at 38 tether locations covering 200 in azimuth and a take-off range of 50 (Jolly et. al., in review). Additionally, FLIR, FTIR, and a variety of visual imagery were collected during the deployment to aid in the seismo-acoustic interpretations. The third dimension (vertical) of pressure sensor coverage allows us to more completely constrain the acoustic source. Our analysis employs Finite-Difference Time-Domain (FDTD) modeling to obtain the full 3-D Green's functions for each propagation path. This method, following Kim et al. (2015), takes into account realistic topographic scattering based on a high-resolution digital elevation model created using structure-from-motion techniques. We then invert for the source location and multipole source-time function using a grid-search approach. We perform this inversion for multiple events from vents A and C to examine the source characteristics of the vents, including an infrasound-derived volume flux as a function of time. These volumes fluxes are then compared to those derived independently from geochemical and seismic inversion techniques. Jolly, A., Matoza, R., Fee, D., Kennedy, B

  20. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Blanford, R.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times 2 ) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity

  1. Variations in pollen counts largely explained by climate and weather

    Science.gov (United States)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  2. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, R.

    2005-04-06

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times {approx}250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm {approx} 3deg{sup 2}) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.

  3. New concepts for interplanetary balloons and blimps, particularly for Titan

    Science.gov (United States)

    Nott, J.

    This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon

  4. Postulated weather modification effects of large energy releases

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.; Scott, B.C.; Orgill, M.M.; Renne, D.S.; Hubbard, J.E.; McGinnis, K.A.

    1977-02-01

    Postulated impacts of large energy releases were examined in the light of existing technical information. The magnitudes of direct atmospheric modifications were estimated, and the ecological and economic implications of the modifications were explored. Energy releases from energy centers (10 to 40 power plants at a single site) and individual power plant clusters (1 to 4 power plants) were considered. In the atmosphere the energy will exist initially as increased temperature (sensible heat), moisture (latent heat), and air motion (kinetic energy). Addition of energy could result in increased cloudiness and fog, and changed precipitation patterns. A framework for economic analysis of the impacts of the postulated atmospheric modifications was established on the basis of costs and benefits. Willingness-to-pay was selected as the appropriate measure for valuing each impact. The primary and secondary atmospheric modifications may affect recreation, transportation, and aesthetics as well as agriculture and forestry. Economic values can be placed on some of the effects. However, the willingness of people to pay to gain benefits and avoid damages in many cases can only be determined through extensive surveys. The economic consequences of a given energy release would be highly site specific.

  5. Postulated weather modification effects of large energy releases

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Scott, B.C.; Orgill, M.M.; Renne, D.S.; Hubbard, J.E.; McGinnis, K.A.

    1977-02-01

    Postulated impacts of large energy releases were examined in the light of existing technical information. The magnitudes of direct atmospheric modifications were estimated, and the ecological and economic implications of the modifications were explored. Energy releases from energy centers (10 to 40 power plants at a single site) and individual power plant clusters (1 to 4 power plants) were considered. In the atmosphere the energy will exist initially as increased temperature (sensible heat), moisture (latent heat), and air motion (kinetic energy). Addition of energy could result in increased cloudiness and fog, and changed precipitation patterns. A framework for economic analysis of the impacts of the postulated atmospheric modifications was established on the basis of costs and benefits. Willingness-to-pay was selected as the appropriate measure for valuing each impact. The primary and secondary atmospheric modifications may affect recreation, transportation, and aesthetics as well as agriculture and forestry. Economic values can be placed on some of the effects. However, the willingness of people to pay to gain benefits and avoid damages in many cases can only be determined through extensive surveys. The economic consequences of a given energy release would be highly site specific

  6. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; /SLAC; Bogaert, G.; /Ecole Polytechnique; Fukazawa, Y.; /Hiroshima U.; Saito,; Takahashi, T.; /Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  7. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; SLAC; Bogaert, G.; Ecole Polytechnique; Fukazawa, Y.; Hiroshima U.; Saito, Y.; Takahashi, T.; Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; NASA, Goddard; Princeton U.; Royal Inst. Tech., Kista; Stockholm U.; Tokyo Inst. Tech.; Yamagata U.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view (∼ 5 deg 2 ) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected

  8. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    Directory of Open Access Journals (Sweden)

    Steiakakis Chrysanthos

    2016-01-01

    Full Text Available The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions.

  9. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  10. Network connectivity paradigm for the large data produced by weather radar systems

    Science.gov (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  11. Can Weather Radars Help Monitoring and Forecasting Wind Power Fluctuations at Large Offshore Wind Farms?

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    The substantial impact of wind power fluctuations at large offshore wind farms calls for the development of dedicated monitoring and prediction approaches. Based on recent findings, a Local Area Weather Radar (LAWR) was installed at Horns Rev with the aim of improving predictability, controlability...... and potentially maintenance planning. Additional images are available from a Doppler radar covering the same area. The parallel analysis of rain events detection and of regime sequences in wind (and power) fluctuations demonstrates the interest of employing weather radars for a better operation and management...... of offshore wind farms....

  12. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    International Nuclear Information System (INIS)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  13. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  14. Evaluation of simulated-LOCA tests that produced large fuel cladding ballooning

    International Nuclear Information System (INIS)

    Powers, D.A.; Meyer, R.O.

    1979-02-01

    A description is given of the NRC review and evaluation of simulated-LOCA tests that produced large axially extended ballooing in Zircaloy fuel cladding. Technical summaries are presented on the likelihood of the transient that was used in the tests, the effects of temperature variations on strain localization, and the results of other similar experiments. It is concluded that (a) the large axially extended deformations were an artifact of the experimental technique, (b) current NRC licensing positions are not invalidated by this new information, and (c) no new research programs are needed to study this phenomenon

  15. Weather and headache onset: a large-scale study of headache medicine purchases

    Science.gov (United States)

    Ozeki, Kayoko; Noda, Tatsuya; Nakamura, Mieko; Ojima, Toshiyuki

    2015-04-01

    It is widely recognized that weather changes can trigger headache onset. Most people who develop headaches choose to self-medicate rather than visit a hospital or clinic. We investigated the association between weather and headache onset using large-sample sales of the headache medicine, loxoprofen. We collected daily sales figures of loxoprofen and over-the-counter drugs over a 1-year period from a drugstore chain in western Shizuoka prefecture, Japan. To adjust for changes in daily sales of loxoprofen due to social environmental factors, we calculated a proportion of loxoprofen daily sales to over-the-counter drug daily sales. At the same time, we obtained weather data for the study region from the website of the Japan Meteorological Agency. We performed linear regression analysis to ascertain the association between weather conditions and the loxoprofen daily sales proportion. We also conducted a separate questionnaire survey at the same drugstores to determine the reason why people purchased loxoprofen. Over the study period, we surveyed the sale of hundreds of thousands of loxoprofen tablets. Most people purchased loxoprofen because they had a headache. We found that the sales proportion of loxoprofen increased when average barometric pressure decreased, and that precipitation, average humidity, and minimum humidity increased on loxoprofen purchase days compared to the previous day of purchases. This study, performed using a large dataset that was easy-to-collect and representative of the general population, revealed that sales of loxoprofen, which can represent the onset and aggravation of headache, significantly increased with worsening weather conditions.

  16. Large-diameter balloon dilation for the treatment of achalasia of cardia: an analysis of mid-to-long term efficacy in 80 cases

    International Nuclear Information System (INIS)

    Song Jinwen; Yin Jianguo; Yang Yan; Liu Xiaohong; Wang Zhihong

    2011-01-01

    Objective: To discuss the technical points of large-diameter (40 mm) balloon dilation in treating achalasia of cardia, and to assess its mid-to-long term efficacy. Methods: A total of 80 patients of achalasia of cardia with a disease course of 3-23 years were enrolled in this study. According to Mellow-Pinkas standard of the dysphagia grading (from 0 to Ⅳ), the patients were classified into grade Ⅰ (n=6), grade Ⅱ (n=60) and grade Ⅲ (n=14). The diagnosis was confirmed by barium meal examination in all patients. Under spraying anesthesia of pharyngeal portion with 2% lidocaine, the intensified guide wire was inserted into the stomach through mouth under fluoroscopy guidance. The Boston's balloon (40 mm in diameter) was pushed along the guidewire to the stricture site at the cardia and was gradually inflated with 15% contrast medium by using the 'graded intermittent inflation' technique. Namely, the balloon was inflated to a maximum diameter and was kept in this condition for five minute, and then the balloon was deflated for 3-5 minutes. The above procedure was repeated 2-3 times. For the severe stricture, pre-dilatation with 20-25 mm diameter balloon was carried out. As a routine, postoperative measures to prevent possible bleeding and infection were adopted. The patient was allowed to take cool liquid diet 2-3 hours after the procedure, to have semi-liquid diet within three days and then to take normal diet. The patients were followed up for 2-10 years. Results: The balloon insertion was technically successful in all of the 80 patients. The success rate of single and twice manipulations was 96.3% (77/80) and 3.7% (3/80), respectively. Postoperative rupture of the cardia region was seen in one patient, and surgical repair had to be carried out. The follow-up time ranged from 2 years to 10 years (mean 6.27 years). No recurrent stenosis occurred in all patients. The remission rate of dysphagia was 100%. The swallowing function returned to normal in 90% of

  17. Balloon sinuplasty

    OpenAIRE

    Ahmad, Zahoor

    2010-01-01

    Balloon sinuplasty is a technique in endoscopic sinus surgery that involves minimally invasive procedures to dilate the obstructed or stenosed anatomical sinus pathways. Procedure is derived from the well-recognized techinique of angioplasty. This article highlights the procedural methods with review of literature and my personal experience in balloon sinupalsty.

  18. Fire weather and large fire potential in the northern Sierra Nevada

    Science.gov (United States)

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  19. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : seasonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  20. Emergent intracranial balloon angioplasty and bailout self-expandable stent placement in acute large vessel occlusion of the anterior circulation: Experience of a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin; Seo, Jung Hwa; Jeong, Hae Woong [Busan Paik Hospital, Inje University, Busan (Korea, Republic of)

    2017-06-15

    To evaluate the outcomes of angioplasty for recanalization after acute ischemic stroke (AIS). The study population was selected from 134 patients who underwent endovascular revascularization therapy (ERT) for AIS between October 2011 and May 2014. Of those 134 patients, 39 who underwent balloon angioplasty with or without stent insertion were included in this study. Balloon angioplasty was the primary treatment for nine patients and a rescue method for 30 patients. The revascularization rate at 7 days, procedure-related complications, and clinical outcomes at 3 months were analyzed. The occlusion sites were the middle cerebral artery (n = 26), intracranial internal carotid artery (n = 10), and middle cerebral artery branch (n = 3). Angioplasty achieved successful revascularization (Thrombolysis in Cerebral Ischemia grade 2b–3) in 76.9% of patients. Computed tomography angiography performed 7 days post-procedure revealed a maintained reperfusion in 82.8% of successful cases. Only two patients had symptomatic intracerebral hemorrhage. At the 3-month follow-up, 18 (48.6%) and 10 (27.0%) patients showed good and poor functional outcomes, respectively (modified Rankin Scale scores, 0–2 and 5–6). Emergent balloon angioplasty and bailout self-expandable stent placement may be safe and effective for achieving successful revascularization in acute large vessel occlusion of the anterior circulation. It could be a feasible rescue method as well as a primary method for ERT.

  1. Emergent intracranial balloon angioplasty and bailout self-expandable stent placement in acute large vessel occlusion of the anterior circulation: Experience of a single institution

    International Nuclear Information System (INIS)

    Heo, Young Jin; Seo, Jung Hwa; Jeong, Hae Woong

    2017-01-01

    To evaluate the outcomes of angioplasty for recanalization after acute ischemic stroke (AIS). The study population was selected from 134 patients who underwent endovascular revascularization therapy (ERT) for AIS between October 2011 and May 2014. Of those 134 patients, 39 who underwent balloon angioplasty with or without stent insertion were included in this study. Balloon angioplasty was the primary treatment for nine patients and a rescue method for 30 patients. The revascularization rate at 7 days, procedure-related complications, and clinical outcomes at 3 months were analyzed. The occlusion sites were the middle cerebral artery (n = 26), intracranial internal carotid artery (n = 10), and middle cerebral artery branch (n = 3). Angioplasty achieved successful revascularization (Thrombolysis in Cerebral Ischemia grade 2b–3) in 76.9% of patients. Computed tomography angiography performed 7 days post-procedure revealed a maintained reperfusion in 82.8% of successful cases. Only two patients had symptomatic intracerebral hemorrhage. At the 3-month follow-up, 18 (48.6%) and 10 (27.0%) patients showed good and poor functional outcomes, respectively (modified Rankin Scale scores, 0–2 and 5–6). Emergent balloon angioplasty and bailout self-expandable stent placement may be safe and effective for achieving successful revascularization in acute large vessel occlusion of the anterior circulation. It could be a feasible rescue method as well as a primary method for ERT

  2. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    Science.gov (United States)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilles

    2016-01-01

    The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions. This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100-120 m were successfully mined with an average displacement rate of 10- 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.

  3. Efficacy and safety of minor endoscopic sphincterotomy combined with endoscopic papillary large balloon dilation in treatment of elderly patients with multiple large common bile duct stones

    Directory of Open Access Journals (Sweden)

    HE Yongfeng

    2018-02-01

    Full Text Available Objective To investigate the clinical effect and safety of minor endoscopic sphincterotomy (mEST combined with endoscopic papillary large balloon dilation (EPLBD in the treatment of elderly patients with multiple large common bile duct stones. MethodsA retrospective analysis was performed for 229 patients with multiple large common bile duct stones who underwent endoscopic retrograde cholangiopancreatography (ERCP in Endoscopy Center, Ankang Municipal Central Hospital, from January 2012 to December 2016, and the surgical procedure was selected based on the size of stones and the morphology of the common bile duct. According to the endoscopic surgical procedure, the patients were divided into mEST+EPLBD group (treatment group with 136 patients and endoscopic phincterotomy (EST group (control group with 93 patients. The two groups were compared in terms of the success rate of first stone removal, use rate of mechanical lithotripsy (ML, time spent on stone removal, and the incidence rate of complications. The t-test was used for comparison of continuous data between groups, and the chi-square test was used for comparison of categorical data between groups. ResultsThere was no significant difference in the success rate of first stone removal between the treatment group and the control group (91.17% vs 87.10%, χ2=0.980, P>0.05, while there were significant differences in the time spent on stone removal (18.2±4.3 min vs 37.4±6.7 min, χ2=37.1526, P<0.01 and use rate of ML (6.71% vs 40.00%, t=24.411, P<0.01. There were no significant differences in the incidence rates of pancreatitis (2.94% vs 6.45%, χ2=1.630, P>0.05 and bleeding (2.21% vs 2.15%, χ2=0.001, P>0.05 between the two groups, and no patient experienced perforation or infection. ConclusionmEST+EPLBD has a good clinical effect in the treatment of elderly patients with multiple large common bile duct stones and can effectively shorten the time spent on stone removal, reduce the

  4. Incremental balloon deflation following complete resuscitative endovascular balloon occlusion of the aorta results in steep inflection of flow and rapid reperfusion in a large animal model of hemorrhagic shock.

    Science.gov (United States)

    Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K

    2017-07-01

    To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon

  5. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  6. Basic development of a small balloon-mounted telemetry and its operation system by university students

    Science.gov (United States)

    Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki

    In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling

  7. Characterization of a large-format, fine-pitch CdZnTe pixel detector for the HEFT balloon-Borne experiment

    OpenAIRE

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.

    2004-01-01

    We have developed a large-format CdZnTe pixel detector with custom, low-noise ASIC readout, for astrophysical applications. In particular, this detector is targeted for use in the High-Energy Focusing Telescope (HEFT), a balloon-borne experiment with focusing optics for 20-70 keV. The detector is a 24 X 44 pixel array of 498-µm pitch. As a focal plane detector, uniformity from pixel to pixel is very desirable. In this paper, we present the characterization of some detector properties for the ...

  8. Scientific Ballooning in India - Recent Developments

    Science.gov (United States)

    Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.

    Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  9. Clinical efficacy, safety, and costs of percutaneous occlusive balloon catheter-assisted ureteroscopic lithotripsy for large impacted proximal ureteral calculi: a prospective, randomized study.

    Science.gov (United States)

    Qi, Shiyong; Li, Yanni; Liu, Xu; Zhang, Changwen; Zhang, Hongtuan; Zhang, Zhihong; Xu, Yong

    2014-09-01

    To evaluate the clinical efficacy, safety, and costs of percutaneous occlusive balloon catheter-assisted ureteroscopic lithotripsy (POBC-URSL) for large impacted proximal ureteral calculi. 156 patients with impacted proximal ureteral stones ≥1.5 cm in size were randomized to ureteroscopic lithotripsy (URSL), POBC-URSL, and percutaneous nephrolithotomy (PNL) group between May 2010 and May 2013. For URSL, the calculi were disintegrated with the assistance of anti-retropulsion devices. POBC-URSL was performed with the assistance of an 8F percutaneous occlusive balloon catheter. PNL was finished with the combination of an ultrasonic and a pneumatic lithotripter. A flexible ureteroscope and a 200 μm laser fiber were used to achieve stone-free status to a large extent for each group. Variables studied were mean operative time, auxiliary procedure, postoperative hospital stay, operation-related complications, stone clearance rate, and treatment costs. The mean lithotripsy time for POBC-URSL was shorter than URSL, but longer than PNL (42.6±8.9 minutes vs 66.7±15.3 minutes vs 28.1±6.3 minutes, p=0.014). The auxiliary procedure rate and postoperative fever rate for POBC-URSL were significantly lower than URSL and comparable to PNL (pPNL (98.1% vs 75.0% vs 96.2%, pPNL group and similar to URSL group (p=0.016, pPNL.

