WorldWideScience

Sample records for large superalloy buckets

  1. Numerical Study of Piping Limits for Installation of Large Diameter Buckets in Layered Sand

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Thilsted, C.L.

    2010-01-01

    The bucket foundations, often referred as ‘suction caissons’, are large cylindrical structures, typically made in steel. The bucket foundations have the potential to be the cost-effective option for offshore wind turbines, if suction assisted penetration is employed. Suction installation may cause...... gradients developing in response to applied suction and the results are presented as simple closed form solutions useful for evaluation of suction thresholds against piping. These close form solutions are compared with large scale model test, performed in a natural seabed at a test site in Frederikshavn...

  2. Test Procedure for Axially Loaded Bucket Foundations in Sand (Large Yellow Box)

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina

    This is a practical guide for preparing the soil, running a CPT test, installing a scaled bucket foundation model and running a test in the large yellow sand box cos(Kristina) in the geotechnical laboratory at Aalborg University. The test procedure is used for the examination of statically...... and cyclically axially loaded bucket foundation model In dense sand. The foundation model in scale of approximately 1:10 compared to the prototype size. The guide describes the step-by-step procedure for tests with and without surface pressure. A detailed description of test setup using the large yellow sand box...... for a monopile testing was provided by Thomassen (2015a), procedure for monopile testing can be found in Thomassen (2015b), while safety instructions were given by Vaitkunaite et al. (2014)....

  3. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  4. Suction Buckets

    DEFF Research Database (Denmark)

    Feld, T.

    Friction Model, are implemented as user defined material models in the commercial finite element program ABAQUS. The simulated tests are partly pullout tests, subsequent cyclic loading, partly drained tests on buckets subject to vertical, horizontal and moment loading. The numerical analyses are capable...

  5. Optical response of large-area aluminum-coated nano-bucket arrays on flexible PET substrates

    Science.gov (United States)

    Hohertz, Donna; Chuo, Yindar; Omrane, Badr; Landrock, Clint; Kavanagh, Karen L.

    2014-09-01

    The high-cost of fabrication of nanohole arrays for extraordinary optical transmission, surface-plasmon-resonance-based sensors, inhibits their widespread commercial adoption. Production typically involves the application of small-area patterning techniques, such as focused-ion-beam milling, and electron-beam lithography onto high-cost gold-coated substrates. Moving to lower-cost manufacturing is a critical step for applications such as the detection of environmental oil-leaks, or water quality assurance. In these applications, the sensitivity requirements are relatively low, and a bio-compatible inert surface, such as gold, is unnecessary. We report on the optical response of aluminum-coated nano-bucket arrays fabricated on flexible polyethylene terephthalate substrates. The arrays are fabricated using an economical roll-to-roll UV-casting process from large sheets of nickel templates generated from master quartz stamps. The nano-featured surface is subsequently coated with 50 nm of thermally-evaporated aluminum. The roll-to-roll production process has a 97% yield over a 600 m roll producing nano-buckets with 240 nm diameters, 300 nm deep, with a 70° taper. When exposed to a series of refractive index standards (glucose solutions), changes in the locations of the resonance transmission peaks result in optical sensitivities as high as 390 ± 20 nm/RIU. The peak transmission is approximately 5% of illumination, well within the sensitivity requirements of most common low-cost detectors.

  6. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)

  7. Buckling of Bucket Foundations

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are intr...

  8. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  9. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  10. PERANCANGAN PROTOTIPE BUCKET ELEVATOR

    OpenAIRE

    Dani Irawan

    2017-01-01

    Alat Pemindah Bahan merupakan salah satu peralatan yang digunakan untuk kegiatan sehari-hari pada proses keberlangsungan produksi di masyarakat. Agar peralatan tersebut tetap dapat berfungsi dengan baik masyarakat, maka perlu adanya tindakan rancang bangun prototype Bucket konveyor ini guna untuk membatu masyarakat agar lebih memahami betapa pentingnya alat mekanis. Metode Perancangan Prototipe Bucket Konveyor meliputi: Perancangan Desain, Perancangan Elemen Mesin Perancangan Biaya (biaya...

  11. The Monopod Bucket Foundation

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Ahle, Kim; Nielsen, Søren A.

    2009-01-01

    Following the successful installation of a prototype of a monopod bucket foundation, also called a “monopod suction caisson”, at Horns Rev 2 Offshore Wind Farm, Denmark, in 2009, DONG Energy is currently developing a commercialization strategy. The monopod bucket foundation is a promising...

  12. PERANCANGAN PROTOTIPE BUCKET ELEVATOR

    Directory of Open Access Journals (Sweden)

    Dani Irawan

    2017-08-01

    Full Text Available Alat Pemindah Bahan merupakan salah satu peralatan yang digunakan untuk kegiatan sehari-hari pada proses keberlangsungan produksi di masyarakat. Agar peralatan tersebut tetap dapat berfungsi dengan baik masyarakat, maka perlu adanya tindakan rancang bangun prototype Bucket konveyor ini guna untuk membatu masyarakat agar lebih memahami betapa pentingnya alat mekanis. Metode Perancangan Prototipe Bucket Konveyor meliputi: Perancangan Desain, Perancangan Elemen Mesin Perancangan Biaya (biaya produksi, biaya penjualan, break event point. Berdasarkan Rancang Bangun Prototipe Mesin Bucket Konveyor yang telah dilakukan, didapatkan hasil yaitu daya motor bucket 8,5 W dengan kapasitas 4 liter/s dan biaya pembuatan bukcet adalah Rp. 5.760.500,- biaya pembuatan ini meliputi biaya bahan baku, operasional, dan permesinan.

  13. Characteristic Behavior of Bucket Foundations

    DEFF Research Database (Denmark)

    Barari, Amin

    and gas industry and have recently been used in offshore wind turbines. The bucket foundation is a welded steel structure consisting of a tubular center column connected to a steel bucket through flange-reinforced stiffeners. The overall aim of the research presented in this thesis was to improve...

  14. Effect of embedment on the plastic behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2015-01-01

    studies have indicated the possibility of defining foundation response using plasticity theory. Results of multiple loading tests addressing the effect of embedment on the strain-hardening behavior of shallow bucket foundations under combined loading are reported. The kinematic mechanisms accompanying pre......-failure are presented. It is argued that the drained capacity of offshore bucket foundations and the ratio of plastic increments are largely influenced by embedment depth and the preload ratio V/Vpeak....

  15. Detection of creep damage in a nickel base superalloy using NDE techniques

    International Nuclear Information System (INIS)

    Carreon, H.; Mora, B.; Barrera, G.

    2009-10-01

    Due to elevated temperatures, excessive stresses and severed corrosion conditions, turbine engine components are subject to creep processes that limit the components life such as a turbine bucket. The failure mechanism of a turbine bucket is related primarily to creep and corrosion and secondarily to thermal fatigue. As a result, it is desirable to assess the current conditions of such turbine component. This study uses the eddy current nondestructive evaluation technique in an effort to monitor the creep damage in a nickel base super-alloy, turbine bucket after service. The experimental results show an important electrical conductivity variation in eddy current images on the creep damage zone of nickel base super-alloy samples cut from a turbine bucket. Thermoelectric power measurements were also conducted in order to obtain a direct correlation between the presence of material changes due to creep damage and the electrical conductivity measurements. This research work shows an alternative non-destructive method in order to detect creep damage in a nickel base super-alloy turbine bucket. (Author)

  16. Static Behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Larsen, Kim André

    One new foundation concept in relation to offshore wind turbines is bucket foundations. The concept is known from the oil and gas industry, though the load conditions here are significantly different. The bucket foundation can be used as monopod or e.g. tripod foundations for offshore wind turbines....... The monopod concept is investigated in this thesis, regarding the static behaviour from loads relevant to offshore wind turbines. The main issue in this concept is the rotational stiffness of the foundation and the combined capacity dominated by moments. The vertical bearing capacity of bucket foundations...... theory is proposed. The proposed expression applies to plane strain as well as axis-symmetric stress conditions for foundations with smooth or rough bases. A thorough experimental investigation of the static behaviour of bucket foundations subjected to combined loading is carried out. Laboratory tests...

  17. Scour properties of mono bucket foundation

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Frigaard, Peter Bak

    2016-01-01

    Field experience proved that the Mono Bucket Foundations (MBFs) have good response against scour development. Moreover, the ratio between large diameter (bucket lid) and the small diameter (shaft tower) is the driving parameter for the process of erosion/backfill, like scour protection diameter...... in the case of scour protected monopiles. However, the structural design to reduce the scour development for MBFs is still open to optimization. The influences of parameters that generate backfill and scour, the transfer load webs and the misalignment with seabed, have not been systematically studied until...... analysis compared with real surveys and existing studies showed good agreements. Scour protection based on collar solution shows high efficiency when scour protection should be required. The paper demonstrates good agreement between field measurements and small-scale studies. The unique value of the field...

  18. Modified Expression for the Failure Criterion of Bucket Foundations Subjected to Combined Loading

    DEFF Research Database (Denmark)

    Larsen, Kim André; Ibsen, Lars Bo; Barari, Amin

    2013-01-01

    Recently, various loading tests with small- and large-scale bucket foundations were performed on buckets of varying sizes, embedment ratios, and load paths with saturated dense Aalborg University Sand No. 1 at the geotechnical laboratory of Aalborg University. In the present study, the capacity a...

  19. Transiently Loaded Bucket Foundations in Saturated Dense Sand - Demonstration of the Boot Effect

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2017-01-01

    The mono bucket foundation is a cost-effective foundation for offshore wind turbines. During a storm, these foundations are exposed to large wave loads of short duration. This paper investigates the effect of increased loading rate on the bearing capacity of two mono bucket foundations installed ...

  20. Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo

    2011-01-01

    Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...

  1. Second Stage Turbine Bucket Airfoil.

    Science.gov (United States)

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  2. Characteristic Behavior of Bucket Foundations

    DEFF Research Database (Denmark)

    Barari, Amin

    political and industrial forces(particularly in northern Europe) supporting the development of the offshore wind industry. The overall aim of the research presented in this thesis was to improve the design of offshore wind turbine foundations. The work was divided into two main researchefforts: geotechnical...... reduce the risks and costsrelated to offshore geotechnics. The thesis examines: 1.Characteristic Behavior of Bucket Foundations 2. Modeling of Water Flow through Porous Media The outcomes of each of the research contributions are summarized in four research articles, either directly or indirectly...... engineering experiments to gain insight into the behavior of offshore bucket foundations, and development of methods to improve the study of infiltration intounsaturated soils, an important problem in geo-environmental engineering. The outcomes of the research have the potential to directly or indirectly...