  10. Scientific ballooning in India Recent developments

    Science.gov (United States)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  11. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  12. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    International Nuclear Information System (INIS)

    Barbero, R; Abatzoglou, J T; Steel, E A; K Larkin, Narasimhan

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric predictors. Climate−fire relationships on interannual timescales were evident, with wetter conditions than normal in the previous growing season enhancing VLFs probability in rangeland systems and with concurrent long-term drought enhancing VLFs probability in forested systems. Information at sub-seasonal timescales further refined these relationships, with short-term fire weather being a significant predictor in rangelands and fire danger indices linked to dead fuel moisture being a significant predictor in forested lands. Models demonstrated agreement in capturing the observed spatial and temporal variability including the interannual variability of VLF occurrences within most ecoregions. Furthermore the model captured the observed increase in VLF occurrences across parts of the southwestern and southeastern US from 1984 to 2010 suggesting that, irrespective of changes in fuels and land management, climatic factors have become more favorable for VLF occurrence over the past three decades in some regions. Our modeling framework provides a basis for simulations of future VLF occurrences from climate projections. (letter)

  13. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : sea sonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  14. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  15. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  16. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  17. Extreme weather events in southern Germany - Climatological risk and development of a large-scale identification procedure

    Science.gov (United States)

    Matthies, A.; Leckebusch, G. C.; Rohlfing, G.; Ulbrich, U.

    2009-04-01

    Extreme weather events such as thunderstorms, hail and heavy rain or snowfall can pose a threat to human life and to considerable tangible assets. Yet there is a lack of knowledge about present day climatological risk and its economic effects, and its changes due to rising greenhouse gas concentrations. Therefore, parts of economy particularly sensitve to extreme weather events such as insurance companies and airports require regional risk-analyses, early warning and prediction systems to cope with such events. Such an attempt is made for southern Germany, in close cooperation with stakeholders. Comparing ERA40 and station data with impact records of Munich Re and Munich Airport, the 90th percentile was found to be a suitable threshold for extreme impact relevant precipitation events. Different methods for the classification of causing synoptic situations have been tested on ERA40 reanalyses. An objective scheme for the classification of Lamb's circulation weather types (CWT's) has proved to be most suitable for correct classification of the large-scale flow conditions. Certain CWT's have been turned out to be prone to heavy precipitation or on the other side to have a very low risk of such events. Other large-scale parameters are tested in connection with CWT's to find out a combination that has the highest skill to identify extreme precipitation events in climate model data (ECHAM5 and CLM). For example vorticity advection in 700 hPa shows good results, but assumes knowledge of regional orographic particularities. Therefore ongoing work is focused on additional testing of parameters that indicate deviations of a basic state of the atmosphere like the Eady Growth Rate or the newly developed Dynamic State Index. Evaluation results will be used to estimate the skill of the regional climate model CLM concerning the simulation of frequency and intensity of the extreme weather events. Data of the A1B scenario (2000-2050) will be examined for a possible climate change

  18. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  19. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  20. Large surface scintillators as base of impact point detectors and their application in Space Weather

    Science.gov (United States)

    Ayuso, Sindulfo; Medina, José; Gómez-Herrero, Raul; José Blanco, Juan; García-Tejedor, Ignacio; García-Población, Oscar; Díaz-Romeral, Gonzalo

    2016-04-01

    The use of a pile of two 100 cm x 100 cm x 5 cm BC-400 organic scintillators is proposed as ground-based cosmic ray detector able to provide directional information on the incident muons. The challenge is to get in real time the muon impact point on the scintillator and its arrival direction using as few Photomultiplier Tubes (PMTs) as possible. The instrument is based on the dependence of attenuation of light with the traversed distance in each scintillator. For the time being, four photomultiplier tubes gather the light through the lateral faces (100 cm x 5 cm) of the scintillator. Several experiments have already been carried out. The results show how data contain information about the muon trajectory through the scintillator. This information can be extracted using the pulse heights collected by the PMTs working in coincidence mode. Reliability and accuracy of results strongly depend on the number of PMTs used and mainly on their appropriate geometrical arrangement with regard to the scintillator. In order to determine the optimal position and the minimum number of PMTs required, a Montecarlo simulation code has been developed. Preliminary experimental and simulation results are presented and the potential of the system for space weather monitoring is discussed.

  1. Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain from 1978 to 2010

    Directory of Open Access Journals (Sweden)

    A. Cardil

    2013-05-01

    Full Text Available This work analyzes the effects of high temperature days on large wildland fires during 1978–2010 in Aragón (NE Spain. A high temperature day was established when air temperature was higher than 20 °C at 850 hPa. Temperature at 850 hPa was chosen because it properly characterizes the low troposphere state, and some of the problems that affect surface reanalysis do not occur. High temperature days were analyzed from April to October in the study period, and the number of these extreme days increased significantly. This temporal trend implied more frequent adverse weather conditions in later years that could facilitate extreme fire behavior. The effects of those high temperatures days in large wildland fire patterns have been increasingly important in the last years of the series.

  2. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  3. Technologies developed by CNES balloon team

    Science.gov (United States)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  4. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    Science.gov (United States)

    H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...

  5. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    Science.gov (United States)

    R Barbero; J T Abatzoglou; E A Steel

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ¡­60 km spatial and weekly temporal resolutions using solely atmospheric...

  6. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  7. Laser welding of balloon catheters

    Science.gov (United States)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  8. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  9. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  10. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  11. Large-scale weather dynamics during the 2015 haze event in Singapore

    Science.gov (United States)

    Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori

    2017-04-01

    The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical

  12. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill.

    Science.gov (United States)

    Romero, Isabel C; Toro-Farmer, Gerardo; Diercks, Arne-R; Schwing, Patrick; Muller-Karger, Frank; Murawski, Steven; Hollander, David J

    2017-09-01

    The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km 2 ) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010-2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 10 4 metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  14. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  15. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    von Doetinchem, P.; Kirn, T.; Yearwood, G.Roper; Schael, S.

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  16. Two Tethered Balloon Systems

    Science.gov (United States)

    Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.

    1990-01-01

    Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.

  17. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  18. Ballooning Interest in Science.

    Science.gov (United States)

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  19. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  20. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  1. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    Science.gov (United States)

    Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue

    2017-07-01

    In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion

  2. GRAINE balloon experiment in 2015

    Directory of Open Access Journals (Sweden)

    Rokujo Hiroki

    2017-01-01

    Full Text Available Observations of cosmic gamma rays are important for studying high energy phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumurated a large amount of data. However, observations at the low galactic latitude remains difficult because of a lack of angular resolution, increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1∘ resolution for 1 GeV gamma rays (1.0∘ for 100 MeV, and has linear polarization sensitivity. GRAINE aims at precise observation of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2 high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this presentation, we will report the latest results and the status of the GRAINE project.

  3. Application of Electrocautery Needle Knife Combined with Balloon Dilatation versus Balloon Dilatation in the Treatment of Tracheal Fibrotic Scar Stenosis.

    Science.gov (United States)

    Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang

    Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.

  4. Dilatación de la papila de Vater con balón de gran diámetro para la extracción de coledocolitiasis Large balloon dilation for removal of bile duct stones

    Directory of Open Access Journals (Sweden)

    J. Espinel

    2008-10-01

    Full Text Available Objetivo: valorar la eficacia y seguridad de la dilatación de la papila de Vater con balones de gran diámetro (BGD para la extracción de coledocolitiasis en pacientes con factores que dificultan o hacen peligrosa la extracción, por las características de los cálculos o de la anatomía peripapilar. Diseño: prospectivo. Pacientes: estudio que incluye 93 pacientes a los que se realizó dilatación hidrostática de la papila con balones de gran diámetro entre junio de 2005 y enero de 2008 por presentar cálculos de gran tamaño, múltiples, colédoco distal afilado, papila peri/intradiverticular, esfinterotomía previa o Billroth-II. Se emplearon dilatadores CRE de diámetros entre 12 y 20 mm. Resultados: se consiguió la extracción de los cálculos en una sesión en todos los pacientes (100%. La mayor parte de las exploraciones (86% no requirieron tiempos prolongados para la extracción. Se precisó litotricia en el 3,2%. Hubo dos complicaciones leves (2,1%. Se detectó hiperamilasemia en el 16% de los pacientes. Conclusiones: la dilatación de la papila de Vater con balón de gran diámetro es una técnica eficaz y segura en la extracción de cálculos difíciles de la vía biliar, sin incrementar el tiempo de la exploración, ni las complicaciones, evitando la necesidad de litotricia en la mayoría de los pacientes.Aim: to assess the efficacy and safety of dilatation of the papilla of Vater with large balloons for the treatment of choledocolithiasis in patients with difficult or risky extraction due to stone characteristics or peripapillary anatomy. Design: prospective. Patients: this study includes 93 patients in whom large-balloon dilation was performed between June 2005 and January 2008. Patients had multiple large stones, tapered distal CBD (common bile duct, peri-/intra-diverticular papilla, and previous sphincterotomy or Billroth-II surgery. A controlled radial expansion (CRE balloon with a diameter range of 12-20 mm was used

  5. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  6. Atmospheric Measurements by Ultra-Light SpEctrometer (AMULSE Dedicated to Vertical Profile in Situ Measurements of Carbon Dioxide (CO2 Under Weather Balloons: Instrumental Development and Field Application

    Directory of Open Access Journals (Sweden)

    Lilian Joly

    2016-09-01

    Full Text Available The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ and with high temporal/spatial resolution (1 Hz/5 m using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software.

  7. Balloon cell nevus of the iris.

    Science.gov (United States)

    Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N

    2014-12-01

    Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  9. Safety and efficacy of large balloon sphincteroplasty in a third care hospital Dilatación con balón asociada a esfinterotomía, evaluación de eficacia y seguridad en un hospital terciario

    Directory of Open Access Journals (Sweden)

    Eduardo Martín-Arranz

    2012-07-01

    Full Text Available Background and aims: large balloon sphincteroplasty (LBS associated with sphincterotomy (ES has gained acceptance as a useful tool in extracting difficult bile duct stones. Our purpose was to evaluate the efficacy and safety of LBS with balloons ≥ 10 mm in clinical practice setting. Patients and methods: unicentre prospective study in a tertiary care hospital. All patients who underwent LBS associated with ES between July 2007 and March 2011 were included prospectively in a database recording clinical aspects, procedure data, outcome and complications. Success is the main outcome defined as complete stone removal documented by absence of any filling defect during a final occlusion cholangiogram and absence of clinical or radiological findings after the ERCP consistent with remaining stones. Complications as pancreatitis, cholangitis, post-ERCP bleeding, perforation and others were also measured. Results: one hundred twenty procedures were made in 109 patients with balloons ranging from 10 to 20 mm. Success rate was 91% in the first attempt and 96.7% after two procedures. Mechanical lithotripsy was only needed in one case (0.8%. Complication rate was 4.2% due to five cases of post-ERCP bleeding in high risk patients. Conclusion: large balloon sphincteroplasty associated to sphincterotomy in clinical practice is a very effective and safe technique.Introducción y objetivos: la dilatación con balón de gran tamaño asociada a esfinterotomía es un recurso cada vez más utilizado en la extracción de coledocolitiasis de gran tamaño. El objetivo de este estudio es evaluar la eficacia y seguridad de la dilatación con balones mayores de 10 mm en un entorno de práctica clínica habitual. Pacientes y métodos: estudio prospectivo en un hospital terciario. Todos los pacientes en los que se realizó dilatación con balón mayor de 10 mm asociado a esfinterotomía entre julio de 2007 y marzo de 2011 se incluyeron prospectivamente en una base de datos

  10. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Olga Tammeorg

    2014-01-01

    Full Text Available The impact of water temperature (T, water level (L, photosynthetically active radiation (PAR, and wind speed (V on the total phosphorus concentration (TP in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010 of TP concentrations and weather factors. A Thin Plate Spline (TPS model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (residuals, or TP anomalies were related to the weather variables to clarify how the weather anomalies in a year might correlate with the observed fluctuations in TP dynamics. Notable seasonal variations in TP, typical for many shallow lake systems, were found: TP was two to three times higher during late summer-early autumn than during winter. Patterns of TP variability were well predicted by using geographical coordinates, year and day of the year (R2=0.69; P<0.0001. However, TP anomalies were ascribed to the effects of T, L, PAR, and V, which were proved to play a significant additional role in TP dynamics. Moreover, L had consistently negative effects over the year, whereas the effects of T and PAR on TP change were seen to be dependent on the season. TP anomalies in lake Peipsi were most sensitive to wind anomalies. V was associated with frequent switches between increasing and decreasing TP values, though it appeared mainly as a negative driver of TP anomalies in the season prior to the 180th day, and as a positive driver in the subsequent season.

  11. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia)

    OpenAIRE

    Tammeorg, Olga; Möls, Tonu; Kangur, Külli

    2014-01-01

    The impact of water temperature (T), water level (L), photosynthetically active radiation (PAR), and wind speed (V) on the total phosphorus concentration (TP) in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010) of TP concentrations and weather factors. A Thin Plate Spline (TPS) model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (resi...

  12. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  13. The Influence Analysis of the Rainfall Meteorological Conditions on the Operation of the Balloon Borne Radar in Plateau

    Science.gov (United States)

    Li, Qiong; Geng, Fangzhi

    2018-03-01

    Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.

  14. Ozone profiles from tethered balloon measurements in an urban plume experiment

    Science.gov (United States)

    Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.

    1981-01-01

    NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.

  15. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  16. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    Abstract Objective. This study aimed to evaluate the results of the Danish experience with the ProACT urinary continence device inserted in men with stress urinary incontinence. Material and methods. The ProACT was inserted in 114 patients. Data were registered prospectively. The main endpoints...... in urinary leakage > 50% was seen in 72 patients (80%). Complications were seen in 23 patients. All of these were treated successfully by removal of the device in the outpatient setting followed by replacement of the device. Another eight patients had a third balloon inserted to improve continence further....... Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  17. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  18. Environmental effects of the US Antarctic Program`s use of balloons in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    McCold, L.N.; Eddlemon, G.K.; Blasing, T.J.

    1995-06-01

    The USAP uses balloons in Antarctica to conduct scientific research, to facilitate safe air transport, and to provide data for global weather predictions. However, there is the possibility that balloons or their payloads may adversely affect Antarctic fauna or flora. The purpose of this study is to provide background information upon which the USAP may draw when complying with its responsibilities under the National Environmental Policy Act of 1969, the Antarctic Treaty, and the Madrid Protocol.

  19. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  20. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  1. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States

    Science.gov (United States)

    John T. Abatzoglou; Renaud Barbero; Crystal A. Kolden; Katherine C. Hegewisch; Narasimhan K. Larkin; Harry Podschwit

    2014-01-01

    A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and synoptic temporal...

  2. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  3. OCT evaluation of directional atherectomy compared to balloon angioplasty.

    Science.gov (United States)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-09-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  5. Managing Critical Weather Conditions in a Large-Scale Wind Based European Power System - The TWENTIES Project

    DEFF Research Database (Denmark)

    Detlefsen, N.; Sørensen, Poul Ejnar; Eriksen, P.

    2011-01-01

    the cut-off wind speed (typically 25 m/s). Experience has shown that a large offshore wind farm in this way can be shut down from full power to zero power in less than 5 minutes. Thus, in the planned offshore development in the North Sea, several GW of wind power could be shut down within less than one...

  6. OCT evaluation of directional atherectomy compared to balloon angioplasty

    International Nuclear Information System (INIS)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-01-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  7. OCT evaluation of directional atherectomy compared to balloon angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Marmagkiolis, Konstantinos [Citizens Memorial Hospital Heart and Vascular Institute, Bolivar, MO (United States); Lendel, Vasili [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: mcilingiroglu@yahoo.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2015-09-15

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  8. Global BUFR Data Stream: Upper Air Reports from the National Weather Service Telecommunications Gateway (NWS TG)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are raw radiosonde and pilot balloon observations taken from various locations at various times around the globe transmitted through the National Weather...

  9. A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest: A translational model in large swine.

    Directory of Open Access Journals (Sweden)

    Ed B G Barnard

    2017-07-01

    Full Text Available Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA. Noncompressible torso hemorrhage (NCTH is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA at the thoracic aorta (Zone 1 can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC when cardiac arrest has occurred.Male Yorkshire Landrace cross swine (80.0 ± 6.0 kg underwent anesthesia, instrumentation for monitoring, and splenectomy. TCA was induced by laparoscopic liver lobe resection combined with arterial catheter blood withdrawal to achieve a sustained systolic blood pressure <10 mmHg, cardiac arrest. After 3 min of arrest, swine were allocated to one of three interventions: (1 REBOA plus 4 units of IV fresh whole blood (FWB, (2 SAAP with oxygenated lactated Ringer's (LR, 1,600 mL/2 min, or (3 SAAP with oxygenated FWB 1,600 mL/2 min. Primary endpoint was survival to the end of 60 min of resuscitation, a simulated prehospital phase. Thirty animals were allocated to 3 groups (10 per group-5 protocol exclusions resulted in a total of 35 animals being used. Baseline measurements and time to cardiac arrest were not different amongst groups. ROSC was achieved in 0/10 (0%, 95% CI 0.00-30.9 REBOA, 6/10 (60%, 95% CI 26.2-87.8 SAAP-LR and 10/10 (100%, 95% CI 69.2-100.0 SAAP-FWB animals, p < 0.001. Survival to end of simulated 60-minute prehospital resuscitation was 0/10 (0%, 95% CI 0.00-30.9 for REBOA, 1/10 (10%, 95% CI 0.25-44.5 for SAAP-LR and 9/10 (90%, 95% CI 55.5-99.7 for SAAP-FWB, p < 0.001. Total FWB infusion volume was similar for REBOA (2,452 ± 0 mL and SAAP-FWB (2,250 ± 594 mL. This study was undertaken in laboratory conditions, and as such may have

  10. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  11. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  12. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01

    Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude

  13. Properties of ballooning modes in the Heliotron configurations

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.

    2005-01-01

    The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD

  14. 21 CFR 874.4100 - Epistaxis balloon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal...

  15. Calculating Payload for a Tethered Balloon System

    Science.gov (United States)

    Charles D. Tangren

    1980-01-01

    A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....

  16. An analysis of the deployment of a pumpkin balloon at Mars

    Science.gov (United States)

    Rand, J. L.; Phillips, M. L.

    2004-01-01

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, where the radius used to determine the stress is determined by the volume of the balloon, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. A suitable superpressure balloon has been designed using this technology which will carry 2 kg in the atmosphere of Mars. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a 10 kg system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred into the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon which alters the pressure distribution and shape. As a result, stresses are seen to increase beyond the design values which will require the balloon to be redesigned to accommodate this type of dynamic deployment.

  17. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  18. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  19. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  20. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  1. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  2. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  3. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  4. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  5. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  6. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    Science.gov (United States)

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Optimizing logistics for balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices by doing away with the indwelling balloon: concept and techniques.

    Science.gov (United States)

    Saad, Wael E; Nicholson, David B

    2013-06-01

    Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Thrombus aspiration catheter is a Dottering balloon

    Directory of Open Access Journals (Sweden)

    D. Sheshagiri Rao

    2016-07-01

    Full Text Available Coronary angiogram in a young man with history of STEMI with delayed presentation revealed subtotal occlusion of left anterior descending artery (LAD with large thrombotic filling defect distal to the critical lesion. PCI was preferred without delay because of ongoing chest pain. Several runs of thrombus aspiration failed to detect any visible thrombus. However, the immediate angiogram after thrombus aspiration showed complete distal embolization of the thrombus which could have been achieved by Dottering or balloon dilatation. In contrary to the general perception, does thrombus aspiration push more thrombus than it can aspirate?

  9. Thrombus aspiration catheter is a Dottering balloon.

    Science.gov (United States)

    Sheshagiri Rao, D; Barik, Ramachandra; Prasad, Akula Siva

    2016-01-01

    Coronary angiogram in a young man with history of STEMI with delayed presentation revealed subtotal occlusion of left anterior descending artery (LAD) with large thrombotic filling defect distal to the critical lesion. PCI was preferred without delay because of ongoing chest pain. Several runs of thrombus aspiration failed to detect any visible thrombus. However, the immediate angiogram after thrombus aspiration showed complete distal embolization of the thrombus which could have been achieved by Dottering or balloon dilatation. In contrary to the general perception, does thrombus aspiration push more thrombus than it can aspirate? Copyright © 2016 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  10. Balloon pulmonary valvotomy – Not just a simple balloon dilatation

    Directory of Open Access Journals (Sweden)

    Subhendu Mohanty

    2014-07-01

    Full Text Available Balloon pulmonary valvotomy is the preferred mode of treatment in patients with isolated pulmonary valvar stenosis and has shown good long term results. It is generally considered a safe procedure with few complications. There have been however, case reports of potentially fatal acute severe pulmonary edema occurring after the procedure in some patients. The cause of this complication and its pathophysiology is still not clear. Its occurrence is also infrequent with less than 5 cases reported till now. We report a case of pulmonary valvar stenosis which developed acute severe refractory pulmonary edema immediately after balloon pulmonary valvotomy.

  11. Balloon dilatation of ureteric strictures.

    Directory of Open Access Journals (Sweden)

    Punekar S

    2000-01-01

    Full Text Available AIMS: Evaluation of dilatation as a minimally invasive technique for the treatment of ureteric strictures. MATERIAL AND METHODS: We evaluated this technique in 16 patients with ureteric and secondary pelviureteric junction strictures from June 1998. Of these, 7 were men and 9 were women. The age range was from 14 to 40 years. RESULTS: Balloon dilatation was successful in 69% of patients. Strictures secondary to previous surgery had nearly 100% success. Of the 8 cases diagnosed as genitourinary tuberculosis, success rate was 50%. CONCLUSIONS: Factors affecting success of balloon dilatation are: a age of the stricture b length of the stricture and c etiology of the stricture. In a select group of patients with fresh post-operative or post-inflammatory strictures, balloon dilatation may be an attractive alternative to surgery.

  12. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  13. Taking the Hot Air Out of Balloons.

    Science.gov (United States)

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  14. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    Science.gov (United States)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  15. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  16. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  17. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  18. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  19. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  20. Low Cost Balloon programme of Indian Centre for Space Physics

    Science.gov (United States)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  1. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  2. Status of the NASA Balloon Program

    Science.gov (United States)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  3. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  4. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Bondeson, A.; Chance, M.S.

    1987-06-01

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  5. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  6. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  7. Abdominal cavity balloon for preventing a patient's bleeding

    OpenAIRE

    Naber, E.E.H.; Rutten, H.J.T.; Jakimowicz, J.J.; Goossens, R.H.M.; Moes, C.C.M.; Buzink, S.N.

    2007-01-01

    The invention relates to an abdominal cavity balloon for preventing a haemorrhage in a patient's pelvic region, comprising an inflatable balloon, wherein the balloon is pro vided with a smooth surface and with a strip that is flex- urally stiff and formed to follow the balloon's shape for po sitioning the balloon.

  8. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  9. Balloon-tipped flow-directed catheters

    International Nuclear Information System (INIS)

    Ganz, P.; Swan, H.J.C.; Ganz, W.

    1986-01-01

    Diagnostic catheterization of the right side of the heart with semirigid cardiac catheters requires fluoroscopic guidance and substantial skill. Abnormal positions of the heart chambers and of the great vessels associated with cardiac dilatation or with congenital malformation present difficulties even to experienced laboratory cardiologists. These problems have been largely overcome by the introduction of balloon tipped flow directed catheters, which allow for rapid and relatively safe catheterization of the pulmonary artery without fluoroscopy. It was through the application of these catheters in the intensive care unit that the many pitfalls in the clinical assessment of hemodynamic disturbances became apparent. Although S3 gallop sounds may be useful in the clinical recognition of chronic ventricular failure, their presence or absence has limited predictive value in estimating left ventricular filling pressure in myocardial infarction. Information derived from right heart catheterization is often pivotal in the evaluation of hemodynamic disorders, in directing treatment, and in monitoring the results of therapy in critically ill patients

  10. N-dependence of ballooning instabilities

    International Nuclear Information System (INIS)

    Dewar, R.L.; Manickam, J.; Grimm, R.C.; Chance, M.S.

    1980-05-01

    The critical β for stability against ideal hydromagnetic internal ballooning modes as a function of toroidal mode number, n, is calculated for two different equilibrium sequences by use of a finite element technique (n less than or equal to 20), and a WKB formalism (n greater than or equal to 5). The agreement between the two methods is good in the overlap region 5 approx.less than or equal to n approx. less than or equal to 20. The WKB formula reduces to the 1/n correction at very high n, but is much more accurate at moderate n. The critical β vs n curves exhibit oscillatory structure at low n, but in both sequences the lower bound on β/sub c/ approx. 5%. For reactor parameters, finite Larmor radius effects are not expected to have a large effect on this β-limitation

  11. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  12. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  13. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  14. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  15. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  16. Balloon dilatations of esophageal strictures

    International Nuclear Information System (INIS)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De

    1990-01-01

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used

  17. Balloon dilatations of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De [Chonnam National University College of Medicine, Seoul (Korea, Republic of)

    1990-04-15

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used.

  18. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  19. Angiographic assessment of initial balloon angioplasty results.

    Science.gov (United States)

    Gardiner, Geoffrey A; Sullivan, Kevin L; Halpern, Ethan J; Parker, Laurence; Beck, Margaret; Bonn, Joseph; Levin, David C

    2004-10-01

    To determine the influence of three factors involved in the angiographic assessment of balloon angioplasty-interobserver variability, operator bias, and the definition used to determine success-on the primary (technical) results of angioplasty in the peripheral arteries. Percent stenosis in 107 lesions in lower-extremity arteries was graded by three independent, experienced vascular radiologists ("observers") before and after balloon angioplasty and their estimates were compared with the initial interpretations reported by the physician performing the procedure ("operator") and an automated quantitative computer analysis. Observer variability was measured with use of intraclass correlation coefficients and SD. Differences among the operator, observers, and the computer were analyzed with use of the Wilcoxon signed-rank test and analysis of variance. For each evaluator, the results in this series of lesions were interpreted with three different definitions of success. Estimation of residual stenosis varied by an average range of 22.76% with an average SD of 8.99. The intraclass correlation coefficients averaged 0.59 for residual stenosis after angioplasty for the three observers but decreased to 0.36 when the operator was included as the fourth evaluator. There was good to very good agreement among the three independent observers and the computer, but poor correlation with the operator (P definition of success was used. Significant differences among the operator, the three observers, and the computer were not present when the definition of success was based on less than 50% residual stenosis. Observer variability and bias in the subjective evaluation of peripheral angioplasty can have a significant influence on the reported initial success rates. This effect can be largely eliminated with the use of residual stenosis of less than 50% to define success. Otherwise, meaningful evaluation of angioplasty results will require independent panels of evaluators or

  20. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  1. Balloon dilatation of iatrogenic urethral strictures

    International Nuclear Information System (INIS)

    Acunas, B.; Acunas, G.; Gokmen, E.; Celik, L.

    1988-01-01

    Balloon dilatation of the urethra was performed in five patients with iatrogenic urethral strictures. The urethral strictures were successfully negotiated and dilated in all patients. Redilatation became necessary in a period ranging from 3 to 10 months. The authors believe that balloon dilatation of the urethra can be safely and successfully performed; the procedure produces minimal trauma and immediate relief of symptoms. (orig.)

  2. Paraplegia following intraaortic balloon circulatory assistance

    Directory of Open Access Journals (Sweden)

    Benício Anderson

    1999-01-01

    Full Text Available Intraaortic balloon counterpulsation is frequently used in patients experiencing severe ventricular dysfunction following maximal drug therapy. However, even with the improvement of percutaneous insertion techniques, the procedure has always been followed by vascular, infectious, and neurological complications. This article describes a case of paraplegia due to intraaortic balloon counterpulsation in the postoperative period of cardiac surgery.

  3. Montgolfiere balloon missions from Mars and Titan

    Science.gov (United States)

    Jones, Jack A.

    2005-01-01

    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  4. Recent Developments in Scientific Research Ballooning

    International Nuclear Information System (INIS)

    Jones, W. Vernon

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program is committed to meeting the need for extended duration scientific investigations by providing advanced balloon vehicles and support systems. A sea change in ballooning capability occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990's. The attainment of 28-31 day flights and a record-breaking 42-day flight in, respectively, two and three circumnavigations of the continent has greatly increased the expectations of the scientific users. A new super-pressure balloon is currently under development for future flights of 60-100 days at any latitude, which would bring another sea change in scientific research ballooning

  5. Early Cosmic Ray Research with Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Michael, E-mail: michael.walter@desy.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  6. Early Cosmic Ray Research with Balloons

    Science.gov (United States)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  7. Early Cosmic Ray Research with Balloons

    International Nuclear Information System (INIS)

    Walter, Michael

    2013-01-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster

  8. A model for asymmetric ballooning and analyses of ballooning behaviour of single rods with probabilistic methods

    International Nuclear Information System (INIS)

    Keusenhoff, J.G.; Schubert, J.D.; Chakraborty, A.K.

    1985-01-01

    Plastic deformation behaviour of Zircaloy cladding has been extensively examined in the past and can be described best by a model for asymmetric deformation. Slight displacement between the pellet and cladding will always exist and this will lead to the formation of azimuthal temperature differences. The ballooning process is strongly temperature dependent and, as a result of the built up temperature differences, differing deformation behaviours along the circumference of the cladding result. The calculated ballooning of cladding is mainly influenced by its temperature, the applied burst criterion and the parameters used in the deformation model. All these influencing parameters possess uncertainties. In order to quantify these uncertainties and to estimate distribution functions of important parameters such as temperature and deformation the response surface method was applied. For a hot rod the calculated standard deviation of cladding temperature amounts to 50 K. From this high value the large influence of the external cooling conditions on the deformation and burst behaviour of cladding can be estimated. In an additional statistical examination the parameters of deformation and burst models have been included and their influence on the deformation of the rod has been studied. (author)

  9. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    International Nuclear Information System (INIS)

    Dewar, R. L.; Cuthbert, P.; Ball, R.

    2000-01-01

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  10. EUSO-BALLOON a pathfinder for detecting UHECR's from the edge of space

    Directory of Open Access Journals (Sweden)

    Scotti V.

    2013-06-01

    Full Text Available EUSO-Balloon has been conceived as a pathfinder mission for JEM-EUSO, to perform an end-to-end test of the subsystems and components, and to prove the global detection chain while improving our knowledge of the atmospheric and terrestrial UV background. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as an evolutive test-bench for all the key technologies of JEM-EUSO. EUSO-Balloon also has the potential to detect Extensive Air Showers from above, marking a key milestone in the development of UHECR science, and paving the way for any future large scale, space-based UHECR observatory.

  11. Operator's Manual for SHEBA Powered Tether Balloon System

    Science.gov (United States)

    Lappen, Cara-Lyn; Randall, David A.

    1998-01-01

    The Surface Heat and Energy Budget of the Arctic (SHEBA) was an intensive field project which took place in the Arctic Ocean from October 1997 through October 1998. Its purpose was to measure as many facets of the Arctic environment as possible so that we would be able to better understand the interaction between the ice, atmosphere, and ocean and their interactions with global climate. One aspect of the atmospheric field component was launching tethered balloons to monitor the profiles of temperature, wind, pressure, and humidity, as well as examine the vertical structure of cloud droplet sizes and distributions. The tethered balloon that we used was one specially designed for use in freezing climates by SPEC Corporation in Boulder, Colorado. A special winch that was able to withstand Arctic temperature and weather became necessary when the testing of simple winch systems used in warmer climates failed under these extreme conditions. The purpose of this manual is to acquaint any new user to the powered tethered balloon system deployed at the The Surface Heat and Energy Budget of the Arctic (SHEBA ice camp. It includes a description of the preparations necessary to get ready for a launch, the mechanics of the actual launch, and an account of the proper procedure for taking down the equipment when finished. It will also include tips on how to minimize potential equipment failures, some trouble shooting, and some safety ideas. This manual is designed so that new operators can use the system with minimal previous training. At the end of this manual, the reader will find a quick checklist.

  12. A coordinated study of a storm system over the South American continent. 1. Weather information and quasi-DC stratospheric electric field data

    Science.gov (United States)

    Pinto, O.; Pinto, I. R. C. A.; Gin, R. B. B.; Mendes, O.

    1992-11-01

    This paper reports on a coordinated campaign conducted in Brazil, December 13, 1989, to study the electrical signatures associated with a large storm system over the South American continent. Inside the storm, large convective cells developed extending up to the tropopause, as revealed from meteorological balloon soundings. Quasi-DC vertical electric field and temperature were measured by zero-pressure balloon-borne payload launched from Cachoeira Paulista, Brazil. The data were supported by radar and GOES satellite observations, as well as by a lightning position and tracking system (LPATS). The analysis of infrared imagery supports the general tendency for lightning strikes to be near to but not exactly under the coldest cloud tops. In turn, the radar maps located the strikes near to but outside of the most intense areas of precipitation (reflectivity levels above 40 dBz). The balloon altitude and stratospheric temperature show significant variations in association with the storm. The quasi-DC vertical electric field remained almost during the whole flight in a reversed direction relative to the usual fair weather downward orientation with values as large as 4 V/m. A simple calculation based on a static dipole model of electrical cloud structure gives charges of some tens of coulombs. In contrast with most electric field measurements in other regions, no indication of an intensification of the vertical field in the downward fair weather orientation was observed. This fact is in agreement with past observations in the South American region and seems to be related to a particular type of storm that would occur with more frequency in this region. If so, such a difference may have an important role in the global atmospheric electrical circuit, considering that South America is believed to give a significant current contribution to the global circuit.