  3. Bucket foundations under lateral cyclic loading

    DEFF Research Database (Denmark)

    Foglia, Aligi

    failure envelopes. A jacked installation test is successfully compared with existing models. Tests of bucket foundations under lateral loading applied at different loading rates are analysed. As expected, the bearing capacity of bucket foundations under transient lateral loading increases dramatically...... documents on bearing capacity and installation of bucket foundations are reviewed and the results from the models found in literature are compared to the experimental results obtained in the current study. Monotonic tests of bucket foundations under lateral loading until failure are compared with existing...

  4. Buckling of Bucket Foundations During Installation

    DEFF Research Database (Denmark)

    Madsen, Søren

    There is a great politically will to expand the green energy market in these times. A proven green technology is wind turbines. Wind turbines have been installed in great numbers on land over the last decades. However, the current development in wind turbine design leads to larger turbine sizes...... in order to reduce the cost of energy. This limits the on land application due to transportation limitations and unwillingness from prospect neighbours. Thus, offshore wind energy started developing over the last couple of years. Although installing the wind turbines offshore resolves the before men tioned...... issues, it brings up the cost of energy mainly due to increased installation and maintenance costs. A very large part—up to 30–50% using current technology—of the installation cost origins from the expenses related to the installation of foundations. A new foundation concept—the bucket foundation...

  5. Tubing vs. buckets: a cost comparison

    Science.gov (United States)

    Neil K. Huyler

    1975-01-01

    Equipment investment for tubing-vacuum systems was significantly less than that for bucket systems. Tubing-vacuum systems required about 22 percent less labor input, the major labor input being completed before sap-flow periods. Annual cost of operation was less for tubing-vacuum than the bucket system. Small tubing-vacuum operations showed more profit potential than...

  6. MRI of meniscal bucket-handle tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.H.; Hinson, G.W. [Menorah Medical Center, Overland Park, KS (United States). Dept. of Radiology

    1998-09-01

    A meniscal bucket-handle tear is a tear with an attached fragment displaced from the meniscus of the knee joint. Low sensitivity of MRI for detection of bucket-handle tears (64% as compared with arthroscopy) has been reported previously. We report increased sensitivity for detecting bucket-handle tears with the use of coronal short tau inversion recovery (STIR) images. Results. By using four criteria for diagnosis of meniscal bucket-handle tears, our overall sensitivity compared with arthroscopy was 93% (28 of 30 meniscal bucket-handle tears seen at arthroscopy were detected by MRI). The meniscal fragment was well visualized in all 28 cases on coronal STIR images. The double posterior cruciate ligament sign was seen in 8 of 30 cases, the flipped meniscus was seen in 10 of 30 cases and a fragment in the intercondylar notch was seen in 18 of 30 cases. (orig.)

  7. Bucket Foundation Response Under Various Displacement Rates

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2016-01-01

    in a multi-bucket foundation system. The foundation model is at a scale of approximately 1:20 prototype foundation size. The tests are performed in a pressure tank with the foundation model installed in dense sand. Based on the data, the conclusion is that the bucket foundation design in a storm case should......The present testing program aims at showing the pore pressure response around a bucket foundation skirt as well as the load and displacement change due to ten different displacement rates. Research findings are useful for a numerical model calibration focusing on the design of the upwind foundation...

  8. Buckets: Smart Objects for Digital Libraries

    Science.gov (United States)

    Nelson, Michael L.

    2001-01-01

    Current discussion of digital libraries (DLs) is often dominated by the merits of the respective storage, search and retrieval functionality of archives, repositories, search engines, search interfaces and database systems. While these technologies are necessary for information management, the information content is more important than the systems used for its storage and retrieval. Digital information should have the same long-term survivability prospects as traditional hardcopy information and should be protected to the extent possible from evolving search engine technologies and vendor vagaries in database management systems. Information content and information retrieval systems should progress on independent paths and make limited assumptions about the status or capabilities of the other. Digital information can achieve independence from archives and DL systems through the use of buckets. Buckets are an aggregative, intelligent construct for publishing in DLs. Buckets allow the decoupling of information content from information storage and retrieval. Buckets exist within the Smart Objects and Dumb Archives model for DLs in that many of the functionalities and responsibilities traditionally associated with archives are pushed down (making the archives dumber) into the buckets (making them smarter). Some of the responsibilities imbued to buckets are the enforcement of their terms and conditions, and maintenance and display of their contents.

  9. Bucket elevator linkage for coarse coal washer

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.

    1985-09-03

    A continuous bucket elevator used in a method of separating coal according to its size and for cleaning refuse material from the coal in a Baum-type jigging apparatus wherein each bucket is connected to the adjacent bucket by a link received by a roll pin held by a bushing at each end in each bucket and the flange of a plate which is centrally welded to the bucket and has portions biased outwardly therefrom which merge into further portions having openings for receiving the roll pins, the diameter of the aligned openings in the further part, in the bushings, and in intervening link and the diameter of the roll pins being such so as to restrict wear due to the abrasive nature of the material being handled so that all components of the elevator wear out at about the same time and need not be replaced until after two or three cycles of use, each cycle being normally for seven and ten months.

  10. Introduction to superalloys

    International Nuclear Information System (INIS)

    Li-Chenggong

    1995-01-01

    Throughout history, humans have developed mechanical devices to satisfy their needs, Jet aircraft was thrust into public awareness with the 1937 flight of Hans Von Ohains turbine engine Heinkel in Germany and an independent development, the 1939 flight of Whittle's engine in England. Since that time, progress in jet propulsion and industrial gas turbines has been a growing engineering technology of immense importance. This opened a new era of engineering material called superalloy. Superalloy is an alloy developed for elevated temperature service usually based on group VIIA elements, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. The title of the speech is T he Effect of a Changing Environment on the requirements of Engine Materials . In this speech, the author emphasized that may changes in the business environment have occurred in recent years, the aircraft engine business is rapidly changing from a military focus to a commercial one, speed to market will assume greater importance in the engine industry, and greater attention to customer value will be required to remain competitive etc. However the superalloys will continue to be developed in the future. (author) 14 figs

  11. Barrier bucket experiment at the AGS

    Directory of Open Access Journals (Sweden)

    M. Fujieda

    1999-12-01

    Full Text Available A barrier bucket experiment with two dedicated barrier cavities was performed at the Brookhaven AGS. One of the barrier cavities was a magnetic alloy (MA–loaded cavity and the other was a ferrite-loaded cavity. They generated a single sine wave with a peak voltage of 40 kV at a repetition rate of 351 kHz. A barrier rf system was established with these cavities and five bunches from the AGS booster were accumulated. A total of 3×10^{13} protons were stored without beam loss, and were successfully rebunched and accelerated. The longitudinal emittance growth was observed during accumulation by the barrier bucket, the blowup factor of which was about 3. The longitudinal mismatch between the rf bucket and the beam bunch was the main reason for the emittance growth. The potential distortions by beam loading of the ferrite cavity and the overshooting voltage of the MA cavity disturbed the smooth debunching.

  12. Second-stage turbine bucket airfoil

    Science.gov (United States)

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  13. Bucket-handle meniscal tears of the knee: sensitivity and specificity of MRI signs

    International Nuclear Information System (INIS)

    Dorsay, Theodore A.; Helms, Clyde A.

    2003-01-01

    To determine the sensitivity and specificity of reported MRI signs in the evaluation of bucket-handle tears of the knee.Design and patients A retrospective analysis of 71 knee MR examinations that were read as displaying evidence of a bucket-handle or ''bucket-handle type'' tear was performed. We evaluated for the presence or absence of the absent bow tie sign, the coronal truncation sign, the double posterior cruciate ligament (PCL) sign, the anterior flipped fragment sign, and a fragment displaced into the intercondylar notch. Sensitivity and specificity were calculated relative to the gold standard of arthroscopy. Forty-three of 71 cases were surgically proven as bucket-handle tears. The absent bow tie sign demonstrated a sensitivity of 88.4%. The presence of at least one of the displaced fragment signs had a sensitivity of 90.7%. A finding of both the absent bow tie sign and one of the displaced fragment signs demonstrated a specificity of 85.7%. The double PCL sign demonstrated a specificity of 100%. The anterior flipped meniscus sign had a specificity of 89.7%. Bucket-handle tears of the menisci, reported in about 10% of most large series, have been described by several signs with MRI. This report gives the sensitivity and specificity of MRI for bucket-handle tears using each of these signs independently and in combination. MRI is shown to be very accurate for diagnosing bucket-handle tears when two or more of these signs coexist. (orig.)

  14. Bucket handle tears of the medial meniscus: meniscal intrusion rather than meniscal extrusion

    International Nuclear Information System (INIS)

    Schlossberg, S.; Umans, H.; Flusser, G.; DiFelice, G.S.; Lerer, D.B.

    2007-01-01

    To determine the frequency of medial meniscal extrusion (MME) versus ''medial meniscal intrusion'' in the setting of bucket handle tears. Images were evaluated for previously reported risk factors for MME, including: medial meniscal root tear, radial tear, degenerative joint disease and joint effusion. Forty-one consecutive cases of bucket handle tear of the medial meniscus were reviewed by consensus by two musculoskeletal radiologists. Imaging was performed using a 1.5 GE Signa MR unit. Patient age, gender, medial meniscal root integrity, MME, medial meniscal intrusion, degenerative joint disease, effusion and anterior cruciate ligament (ACL) tear were recorded. Thirteen females and 27 males (age 12-62 years, median=30 years) were affected; one had bucket handle tear of each knee. Effusion was small in 13, moderate in 9 and large in 18. Degenerative joint disease was mild in three, moderate in two and severe in one. 26 ACL tears included three partial and three chronic. Medial meniscal root tear was complete in one case and partial thickness in two. None of the 40 cases with an intact or partially torn medial meniscal root demonstrated MME. MME of 3.1 mm was seen in the only full-thickness medial meniscal root tear, along with chronic ACL tear, moderate degenerative joint disease and large effusion. Medial meniscal intrusion of the central bucket handle fragment into the intercondylar notch was present in all 41 cases. Given an intact medial meniscal root in the setting of a ''pure'' bucket handle tear, there is no MME. (orig.)

  15. Transient Monotonic and Cyclic Load Effects on Mono Bucket Foundations

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam

    Today, 80 % of all European offshore wind turbines are installed on monopiles. A cost-effective alternative to the monopile is the mono bucket foundation. For an offshore wind turbine foundation in open seas, the dominant load is often coming from waves. During storms, large waves are formed...... the foundation is sucked to the seabed, creating extra capacity during the impact. Over the life-time of an offshore wind turbine foundation will be hit by millions of waves. Each wave might lead to a permanent rotation of the foundation. Therefore, it is important to be able to estimate the total deformation...

  16. Monopod bucket foundations under cyclic lateral loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    on bucket foundations under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading and constant vertical loading, acting on the same plane for thousands...

  17. Study on the Bearing Mode and Force Transfer Path of Composite Bucket Foundations

    Directory of Open Access Journals (Sweden)

    Shaohua He

    2017-07-01

    Full Text Available This paper elaborates on a new composite bucket foundation (CBF structural system for offshore wind turbines. The proposed CBF consists of a special force transition section, a beam system structure upper steel bucket cover and a large-scale steel bucket with honeycomb structure rooms. It can be prefabricated onshore, self-floated on the sea and then towed to the appointed sea area before sinking to the sea soil under negative pressure. This is called the “one-step” installation technology. Arc- and line-type bucket foundations are calculated by both theory and the finite element method to discuss their force transfer paths and bearing modes. Owning to the special structural form, the transition section can effectively convert the huge load and bending moment into controllable tension and compressive stress, as well as adjust the structure balance. The bearing model and percentage of each part of the composite foundation under monotonous and ultimate load conditions are also calculated. Results indicate that the bearing mode of CBF is a typical top cover mode. In addition, the curvature impact of arc-type is studied and the results reveal that the structure type of the transition section is more important than the diameter ratio between the bottom transition section and the bucket.

  18. Determination Of Longevity Of Teeth In Buckets Of Loading Equipment In Coal Mines - A Case Study

    Directory of Open Access Journals (Sweden)

    Aarif Jamal

    2015-08-01

    Full Text Available The life of bucket teeth in shovel and dragline deployed in handling of overburden rock is an important contributor to the stores cost and is also responsible for the loss of valuable availability and utilisation time of these critical equipment. To ascertain the effect of rock type on longevity of bucket teeth a study has been conducted in two large opencast mines of Singrauli Coalfields. The results of this study is presented in this paper. There was a significant variation as compared to the actual figures of the mine it establish useful relationship between the type of mineral present in the overburden and the life of bucket teeth of shovel and dragline.

  19. On-land and offshore testing of a new helicopter bucket for dispersant application - response 3000D

    International Nuclear Information System (INIS)

    Brandvik, P. J.; Lewis, A.; Daling, P. S.; Strom-Kristiansen, T.; Larsen, E.

    1997-01-01

    Development of a new helicopter bucket for dispersant applications to serve the dispersant spraying needs of Norwegian oil companies was described. Testing two existing helicopter buckets and practical experience with firefighting helicopter operations provided the foundations for this developmental experiment, combined with the dispersant applications experience of SINTEF. The newly designed bucket, 3000D, has two dispersant spray systems (high and low flow rates) and a large capacity ( three cu m). It is capable of direct filling of dispersant via a suction hose while the helicopter is hovering and is equipped for remote control of all functions. It is robustly designed for use under harsh offshore conditions in the North Sea. The bucket has been subjected to extensive testing on land and offshore with experimental oil slicks. The results were fully satisfactory. 9 refs., 1 tab., 13 figs

  20. BBAT: Bunch and bucket analysis tool

    International Nuclear Information System (INIS)

    Deng, D.P.

    1995-01-01

    BBAT is written to meet the need of an interactive graphical tool to explore the longitudinal phase space. It is driven for testing new ideas or new tricks quickly. It is especially suitable for machine physicists or operation staff as well both in the control room during machine studies or off-line to analyze the data. The heart of the package contains a set of c-routines to do the number crunching. The graphics part is wired with scripting language tcl/tk and BLT. The c-routines are general enough that one can write new applications such as animation of the bucket as a machine parameter varies via a sliding scale. BBAT deals with single rf system. For double rf system, one can use Dr. BBAT, which stands for Double rf Bunch and Bucket Analysis Tool. One usage of Dr. BBAT is to visualize the process of bunch coalescing and flat bunch creation

  1. Third-stage turbine bucket airfoil

    Science.gov (United States)

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  2. Gas turbine bucket with impingement cooled platform

    Science.gov (United States)

    Jones, Raphael Durand

    2002-01-01

    In a turbine bucket having an airfoil portion and a root portion, with a substantially planar platform at an interface between the airfoil portion and root portion, a platform cooling arrangement including at least one bore in the root portion and at least one impingement cooling tube seated in the bore, the tube extending beyond the bore with an outlet in close proximity to a targeted area on an underside of the platform.

  3. Kicking the Bucket: It's All about Living

    Science.gov (United States)

    Perry, Kekailoa

    2013-01-01

    In Hawai'i there is a myth known as the alamihi crab syndrome. The myth is a creation of foreign origin used to explain a Western worldview of Hawaiians. It is deployed to explain everything from the 1893 overthrow of the monarchy to the reason why Hawaiians can never better their lives. Crabs in a bucket have a tendency to struggle and fight to…

  4. Buckling of Monopod Bucket Foundations – Influence of Boundary Conditions and Soil-structure Interaction

    DEFF Research Database (Denmark)

    Madsen, Søren; Pinna, Rodney; Randolph, M. F.

    2015-01-01

    of large-diameter bucket foundations. Since shell structures are generally sensitive to initially imperfect geometries, eigenmode-affine imperfections are introduced in a nonlinear finite-element analysis. The influence of modelling the real lid structure compared to classic boundary conditions...

  5. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  6. Off-bucket Proton Losses during Ramping

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In this paper, we report a study undertaken to determine whether longitudinal and transverse amplitudes become coupled before the loss of the off-bucket protons during the ramp. We compute the synchro tron as well as the betatron tune changes with momentum and determine if synchro-betatron resonances blow-up the transverse particle amplitude. A strong coupling might allow a betatron cleaning of the se particles before they are outside the momentum acceptance of the machine. We show that this is not the case, justifying the need of momentum cleaning.

  7. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  8. Mechanical behavior of superalloys

    International Nuclear Information System (INIS)

    Floreen, S.

    1986-04-01

    Recent developments affecting the mechanical behavior of superalloys over three ranges of operating temperatures are reviewed. At lower temperatures, activity has been focused on stress corrosion cracking susceptibility in light water reactor and sour gas well environments. The susceptibility to intergranular crack growth is critically dependent upon the grain boundary chemistry, and a method of minimizing the sensitivity of the boundaries to attack has been pursued. At intermediate temperatures, considerable effort has been directed toward increasing the tensile and fatigue strengths. The higher strength materials, however, show increased fracture sensitivity. In particular, embrittlement due to diffusion into the grain boundaries of aggressive species, such as oxygen or sulfur from the environments, becomes a problem. Minor element alloying additions of boron, zirconium, magnesium, etc., are helpful in retarding the degradation caused by the environment. At higher temperatures, the major thrust is toward improving the creep strength. The weak link in the materials, which is the transverse grain boundaries, has been eliminated by the use of specialized processing steps to produce either directionally solidified materials with minimum transverse grain boundaries, or single crystal materials. Single crystal materials permit alloying and heat treating modifications that further enhance the creep strength. The materials are very anisotropic in properties, but are successfully used in turbine blades and could be useful in other special applications

  9. Properties variation according to heat treatment for gas turbine blade(bucket) material of GTD-111DS

    International Nuclear Information System (INIS)

    Kim, Moon Young; Park, Sang Yeal; Yang, Sung Ho

    2006-01-01

    The gas turbine components is used on high temperature conditions which under severely circumstance with start-up and stop several times. Therefore, it is used nickel-base superalloys like and GTD-111DS. Damaged buckets on the blade tip during operating are repaired per 24,000 hr to three times according to repair specification of manufacture. It is applied pre-heat, HIP(Hot Isostatic Pressing) and post-heat treatment to support welding repair on blade tip effectively. On this study, it is utilize of WRAP TM (Welding Repair Advanced Process) method to make tension test specimens for this study. And then, material strength and characteristic for GTD-111DS was analyzed

  10. Bucket elevator type continuous unloader; Basket elevator gata renzokushiki anroda

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This unloader was delivered to Wakayama branch of Sumikin Butsuryu in the site of Wakayama steel plant of Sumitomo Metal Industries Ltd. for landing sub-materials for ironworks. Main specifications: (1) Capacity: 400t/h for limestone, 280t/h for gypsum, (2) Kinds of ships: 5,000DWT maximum, (3) Boom swing radius: 20m. Features: (1) Simple light-weight unloader for not large ships for main materials but small coastal service ships which works with not swing motion but only traveling and normal-directional motion of the under structure of a bucket elevator unit, (2) Various useful functions such as ground conveyance, truck loading, back yard stacking and back yard shipment for handling of various sub-materials. (translated by NEDO)

  11. Microwave instability in α-like quasi-isochronous buckets

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1996-10-01

    The problem of microwave instability inside an α-like quasi- isochronous bucket is addressed. The coupling impedance at wavelengths shorter than the length of the short bunches is found to be not small. The Keil-Schnell criterion is modified for such a bucket using the concept of self-bunching. The mechanism of particle loss during a microwave growth is examined

  12. Undrained Response of Bucket Foundations to Moment Loading

    DEFF Research Database (Denmark)

    Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    geotechnical engineers. This paper presents the experimental and numerical results of moment loading on small scale models of bucket foundations installed on Yoldia clay. The moment loading is experienced via the horizontal forces applied to features on a tower installed on bucket foundations. Different arm...

  13. Airfoil shape for a turbine bucket

    Science.gov (United States)

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  14. High temperature deformation mechanisms of L12-containing Co-based superalloys

    Science.gov (United States)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions

  15. Expert systems for superalloy studies

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  16. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  17. Soft Computing Methods in Design of Superalloys

    Science.gov (United States)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1996-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  18. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  19. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  20. Magnetic resonance imaging of meniscal bucket-handle tears

    International Nuclear Information System (INIS)

    Dfouni, N.; Garcia, J.; Kindynis, Ph.; Bosson, D.