  13. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  14. Esophageal achalasia : results of balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-08-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia.

  15. Esophageal achalasia : results of balloon dilation

    International Nuclear Information System (INIS)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young

    1996-01-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia

  16. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  17. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  18. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  19. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  20. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  1. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  2. Retained intraaortic balloon. Case report and review of the literature.

    Science.gov (United States)

    Grande, A M; Martinelli, L; Graffigna, A; Viganò, M

    1995-01-01

    We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.

  3. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  4. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  5. Gigantic balloon type artificial lightning generator

    Energy Technology Data Exchange (ETDEWEB)

    Horii; kenji

    1988-09-05

    This paper outlines a hot-air balloon type Van de Graaf 50-MV generator which can generate a 50,000,000 V, 0.2 to 0.3 coulomb artificial lightning comparable to natural lightning discharge and reports the results of investigation on discharging experiments conducted using this apparatus. The subjects covered are as follows: (1) Outline of the hot-air balloon type Van de Graaf 50-MV generator, (2) electric characteristics of the Van de Graaf 50-MV generator, (3) charge transfer with film and balloon charging, (4) the load of the balloon and buoyancy calculation, (5) leakage of charges, (6) study of charging experiments, and (7) evaluation of the apparatus and its method and problems to be solved. (4 figs, 4 tabs, 4 refs)

  6. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  7. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  8. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  9. Trace gas measurements from tethered balloon platforms

    Science.gov (United States)

    Bandy, Alan R.; Bandy, Terese L.; Youngbluth, Otto; Owens, Thomas L.

    1987-01-01

    Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1-1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition of air downward of a saltwater marsh are reported. A method for obtaining the necessary data for solving the budget equations for surface fluxes, chemical formation rates and chemical destruction rates using data acquired from tethered balloon platforms is presented.

  10. TMBM: Tethered Micro-Balloons on Mars

    Science.gov (United States)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  11. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  12. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  13. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  14. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  15. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  16. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  17. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  18. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  19. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  20. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  1. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  2. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  3. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  4. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  5. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  6. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  7. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  8. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  9. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  10. Use of monorail PTCA balloon catheter for local drug delivery.

    Science.gov (United States)

    Trehan, Vijay; Nair, Girish M; Gupta, Mohit D

    2007-01-01

    We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.

  11. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  12. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  13. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  14. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Science.gov (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  15. Eigenvalues of the simplified ideal MHD ballooning equation

    International Nuclear Information System (INIS)

    Paris, R.B.; Auby, N.; Dagazian, R.Y.

    1986-01-01

    The investigation of the spectrum of the simplified differential equation describing the variation of the amplitude of the ideal MHD ballooning instability along magnetic field lines constitutes a multiparameter Schroedinger eigenvalue problem. An exact eigenvalue relation for the discrete part of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the eigenvalues lambda on the two free parameters γ 2 and μ 2 of the equation is discussed, together with certain analytical approximations in the limits of small and large γ 2 . A brief review of the principal properties of the spheroidal functions is given in an appendix

  16. Detachable balloon embolization of an aneurysmal gastroduodenal arterioportal fistula

    Energy Technology Data Exchange (ETDEWEB)

    Defreyne, Luc; De Schrijver, Ignace; Vanlangenhove, Peter; Kunnen, Marc [Department of Radiology and Medical Imaging, Ghent University Hospital (Belgium)

    2002-01-01

    Extrahepatic arteriovenous fistulas involving the gastroduodenal artery and the portal venous system are rare and almost always a late complication of gastric surgery. Secondary portal hypertension and mesenteric ischemia may provoke abdominal pain, upper and lower gastrointestinal hemorrhage, diarrhea, and weight loss. Until recently, surgical excision has been the therapy of choice with excellent results. The authors report a case of gastroduodenal arterioportal fistula with a rare large interpositioned aneurysm in a cardiopulmonary-compromised patient who was considered a non-surgical candidate. The gastroduodenal arterioportal fistula was occluded endovascularly by means of a detachable balloon. A survey of the literature of this rare type of arterioportal fistula is included. (orig.)

  17. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    a particular sounding, performed on a convective day and revealing water vapour enhancements of up to 0.6 ppmv as high as the 404 K (17.8 km level. These are shown to originate from convective overshoots upwind detected by an S-band weather radar operating locally in Bauru. The accurate in situ observations uncover two independent moisture pathways into the tropical lower stratosphere, which are hardly detectable by space-borne sounders. We argue that the moistening by horizontal transport is limited by the weak meridional gradients of water, whereas the fast convective cross-tropopause transport, largely missed by global models, can have a substantial effect, at least at a regional scale.

  18. Survey on weather changes associated with large-scale tree-planting. 2; Daikibo ryokuka ni tomonau kiko henka ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    An investigational study was made for large-scale tree-planting aiming at CO2 fixation. Water resource and precipitation relating to tree-planting were determined from NASA data and arranged into the global distribution map. It was found that Australia and the Chinese continent are under the relatively favorable condition. As for the soil condition, nutrition resource is short in the desert and unused zone. From the vegetation data obtained from meteorological satellite NOAA, developed was a method for estimating net primary productivity of terrestrial ecosystem and obtained was a global distribution map for the amount of CO2 fixed under the present terrestrial vegetation. At the same time, areas which have great potentiality of tree-planting were selected from the map for estimating potentiality of the global tree-planting. To study the promotion of rainfall as a means of expanding the potential tree-planting area, the conventional meteorological and physical model was improved, and more realistic simulation was made possible. Also as to the water utilization technology, the modeling method was developed. As the area having a potentiality of expanding tree-planting, Australia (especially the west) was cited as the first candidate, and China the second candidate. 108 refs., 128 figs., 49 tabs.

  19. PERCUTANEOUS BALLOON COMPRESSION OF GASSERIAN GANGLION FOR THE TREATMENT OF TRIGEMINAL NEURALGIA: AN EXPERIENCE FROM INDIA.

    Science.gov (United States)

    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V

    2015-02-01

    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the

  20. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  1. Scientific ballooning. Proceedings of the symposium on the scientific use of balloons and related technical problems, Innsbruck, Austria, May 29-June 10, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Riedler, W

    1979-01-01

    The book includes works on operational and technical aspects of balloon launching I and II, cooperative balloon campaigns, and new developments in scientific use of balloons. The specific topics discussed are coordinated balloon and rocket measurements of stratospheric wind shears and turbulence, ballooning in Japan and India, magnetospheric processes investigated with data taken from balloon flights, and remote sensing of middle atmosphere winds from balloon platforms.

  2. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  3. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  4. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  5. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    Science.gov (United States)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  6. Constant volume balloons measurements in the urban Marseille and Fos-Berre industrial ozone plumes during ESCOMPTE experiment

    Science.gov (United States)

    Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre

    ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear

  7. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    International Nuclear Information System (INIS)

    LAO, LL; SNYDER, PB; LEONARD, AW; OSBORNE, TH; PETRIE, TW; FERRON, JR; GROEBNER, RJ; HORTON, LD; KAMADA, Y; MURAKAMI, M; OIKAWA, T; PEARLSTEIN, LD; SAARELMA, S; STJOHN, HE; THOMAS, DM; TURNBULL, AD; WILSON, HR

    2002-01-01

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n ∼ 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P(prime) and the associated large edge bootstrap current density J BS . the interplay between P(prime) and J BS as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J BS is reduced

  8. Spectrum of ballooning instabilities in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Singleton, D B [Australian National Univ., ANU Supercomputing Facility, Canberra (Australia); Dewar, R L [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1995-08-01

    The recent revival of interest in the application of the `ballooning formalism` to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs.

  9. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  10. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  11. Balloon dilatation of the prostatic urethra

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Shim, Hyung Jin; Cha, Kyung Soo; Hong, Ju Hee; Lim, Myung Ah; Kim, Cheol Soo

    1991-01-01

    We analyzed the result of transurethral balloon dilatation in 11 patients with benign prostatic hypertrophy. The procedures were performed under intravenous sedation and local anesthesia with double lumen balloon catheter at 4 atmosphere for 10 minutes. After dilatation, the prostatism symptom scores improved in 10 out of 11 patients and the mean diameter of the prostatic urethra significantly increased form 4.3 mm to 10.2 mm (ρ < 0.005). The procedures were successful not only in lateral lobe hypertrophy but also in median lobe hypertrophy of the prostate. Postdilatation MRI of 1 patient showed an intact prostatic capsule and no periprostatic hematoma. Complications did not develop except in 1 patient with mild hematuria and incontinence. These preliminary results suggest that transurethral balloon dilatation can be an effective and safe treatment modality for benign prostatic hypertrophy

  12. Unconventional ballooning structures for toroidal drift waves

    International Nuclear Information System (INIS)

    Xie, Hua-sheng; Xiao, Yong

    2015-01-01

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode

  13. Innovations in Balloon Catheter Technology in Rhinology.

    Science.gov (United States)

    D'Anza, Brian; Sindwani, Raj; Woodard, Troy D

    2017-06-01

    Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Wind-Driven Montgolfiere Balloons for Mars

    Science.gov (United States)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  15. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  16. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  17. Efficacy of balloon temporary occlusion and intraoperative DSA in surgically difficult aneurysm

    International Nuclear Information System (INIS)

    Ezura, Masayuki; Mizoi, Kazuo; Yoshimoto, Takashi; Takahashi, Akira.

    1993-01-01

    A digital subtraction angiographic (DSA) apparatus has been installed in one of our operating rooms since April 1987. We performed intraoperative DSA in 42 aneurysmal surgeries in 38 patients and balloon temporary occlusion in 33 surgeries. The aneurysm was on an internal carotid artery in 26 cases and on the vertebro-basilar system in 16. A heparin-coated catheter (Anthron, Toray, Tokyo), 6 french in diameter, was inserted transfemorally and was put in a parent artery under general anesthesia. A balloon was temporarily inflated to determine inflation volume. The balloon catheter was soon deflated and was drawn back into the introducing catheter to avoid developing microembolus. The patients were not systemically heparinized but the introducing catheters were slowly flushed with heparinized saline during operation. Then a craniotomy was carried out. Next DSA was performed when temporary occlusion or confirmation of clipping was necessary. In cases of balloon temporary occlusion, the operating field was not obstructed as it is when a temporary clip is used, despite adequate flow reduction of the parent artery. After DSA for confirmation of clipping adjustment of it was performed in 12 cases out of 42. No complications occurred due to use of an introducing or a balloon catheter. We conclude that combined intravascular and neurosurgical approach, particularly for the large aneurysms with the difficulty of proximal control, can be a useful method of treatment. (author)

  18. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    Science.gov (United States)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  19. Disaster Coverage Predication for the Emerging Tethered Balloon Technology: Capability for Preparedness, Detection, Mitigation, and Response.

    Science.gov (United States)

    Alsamhi, Saeed H; Samar Ansari, Mohd; Rajput, Navin S

    2018-04-01

    A disaster is a consequence of natural hazards and terrorist acts, which have significant potential to disrupt the entire wireless communication infrastructure. Therefore, the essential rescue squads and recovery operations during a catastrophic event will be severely debilitated. To provide efficient communication services, and to reduce casualty mortality and morbidity during the catastrophic events, we proposed the Tethered Balloon technology for disaster preparedness, detection, mitigation, and recovery assessment. The proposed Tethered Balloon is applicable to any type of disaster except for storms. The Tethered Balloon is being actively researched and developed as a simple solution to improve the performance of rescues, facilities, and services of emergency medical communication in the disaster area. The most important requirement for rescue and relief teams during or after the disaster is a high quality of service of delivery communication services to save people's lives. Using our proposed technology, we report that the Tethered Balloon has a large disaster coverage area. Therefore, the rescue and research teams are given higher priority, and their performance significantly improved in the particular coverage area. Tethered Balloon features made it suitable for disaster preparedness, mitigation, and recovery. The performance of rescue and relief teams was effective and efficient before and after the disaster as well as can be continued to coordinate the relief teams until disaster recovery. (Disaster Med Public Health Preparedness. 2018;12:222-231).

  20. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  1. False coronary dissection with the new Monorail angioplasty balloon catheter.

    Science.gov (United States)

    Esplugas, E; Cequier, A R; Sabaté, X; Jara, F

    1990-01-01

    During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.

  2. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  3. Balloon catheter dilatation of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures.

  4. Balloon catheter dilatation of esophageal strictures

    International Nuclear Information System (INIS)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon

    1990-01-01

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures

  5. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  6. Performance of the EUSO-Balloon electronics

    International Nuclear Information System (INIS)

    Barrillon, P.; Dagoret, S.; Miyamoto, H.; Moretto, C.; Bacholle, S.; Blaksley, C; Gorodetzky, P.; Jung, A.; Prévôt, G.; Prat, P.; Bayer, J.; Blin, S.; Taille, C. De La; Cafagna, F.; Fornaro, C.; Karczmarczyk, J.; Tanco, G. Medina; Osteria, G.; Perfetto, F.; Park, I.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight

  7. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  8. Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash

    International Nuclear Information System (INIS)

    Xi, P. W.; Xu, X. Q.; Wang, X. G.; Xia, T. Y.

    2012-01-01

    The E × B shear flow plays a dual role on peeling-ballooning modes and their subsequently triggered edge localized mode (ELM) crashes. On one hand, the flow shear can stabilize high-n modes and twist the mode in the poloidal direction, constraining the mode's radial extent and reducing the size of the corresponding ELM. On the other hand, the shear flow also introduces the Kelvin-Helmholtz drive, which can destabilize peeling-ballooning modes. The overall effect of equilibrium shear flow on peeling-ballooning modes and ELM crashes depends on the competition between these two effects. When the flow shear is either small or very large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing effect from the Kelvin-Helmholtz term is dominant and leads to larger ELM crashes.

  9. Vertebral Arteriovenous Fistula Presenting as Cervical Myelopathy: A Rapid Recovery with Balloon Embolization

    International Nuclear Information System (INIS)

    Modi, Manish; Bapuraj, J. Rajiv; Lal, Anupam; Prabhakar, S.; Khandelwal, N.

    2010-01-01

    A 24-year-old male presented with progressive cervical myelopathy of 2 months' duration. Magnetic resonance imaging of the cervical spine and angiography revealed a large arteriovenous fistula arising from the left vertebral artery. The present case highlights the clinical features and dramatic recovery following endovascular balloon occlusion of a giant cervical arteriovenous fistula.

  10. Clinical experience with the Monorail balloon catheter for coronary angioplasty.

    Science.gov (United States)

    Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W

    1988-01-01

    The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.

  11. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...

  12. Framing alters risk-taking behavior on a modified Balloon Analogue Risk Task (BART) in a sex-specific manner.

    Science.gov (United States)

    Gabriel, Kara I; Williamson, Ashley

    2010-12-01

    Framing uncertain scenarios to emphasize potential positive or negative elements influences decision making and behavior. The current experiment investigated sex differences in framing effects on risk-taking propensity in a modified version of the Balloon Analogue Risk Task (BART). Male and female undergraduates completed questionnaires on sensation seeking, impulsiveness, and risk and benefit perception prior to viewing one of three framing conditions for the BART: (1) positively-framed instructions emphasizing the ability to earn money if balloons were inflated to large size; (2) negatively framed instructions emphasizing the possibility that money could be lost if balloons were inflated to bursting; and (3) completely framed instructions noting both possible outcomes. Results revealed correlations between BART performance and impulsiveness for both sexes. Compared to positive and complete framing, negatively framed instructions decreased balloon inflation time in women but not men, indicating sex differences in response to treatments designed to alter risk-taking behavior.

  13. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  14. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  15. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the rvec B field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field δB parallel and electrostatic potential Φ along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric δB parallel , and Φ structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta (β parallel ≥ O(1)) and pressure anisotropy (P perpendicular /P parallel > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values

  16. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    Science.gov (United States)

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; Eichenberger, R. I.

    2014-01-01

    Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced

  18. Percutaneous balloon dilation of pulmonary stenosis

    International Nuclear Information System (INIS)

    Hua Yangde; Huang Ming; Li Jinkang; Qian Jinqing; Chen Xiuyu; Yang Siyuan

    2003-01-01

    Objective: Review our experience of balloon dilation of valvular pulmonary stenosis in 32 cases. Methods: Totally 32 cases of pulmonary stenosis admitted from 1995-2001 with age of 1.5-13 yrs mean 6.8. Diagnosis was made by clinical manifestations, EKG, ECHO and angiocardiography. Results: Before dilation, the mean systolic pressure of right ventricle was (93.5 ± 28.5) mmHg, after the procedure it reduced to (42 ± 9.0) mmHg. The pressure gradient between right ventricle and pulmonary artery before dilation was (76 ± 30) mmHg and become (24.5 ± 8.5) mmHg after dilation. The gradient pressure after dilation was less than 25 mmHg in 90.6% cases. A case of Noonan syndrome showed no response to balloon dilation and died during valvulectomy from accompanying left ventricular cardiomyopathy. Conclusions: Balloon dilation of valvular pulmonary stenosis is effective and safe. The selection of proper diameter of pulmonary valvular rings and sized of the balloon are the major factors

  19. There is a Text in 'The Balloon'

    DEFF Research Database (Denmark)

    Elias, Camelia

    2009-01-01

    From the Introduction: Camelia Elias' "There is a Text in 'The Balloon': Donald Barthelme's Allegorical Flights" provides its reader with a much-need and useful distinction between fantasy and the fantastic: "whereas fantasy in critical discourse can be aligned with allegory, in which a supernatu...