    1997-01-01

    To define MR signs of meniscal bucket-handle tears and evaluate the diagnostic efficiency of this technique. Retrospective study of 30 patients with a meniscal bucket-handle tear and 30 with a different type of tear, all proven by arthroscopy. The following MR signs of a bucket-handle tear were evaluated: 'separate meniscal fragment, 'double posterior cruciate ligament', 'snake sign' and 'double anterior horn'. A correct diagnosis of a bucket-handle tear was only made in 18/30 of patients. Several of the MR signs were seen in the same patient in 17 cases. A double posterior cruciate ligament was present only in cases of medial meniscus tears. The 12 menisci without these signs, and therefore not diagnosed as bucket-handle tears, were all classified as meniscal tears on the basis of signal extending to the meniscal surface. Nine of these were not displaced into the inter-condylar notch at arthroscopy. The interobserver agreement was excellent: kappa 0.88. The diagnosis of a bucket-handle meniscal tear, if it is displaced, can be made when one or more of the four MR evaluated signs are present. Other forms of meniscal tears are only exceptionally diagnosed as bucket-handle tears. (authors)

  1. Ghost imaging with bucket detection and point detection

    Science.gov (United States)

    Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao

    2018-04-01

    We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.

  2. MRI findings in bucket-handle tears of the triangular fibrocartilage complex

    International Nuclear Information System (INIS)

    Jose, Jean; Arizpe, Azael; Chen, David; Barrera, Carlos M.; Ezuddin, Nisreen Shabbir

    2018-01-01

    The triangular fibrocartilage complex (TFCC) is an intricate ligamentous and cartilaginous structure that helps transmit axial load across the wrist, and provide stability to the ulnocarpal and distal radioulnar joints (DRUJ). Because the blood supply to the TFCC varies depending on location, certain types of tears are more amenable to surgical repair than others. Since Palmer proposed his classification system of TFCC tears in 1989, only 1 case of a ''bucket-handle'' type tear has been reported. In this article, we describe two new cases of bucket-handle tears of the TFCC. In both cases, the torn fragment was displaced into a previously undescribed location (intra-articular DRUJ and prestyloid recess). Because this type of injury pattern has not been previously well characterized in the literature and such cases rarely reported, MRI findings have not been fully described and its implications on clinical management have largely yet to be determined. (orig.)

  3. MRI findings in bucket-handle tears of the triangular fibrocartilage complex

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jean [University of Miami Miller School of Medicine, Department of Radiology, Jackson Memorial Hospital, Miami, FL (United States); University of Miami Miller School of Medicine, Department of Orthopedic Surgery, Uhealth Sports Medicine Institute, Miami, FL (United States); Arizpe, Azael; Chen, David [University of Miami Miller School of Medicine, Department of Orthopedic Surgery, Jackson Memorial Hospital, Miami, FL (United States); Barrera, Carlos M.; Ezuddin, Nisreen Shabbir [University of Miami, Miller School of Medicine, Coral Gables, FL (United States)

    2018-03-15

    The triangular fibrocartilage complex (TFCC) is an intricate ligamentous and cartilaginous structure that helps transmit axial load across the wrist, and provide stability to the ulnocarpal and distal radioulnar joints (DRUJ). Because the blood supply to the TFCC varies depending on location, certain types of tears are more amenable to surgical repair than others. Since Palmer proposed his classification system of TFCC tears in 1989, only 1 case of a ''bucket-handle'' type tear has been reported. In this article, we describe two new cases of bucket-handle tears of the TFCC. In both cases, the torn fragment was displaced into a previously undescribed location (intra-articular DRUJ and prestyloid recess). Because this type of injury pattern has not been previously well characterized in the literature and such cases rarely reported, MRI findings have not been fully described and its implications on clinical management have largely yet to be determined. (orig.)

  4. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES

    2011-06-01

    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  5. Modelling bucket excavation by finite element

    Science.gov (United States)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  6. A Prototype Bucket Wheel Excavator for the Moon, Mars and Phobos

    Science.gov (United States)

    Muff, T.; Johnson, L.; King, R.; Duke, M. B.

    2004-02-01

    Excavation of surface regolith material is the first step in processes to extract volatile materials from planetary surface regolith for the production of propellant and life support consumables. Typically, concentrations of volatiles are low, so relatively large amounts of material must be excavated. A bucket wheel excavator is proposed, which has the capability of continuous excavation, which is readily adapted to granular regolith materials as found on the Moon, in drift deposits on Mars, and probably on the surface of asteroids and satellites, such as Phobos. The bucket wheel excavator is relatively simple, compared to machines such as front end loaders. It also has the advantage that excavation forces are principally horizontal rather than vertical, which minimizes the need for excavator mass and suits it to operations in reduced gravity fields. A prototype small bucket wheel excavator has been built at approximately the scale of the rovers that are carried to Mars on the Mars Exploration Rover Mission. The prototype allows the collection of data on forces exerted and power requirements for excavation and will provide data on which more efficient designs can be based. At excavation rates in the vicinity of one rover mass of material excavated per hour, tests of the prototype demonstrate that the power required is largely that needed to operate the excavator hardware and not related strongly to the amount of material excavated. This suggests that the excavation rate can be much larger for the same excavation system mass. Work on this prototype is continuing on the details of transfer of material from the bucket wheel to an internal conveyor mechanism, which testing demonstrated to be problematic in the current design.

  7. Design of barrier bucket kicker control system

    Science.gov (United States)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  8. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  9. Physical Modelling of Bucket Foundations Subjected to Axial Loading

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina

    Compared to oil and gas structures, marine renewable energy devices are usually much lighter, operate in shallower waters and are subjected to severe cyclic loading and dynamic excitations. These factors result in different structural behaviours. Bucket foundations are a potentially cost......-effective solution for various offshore structures, and not least marine renewables. The present thesis focuses on several critical design problems related to the behaviour of bucket foundations exposed to tensile loading. Among those are the soil-structure interface parameters, tensile loading under various...

  10. Cavitation phenomena occurring on Pelton turbines buckets. Part 1

    International Nuclear Information System (INIS)

    Brivio, R.; Zappi, O.

    1995-01-01

    The article takes into consideration the erosion and/or cavitation phenomena occurring on the Pelton turbine buckets. It describes the main geometrical parameters that can cause the deterioration of the hydraulic profile and the provisions taken for avoid it or at least reduce it at the minimum when this deterioration has taken place. Furthermore, this article describes the development of the profiles up to the definition of bucket shapes that can assure high efficiencies and lack of cavitation. Some significant results, obtained about ten years ago in the hydraulic laboratory utilizing a closed circuit and reduced scale models, are then illustrated

  11. The metallurgy of superalloys part 2

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part II of the report titled 'the metallurgy of superalloys'. It deals with the effect of heat treatment and operating conditions (thermal exposure and environment) on the mechanical properties of superalloys. The heat treatment is important in the development of superalloys through that it controls type, amount, size shape and distribution of the precipitate and the grain size of the matrix. The thermal exposure leads to reduction in the amount of the primary carbides and to precipitation of secondary carbides. Also it leads to the agglomeration and coarsening of gamma or the transformation of gamma phase to phase. The environment may lead to the internal oxidation, carburization, decarburization or sulphidization of the superalloys which may result in the degradation of their mechanical properties. This part gives also an example of applications of superalloys in the field of nuclear reactors especially high temperature-gas cooled reactors. Joined with this part a table which contains the major superalloys including its chemical analysis, creep rupture strength and some of its applications. 1 tab

  12. The metallurgy of superalloys part 1

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part I of the report titled 'the metallurgy of superalloys'. In this part the structure, phases and systems of superalloys are reviewed. The role of alloying elements in the design of superalloys and the mechanical properties of superalloys are also reviewed. Superalloys are important in high temperature technology, especially above 700 degree c. They are 'super' mainly because their creep and stress rupture resistances are very high. Superalloys are based on an austenitic matrix including secondary phases, mainly gamma precipitates, inter and intragranular carbides mainly M 23 C 6 and M 6 C. They are classified into three systems, Ni-base, Fe-Ni base and Ce-base alloys. Different alloying elements mainly Cr, Mo, Al, Ti are added to increase the strength either by solid solution hardening (Cr, Mo, Al), precipitation hardening (A 1, Ti to produce gamma) or by dispersion hardening (Cr, Mo to form M 23 C 6 and M 6 C carbides) and to increase the oxidation resistance (Cr, Al). 3 tab., 2 fig

  13. Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys

    International Nuclear Information System (INIS)

    Long Zhengdong; Liu Xingbo; Yang Wanhong; Chang, K.-M.; Barbero, Ever

    2004-01-01

    The solidification macrosegregation, i.e. freckle, becomes more and more concerned with ever increasing demand for the large ingot size of superalloys. The evaluation of freckle formation is very difficult because of the less understanding of freckle formation mechanism and complex solidification behaviors of multi-component superalloys. The macrostructure of typical Nb-bearing and Ti-bearing superalloys in horizontally directional solidification and vacuum arc remelting (VAR) ingots were investigated to clarify the freckle formation mechanism. The thermodynamic approach was proposed to simulate the solidification behaviors. The relative Ra numbers, a reliable criterion, of freckle formation for some alloys were obtained based on the results of thermodynamic calculations. This thermodynamic approach was evaluated through comparison of the calculations from semi-experimental results. The Ra numbers obtained by thermodynamic approach are in good agreement with the ingot size capability of the industry melting shops, which is limited mainly by freckle defects

  14. Effect of Embedment on the Vertical Bearing Capacity of Bucket Foundations in Clay

    DEFF Research Database (Denmark)

    Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    To evaluate the undrained behaviour of bucket foundations installed on Yoldia clay, 100 tests on bucket foundations subject to vertical and moment loadings were conducted at Aalborg university geotechnical centre. Bucket foundations are tubular steel foundations that are installed by sealing...

  15. Laboratory experiments of bucket foundations under cyclic loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    This report collects information on the experimental campaign concerning bucket foundations under lateral cyclic loading conducted by the authors between 2011 and 2014. The report includes a step by step manual on the test procedures and a number of information and graphs for each experiment...

  16. Cost-Effective Mass Production of Mono Bucket Foundations

    DEFF Research Database (Denmark)

    Gres, Szymon; Nielsen, Søren Andreas; Fejerskov, Morten

    2015-01-01

    for innovative and cost-effective design of Mono Bucket foundations. Established approach merges wind and wave load models, soil/structure interaction topics, structural optimization and installation/fabrication aspects, into software package with ability to perform optimal design of the individual foundations...