  20. Viscoresistive g-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Paris, R.B.

    1980-01-01

    The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability

  1. Teacher's Guide for Balloons and Gases.

    Science.gov (United States)

    Griffith, Joe H.; And Others

    This guide was developed to provide children with an opportunity to prepare and collect several common gases and to discover and work with some of their properties. The guide is divided into five major sections: (1) introduction, (2) materials, (3) activities, (4) balloons aloft, and (5) an appendix. The introduction provides information…

  2. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  3. Teaching Earth Science Using Hot Air Balloons

    Science.gov (United States)

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  4. Balloon-borne radiometer profiler: Field observations

    International Nuclear Information System (INIS)

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given

  5. Modified jailed balloon technique for bifurcation lesions.

    Science.gov (United States)

    Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato

    2017-12-04

    We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.

  6. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  7. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  8. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  9. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  10. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  11. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  12. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  13. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  14. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  15. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  16. Overview of the NASA balloon R&D program

    Science.gov (United States)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  17. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  18. Barrage balloons against aircraft threat: A well proven concept revisited

    International Nuclear Information System (INIS)

    Petrangeli, Gianni

    2010-01-01

    Since the event of September 11, 2001 in New York City, many people started to speculate that the same type of attack could in future be brought against other installations. Indeed, the U.S. Nuclear Regulatory Commission decided to require for future plants to assess their resistance to the impact of a large civil airliner. Nuclear plant control authorities of other countries decided in a similar direction. The solutions to the technical problem is usually pursued in the direction of a reinforcement of external plant structures and, in some case, they may not be sufficient. Other solutions of more psychological nature have also been adopted. This paper aims at the demonstration that the use of barrage balloons, already adopted with success in both World Wars and also occasionally after these events, can afford a satisfactory solution to the protection problem at a reasonable cost. This solution is also applicable to existing plants. The history of barrage balloons is summarized. Modern technology offers electronic devices capable to detect in time an approaching threat and the paper describes a new barrage system based also on such new possibilities. If the aircraft crash problem is a real one or not for the next years, nobody knows for sure; however some considerations should be kept in mind: ·The fact that an accident of this kind 'anywhere' is an accident 'everywhere' as usual; ·The extremely uncertain political outlook worldwide, the peculiarities of the oil market and the possible nuclear renaissance.

  19. The response of superpressure balloons to gravity wave motions

    Directory of Open Access Journals (Sweden)

    R. A. Vincent

    2014-04-01

    Full Text Available Superpressure balloons (SPB, which float on constant density (isopycnic surfaces, provide a unique way of measuring the properties of atmospheric gravity waves (GW as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of investigating the SPB response to GW motions. It is shown that the results agree well with more rigorous numerical simulations of balloon motions and provide a better understanding of the response of SPB to GW, especially at high frequencies. The methodology is applied to ascertain the accuracy of GW studies using 12 m diameter SPB deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the situation in earlier campaigns, the vertical displacements of the SPB were measured directly using GPS. It is shown using a large number of Monte Carlo-type simulations with realistic instrumental noise that important wave parameters, such as momentum flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB observations for intrinsic wave periods greater than ca. 10 min. The noise floor for momentum flux is estimated to be ca. 10−4 mPa.

  20. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  1. In vitro analysis of balloon cuffing phenomenon: inherent biophysical properties of catheter material or mechanics of catheter balloon deflation?

    Science.gov (United States)

    Chung, Eric; So, Karina

    2012-06-01

    To investigates the different methods of balloon deflation, types of urinary catheters and exposure to urine media in catheter balloon cuffing. Bardex®, Bard-Lubri-Sil®, Argyle®, Releen® and Biocath® were tested in sterile and E.Coli inoculated urine at 0, 14 and 28 days. Catheter deflation was performed with active deflation; passive deflation; passive auto-deflation; and excision of the balloon inflow channel. Balloon cuffing was assessed objectively by running the deflated balloon over a plate of agar and subjectively by 3 independent observers. Bardex®, Argyle® and Biocath® showed greater degree of catheter balloon cuffing (p deflation was the worst method (p 0.05). Linear regression model analysis confirmed time as the most significant factor. The duration of catheters exposure, different deflation methods and types of catheters tested contributed significantly to catheter balloon cuffing (p < 0.01).

  2. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar; Wu, Xiaofeng; Maczka, Tomasz; Kwan, Trevor; Huang, Yijun; Mares, Vladimir

    2016-01-01

    This paper reports the near space ballooning experiment carried out at Australian outback town West Wyalong (33°51′S, 147°24′E) on 19 July 2015. Several dedicated electronic detectors including digital temperature and acceleration (vibration) sensors and an energy compensated PIN-diode gamma ray dosimeter were installed in a thermally insulated Styrofoam payload box. A 9 V Lithium-Polymer battery powered all the devices. The payload box was attached to a helium-filled latex weather balloon and set afloat. The balloon reached a peak burst altitude of 30 km and then soft-landed aided by a self-deploying parachute 66.2 km away form the launch site. The payload box was retrieved and data collected from the electronic sensors analysed. The integrated cosmic ray induced photon ambient dose equivalent recorded by the PIN diode detector was evaluated to be 0.36 ± 0.05 μSv. Furthermore, a high-altitude extended version of commercially available aviation dosimetry package EPCARD.Net (European Program package for the Calculation of Aviation Route Doses) was used to calculate the ambient dose equivalents during the balloon flight. The radiation environment originated from the secondary cosmic ray shower is composed of neutrons, protons, electrons, muons, pions and photons. The photon ambient dose equivalent estimated by the EPCARD.Net code found to be 0.47 ± 0.09 μSv. The important aspects of balloon based near-space radiation dosimetry are highlighted in this paper. - Highlights: • Near space ballooning experiment in Australian outback. • A PIN diode based gamma dosimeter was sent to an altitude of 30 km. • Ambient photon dose equivalent was evaluated as a function of altitude. • Results agreed well with the simulated data delivered by EPCARD.Net Code. • The atmospheric temperature and payload jerks were also assessed.

  3. Science behind the scenes during Fossett's recent around-the-world ballooning effort

    Science.gov (United States)

    Showstack, Randy

    “In my mind, there's no question. If you eliminate that one temporary setback, he completes the global,” Bob Rice said on August 17, exhausted after having slept little during the previous 8 ½ days of intensive weather forecasting and emotional roller coaster riding.As chief meteorologist for the Solo Spirit balloon trip, Rice helped to navigate 54-yearold balloonist and businessman Steve Fossett on his fourth attempt to circle the globe nonstop. During that effort, which began at 23:30 UTC on August 7 from Mendoza, Argentina, Fossett had floated 24,460 km—63% of the way around the world longitudinally-surpassing his previous world distance record of 16,674 km set in January 1997. His “roziere” balloon, a combination of gas and hot air, had risen or descended to avoid violent weather systems and winds that would blow him in the wrong direction, and to catch air currents that would push his vessel along. With the Atlantic and Indian Oceans and Australia behind him, only the wide Pacific Ocean lay in Fossett's path.

  4. Response of Balloon-Expandable Endoprosthetic Metallic Stents Subjected to Over-Expansion In Vitro

    International Nuclear Information System (INIS)

    Montague, B. J.; Kakimoto, W. M.; Arepally, A.; Razavi, M.; Dake, M. D.; Hofmann, L. V.

    2004-01-01

    We attempted to evaluate the in vitro behavior and performance of balloon-expandable endoprosthetic metallic stents subjected to over-expansion (OE). Seventy-two balloon-expandable endoprosthetic stents, representing 22 models from six manufacturers, were over- expanded in vitro. Stents were initially expanded to their maximum manufacturer- recommended diameter and then over-expanded incrementally to their endpoints. Endpoints for OE were either stent disarticulation or an inability to undergo further expansion despite balloon insufflation to maximum burst pressure. Measurements of stent dimensions were recorded at each overexpanded diameter and comparisons were made to manufacturer's specifications. A total of 288 balloon-driven expansions were performed on 72 stents. Sixteen stents were expanded to large diameters (≥ 16 mm), 20 stents underwent OE of 50% or greater. One model tended to disarticulate after OE greater than 50%. There were five models that had a tendency to disarticulate after minimal OE. Five models were resistant to OE (25% or less OE) but did not disarticulate. Nearly all stents showed some degree of foreshortening with OE, while 36 stents underwent foreshortening of 30% or more. Models that are not recommended for OE include Intrastent, Intrastent DoubleStrut, NIR Royale and Omniflex. Good candidates for OE include Intrastent DoubleStrut LD, Palmaz large, Medtronic Extra Support Biliary Plus and Medtronic Flexible Biliary. Palmaz XL remains the only model available for expansion from 20 to 28 mm in diameter. For the remaining stents, OE is possible, however, caution should be used

  5. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  6. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  7. Retrograde prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    The authors performed retrograde prostatic urethroplasty in 18 patients using a 25-mm urethroplasty balloon catheter. The procedure was performed on an outpatient basis under local anesthesia. Voiding cystourethrography, retrograde urethrography, rectal US, and MRE imaging were performed before and immediately after the procedure and at 2 weeks and 3, 6, 12, and 18 months. Long-term results at 18 months and possible clinical implications are discussed

  8. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  9. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  10. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  11. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  12. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  13. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  14. NOAA Weather Radio

    Science.gov (United States)

    del tiempo incluido. Si eres quieres ser avisado de las advertencias y relojes de día o de noche, un Weather Radio relojes son independientes o basadas en el Condado (parroquia basados en Luisiana), aunque

  15. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  16. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  17. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  18. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  20. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  1. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  2. Demonstration of free-space optical communication for long-range data links between balloons on Project Loon

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William

    2017-02-01

    Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the

  3. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  4. NATO Advanced Research Workshop on The Chemistry of Weathering

    CERN Document Server

    1985-01-01

    Several important developments in our understanding of the chemistry of weathering have occurred in the last few years: 1. There has been a major breakthrough in our understanding of the mechanisms controlling the kinetics of sil icate dissolution, and there have been major advances in computer modeling of weathering processes. 2. There has been a growing recognition of the importance of organic solutes in the weathering process, and hence of the inter-relationships between mineral weathering and the terrestrial ecosystem. 3. The impact of acid deposition ("acid rain") has been widely recognized. The processes by which acid deposition is neutral ized are closely related to the processes of normal chemical weathering; an understanding of the chemistry of weathering is thus essential for predicting the effects of acid deposition. 4. More high-qual ity data have become available on the chemical dynamics of smal I watersheds and large river systems, which represent the integrated effects of chemical weathering.

  5. Recent activities on the scientific ballooning in Japan

    International Nuclear Information System (INIS)

    Nisimura, J.; Hirosawa, H.

    1984-01-01

    Scientific ballooning is Japan has been organized by the Institute of Space and Astronautical Science, and about 15 balloons have been launched each year from Sanriku Balloon Center that belongs to this Institute. The balloon center is located in the northern part of Japan. The observations cover the field of X-ray, gamma-ray, infrared astronomy, cosmic rays, and atmospheric science. Systems of lon duration flights such as 'Boomerang Balloons', and fine attitude control systems were developed and widely applied to the scientific observations. International collaborative works were performed in Australia and Indonesia last year. Some details of these activities are reported and possible future collaborations with Braziian balloon group are also discussed. (Author) [pt

  6. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  7. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  8. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won

    2005-01-01

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  9. Resistive ballooning modes in W7-AS and W7-X

    International Nuclear Information System (INIS)

    Kaiser, R.

    1993-01-01

    'Critical' pressure gradients due to resistive ballooning modes and their growth rates were computed for the W7-AS stellarator and for a HELIAS configuration with W7-X parameters, and the two configurations were compared. The results are based on the evaluation of a fourth order magnetic differential equation along closed magnetic field lines. The numerical procedure applying a variational approach uses the 'Garching resistive ballooning code', GARBO, which was originally developed for the stability analysis of axisymmetric plasmas. Concerning purely growing modes, this analysis shows that the favourable stability properties of W7-X, already optimized with respect to ideal ballooning modes, persist in the resistive regime: the destabilizing effect of resistivity is largely compensated by the stabilizing contribution of plasma compression. As a consequence, the ideal β limit continues only moderately shifted in the resistive case and likewise ideal ballooning stable equilibria (up to β 0 ≅ 5%) do not become resistively unstable. The situation is different for W7-AS. Greater resistive effects (in comparison with W7-X) are found in a configuration that is already ideally much more unstable. A basic feature in resistive calculations is the occurrence of overstable modes. These modes no longer show a stability threshold and, for realistic values of pressure and resistivity, linear instability is obtained for W7-AS as well as for W7-X, with growth rates and oscillation frequencies in the kilo-Hertz range. (author). 29 refs, 13 figs

  10. Balloon Cell Malignant Melanoma in a Young Female: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Yui Hattori

    2016-04-01

    Full Text Available Balloon cell malignant melanoma (BCMM is a very rare malignant melanoma subtype. The clinical appearance of BCMM varies; it may be nodular, ulcerated, polypoid, papillomatous and often non-pigmented. The tumor cells histologically appear large, polygonal or round and contain abundant granular or vacuolated cytoplasm. We herein report the case of a 32-year-old female who presented with a focal eccentric pigmented mass in the left lumbar region of 15 mm in diameter that had been present for several years. She underwent tumor excision. The histopathological analysis showed epithelioid melanocytes with clear cytoplasm. An immunohistochemical analysis revealed that the cells were positive for HMB-45 and S-100 protein and negative for cytokeratin. The balloon cell component stained negative for Fontana-Masson. A month later, the patient underwent excision of the bilateral inguinal lymph nodes and metastatic BCMM was revealed. The lymph node metastases showed the complete replacement of lymph nodes by balloon cells. A diagnosis of BCMM (Breslow depth 10 mm, Clark level V without ulcer was rendered. Staining with Ki-67 was positive in almost 44% of the balloon cells.

  11. Ballooning mode instability due to slowed-down ALPHA -particles and associated transport

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Tuda, Takashi; Tokuda, Shinji.

    1982-01-01

    The microscopic stability of tokamak plasma, which contains slowed-down alpha-particles and the anomalous fluxes enhanced by the fluctuation, was studied. The local maxwellian distribution with the density inhomogeneity as the equilibrium distribution of electrons, ions and alpha-particles was closen. In the zero-beta limit, two branches of eigenmodes, which are electrostatic, were obtained. The electrostatic ballooning mode became unstable by the grad B drift of particles in the toroidal plasma. It should be noted that there was no critical alpha-particle density and no critical beta-value for the onset of the instability in toroidal plasma even in the presence of the magnetic shear. When the beta-value exceeded the critical beta-value of the MHD ballooning mode, the growth rate approached to that of the MHD mode, and the mode sturcture became very close to that of the MHD mode. The unstable mode in toroidal plasma was the ballooning mode, and was unstable for all plasma parameters. The associated cross-field transport by the ballooning mode is considered. It was found that if the distribution function was assumed to be the birth distribution, the loss rate was very slow and slower than the slowing down time. The effect of alpha-particles on the large scale MHD activity of plasma is discussed. (Kato, T.)

  12. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  13. Location and data collection for long stratospheric balloon flights

    Science.gov (United States)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  14. Assessing Weather Curiosity in University Students

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  15. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  16. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    Science.gov (United States)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  17. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  18. Deflation of gastric band balloon in pregnancy for improving outcomes.

    Science.gov (United States)

    Jefferys, Amanda E; Siassakos, Dimitrios; Draycott, Tim; Akande, Valentine A; Fox, Robert

    2013-04-30

    In line with the rise in the prevalence of obesity, an increasing number of women of childbearing age are undergoing laparoscopic adjustable gastric banding (LAGB), resulting in an increasing number of pregnancies with a band in place. Currently, there is no consensus on optimal band management in pregnancy. Some clinicians advocate leaving the band balloon inflated to reduce gestational weight gain and associated adverse perinatal outcomes. However, there are concerns that maintaining balloon inflation during pregnancy might increase the risk of band complications and adversely affect fetal development and/or growth as a result of reduced nutritional intake. To compare maternal and perinatal outcomes for elective gastric band balloon deflation versus intention to maintain balloon inflation during pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and the Web of Science database (1940 to September 2012). Randomised-controlled trials comparing elective deflation of the gastric band balloon with intention to maintain balloon inflation in pregnant women who have undergone LAGB. Two review authors independently assessed studies for inclusion. No studies met the criteria for inclusion in the review. To date no randomised controlled trials exist that compare elective deflation of the gastric band balloon in pregnancy versus intention to maintain balloon inflation. Further research is needed to define the optimum management of the gastric band balloon in pregnancy.