  17. A Preliminary Study on Bucket Foundations under Transient Lateral Loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Nielsen, Søren Kjær

    2013-01-01

    This study aims at investigating the behaviour of monopod bucket foundations through a physical model. The foundation is installed in dense water-saturated sand and is subjected to lateral load applied at different rates. The different loading rates allow for exploring the patterns of response of...

  18. On the robustness of bucket brigade quantum RAM

    Science.gov (United States)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  19. Vertical Capacity of Bucket Foundations in Undrained Soil

    DEFF Research Database (Denmark)

    Barari, Amin; Ibsen, Lars Bo

    2014-01-01

    Offshore wind turbine structures are traditionally founded on gravity concrete foundations or mono-piles. Bucket foundations were developed for the offshore oil and gas industry and are now being used in wind turbine construction. The loading in this application is characterized by a vertical loa...

  20. Numerical analysis of the bucket surface roughness effects in Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Zeng, C J; Zhang, J; Yan, Z G; Wang, Z W

    2013-01-01

    The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance

  1. Numerical analysis of the bucket surface roughness effects in Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.

    2013-12-01

    The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.

  2. Mechanical characterization of superalloys for space reactors

    International Nuclear Information System (INIS)

    Duchesne, J.

    1989-01-01

    The purpose of this work is the choice of materials usable between 600 and 900 0 C for nuclear space reactor structures. The main criterion of selection for these materials is their good creep behaviour. Consequently, macroscopic theories of creep and several extrapolation methods were described. Superalloys seem the best materials for the studied range of temperatures. Five of them, base nickel, ones unusual in nuclear industry were selected for their good mechanical properties. Three of them are industrial alloys: the first, HAYNES 230 is a recent one, HASTELLOY S and X are more standard materials. The last two, HASTELLOY XR and PYRAD 38 D are issued from special fabrications. Creep tests metallographic investigations, hardness and tensile tests were performed. A contraction of samples was observed during some creep tests under a low stress, 20MPa at 800 0 C, for HAYNES 230 and HASTELLOY X. This could be due to a structural evolution of these materials connected to a decrease of the cristalline parameter. In addition, correlations were observed between certain characteristics determined from slow tensile tests and short duration creep tests. These correlations present a large interest because, at the present time, creep tests cannot be executed on irradiated materials in our laboratories. Consequently creep behaviour of irradiated materials seem may be deduced. Further studies are needed to explain and confirm the behaviour of the most interesting materials under low stresses: HAYNES 230 and HASTELLOY XR to anticipate their behaviour in working conditions [fr

  3. A new method for automated dynamic calibration of tipping-bucket rain gauges

    Science.gov (United States)

    Humphrey, M.D.; Istok, J.D.; Lee, J.Y.; Hevesi, J.A.; Flint, A.L.

    1997-01-01

    Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min-1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h-1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h-1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h-1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other

  4. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  5. Forging Oxide-Dispersion-Strengthened Superalloys

    Science.gov (United States)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  6. Energy dissipation of slot-type flip buckets

    Science.gov (United States)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  7. Bucket wheel excavator performances at Neyveli lignite mine

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, S; Mozumdar, B K

    1987-03-01

    Bucket-wheel excavators have been in use at the Neyveli Lignite Mine in the State of Tamil Nadu, India, since the early nineteen-sixties. The mining environment has been particularly harsh for BWE application. The adverse influencing factors are the hardness of the over-burden formation, high abrasivity of rock and artesian ground water conditions. In this paper, the performances of the BWEs at Neyveli have been statistically analysed to determine the effects of physico-mechanical properties of overburden, blasting and rainfall on machine productivity, availability, wear-and-tear of bucket teeth, power consumption, production efficiency and cost of mining. An empirical relationship between the production efficiency, defined as the ratio of actual production rate to the theoretical one, and the bench height and width, height of slices, specific cutting resistance of the overburden material and its clay content, consumption of explosives, and conveyor length has been established.

  8. An RF cavity for barrier bucket experiment in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, M.; Iwashita, Y. [Kyoto Univ. (Japan); Mori, Y. [and others

    1998-11-01

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 10{sup 14}ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  9. First-stage high pressure turbine bucket airfoil

    Science.gov (United States)

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  10. Newton’s Rotating Water Bucket: A Simple Model

    Science.gov (United States)

    2013-01-01

    surface of the water must be an equipotential relative to the sum of the gravitational and centrifugal potential energies [9].) The value of z0 can be...twisted and the bucket is then released, it begins to spin and the surface of the water acquires a paraboloidal shape. In this paper, the parabolic...adopts a curved surface . Ernst Mach, for example, postulated that the parabolic shape must be due to the existence of matter in the universe

  11. On the use of magnetic buckets for ion beam profile tailoring

    International Nuclear Information System (INIS)

    MacGill, R. A.; Vizir, A.; Brown, I. G.

    2000-01-01

    Magnetic multipole plasma confinement geometries employing permanent magnet ''buckets'' are used extensively for a range of laboratory plasma applications. Among the several consequences for plasma confinement is the important result that the plasma can acquire a more-or-less flat density profile, which when embodied in an ion source, can also lead to a flat profile for the extracted ion beam. For many applications a uniform ion beam current density profile is quite advantageous, for example, for carrying out large-area ion implantation. There are, however, inherent limitations on the extent to which this approach to beam ''homogenization'' can be utilized, and even for a perfectly flat profile in the immediate postextraction region, the beam will evolve toward Gaussian as it propagates downstream. Here we describe the rare-earth permanent magnet bucket that we have incorporated into our broad-beam vacuum arc ion source, and its effect on the beam profile at the extractor and downstream. The experimental results are compared with a simple model for the beam profile evolution with axial distance. We find that the beam loses memory of its initially flat profile and relaxes to a more-or-less Gaussian shape in a relatively short axial distance ∼w/4θ, where w is the initial width of the flat beam profile and θ is the beamlet divergence half angle. (c) 2000 American Institute of Physics

  12. The Healthcare Public System – Does Standardization Withhold the Bucket from Leaking?

    Directory of Open Access Journals (Sweden)

    Biţoiu Teodora

    2017-12-01

    Full Text Available The public healthcare system is heavily influenced by the 3C trilemma - cost - coverage - choice. The paper’s argument tackles the fact that should the public decision on improving capacity be leaning towards universal coverage in would result in efficiency losses and, in an attempt to control the costs it would limit patients’ choice. Should priority be given to performance or value? The present paper deals with the compromise between the equity and efficiency, a leaky bucket that becomes more visible in the struggle to build capacity and intervene in the market by setting standards. Setting healthcare standards is a global concern, the 3rd Sustainable Development Goal is a clear proof of that the aim to emphasise and better analyse two of the most influential variables: efficiency and equity. All in all, what we argue is that the current leaky bucket is a trade-off between choice, coverage, and cost. For a complex public service like healthcare, targeting a full coverage and multiple choice would incur huge costs and, cutting costs considerably restricts both the choice and coverage. The cost is influenced by the production capacity use when the activity has large fixed costs.

  13. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  14. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  15. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    Science.gov (United States)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  16. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    International Nuclear Information System (INIS)

    Zeng, C J; Xiao, Y X; Zhu, W; Yao, Y Y; Wang, Z W

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail

  17. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  18. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  19. Hot isostatic pressing of single-crystal nickel-base superalloys: Mechanism of pore closure and effect on Mechanical properties

    Directory of Open Access Journals (Sweden)

    Epishin Alexander I.

    2014-01-01

    Full Text Available Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength.

  20. Effect of blasting on output increase of bucket wheel excavators

    Energy Technology Data Exchange (ETDEWEB)

    Musil, P.

    1987-12-01

    In brown coal surface mines, consolidated sediments become a problem as mining operations advance into greater depth below the original terrain. Owing to higher digging resistance, the output of bucket wheel excavators drops. This problem may be solved by blasting technology and using drilling machines with higher digging force. This paper describes the blasting operations at the Nastup Mines in Tusmice, Czechoslovakia. About 60% of blasting explosives used is a simple mixture of ammonium nitrate and fuel (ANFO), the rest falls on classic blasting gelatines and blasting explosives plasticized by slurry. It is found that blasting improves output by 30% while electric energy consumption is reduced.

  1. A BUNCH TO BUCKET PHASE DETECTOR USING DIGITAL RECEIVER TECHNOLOGY

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; HAYES, T.; LE, T.N.; SMITH, K.

    2003-01-01

    Transferring high-speed digital signals to a Digital Signal Processor is limited by the IO bandwidth of the DSP. A digital receiver circuit is used to translate high frequency W signals to base-band. The translated output frequency is close to DC and the data rate can be reduced, by decimation, before transfer to the DSP. By translating both the longitudinal beam (bunch) and RF cavity pick-ups (bucket) to DC, a DSP can be used to measure their relative phase angle. The result can be used as an error signal in a beam control servo loop and any phase differences can be compensated

  2. Modelling the embedded rainfall process using tipping bucket data

    DEFF Research Database (Denmark)

    Thyregod, Peter; Arnbjerg-Nielsen, Karsten; Madsen, Henrik

    1998-01-01

    A new method for modelling the dynamics of rain measurement processes is suggested. The method takes the discrete nature and autocorrelation of measurements from the tipping bucket rain gauge into consideration. The considered model is a state space model with a Poisson marginal distribution....... In the model there is only one parameter, a thinning parameter. The model is tested on 39 rain events. The estimated value for the various rain events is reflecting a subjective classification of rain events into frontal and convective rain. Finally, it is demonstrated how the model can be used for simulation...

  3. Comparison of Calculation Models for Bucket Foundation in Sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo

    The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focused...... on resultant bearing capacity of variously embedded foundation in sand. The 2D models, [Ibsen 2001] and LimitState:GEO can be used for the preliminary design because they are fast and result in a rather similar bearing capacity calculation compared with the finite element models of Plaxis 3D. The 2D models...

  4. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  5. Recrystallization of the ODS superalloy PM-1000

    International Nuclear Information System (INIS)

    Sandim, H.R.Z.; Hayama, A.O.F.; Raabe, D.

    2006-01-01

    The primary recrystallization of a -fiber textured coarse-grained oxide dispersion strengthened nickel-based superalloy (PM-1000) has been investigated by high-resolution electron backscatter diffraction. The annealing behavior of this alloy is quite complex. Even at high annealing temperatures (e.g. 1200 deg. C), recrystallization is only partial. The microstructure of this superalloy in the annealed state consists of a blurred subgrain structure, coarse grains with sizes of about 10-20 μm at the pre-existing grain boundaries and a significant fraction of small crystals in the interior of the recovered grains. These small grains are elongated and display anisotropic growth. In the present paper we present a detailed explanation for this peculiar microstructure. Particular focus is placed on the origin of the new grains in the recovered structure in a [1 0 0]-oriented grain

  6. Development of Wrought Superalloy in China

    Directory of Open Access Journals (Sweden)

    DU Jinhui

    2016-06-01

    Full Text Available Wrought superalloy development in China was reviewed in recent ten years. The achievement of basic research and development of industrial manufacture technologies were systematically described from the aspects of new alloys, new technologies of hot deformation. New alloys include: new disc materials 718Plus, GH4720Li and GH4065 alloy, combustion chamber alloy GH3230, and GH4706 alloy for gas turbine engines. New technologies include: ERS-CDS new technology of easy segregation materials, multi upsetting-drawing for improving the microstructure uniformity of bars, slow cooling and multi-cycle thermomechanical treatment for increasing hot plasticity of hard-to-work alloys. Finally, the further development of wrought superalloys was prospected.

  7. Bucket wheel excavators for open-cast mining all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Durst, W.

    1979-04-01

    A report is given on the use of bucket wheel excavators, spreaders and tripper cars in open-cast mining of brown coal, oilsand and other minerals in Australia, Canada, India, Spain, USA and Yugoslavia as well as on the use of bucket wheel excavators for land reclamation in Singapore.

  8. Unsteady CFD simulation for bucket design optimization of Pelton turbine runner

    Science.gov (United States)

    KUMASHIRO, Takashi; FUKUHARA, Haruki; TANI, Kiyohito

    2016-11-01

    To investigate flow patterns on the bucket of Pelton turbine runners is one of the important issues to improve the turbine performance. By studying the mechanism of loss generation on the flow around the bucket, it becomes possible to optimize the design of inner and outer bucket shape. For making it into study, computational fluid dynamics (CFD) is quite an effective method. It is normally used to simulate the flow in turbines and to expect the turbine performances in the development for many kind of water turbine including Pelton type. Especially in the bucket development, the numerical investigations are more useful than observations and measurements obtained in the model test to understand the transient flow patterns. In this paper, a numerical study on two different design buckets is introduced. The simplified analysis domain with consideration for reduction of computational load is also introduced. Furthermore the model tests of two buckets are also performed by using the same test equipment. As the results of the model test, a difference of turbine efficiency is clearly confirmed. The trend of calculated efficiencies on both buckets agrees with the experiment. To investigate the causes of that, the difference of unsteady flow patterns between two buckets is discussed based on the results of numerical analysis.

  9. New Medium-Scale Laboratory Testing of Bucket Foundation Capacity in Sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2014-01-01

    This article presents a new testing rig for axially loaded bucket foundations. The medium-scale physical model gives the ability to examine the influence of axial tensile, compressive as well as cyclic loading on bucket foundations subjected to various levels of overburden stress. The properties...

  10. Bucket-handle tear of posterior uterine cervical lip in a second ...

    African Journals Online (AJOL)

    A bucket-handle tear is a laceration of either the anterior lip or the posterior lip of the cervix so that it hangs like the handle of a bucket.These cervical injuries are more common in term deliveries and are associated with various risks factors, including cervical cerclage, induction of labour, young maternal age, assisted ...

  11. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  12. Interdiffusion between Ni-based superalloy and MCrAlY coating

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2006-01-01

    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875oC, 925oC or 950oC. Modelled results using the finite difference...

  13. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  14. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  15. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  16. Seepage Study for Suction Installation of Bucket Foundation in Different Soil Combinations

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo; Clausen, Johan Christian

    2016-01-01

    Research has proven the bucket foundation to be a feasible and an attractive solution for offshore wind turbines. Its potential derives partly from the cost-effectiveness due to the suction-assisted installation. The suction applied under the bucket lid produces a downward driving force and addit......Research has proven the bucket foundation to be a feasible and an attractive solution for offshore wind turbines. Its potential derives partly from the cost-effectiveness due to the suction-assisted installation. The suction applied under the bucket lid produces a downward driving force...... around the bucket skirt. The exceedance of critical suction might lead to installation failure due to formation of piping channels, which break the hydraulic seal between the skirt and soil. The excess pore pressure arising due to applied suction changes the effective stress, hence the penetration...

  17. N18, powder metallurgy superalloy for disks: Development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. (SNECMA, Evry (France). Materials and Processes Dept.)

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.

  18. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  19. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  20. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  1. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction

  2. Carrying BioMath education in a Leaky Bucket.

    Science.gov (United States)

    Powell, James A; Kohler, Brynja R; Haefner, James W; Bodily, Janice

    2012-09-01

    In this paper, we describe a project-based mathematical lab implemented in our Applied Mathematics in Biology course. The Leaky Bucket Lab allows students to parameterize and test Torricelli's law and develop and compare their own alternative models to describe the dynamics of water draining from perforated containers. In the context of this lab students build facility in a variety of applied biomathematical tools and gain confidence in applying these tools in data-driven environments. We survey analytic approaches developed by students to illustrate the creativity this encourages as well as prepare other instructors to scaffold the student learning experience. Pedagogical results based on classroom videography support the notion that the Biology-Applied Math Instructional Model, the teaching framework encompassing the lab, is effective in encouraging and maintaining high-level cognition among students. Research-based pedagogical approaches that support the lab are discussed.

  3. Prototype bucket foundation for wind turbines - natural frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)

  4. A Study on the Optimum Bucket Size for Master Scheduling : For the Case of Hierarchically tured Products

    OpenAIRE

    木内, 正光

    2010-01-01

    The function of master scheduling is to plan the flow of order from its arrival to its completion. In this study, the problem of bucket size for master scheduling is taken up. The bucket size for master scheduling has much influence on the lead time of the order. However, to date there is no clear method for how to set the optimum bucket size. The purpose of this study is to propose a method to set the optimum bucket size. In this paper, an equation to estimate the optimum bucket size is prop...

  5. Set-up and Test Procedure for Suction Installation and Uninstallation of Bucket Foundation

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna

    This technical report describes the set-up and the test procedures for installation and uninstallation of medium-scale model of bucket foundation that can be performed in the geotechnical part of laboratory in Aalborg University. The installation of bucket foundation can be tested with the use of......) and loading frame used for those tests have been already used for axially static and cyclic loading of piles (Thomassen, 2015a) and for axially static and cyclic loading of bucket foundation (Vaitkunaite et al., 2015).......This technical report describes the set-up and the test procedures for installation and uninstallation of medium-scale model of bucket foundation that can be performed in the geotechnical part of laboratory in Aalborg University. The installation of bucket foundation can be tested with the use...... of suction under the bucket lid or by applying additional force through the hydraulic piston, forcing the bucket to penetrate into the soil. Tests for uninstallation are performed also with the use of water pressure, as a reverse process to the suction installation. Both installation and uninstallation tests...

  6. Hemi-bucket-handle tears of the meniscus: appearance on MRI and potential surgical implications

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, Bjorn I.; Vinson, Emily N.; Helms, Clyde A. [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC (United States); Taylor, Dean C.; Garrett, William E. [Duke University Medical Center, Department of Orthopaedics, Box 3810, Durham, NC (United States)

    2012-08-15

    To describe a type of meniscus flap tear resembling a bucket-handle tear, named a ''hemi-bucket-handle'' tear; to compare its imaging features with those of a typical bucket-handle tear; and to discuss the potential therapeutic implications of distinguishing these two types of tears. Five knee MR examinations were encountered with a type of meniscus tear consisting of a flap of tissue from the undersurface of the meniscus displaced toward the intercondylar notch. A retrospective analysis of 100 MR examinations prospectively interpreted as having bucket-handle type tears yielded 10 additional cases with this type of tear. Cases of hemi-bucket-handle tears were reviewed for tear location and orientation, appearance of the superior articular surface of the meniscus, presence and location of displaced meniscal tissue, and presence of several classic signs of bucket-handle tears. A total of 15/15 tears involved the medial meniscus, had tissue displaced toward the notch, and were mainly horizontal in orientation. The superior surface was intact in 11/15 (73.3%). In 1/15 (6.7%) there was an absent-bow-tie sign; 6/15 (40%) had a double-PCL sign; 14/15 (93.3%) had a double-anterior horn sign. We describe a type of undersurface flap tear, named a hemi-bucket-handle tear, which resembles a bucket-handle tear. Surgeons at our institution feel this tear would likely not heal if repaired given its predominantly horizontal orientation, and additionally speculate the tear could be overlooked at arthroscopy. Thus, we feel it is important to distinguish this type of tear from the typical bucket-handle tear. (orig.)

  7. Hemi-bucket-handle tears of the meniscus: appearance on MRI and potential surgical implications

    International Nuclear Information System (INIS)

    Engstrom, Bjorn I.; Vinson, Emily N.; Helms, Clyde A.; Taylor, Dean C.; Garrett, William E.

    2012-01-01

    To describe a type of meniscus flap tear resembling a bucket-handle tear, named a ''hemi-bucket-handle'' tear; to compare its imaging features with those of a typical bucket-handle tear; and to discuss the potential therapeutic implications of distinguishing these two types of tears. Five knee MR examinations were encountered with a type of meniscus tear consisting of a flap of tissue from the undersurface of the meniscus displaced toward the intercondylar notch. A retrospective analysis of 100 MR examinations prospectively interpreted as having bucket-handle type tears yielded 10 additional cases with this type of tear. Cases of hemi-bucket-handle tears were reviewed for tear location and orientation, appearance of the superior articular surface of the meniscus, presence and location of displaced meniscal tissue, and presence of several classic signs of bucket-handle tears. A total of 15/15 tears involved the medial meniscus, had tissue displaced toward the notch, and were mainly horizontal in orientation. The superior surface was intact in 11/15 (73.3%). In 1/15 (6.7%) there was an absent-bow-tie sign; 6/15 (40%) had a double-PCL sign; 14/15 (93.3%) had a double-anterior horn sign. We describe a type of undersurface flap tear, named a hemi-bucket-handle tear, which resembles a bucket-handle tear. Surgeons at our institution feel this tear would likely not heal if repaired given its predominantly horizontal orientation, and additionally speculate the tear could be overlooked at arthroscopy. Thus, we feel it is important to distinguish this type of tear from the typical bucket-handle tear. (orig.)