  19. Hyperspectral Polarimeter for Monitoring Balloon Strain, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest generation of superpressure, ultra long duration balloons (ULDB) extend the flight time for stratospheric experiments to levels previously unattainable...

  20. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  1. [Balloon cell nevi of the conjunctiva (author's transl)].

    Science.gov (United States)

    Schlageter, P E; Daicker, B

    1975-06-01

    The clinical and histological features of three cases of conjunctival balloon cell nevi are described. This peculiar form of nevus is very rare in the conjunctiva. The findings are compared with the descriptions in the literature of dermal balloon cell nevi. They demonstrate, that the conjunctival and dermal tumours are of idential histological structure. The proliferations of the conjunctival epithelium often found in conjunctival nevi do not modify the balloon cell nevi. These can not be diagnosed clinically. The problems of the pathogenesis of the balloon cell nevi are discussed.

  2. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  3. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    Science.gov (United States)

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere.

  4. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    Science.gov (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  5. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data.

    Science.gov (United States)

    Dell'Acqua, Fabio; Iannelli, Gianni Cristian; Torres, Marco A; Martina, Mario L V

    2018-02-14

    Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data-such as municipality-level records of crop seeding-for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using "good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The paper presents the problem

  6. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data

    Directory of Open Access Journals (Sweden)

    Fabio Dell’Acqua

    2018-02-01

    Full Text Available Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data—such as municipality-level records of crop seeding—for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using “good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The

  7. Directable weathering of concave rock using curvature estimation.

    Science.gov (United States)

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  8. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  9. Economics of extreme weather events: Terminology and regional impact models

    OpenAIRE

    Jahn, Malte

    2015-01-01

    Impacts of extreme weather events are relevant for regional (in the sense of subnational) economies and in particular cities in many aspects. Cities are the cores of economic activity and the amount of people and assets endangered by extreme weather events is large, even under the current climate. A changing climate with changing extreme weather patterns and the process of urbanization will make the whole issue even more relevant in the future. In this paper, definitions and terminology in th...

  10. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  11. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate

  12. TLE Balloon experiment campaign carried out on 25 August 2006 in Japan

    Science.gov (United States)

    Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.

    2006-12-01

    The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.

  13. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  14. The use of balloon-expandable metallic stents in the treatment of pediatric tracheomalacia and bronchomalacia.

    Science.gov (United States)

    Furman, R H; Backer, C L; Dunham, M E; Donaldson, J; Mavroudis, C; Holinger, L D

    1999-02-01

    To evaluate the use of balloon-expandable metallic stents in the treatment of children with tracheomalacia and bronchomalacia in whom conventional therapy has failed. Retrospective case series. Tertiary pediatric otolaryngology and cardiothoracic surgery referral center. Six patients were identified as having undergone bronchoscopic placement of metallic balloon-expandable stents between 1994 and 1997. The age at stent placement, prior surgical interventions, and indications for and sites of stent placement were noted. Also, the complications related to stent placement and the current airway status of the patients were reviewed. Twelve balloon-expandable metallic angioplasty stents (Palmaz; Johnson & Johnson Interventional Systems Co, Warren, NJ) were placed bronchoscopically in 6 patients. Six stents were placed in the lower trachea, and 6 were placed in the main bronchi. The stents were balloon expanded under fluoroscopic guidance. Discontinuation of mechanical ventilation. The age at stent placement ranged from 1.5 to 38 months (mean age at placement, 10 months). The indications for stent placement were (1) tracheomalacia or bronchomalacia, (2) pericardial patch or slide tracheoplasty failure, and (3) bronchomalacia caused by tetralogy of Fallot and large pulmonary arteries. The primary complication of stent placement was postoperative granulation tissue formation. One patient required the removal of 2 tracheal stents because of granulation tissue formation. There were 2 deaths in the series, 1 possibly related to stent placement. Four of the 6 patients were weaned from mechanical ventilation, and 3 experienced prolonged relief of airway obstruction. Metallic balloon-expandable stents are effective in relieving lower tracheomalacia and bronchomalacia in select patients. Only patients in whom conventional therapy has failed should be considered for stent placement.

  15. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  16. Retrograde transurethral balloon dilation of the prostate

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Wasserman, N.F.; Lund, G.; Hulbert, J.; Hunter, D.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1986-01-01

    A series of patients with documented benign prostatic hypertrophy evaluated by urodynamic studies, voiding cystourethrography, retrograde urethrography, and MR imaging underwent dilation performed using a retrograde transurethral approach with 25-mm balloon dilators inflated at a pressure of 3-4 atm for 10 minutes. Immediately after the procedure, retrograde and voiding cystourethrography as well as MR imaging were performed. A Foley catheter was left in place for 24 hours. Complete relief of symptoms has occurred in all of the patients during the follow-up period. No significant complications other than transient hematuria resulted from the procedure. Results of the comparison studies and of MR imaging are discussed

  17. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  18. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  20. Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.

    Science.gov (United States)

    Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F

    2014-04-01

    Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.

  1. On-line in-situ measurements in the boundary layer: Manned hydrogen balloons as quasi Lagrange platforms

    Energy Technology Data Exchange (ETDEWEB)

    Rappengluck, B.; Fabian, P. [Ludwig-Maximilian Univ., Dept. of Bioclimatology and Emission Research, Munich (Germany); Euskirchen, J. [Inst. for Scientific Balloonflight e.V., Waidhofen (Germany)

    1999-11-01

    In-situ measurements of atmospheric trace constituents such as nitrogen dioxide, ozone, peroxy acetyl nitrate (PAN), and non-methane hydrocarbon compounds (NMHC) are essential parameters for understanding photochemical processes. This paper discusses some of the lessons learned and some of the results of a field measurement project dubbed BERLIOZ (for Berlin Ozone), carried out in July/August 1998 in the Greater Berlin Area to investigate several key questions concerning the evolution of photochemical smog within an urban plume, and the role of advection and turbulence for oxidants. A comprehensive network of ground-based measurement sites, vertical sounding techniques such as tethered balloons and laser-based radar, mobile stations for profile measurements, five aircraft and one manned free-balloon were used in the project. BERLIOZ was the first major atmospheric research project to use a hydrogen balloon platform for quasi-Lagrangian measurements. It confirmed the balloon`s suitability as a tool for better understanding of large area information gathered by remote sensing missions. 5 refs., 6 figs.

  2. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  3. Climate, weather, and hops

    Science.gov (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  4. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  5. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  6. Balloon catheter dilation of benign esophageal stenosis in children

    International Nuclear Information System (INIS)

    Fan Guoping; Yu Juming; Zhong Weixing; Zhu Ming; Wu Yeming; Shi Chengren

    2001-01-01

    Objective: To evaluate the methods and effect of balloon catheter dilation of benign esophageal stenosis in children. Methods: 9 cases had an anastomotic stenosis after surgical correction of esophageal atresia; 11 cases of esophageal stenosis due to ingestion of caustics; one case had an lower esophageal stenosis after Nissen surgery and one case after gastro-esophagoplasty. Age ranged from 17 days to 7 years. Each case had a barium esophagram before balloon dilation. The balloon size varied from 3 to 10 mm in diameter. Results: 21 cases were successful after dilation of balloon catheter. There were no esophageal perforation and complications. The satisfactory results maintained from six months to thirty months. Conclusions: Balloon catheter dilation is a simple, safe and reliable method for the treatment of benign esophageal strictures in children as the first choice

  7. A Rare and Serious Unforeseen Complication of Cutting Balloon Angioplasty

    Directory of Open Access Journals (Sweden)

    Praveen Vemula

    2014-01-01

    Full Text Available Cutting balloon angioplasty (CBA is one of the adept ways of treating “in-stent restenosis.” Various complications related to cutting balloon angioplasty have been reported including arterial rupture, delayed perforation and fracture of microsurgical blades. Here we report a very unusual and inadvertent extraction of a stent previously deployed in the ramus intermedius coronary branch by a cutting balloon catheter. This required repeat stenting of the same site for an underlying dissection. Even though stent extraction is a rare complication it can be serious due to dissection, perforation, and closure of the artery. Physicians performing coronary artery interventions would need to be aware of this rare and serious complication especially if any difficulty is encountered while withdrawing the cutting balloon. Therefore, after removal, cutting balloon should be examined thoroughly for possible stent dislodgment or extraction when used for “in-stent restenosis.”

  8. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  9. Weatherization Works: Weatherization Assistance Program Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  11. Spectrum of the ballooning Schroedinger equation

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1997-01-01

    The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θ k is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θ k

  12. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    Through high energy neutrino astrophysics, we explore the structure and evolution of the universe in a unique way and learn about the physics inside of astrophysical sources that drives the acceleration of the highest energy particles. Neutrinos travel virtually unimpeded through the universe, making them unique messenger particles for cosmic sources and carrying information about very distant sources that would otherwise be unavailable. The highest energy neutrinos (E>10^{18} eV), created as a by-product of the interaction of the highest energy cosmic rays with the cosmic microwave background, are an important tool for determining the origin of the highest energy cosmic rays and still await discovery. Balloon-borne and ground-based experiments are poised to discover these ultra-high energy (UHE) cosmogenic neutrinos by looking for radio emission from two different types of neutrino interactions: particle cascades induced by neutrinos in glacial ice, and extensive air showers in the atmosphere induced by the charged-particle by-product of tau neutrinos interacting in the earth. These impulsive radio detectors are also sensitive to radio emission from extensive air showers induced directly by UHE cosmic rays. Balloon-borne experiments are especially well-suited for discovering the highest energy neutrinos, and are the only way to probe the high energy cutoff of the sources themselves to reveal the astrophysics that drives the central engines inside the most energetic accelerators in the universe. Balloon platforms offer the chance to monitor extremely large volumes of ice and atmosphere, but with a higher energy threshold compared to ground-based observatories, since the neutrino interaction happens farther from the detector. This tradeoff means that the sensitivity of balloon-borne experiments, such as the Antarctic Impulsive Transient Antenna (ANITA) or the ExaVolt Antenna, is optimized for discovery of the highest energy neutrinos. We are developing an

  13. Climatic and weather factors affecting fire occurrence and behavior

    Science.gov (United States)

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  14. The use of double-balloon enteroscopy in retrieving mucosal biopsies from the entire human gastrointestinal tract

    DEFF Research Database (Denmark)

    Rhee, Nicolai Alexander; Vilmann, Peter; Hassan, Hazem

    2014-01-01

    OBJECTIVE: The aim of this explorative study was to evaluate double-balloon enteroscopy (DBE) as a new tool for collecting mucosal biopsies from well-defined parts of the entire small and large bowel in patients with type 2 diabetes and in matched healthy subjects. MATERIAL AND METHODS: Twelve su...... possibility to access hitherto unexplored human anatomy and physiology....

  15. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  16. History of surface weather observations in the United States

    Science.gov (United States)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  17. Investigation of possible sun-weather relationships

    International Nuclear Information System (INIS)

    Businger, S.

    1978-01-01

    Statistical correlations between anomalous solar activity (as denoted by large solar flares, active plages, and interplanetary magnetic sector boundaries) and the circulation of the troposphere are reviewed. Two indices (measuring atmospheric vorticity and mean zonal geostrophic flow in the northern hemisphere) are analyzed in an effort to reveal possible sun-weather relationships. The result of this analysis provides no additional statistical evidence for a connection between solar activity and the weather. Finally, physical mechanisms that have been suggested to explain the claimed correlations are discussed

  18. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  19. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  20. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  1. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  2. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  3. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    International Nuclear Information System (INIS)

    Edwards, Boyd F; Sam, David D; Christiansen, Michael A; Booth, William A; Jessup, Leslie O

    2014-01-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages. (paper)

  4. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  5. Microcontroller uses in Long-Duration Ballooning

    Science.gov (United States)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required

  6. Introducing the Global Fire WEather Database (GFWED)

    Science.gov (United States)

    Field, R. D.

    2015-12-01

    The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/

  7. Central American Flying Weather

    Science.gov (United States)

    1985-12-01

    CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic

  8. World Weather Extremes. Revision,

    Science.gov (United States)

    1985-12-01

    Ext r-,ncs, Weekl Weather and Crop Bull, Vol. 43, No. 9, pp. 6-8, 27 Feb 56. 21A. ntoli, La Piu Alta Temperatura del Mondo," [The HiLhest Temperi... Temperatura in Libia", Boll Soc Geogr Ita’iana, ser. 8, Vol. 7, pp. 59-71, 1954. 23J. Gentilli, "Libyan Climate", Geograph Rev, V0 l. 45, No. 2, p. 269 S" Apr

  9. Boston's balloon dilatation for treatment of cardiac achalasia

    International Nuclear Information System (INIS)

    Yin Jianguo; Song Jinwen; Yang Yan; Liu Xiaohong; Fu Zhiming; Zhang Yaqin

    2001-01-01

    Objective: To review and summarize effectiveness and method of the Boston's balloon dilation in cardiac achalasia. Methods: The intensified guide wire was inserted into stomach through mouth cavity under TV control. The Boston's balloon was inserted to the cardiac stricture through the guide wire and dilatated with 15% contrast medium with to a maximum diameter for five minutes and then the balloon was dilatated again for 3-5 minutes, all together for 3-4 times. The severe stricture must be pre-dilatated with 20-25 mm diameter balloon. Results: The balloon insertion was technically successful in all 26 patients. The once success of balloon dilation was achieved in 24 patients and twice in other 2. Follow-up time was from 2 weeks to 31 months (mean 10.6 months). Recurrent stenosis had not occurred in all patients. Remission rate of dysphagia was 100%. Esophageal reflux occurred in 3 patients. Conclusions: The Boston's balloon dilatation is simple and effective for treatment of cardiac achalasia. The method sometimes may replace surgical procedure

  10. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  11. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth's atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth's climate that may be caused by radiatively active gases introduced into the earth's atmosphere by man's activities. Radiatively active trace gases produce temperature changes in the earth's atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992

  12. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  13. Ballooning modes on open magnetic field lines

    International Nuclear Information System (INIS)

    Hameiri, E.

    1999-01-01

    The ballooning instability on open magnetic field lines is given a thorough mathematical analysis. It is shown that resistive bounding ends (endplates) induce the same stability properties as insulating ends. When unstable, the maximal growth rate increases monotonically with boundary resistivity. An interchange instability may be present, and one necessary condition for its stability is that ∫dl/B be constant on pressure surfaces. (This is an equilibrium existence condition for systems with closed magnetic field lines.) Another necessary condition for interchange stability has the same form as in the closed line case. Precise necessary and sufficient stability criteria are given for various types of bounding ends, including insulating, resistive, and perfectly conducting. copyright 1999 American Institute of Physics

  14. Ballooning instabilities in toroidally linked mirror systems

    International Nuclear Information System (INIS)

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  15. Percutaneous balloon dilatation for transplant ureteral strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chul [Chungnam National University School of Medicine, Taechun (Korea, Republic of); Banner, Marc P [University of Pennsylvania School of Medicine, Philadelphia (United States)

    1993-09-15

    We report 10 kidney allografted patients treated for 11 ureteral strictures with standard endourlogic balloon catheter dilatation and internal stenting between August 1979 and December 1991. They have been followed until 2 to 140 months (mean 42). We compared and analyzed the 6 successful strictures (54%) and 5 unsuccessful strictures. There was no statistically significant difference of demographic, clinical and radiologic interventional techniques between two groups. But there was slightly higher success rate in abruptly narrowed shorter fibrotic strictures in ureteroneocystomy sites than smoothly taped longer ones in other sites of the ureter. Longterm stenting by the transplantation team with cystoscopic removal of internal ureteral stents by urologists resulted in 3 cases of stent occlusion, encrustation or fracture. Exact early diagnosis of ureteral stricture with continued close follow up and proper radiologic interventional procedure with optimal stenting period may increase the success rate and still provide an alternative to surgery.

  16. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  17. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  18. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Price, T.; Caly, A.

    2012-01-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  19. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  20. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    Pretolesi, F.; Derchi, L.E.; Redaelli, G.; Papagni, L.

    2001-01-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  1. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  2. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog.

    Science.gov (United States)

    Treseder, Julia R; Jung, SeungWoo

    2017-03-30

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a case of supravalvular pulmonic stenosis diagnosed echocardiographically and angiographically in which a significant reduction in pressure gradient was achieved with balloon dilation alone is presented.

  3. NWS Weather Fatality, Injury and Damage Statistics

    Science.gov (United States)

    ... Weather Awareness Floods, Wind Chill, Tornadoes, Heat... Education Weather Terms, Teachers, Statistics government web resources and services. Natural Hazard Statistics Statistics U.S. Summaries 78-Year List of Severe Weather Fatalities Preliminary Hazardous Weather Statistics for 2017 Now

  4. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  5. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  6. Supercomputing for weather and climate modelling: convenience or necessity

    CSIR Research Space (South Africa)

    Landman, WA

    2009-12-01

    Full Text Available Weather and climate modelling require dedicated computer infrastructure in order to generate high-resolution, large ensemble, various models with different configurations, etc. in order to optimise operational forecasts and climate projections. High...

  7. Synthetic weather generator SYNTOR: Implementing improvements in precipitation generation

    Science.gov (United States)

    Infrequent high precipitation events produce a disproportionally large amount of the annual surface runoff, soil erosion, nutrient movement, and watershed sediment yield. Numerical simulation of these watershed processes often lack sufficiently long weather data records to adequately capture the sto...

  8. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  9. A new precipitation and drought climatology based on weather patterns.

    Science.gov (United States)

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  10. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  11. Development of a New Coaxial Balloon Catheter System for Balloon-Occluded Retrograde Transvenous Obliteration (B-RTO)

    International Nuclear Information System (INIS)

    Tanoue, Shuichi; Kiyosue, Hiro; Matsumoto, Shunro; Hori, Yuzo; Okahara, Mika; Kashiwagi, Junji; Mori, Hiromu

    2006-01-01

    Purpose. To develop a new coaxial balloon catheter system and evaluate its clinical feasibility for balloon-occluded retrograde transvenous obliteration (B-RTO). Methods. A coaxial balloon catheter system was constructed with 9 Fr guiding balloon catheter and 5 Fr balloon catheter. A 5 Fr catheter has a high flexibility and can be coaxially inserted into the guiding catheter in advance. The catheter balloons are made of natural rubber and can be inflated to 2 cm (guiding) and 1 cm (5 Fr) maximum diameter. Between July 2003 and April 2005, 8 consecutive patients (6 men, 2 women; age range 33-72 years, mean age 55.5 years) underwent B-RTO using the balloon catheter system. Five percent ethanolamine oleate iopamidol (EOI) was used as sclerosing agent. The procedures, including maneuverability of the catheter, amount of injected sclerosing agent, necessity for coil embolization of collateral draining veins, and initial clinical results, were evaluated retrospectively. The occlusion rate was assessed by postcontrast CT within 2 weeks after B-RTO. Results. The balloon catheter could be advanced into the proximal potion of the gastrorenal shunt beyond the collateral draining vein in all cases. The amount of injected EOI ranged from 3 to 34 ml. Coil embolization of the collateral draining vein was required in 2 cases. Complete obliteration of gastric varices on initial follow-up CT was obtained in 7 cases. The remaining case required re-treatment that resulted in complete obstruction of the varices after the second B-RTO. No procedure-related complications were observed. Conclusion. B-RTO using the new coaxial balloon catheter is feasible. Gastric varices can be treated more simply by using this catheter system

  12. Drifting on Alien Winds Exploring the Skies and Weather of Other Worlds

    CERN Document Server

    Carroll, Michael

    2011-01-01

    Drifting on Alien Winds explores the bizarre weather of alien worlds, from the blistering hurricane-force winds of Venus to the gentle methane rain showers of Saturn's giant moon Titan. Blinding bolts of lightning sizzle through Jupiter's skies, ammonia blizzards swirl through Saturnian clouds, and Earth-sized cyclones pinwheel across Uranus and Neptune. Late-breaking scientific discoveries from spacecraft, observatories, and laboratories reveal the mysteries of weather across the Solar System. Our knowledge of weather on other worlds has not come easily. Drifting on Alien Winds introduces the inventors, engineers, and scientists who struggled to launch the first probes that would help us to understand the atmospheres of other worlds. The untold stories of early engineering feats and failures, from small Soviet Venus balloons to advanced studies of blimps and airplanes for Mars and Titan, are showcased here, along with what we’ve learned and are still trying to learn about alien skies. Some of today’s mos...

  13. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    Science.gov (United States)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  14. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  15. Influence of Equilibrium Perpendicular Shear Flow on Peeling-ballooning Instabilities

    Science.gov (United States)

    Xi, P. W.; Xu, X. Q.

    2011-10-01

    The influence of perpendicular ExB shear flow on peeling-ballooning instabilities is investigated with BOUT++ code. In our simulation, a set of reduced MHD equations are solved for a very unstable equilibrium and a marginal unstable equilibrium in shifted-circular tokamak geometry. For ideal MHD cases without diamagnetic terms and resistivity, we find that flow shear shows dramatic stabilizing effect on peeling-ballooning modes and the stabilizing degree increases with mode number. When the flow shear is large enough, we find the curvature of growth rate verse mode number has the same shape like that for the case with only diamagnetic term, and this implies that diamagnetic term and the shear flow have the same mechanism acting on peeling-ballooning instabilities. The role of Kelvin-Helmholtz term is also investigated and we find it is destabilizing and the effect depends on both flow shear and mode number. For cases with both diamagnetic term and the applied shear flow, modes with intermediate mode number are strongest stabilized while high n and low n mode keep unstable. Based on these results, an ELM trigger sketch is proposed. Performed for USDoE by LLNL Contract DE-AC52-07NA27344.

  16. Treatment of Chronic Thromboembolic Pulmonary Hypertension: The Role of Medical Therapy and Balloon Pulmonary Angioplasty.

    Science.gov (United States)

    Fernandes, Timothy M; Poch, David S; Auger, William R

    2016-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a potentially curable disease when treated with pulmonary thromboendarterectomy (PTE). However, even at experienced surgical centers, nearly one-third of patients with CTEPH will be deemed inoperable for reasons including distal disease, comorbidities, or out-of-proportion pulmonary hypertension. It is in these patients with inoperable CTEPH that pulmonary hypertension (PH)-targeted medical therapy and balloon pulmonary angioplasty have potential therapeutic value. Previous unblinded cohort trials have assessed PH-targeted medical therapy in various subpopulations of CTEPH patients using epoprostenol, treprostinil, sildenafil, bosentan, and iloprost, each demonstrating measurable pulmonary hemodynamic effects. However, riociguat, a soluble guanylate cyclase stimulator, is the first FDA-approved therapy for inoperable CTEPH to demonstrate both an improvement in functional capabilities (6-minute walk time) as well as significant gains in secondary pulmonary hemodynamic end points in a large placebo-controlled trial. Balloon pulmonary angioplasty is an interventional procedure using telescoping catheters placed in the pulmonary arteries, through which wires and balloons are used to mechanically disrupt chronic clot material and relieve pulmonary vascular obstruction. Contemporary case series from multiple centers worldwide have demonstrated pulmonary hemodynamic improvement with this approach. As a result of these advances, patients with inoperable CTEPH who had few options as recently as 5 years ago now have alternatives with emerging evidence of therapeutic efficacy.

  17. A battery-operated pilot balloon time-signal generator

    Science.gov (United States)

    Ralph H. Moltzau

    1966-01-01

    Describes the design and construction of a 1-pound, battery-operated, time-signal transmitter, which is usable with portable radio or field telephone circuits for synchronizing multi-theodolite observation of pilot balloons.

  18. Finite Larmor radius stabilization of ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tsang, K.T.

    1980-07-01

    A ballooning mode equation that includes full finite Larmor radius effects has been derived from the Vlasov equation for a circular tokamak equilibrium. Numerical solution of this equation shows that finite Larmor radius effects are stabilizing

  19. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  20. SMEX02 Balloon-borne Radiosonde Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes radiosonde measurements of upper air temperature and pressure, relative humidity, and wind direction and speed during the balloons' ascent to...

  1. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  2. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  3. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  4. Criteria for Second Stability for Ballooning Modes in Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2004-01-01

    An expression determining how variations in the pressure-gradient and average magnetic shear affect ballooning stability for a stellarator equilibrium is presented. The procedure for determining the marginal stability boundaries, for each field line, depends only on the equilibrium and a single ballooning eigenfunction calculation. This information is sufficient to determine if increasing pressure-gradient is stabilizing or destabilizing and to predict whether the configuration possess a second stable region

  5. Analysis of current diffusive ballooning mode in tokamaks

    International Nuclear Information System (INIS)

    Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.

    1999-12-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)

  6. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog

    OpenAIRE

    Treseder, Julia R.; Jung, SeungWoo

    2017-01-01

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a...

  7. Long duration balloon flights in the middle stratosphere

    Science.gov (United States)

    Malaterre, P.

    1993-02-01

    Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.

  8. Use of the European Severe Weather Database to verify satllite-based storm detection or nowcasting

    OpenAIRE

    Dotzek, Nikolai; Forster, Caroline

    2008-01-01

    Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or nowcasting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 a...

  9. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  10. Upper gastrointestinal strictures: The results of balloon dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kil Woo; Lim, Hyo Keun; Choo, In Wook; Bae, Sang Hoon; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of); Yoo, Hyung Sik [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1990-12-15

    Balloon catheter dilatation of upper gastrointestinal strictures is an accepted mode of therapy. The authors report the balloon dilatation in 11 consecutive patients. The lesions treated included 10 benign strictures, and 1 esophageal cancer. Esophageal balloon were ranged from 2 mm in diameter, 4 cm in length, to 30 mm in diameter, 8 cm in length. Inflation was held for from 30 to 60 seconds and then repeated two or three times during each session. The balloons were inflated to pressure of from 2 to 12 atmospheres. There were from 1 to 13 dilatations. Two esophageal perforations were occurred in one esophagitis patient and other lye stricture patient. Two perforations were not required any surgical repair. All dilatation were performed without anesthesia. All strictures were responded immediately to dilatation. Prolonged course of treatment were needed with chronic severe esophagitis, lye stricture, gastrojejunostomy with chemotherapy, as a result, all patients, except esophageal cancer, could take regular diet after balloon catheter dilatation. Balloon catheter dilatation of upper gastrointestinal stenosis was effective and safe. It should be considered before other methods of treatment applicable.

  11. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  12. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  13. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  14. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  15. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  16. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  17. Arc-Second Pointer for Balloon-Borne Astronomical Instrument

    Science.gov (United States)

    Ward, Philip R.; DeWeese, Keith

    2004-01-01

    A control system has been designed to keep a balloon-borne scientific instrument pointed toward a celestial object within an angular error of the order of an arc second. The design is intended to be adaptable to a large range of instrument payloads. The initial payload to which the design nominally applies is considered to be a telescope, modeled as a simple thin-walled cylinder 24 ft (approx.= 7.3 m) long, 3 ft (approx.= 0.91 m) in diameter, weighing 1,500 lb (having a mass of .680 kg). The instrument would be mounted on a set of motor-driven gimbals in pitch-yaw configuration. The motors on the gimbals would apply the control torques needed for fine adjustments of the instrument in pitch and yaw. The pitch-yaw mount would, in turn, be suspended from a motor mount at the lower end of a pair of cables hanging down from the balloon (see figure). The motor in this mount would be used to effect coarse azimuth control of the pitch-yaw mount. A notable innovation incorporated in the design is a provision for keeping the gimbal bearings in constant motion. This innovation would eliminate the deleterious effects of static friction . something that must be done in order to achieve the desired arc-second precision. Another notable innovation is the use of linear accelerometers to provide feedback that would facilitate the early detection and counteraction of disturbance torques before they could integrate into significant angular-velocity and angular-position errors. The control software processing the sensor data would be capable of distinguishing between translational and rotational accelerations. The output of the accelerometers is combined with that of angular position and angular-velocity sensors into a proportional + integral + derivative + acceleration control law for the pitch and yaw torque motors. Preliminary calculations have shown that with appropriate gains, the power demand of the control system would be low enough to be satisfiable by means of storage

  18. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  19. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  20. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  1. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  2. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  3. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    Science.gov (United States)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  4. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  5. Percutaneous balloon valvuloplasty in mitral stenosis

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Oh, Byung Hee; Park, Kyung Ju; Kim, Seung Hyup; Lee, Young Woo; Han, Man Chung

    1989-01-01

    Percutaneous balloon valvuloplasty(PBV) was successfully performed in 8 mitral stenosis patients for recent 3 months. Five patients have aortic insufficiencies also and two patients have mitral regurgitations below grade II/IV. All patients showed sinus rhythm on EKG, and had no mitral valvular calcification on echocardiography and fluoroscopy. PBV resulted in an increase in mitral valve area from 1.22±0.22 to 2.57±0.86 cm 2 , a decrease in mean left atrial pressure from 23.4±9.6 to 7.5±3.4 mmHg and a decrease in mean mitral pressure gradient from 21.3±9.4 to 6.8±3.1 mmHg. There were no significant complications except 2 cases of newly appeared and mildly aggravated mitral regurgitation. We believe that PBV will become a treatment modality of choice replacing surgical commissurotomy or valve replacement in a group of mitral stenosis patients, because of its effectiveness and safety

  6. Mechanism of prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Maynar, M.; Hulbert, J.

    1988-01-01

    A series of 60 patients have undergone prostatic urethroplasty with balloon catheters at our institution. The follow-up of these patients has ranged from more than 3 years to not less than 6 months. The preliminary results have been excellent, with a success rate of 75% in patients with predominant lateral lobe hypertrophy. This success rate drops to 25% in patients with predominant middle lobe hypertrophy. In previous communications the authors have proposed that the mechanism of prostatic urethral relief of obstruction is due to stretching of the prostatic capsule, tissue compression, and possible subsequent atrophy, as suggested by findings of transrectal US, MR imaging, voiding and retrograde urethrography, and urinary flow studies. Recent clinical information that has led to further animal research has shown that in addition to the previously supposed mechanism of action, separation of the prostatic lobes occurs by splitting of the anterior and posterior commissures of the prostatic gland tissue. This separation of the prostatic lobes is therefore the goal of the procedure. As more experience is gained, the already high success rate can probably be improved

  7. Balloon catheter dilatation of benign urethral strictures

    International Nuclear Information System (INIS)

    Perini, L.; Cavallo, A.; Perin, B.; Bighi, G.

    1988-01-01

    The authors report their experience of benign urethral stricture dilatation by balloon catheter in 11 male patients. Ten posterior and 2 anterior urethral strictures were treated; in 1 patients several narrowings coexisted at various levels. Etiology was inflammatory in 4 cases, iatrogen in 3, post-traumatic in 2, and equivocal in 2. The patients were studied both before and soon after dilatation by means of retrograde and voiding cystourethrogram and uroflowgraphy; the follow-up (2-14 months) was performed by urodynamic alone. In all cases, dilatation was followed by the restoration of urethral gauge, together with prompt functional improvement of urodynamic parameters. The latter result subsisted in time in 9 patients. In 2 cases recurrences were observed demonstrated at once by clinics and urodynamics. Both lesions were successfully re-treated. Neither early not late complication occurred. In spite of the limited material, the valuable results obtained, together with the absence of complications, the peculiar morphology of recurrences, and the chance of repeating it make the procedure advisable as a valid alternative to conventional techniques for these pathologies

  8. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  9. Retrograde prostatic urethroplasty with a balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    Twenty-five patients with prostatism and documented BPH who were candidates for transurethral resection of the prostate were dilated for 10 minutes with 25-mm urethroplasty balloons using a retrograde transurethral approach. The procedure was performed under local anesthesia using 2% viscous lidocaine on an outpatient basis. A mild discomfort was experienced by all patients with a moderate urgency sensation. Mild transient hematuria was present in all, which cleared in 4 to 6 hours. Dysuria usually lasted for 72 hours. Significant improvement has been seen in the relief of symptoms in patients without middle-lobe hypertrophy as documented by uroflow studies, voiding cystourethrograms, and retrograde urethrograms. In patients with middle-lobe hypertrophy, moderate improvement in uroflow studies was observed, which correlated well with symptomatic improvement. Rectal US and MR studies have shown no evidence of intraprostatic or periprostatic abnormalities. No complications have been encountered so far. The longest current follow-up is 20 months, with a mean of 10 months

  10. First results of balloon dacryoplasty in dacryostenosis

    Directory of Open Access Journals (Sweden)

    Evgeniya L’vovna At’kova

    2015-06-01

    Full Text Available Background. Outpatient care is not widely spread in modern dacryology. At the same time, its necessity increases. There are no evidences of balloon dacryoplasty (BDP application in Russian periodical literature. Material and methods. 50 surgical procedures in 30 patients with partial nasolacrimal duct obliteration were performed, among them 30 BDP without lacrimal pathways intubation (group 1 and 20 with bicanalicular Ritleng intubation of lacrimal pathways (group 2. Lacrimal scintigraphy, single photon emission computed tomography, combined with X-ray computed tomography, subjective tearing estimation in points, and health depending quality of life evaluation wre performed in all cases. Same tests were repeated in 3 months after surgery. Results. A positive outcome rate was 90 % in both groups. There were no complications in group 1. A single case of stent dislocation was recorded in group 2. Conclusion. BDP is an effective procedure in dacryostenosis of the lacrimal pathways vertical part obliteration. This procedure helps to avoid complications associated with long stent retention. It is possible to get good functional results even at short term after BDP surgery, and there is a possibility for this procedure to be carried out in an outpatient setting.