  8. Physical Modelling of Bucket Foundation Under Long-Term Cyclic Lateral Loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    Offshore wind farms are a promising renewable energy source. The monopod bucket foundation has the potential to become a reliable and cost-effective concept for offshore wind turbines. The bucket foundation must be designed by accounting for the cyclic loading which might endanger the turbine...... functioning. In this article a 1g physical model of bucket foundation under horizontal and moment cyclic loading is described. A testing program including four tests was carried out. Every test was conducted for at least 30000 cycles, each with different loading features. The capability of the model...

  9. Low-Cobalt Powder-Metallurgy Superalloy

    Science.gov (United States)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  10. Mechanical characterization of superalloys for space reactors

    International Nuclear Information System (INIS)

    Duchesne, J.

    1989-01-01

    The aim of this work is the selection of structural materials that can be used in the temperature range 600-900 0 C for a gas cooled space reactor producing electricity. Superalloys fit best the temperature range required. Five nickel base alloys are chosen for their good mechanical behaviour: HAYNES 230, HASTELLOY S, HASTELLOY X, HASTELLOY XR and PYRAD 38D. Metallography, tensile and hardness tests are realized. Sample contraction is evidenced for some creep tests, under low stress: 20MPa at 800 0 C, on HAYNES 230 and HASTELLOY X, probably related to the structural evolution of these materials corresponding to a decrease of the crystal parameter [fr

  11. Molecular dynamics simulation of edge dislocation piled at cuboidal precipitate in Ni-based superalloy

    International Nuclear Information System (INIS)

    Yashiro, Kisaragi; Naito, Masato; Tomita, Yoshihiro

    2003-01-01

    In order to clarify the fundamental mechanism of dislocations in the γ/γ' microstructure of Ni-based superalloy, three molecular dynamics simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the pure Ni matrix (γ) toward cuboidal Ni 3 Al precipitates (γ') under shear force. One involves dislocations near the apices of two precipitates adjoining each other with the distance of 0.04 μm, as large as the width of the γ channel in real superalloys. Others simulate dislocations piled at the precipitates as well, however, the scale of the microstructure is smaller than that in real superalloys by one order of magnitude, and one of them have precipitates with atomistically sharp edge. Dislocations are pinned at precipitates and bowed-out in the γ channel, then they begin to penetrate into the precipitate at the edge in both the real-scale and smaller microstructures when the precipitates have blunt edges. On the other hand, an edge dislocation splits into a superpartial in the γ' precipitate and a misfit screw dislocation bridging between two adjacent precipitates at the atomistically sharp edge of γ' precipitates. It is also observed that two superpartials glide in the precipitate as a superdislocation with anti-phase boundary (APB), of which the width is evaluated to be about 4 nm. (author)

  12. Investigation of seepage around the bucket skirt during installation in sand

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo

    or along bucket skirt with known soil condition, bucket geometry and applied suction. The second aim of the study is to evaluate expressions for normalized seepage length, s/h, for different soil combinations and penetration depths. The seepage length is then 7 used to make a prediction of critical...... pressure that will create piping channels at exit, which is near to seabed and to the caisson wall, along bucket wall and at the tip. That is how the limits for suction installation can be assumed. Finally, the critical suction is used for predicting the reduction of penetration resistance and the method...... describing this approach is presented in the report with its assumptions. The method is called AAU CPT-based method and it is a great step in the development of practical design tool for bucket foundation installation process....

  13. Operation and maintenance techniques of 1 ton bucket elevator in IMEF

    International Nuclear Information System (INIS)

    Soong, Woong Sup

    1999-04-01

    IMEF pool is used as a pathway between pool and hot cell in order to transfer (incoming and outgoing) irradiated materials. Transfer is performed by 1 ton bucket elevator which is moved inside the rectangular tube installed between pool and M1 hot cell. Allowable load capacity is 1 ton of the bucket elevator and its size is 25 X 25 X 150 cm. Bucket is driven by chain system which is moved up and down through the guide rail. Guide rail is installed in rectangular tube that is tilted about 63 degree. Chain which is moved by using the roller sliding method is driven by sprocket wheel being rotated by the shaft and the shaft is driven by gear reducing motor. In this report operation and maintenance techniques of 1 ton bucket elevator in IMEF are described in detail. (Author). 8 refs., 14 tabs., 6 figs

  14. Operation and maintenance techniques of 1 ton bucket elevator in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Woong Sup

    1999-04-01

    IMEF pool is used as a pathway between pool and hot cell in order to transfer (incoming and outgoing) irradiated materials. Transfer is performed by 1 ton bucket elevator which is moved inside the rectangular tube installed between pool and M1 hot cell. Allowable load capacity is 1 ton of the bucket elevator and its size is 25 X 25 X 150 cm. Bucket is driven by chain system which is moved up and down through the guide rail. Guide rail is installed in rectangular tube that is tilted about 63 degree. Chain which is moved by using the roller sliding method is driven by sprocket wheel being rotated by the shaft and the shaft is driven by gear reducing motor. In this report operation and maintenance techniques of 1 ton bucket elevator in IMEF are described in detail. (Author). 8 refs., 14 tabs., 6 figs.

  15. Climate Prediction Center (CPC) Global Monthly Leaky Bucket Soil Moisture Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly global soil moisture, runoff, and evaporation data sets produced by the Leaky Bucket model at 0.5? ? 0.5? resolution for the period from 1948 to the present....

  16. Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket

    Science.gov (United States)

    Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho

    A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.

  17. Gated current integrator for the beam in the RR barrier buckets

    Energy Technology Data Exchange (ETDEWEB)

    A. Cadorn; C. Bhat; J. Crisp

    2003-06-10

    At the Fermilab Recycler Ring (RR), the antiproton (pbar) beam will be stored azimuthally in different segments created by barrier buckets. The beam in each segment may have widely varying intensities. They have developed a gated integrator system to measure the beam intensity in each of the barrier bucket. Here they discuss the design of the system and the results of beam measurements using the integrator.

  18. Forces acting on particles in a Pelton bucket and similarity considerations for erosion

    Science.gov (United States)

    Rai, A. K.; Kumar, A.; Staubli, T.

    2016-11-01

    High sediment transport rates cause severe erosion issues in hydropower plants leading to interruptions in power generation, decrease in efficiency and shutdown for repair and maintenance. For Pelton turbines operating at high head, the issue of erosion is severe, especially in components like buckets, nozzle rings and needles. Goal of the study is to develop erosion focussed guidelines for both designing as well as operating hydropower plants with Pelton runners. In this study, the flow of sediment inside a Pelton bucket with respect to forces acting on solid particles is analysed with an analytical approach by considering different dynamic forces originating from the rotation of the turbine, the curvature of the buckets, and the Coriolis effect. Further, the path of sediment particles and its effect on erosion phenomena are analysed based on the process of separation of different sized sediment particles from streamlines. The data relating to head, power, discharge, number of jet and efficiency of 250 hydropower plants installed all over the world were analysed in this study to find the major factors related to erosion in Pelton turbine bucket. From analysis of different force ratios, it is found that an increase of D/B, i.e. the ratio of pitch circle diameter and bucket width, and/or decrease of specific speed (nq) enhances erosion. As the erosion process depends significantly on nondimensional parameters D/B and nq, these are considered as similarity measures for scaling of the erosion process in the Pelton buckets of various sizes.

  19. Proceedings of the Conference on Refractory Alloying Elements in Superalloys

    International Nuclear Information System (INIS)

    1984-01-01

    Some papers about the use of refractory metals in superalloys are presented. Mechanical properties, thermodynamics properties, use for nuclear fuels and corrosion resistance of those alloys are studied. (E.G.) [pt

  20. Grinding of Inconel 713 superalloy for gas turbines

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Kyncl, J.; Kolařík, K.; Beránek, L.; Pitrmuc, Z.; Medřický, Jan; Pala, Z.

    2016-01-01

    Roč. 16, č. 1 (2016), s. 14-15 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Casting defects * Gas turbine * Grinding * Nickel superalloy * Residual stresses Subject RIV: JJ - Other Materials

  1. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  2. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  3. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  4. Development of a Refractory High Entropy Superalloy (Postprint)

    Science.gov (United States)

    2016-03-17

    hardened with HfC precipitates [2], Co-Re- or Co-Al-W-based alloys [3] or two-phase ( FCC + L12) refractory superalloys based on platinum group metals...Ni-based superalloys consisting of cuboids with the ordered L12 structure embedded in an FCC solid-solution matrix. Based on this microstructural...and 5). A comparison of the average atomic radii with the measured lattice parameters allows us to conclude that the disordered BCC phase forming

  5. Bucket Brigades to Increase Productivity in a Luxury Assembly Line

    Directory of Open Access Journals (Sweden)

    Filippo De Carlo

    2013-08-01

    Full Text Available One of the most challenging issues in manual assembly lines is to achieve the best balance of workloads. There are many analytic approaches to solve this problem, but they are often neglected, since they are time-consuming and require high level engineering skills. Fashion bags packaging lines must comply with a number of different products with low production volumes, while the organization of the line is often under the mere responsibility of the foreman, who balances workloads in an empirical way. The aim of this work is to evaluate the effectiveness of the arrangement of bucket brigades (BBs for an assembly line of luxury handbags. To do this, it was decided to perform a testing activity in a company producing fashion handbags in order to compare the self-made design with the BBs and with a simple assembly line balancing problem algorithm. The originality of this research lies in the fact that there are no studies in the literature on BBs applied to the packaging of highly variable small batches. The results were excellent, showing the advantages of BBs in terms of flexibility, the reduction of work in the process and the ability to handle small anomalies.

  6. Changes in the properties of superalloys by long term heating

    International Nuclear Information System (INIS)

    Susukida, H.; Tsuji, I.; Kawai, H.

    1976-01-01

    A laboratory study was conducted in order to determine the effect of long term heating (max. 10000h at 850 0 and 950 0 C) on the microstructure, tensile properties, hardness and stress rupture properties of four kinds of superalloys. These superalloys are two kinds of solid solution hardened Ni-base superalloys Hastelloy X and Inconel 617 and two kinds of dispersion strengthened Ni-base superalloys TD-Ni and TD-NiCr. The result of the study can be summarized as follows: (1) Solid solution hardened superalloys: Many precipitates were observed in the grains and on the grain boundaries after 100 hours of heating, and the precipitates became coarse-grained by over 1000 hours of heating. This tendency was remarkable when they were heated at 950 0 C. With the change of their microstructure, their mechanical properties also changed, particularly their tensile ductility decreased remarkably. (2) Dispersion strengthened superalloys: Their microstructure and mechanical properties were almost unchanged by long term heating. (3) The authors proposed ''solid solution hardening value'' in order to grasp quantitatively the solid solution hardening which has been discussed by the content of each element hitherto. (auth.)