  11. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    1991-01-01

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  12. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  13. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  14. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  15. Monte Carlo dose characterization of a new 90Sr/90Y source with balloon for intravascular brachytherapy

    International Nuclear Information System (INIS)

    Wang Ruqing; Li, X. Allen; Lobdell, John

    2003-01-01

    Beta emitting source wires or seeds have been adopted in clinical practice of intravascular brachytherapy for coronary vessels. Due to the limitation of penetration depth, this type of source is normally not applicable to treat vessels with large diameter, e.g., peripheral vessel. In the effort to extend application of its beta source for peripheral vessels, Novoste has recently developed a new catheter-based system, the Corona trade mark sign 90 Sr/ 90 Y system. It is a source train of 6 cm length and is jacketed by a balloon. The existence of the balloon increases the penetration of the beta particles and maintains the source within a location away from the vessel wall. Using the EGSnrc Monte Carlo system, we have calculated the two-dimensional (2-D) dose rate distribution of the Corona trade mark sign system in water for a balloon diameter of 5 mm. The dose rates on the transverse axis obtained in this study are in good agreement with calibration results of the National Institute of Standards and Technology for the same system for balloon diameters of 5 and 8 mm. Features of the 2-D dose field were studied in detail. The dose parameters based on AAPM TG-60 protocol were derived. For a balloon diameter of 5 mm, the dose rate at the reference point (defined as r 0 =4.5 mm, 2 mm from the balloon surface) is found to be 0.010 28 Gy min -1 mCi -1 . A new formalism for a better characterization of this long source is presented. Calculations were also performed for other balloon diameters. The dosimetry for this source is compared with a 192 Ir source, commonly used for peripheral arteries. In conclusion, we have performed a detailed dosimetric characterization for a new beta source for peripheral vessels. Our study shows that, from dosimetric point of view, the Corona trade mark sign system can be used for the treatment of an artery with a large diameter, e.g., peripheral vessel

  16. Terminal weather information management

    Science.gov (United States)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  17. Balloon dacryocystoplasty: Incomplete versus complete obstruction of the nasolacrimal system

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Lee, Sang Hoon; Han, Young Min; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul; Song, Ho Young

    1993-01-01

    Balloon dilatation of nasolacrimal drainage apparatus was attempted for the treatment of stenoses or obstructures of the nasolacrimal system in 49 eyes of 41 consecutive patients with complete obstructions and 16 eyes of 14 patients with incomplete obstructions. These two groups were compared with regards to the effectiveness of balloon dacryocystoplasty. All patients suffered from severe epiphora had already undergone multiple probings. A 0.018 inch hair or ball guide wire was introduced through the superior punctum into the inferior meatus of the nasal cavity and pulled out through the nasal aperture using a hemostat under nasal endoscopy. A deflated angiography balloon catheter was then introduced in a retrograde direction and dilated under fluoroscopic control. No major complications occurred in any of the patients. At 7 days after balloon dilatation, 25 of 49 eyes with complete obstruction demonstrated improvement in epiphora (initial success rate: 51.0%) and among them 17 eyes showed complete resolution of symptoms. Reocclusion occurred in 12 of the 25 eyes with initial improvement at the 2 months follow up. For the 16 eyes with incomplete obstruction, and improvement of epiphora was attained in 11 eyes (initial success rate 68.8%): 5 of these eyes showed complete resolution of epiphora, and 3 was failed to maintain initial improvement at the 2 month follow up. Although this study demonstrate that results of balloon dacryocystoplasty are not encouraging because of the high failure and recurrence rate, balloon dacryocystoplasty is a simple and safe nonsurgical technique that can be used to treat for obstructions of the nasolacrimal system. In addition, balloon dacryocystoplasty shows better results in incomplete obstruction than in complete obstruction than complete obstruction of the nasolacrimal system

  18. Gastric emptying and intragastric balloon in obese patients.

    Science.gov (United States)

    Bonazzi, P; Petrelli, M D; Lorenzini, I; Peruzzi, E; Nicolai, A; Galeazzi, R

    2005-01-01

    Intragastric balloons have been proposed to induce weight loss in obese subjects. The consequences of the balloon on gastric physiology remain poorly studied. We studied the influence of an intragastric balloon on gastric emptying in obese patients. 12 patients were included in the study, with BMI (mean +/- SD) of 38.51 +/- 4.32 kg/m2. The balloon was inserted under light anaesthesia and endoscopic control, inflated with 700 ml saline, and removed 6 months later. Body weight and gastric emptying (T1/2 and T lag) using 13C-octanoic acid breath test were monitored before balloon placement, during its permanence and 2 months after removal. Mean weight loss was: 6.2 +/- 2.3 kg after one month; 12.4 +/- 5.8 kg after 3 months; 14.4 +/- 6.6 kg after 6 months and 10.1 +/- 4.3 kg two months after BIB removal. Gastric emptying rates were significantly decreased in the first periods with balloon in place, and returned to pre-implantation values after balloon removal. T1/2 was: 87 +/- 32 min before BIB positioning, 181 +/- 91 min after 1 month, 145 +/- 99 min after 3 months, 104 +/- 50 min after 6 months and 90 +/- 43 min 2 months after removal. T lag was 36 +/- 18 min before BIB positioning, 102 +/- 82 min after 1 month, 77 +/- 53 min after 3 months, 59 +/- 28 min after 6 months and 40 +/- 21 min. 2 months after removal. BIB in obese patients seems to be a good help in following the hypo caloric diet, especially during the first three months when the gastric emptying is slower and the sense of repletion is higher. After this period gastric emptying starts to return to normal and the stomach adapts to BIB loosing efficacy in weight loss.

  19. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  20. Scientific ballooning. Proceedings. PSB Meeting of the COSPAR Panel on Technical Problems Related to Scientific Ballooning which was held during the Thirtieth COSPAR Scientific Assembly, Hamburg (Germany), 11 - 21 Jul 1994.

    Science.gov (United States)

    Riedler, W.; Torkar, K.

    1996-05-01

    This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.

  1. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    International Nuclear Information System (INIS)

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.; WEBSTER, A.J.

    2004-01-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n ∼ 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces

  2. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. The Challenge of Weather Prediction Old and Modern Ways of Weather Forecasting. B N Goswami. Series Article Volume 2 Issue 3 March 1997 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  4. Weatherization Assistance Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  5. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  6. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  7. Ideal ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Lazzaro, E.; O'Rourke, J.; Smeulders, P.; Schmidt, G.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, discharges with β approaching the Troyon-Sykes-Wesson critical value β c for optimised pressure profiles have been produced at low toroidal fields (B T =1.5T). In the second type, extremely high pressure gradients have been produced in the plasma core through pellet injection in the current rise phase of the discharge followed by strong additional heating. The stability of these discharges has been studied with the stability code HBT coupled to the equilibrium identification code IDENTC. The equilibrium pressure and diamagnetic function profiles are determined in IDENTC by an optimisation procedure to fit the external magnetic measurements. The resulting pressure profile in the equatorial plane is then compared with the profile derived from 'direct' measurements, i.e. electron density and temperature profiles measured by the LIDAR diagnostic system, ion-temperature profile measured by the charge-exchange diagnostic system, and ion density profile calculated from the Z eff and electron density profiles. Furthermore, the value of the safety factor q on axis is compared with that determined from polarimetry. When good agreement is found, the output data from IDENTC is passed directly to HBT to carry out the stability analysis. When there is not a good agreement, as in the case of pellet discharges with highly peaked pressure profiles, the equilibrium is reevaluated using the 'experimental' profile and the data from polarimetry. (author) 6 refs., 4 figs

  8. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    Science.gov (United States)

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  9. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  10. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  11. Cryo-balloon catheter localization in fluoroscopic images

    Science.gov (United States)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  12. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  13. Special weather situations in Copenhagen-Oeresund area

    International Nuclear Information System (INIS)

    1982-01-01

    The Danish Environmental Agency has appointed a committee for studies of weather situations of Copenhgen and Oeresund strait regions in order to evaluate consequences of a potential nuclear accident at Barebaeck Power Plant in Sweden. The committee has investigated weather situations with fumigation, local wind systems at large urban areas and on the land-water boundary and precipitation role in plume transport over Oereseund. (EG)

  14. CCMC: bringing space weather awareness to the next generation

    Science.gov (United States)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper

  15. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  16. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Directory of Open Access Journals (Sweden)

    S. Carretier

    2018-03-01

    sparsely covered by regolith during cold periods, colluvium produces most of the simulated weathering flux for a large range of erosion parameters and precipitation rate patterns. In addition to other reservoirs such as deep fractured bedrock, colluvial deposits may help to maintain a substantial and constant weathering flux in rapidly uplifting mountains during cooling periods.

  17. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Science.gov (United States)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    during cold periods, colluvium produces most of the simulated weathering flux for a large range of erosion parameters and precipitation rate patterns. In addition to other reservoirs such as deep fractured bedrock, colluvial deposits may help to maintain a substantial and constant weathering flux in rapidly uplifting mountains during cooling periods.

  18. Ionospheric TEC Weather Map Over South America

    Science.gov (United States)

    Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.

    2016-11-01

    Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.

  19. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  20. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  1. Review of the British scientific sounding rocket and balloon programmes

    International Nuclear Information System (INIS)

    Delury, J.T.

    1978-01-01

    This review describes the UK scientific sounding rocket programmes which have utilised Skylarks for 21 years, Petrels for 10 years and Fulmars for 2 years. The SRC's ongoing programme is now based on the Petrel and Fulmar rockets, and approved proposals by 5 UK scientific groups covering 1978 and 1979 are outlined. The British scientific balloon programme, which serves 14 scientific groups within UK universities, involves a planned 10 flights per annum using balloons of 3 M cu ft to 31 M cu ft capacity and payloads up to 2 tons in weight. The review outlines the balloon programme of flights planned mainly from Palestine in Texas and Alice Springs/Mildura in Australia. (author)

  2. [Valvuloplasty with balloon catheter in biologic prosthesis. Reality or illusion].

    Science.gov (United States)

    Ledesma Velasco, M; Verdín Vázquez, R; Acosta Valdez, J L; Munayer Calderón, J; Salgado Escobar, J L; Arias Monroy, L; Flores Mendoza, J

    1989-01-01

    We performed catheter balloon valvuloplasty (CBV) on 8 stenotic operatively-excised bioprosthetic valves (2 Hancock and 6 Ionescu Shiley). Pathology of valves before CBV included degenerative changes: commissural fusion by mounds of calcific deposits (2 valves), fibrotic and focally calcified leaflets (7 valves) and stiff and thick valves (1 valve). Inflation of the balloon resulted in commissural splitting (2 valves), leaflet cracks and fractures (3 valves). Removal of the deflated balloon catheter was associated with debris dislodgement (3 valves). In one case the valve was unable to close with potential for acute regurgitation. Thus, CBV of bioprosthetic valves can split fused commissures by similar mechanisms as in native valves. CBV may fracture calcific deposits causing acute emboli. It can also disrupt the leaflets causing acute insufficiency. The findings suggest a limited role of CBV in the treatment of stenotic bioprosthetic valves in mitral and aortic position.

  3. Ileal Varices Treated with Balloon-Occluded Retrograde Transvenous Obliteration.

    Science.gov (United States)

    Sato, Takahiro; Yamazaki, Katsu; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi; Akaike, Jun

    2009-04-01

    A 55-year-old man with hepatitis B virus antigen-positive liver cirrhosis was admitted to our hospital with anal bleeding. Colonoscopy revealed blood retention in the entire colon, but no bleeding lesion was found. Computed tomography images showed that vessels in the ileum were connected to the right testicular vein, and we suspected ileal varices to be the most probable cause of bleeding. We immediately performed double balloon enteroscopy, but failed to find any site of bleeding owing to the difficulty of fiberscope insertion with sever adhesion. Using a balloon catheter during retrograde transvenous venography, we found ileal varices communicating with the right testicular vein (efferent vein) with the superior mesenteric vein branch as the afferent vein of these varices. We performed balloon occluded retrograde transvenous obliteration by way of the efferent vein of the varices and have detected no further bleeding in this patient one year after treatment.

  4. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  5. JUBA (Joint UAS-Balloon Activities) Final Campaign Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Darielle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Apple, Monty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Callow, Diane Schafer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Longbottom, Casey Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Novick, David K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

  6. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  7. Balloon dilatation for the treatment of stricture of gastrojejunostomy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Hwa [Lee Rha Hospital, Chungju (Korea, Republic of); Song, Ho Young [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Han, Young Min; Chon, Su Bin; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul [Chonbuk National University College of Medicine, Chungju (Korea, Republic of)

    1993-07-15

    Enteroenteric anastomotic strictures of UGI tract are common and require treatment if significant obstruction occurs. We performed fluoroscopic guided balloon dilatation in 6 patients who had symptomatic stricture of gastrojejunostomy. The stricture was successfully resolved in 4 patients with benign stricture. But 2 patients with malignant stricture had recurrence of obstructive symptoms 2 weeks later, and they required a stent. Asymptomatic balloon rupture was seen in one patients, but other procedural complications did not occur. We found that fluoroscopic guided balloon dilatation is an effective and safe method in the treatment of anastomotic stricture of gastrojejunostomy. We also found transient effect in malignant gastrojejunal anastomotic strictures, which required an interventional procedure, such as placement of a stent.

  8. Prognostic factors for the success of thermal balloon ablation in the treatment of menorrhagia

    NARCIS (Netherlands)

    Bongers, M. Y.; Mol, B. W. J.; Brölmann, H. A. M.

    2002-01-01

    OBJECTIVE: To identify predictive factors that will ensure successful menorrhagia treatment using hot fluid balloon endometrial ablation. METHODS: This is a prospective study on patients referred for menorrhagia and treated with hot fluid thermal balloon ablation. Potential prognostic factors for

  9. A local network integrated into a balloon-borne apparatus

    Science.gov (United States)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  10. Second-generation endometrial ablation technologies: the hot liquid balloons.

    Science.gov (United States)

    Vilos, George A; Edris, Fawaz

    2007-12-01

    Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.

  11. Blood pressure normalization post-jugular venous balloon angioplasty.

    Science.gov (United States)

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the

  12. Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin

    2015-01-01

    Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.

  13. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  14. Ballooning Representation Approach to Low-Frequency Instabilities in Stellarators

    International Nuclear Information System (INIS)

    Dewar, R.L.; Gardner, H.J.; Lewandowski, J.; Persson, M.

    1995-01-01

    Local ideal MHD ballooning eigenvalues have been calculated on many field lines for heliac and torsatron cases using a parallel implementation of a ballooning code on a Thinking Machines Corporation CM-5 Global eigenvalues have been estimated for the torsatron test case using the ray tracing method of Dewar and Glasser and also by using the TERPSI-CHORE global eigenvalue code, with good agreement. As a preliminary to detailed study of H-1, 3-D visualizations of stability-related quantities have been produced. 6 refs

  15. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  16. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  17. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  18. Tethered balloon-based measurements of meteorological variables and aerosols

    Science.gov (United States)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  19. A tethered balloon system for observation of atmospheric temperature inversion

    International Nuclear Information System (INIS)

    Hayashi, Takashi; Kakuta, Michio

    1979-05-01

    In environmental assessment of near-shore nuclear plants, information is often required on the development of internal boundary layer (IBL) and associated fumigation condition. Single tower data is not sufficient to clarify the site-dependent IBL structure that affects the atmospheric diffusion in shoreline-stack-site boundary complex. A tethered balloon system has been developed, which comprises a fixed point kitoon and a car-borne small balloon. The system enables us to measure the detailed time-space distribution of temperature without much man-power. The system and example of field observations with it are described. (author)

  20. Low-Cost Propellant Launch From a Tethered Balloon

    Science.gov (United States)

    Wilcox, Brian

    2006-01-01

    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  1. Hemosuccus pancreaticus successful treatment by double balloon-assisted coil embolization for active bleeding from the main trunk of the superior mesenteric artery

    Directory of Open Access Journals (Sweden)

    Rika Yoshida, MD

    2018-06-01

    Full Text Available We report a case of a 63-year-old man with hemosuccus pancreaticus due to large pseudoaneurysm originating from the main trunk of the superior mesenteric artery (SMA. The patient was treated successfully with the double balloon-assisted coil embolization technique combined with proximal and distal balloon inflation in the short segment of the SMA. This technique preserved the pancreaticoduodenal arterial arcade and the supply to the distal part of the SMA by embolizing SMA in a short segment. Keywords: Hemosuccus pancreaticus, Pseudoaneurysm, Superior mesenteric artery

  2. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    2006-01-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  3. Chemical Weathering on Venus

    Science.gov (United States)

    Zolotov, Mikhail

    2018-01-01

    Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal

  4. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  5. Long-Term Follow-up After Embolization of Pulmonary Arteriovenous Malformations with Detachable Silicone Balloons

    DEFF Research Database (Denmark)

    Andersen, Poul Erik; Kjeldsen, Anette D

    2008-01-01

    ) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not available...

  6. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-03-27

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...

  7. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2012-10-23

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...

  8. 75 FR 63086 - Great Mississippi Balloon Race and Fireworks Safety Zone; Lower Mississippi River, Mile Marker...

    Science.gov (United States)

    2010-10-14

    ... flying hot air balloons transiting across the Lower Mississippi River. Entry into this zone is prohibited... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons...

  9. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...

  10. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  11. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  12. KZHU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  13. Practical Weathering for Geology Students.

    Science.gov (United States)

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  14. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  15. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    around the sun. If weather is also governed by physical laws, why ... radiate according to Planck's law (higher the temperature of the black body ..... First law of thermodynamics. Relates ... (Third Edition) Charles E Merrill Publishing. Company.

  16. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  17. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  18. KZJX Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  20. KZFW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...