  7. [The "Ice Bucket Challenge": wondering about the impact of social networks to promote public health interventions].

    Science.gov (United States)

    Gualano, Maria Rosaria; Bert, Fabrizio; Gili, Renata; Andriolo, Violetta; Scaioli, Giacomo; Siliquini, Roberta

    2015-01-01

    The "Ice Bucket Challenge" was an activity launched to promote awareness of amyotrophic lateral sclerosis (ALS) and encourage donations to research for this disease. The campaign went viral on social media during July to August 2014. It consisted in nominating people and challenging them to donate 100 dollars to the ALS Association or pour a bucket of ice water over their head and post the video on the web. Participants in turn then had to challenge others to do the same. The initiative was hugely successful, involved millions of people and, just in the US, collected 35 times more money than in the same time period in 2013. We analyzed possible factors that determined the success of this initiative, to identify strengths and weaknesses of the activity and evaluate the possibility of applying the same model to promote public health interventions. Several features of the challenge were identified as strengths: the involvement of wellknown people from different contexts, the "public platform" which triggers a positive combination of competitiveness, social pressure and narcissism, the chain-letter like method of nomination, the ironic and entertaining nature of the performance. Besides these strengths, weaknesses were also identified: information spread via social media can only partially reach potential donors and supporters, due to the digital divide phenomenon which excludes people who do not have web access. Also, it is not possible to predict if the message will be long-lasting or will cease shortly after the end of the campaign. The latter could be acceptable for fund-raising, where the aim is simply to collect as much money as possible, but not for a public health intervention program, whose success requires that the intended message has a long-lasting effect to produce an effective change in people's behavior. Despite the above-mentioned limits, social networks undeniably show great potential to spread messages to the community and to involve a large number of

  8. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  9. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  10. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  11. Comparison of a pneumatic conveyor and bucket elevator on an energy and economic basis

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, T.M.; Southwell, P.H. (Agricultural and Energy Engineering Ltd., Moorefield, ON (Canada)); Vigneault, C. (Agricultural Canada Research Station, St-Jean-sur-Richelieu, PQ (Canada))

    1991-07-01

    Tests were performed at a commercial feed mill which was replacing an existing pneumatic conveyor with a bucket elevator, in order to compare the performance of the two types of conveyor on an energy and cost basis. The conveyors were used to transport ground corn from a hammermill at an average grinding rate of 8.5 tonnes/h. At the same conveying rate of ground product, the pneumatic conveyor required a power of 27.5 kW and an energy of 4.77 kWh/tonne while the bucket elevator required a power of 4.7 kW and an energy of 0.88 kWh/tonne. The financial costs of conveying energy were $8,350/y for the pneumatic system and $1,540/y for the bucket elevator, excluding peak demand charges for electricity. The tests therefore demonstrated that a bucket elevator is far more efficient than a pneumatic conveyor and should be considered in the design of new feed mills. For existing mills, a bucket elevator should be considered if there are problems with the pneumatic system already in place or if the capacity of the mill needs to be increased. 2 refs., 2 tabs.

  12. Optimization of the Water Volume in the Buckets of Pico Hydro Overshot Waterwheel by Analytical Method

    Science.gov (United States)

    Budiarso; Adanta, Dendy; Warjito; Siswantara, A. I.; Saputra, Pradhana; Dianofitra, Reza

    2018-03-01

    Rapid economic and population growth in Indonesia lead to increased energy consumption, including electricity needs. Pico hydro is considered as the right solution because the cost of investment and operational cost are fairly low. Additionally, Indonesia has many remote areas with high hydro-energy potential. The overshot waterwheel is one of technology that is suitable to be applied in remote areas due to ease of operation and maintenance. This study attempts to optimize bucket dimensions with the available conditions. In addition, the optimization also has a good impact on the amount of generated power because all available energy is utilized maximally. Analytical method is used to evaluate the volume of water contained in bucket overshot waterwheel. In general, there are two stages performed. First, calculation of the volume of water contained in each active bucket is done. If the amount total of water contained is less than the available discharge in active bucket, recalculation at the width of the wheel is done. Second, calculation of the torque of each active bucket is done to determine the power output. As the result, the mechanical power generated from the waterwheel is 305 Watts with the efficiency value of 28%.

  13. Computational analysis of Pelton bucket tip erosion using digital image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna

    2008-03-01

    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  14. Bucket wheel rehabilitation of ERC 1400-30/7 high-capacity excavators from lignite quarries

    Science.gov (United States)

    Vîlceanu, Fl; Iancu, C.

    2016-11-01

    The existence of bucket wheel equipment type ERC 1400-30/7 in lignite quarries with lifetime expired, or in the ultimate life period, together with high cost investments for their replacement, makes rational the efforts made to rehabilitation in order to extend their life. Rehabilitation involves checking operational safety based on relevant expertise of metal structures supporting effective resistance but also the replacement (or modernization) of subassemblies that can increase excavation process productivity, lowering energy consumption, reducing mechanical stresses. This paper proposes an analysis of constructive solution of using a part of the classical bucket wheel, on which are located 9 cutting cups and 9 chargers cups and adding a new part so that the new redesigned bucket-wheel will contain 18 cutting-chargers cups, compared to the classical model. On the CAD model of bucket wheel was performed a static and a dynamic FEA, the results being compared with the yield strength of the material of the entire structure, were checked mechanical stresses in the overall distribution map, and were verified the first 4 vibrating modes the structure compared to real loads. Thus was verified that the redesigned bucket-wheel can accomplish the proposed goals respectively increase excavation process productivity, lowering energy consumption and reducing mechanical stresses.

  15. Using combined system of shaft guides for buckets during shaft deepening

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.; Ivenskii, N.S.; Alekhin, P.I.

    1981-06-01

    This paper discusses a system of shaft guides used in the Krasnopol'evsk underground coal mine. The existing skip shaft 514 m deep is deepened to a depth of 700 m. Shaft design is adapted to a system of two pairs of skips, however, only one pair of skips is in operation and the other has been removed. The free space can be used to remove rock material from shaft bottom. It is noted that a system of buckets moving along elastic shaft guides made of rope or along rigid shaft guides can be used. Both solutions have numerous advantages. If rope guides are used time consuming installation of shaft guides is unnecessary in the zone close to the bottom. If rigid guides are used capacity of the bucket can be significantly increased. A system which combines advantages of both solutions is used: in the lower part of the shaft being deepened, buckets are guided by rope, and in the upper zone in which rigid shaft guides have been installed the bucket moves along rigid guides and rope guides simultaneously. Design of the element guiding the bucket is shown in two diagrams. It is noted that using the combined system of shaft guides increases capacity of the hoisting system by 1.5 times.

  16. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  17. Segregation to grain boundaries in nimonic PE16 superalloy

    International Nuclear Information System (INIS)

    Nettleship, D.J.; Wild, R.K.

    1990-01-01

    Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)

  18. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  19. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  20. Computational thermodynamics and genetic algorithms to design affordable γ′-strengthened nickel–iron based superalloys

    International Nuclear Information System (INIS)

    Tancret, F

    2012-01-01

    Computational thermodynamics based on the CALPHAD approach (Thermo-Calc software) are used to design creep-resistant and affordable superalloys for large-scale applications such as power plants. Cost is reduced by the introduction of iron and by avoiding the use of expensive alloying elements such as Nb, Ta, Mo, Co etc. Strengthening is ensured by the addition of W, and of Al and Ti to provoke the precipitation of γ′. However, the addition of iron reduces the maximum possible volume fraction of γ′. The latter is maximized automatically using a genetic algorithm during simulation, while keeping the alloys free of undesirable phases at high temperatures. New superalloys with 20 wt% Cr are designed, with Fe content up to 37 wt%. They should be forgeable, weldable, oxidation resistant and significantly cheaper than existing alloys with equivalent properties. (paper)

  1. Noburnium: Systems design of niobium superalloys

    Science.gov (United States)

    Misra, Abhijeet

    2005-11-01

    A systems-based approach, integrating quantum mechanical calculations with efficient experimentation, was employed to design niobium-based superalloys. The microstructural concept of gamma-gamma' nickel-based superalloys was adopted, where, the coherent gamma ' aluminides act both as the strengthening phase and a source of aluminum for Al2O3 passivation. Building on previous research, the selected bcc-type ordered aluminide was L2 1 structured Pd2HfAl phase. Comprehensive phase relations were measured on Nb-Pd-Hf-Al prototype alloys, and key tie-tetrahedra were identified. Aluminide precipitation in a bcc matrix was demonstrated in designed Nb+Pd2HfAl alloys. Thermodynamic databases were developed by integrating first-principles calculations with measured phase relations. Atomic volume models were developed for the bcc matrix and the Pd2HfAl phase and matrix elements which would reduce lattice misfit were identified. An experimental 2-phase alloy demonstrated a misfit of 3%. A modified Wagner's model was used to predict the required transient properties to form external Al2O3. The principal oxidation design goal was to decrease the oxygen permeability ( NSOx DO ) divided by the aluminum diffusivity (DAl) by 5 orders of magnitude. A multicomponent mobility database was developed to predict the diffusivities. Guided by first-principles calculations the effect of alloying elements on the oxygen diffusivity in Nb was measured, and the mobility database was experimentally validated. Based on the mobility database, it was found that increasing Al solubility in the bcc matrix greatly increased Al diffusivity. Alloying elements were identified that would increase Al solubility in the bcc matrix. Prototype alloys were prepared and the best oxidation performance was exhibited by a bcc+Nb2Al Nb-Hf-Al alloy, which exhibited parabolic oxidation behavior at 1300°C. The alloy was shown to have achieved the required 5 orders of magnitude reduction in the design parameter. The

  2. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    Science.gov (United States)

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  3. Implementasi Manajemen Bandwidth Dengan Disiplin Antrian Hierarchical Token Bucket (HTB Pada Sistem Operasi Linux

    Directory of Open Access Journals (Sweden)

    Muhammad Nugraha

    2016-09-01

    Full Text Available Important Problem on Internet networking is exhausted resource and bandwidth by some user while other user did not get service properly. To overcome that problem we need to implement traffic control and bandwidth management system in router. In this research author want to implement Hierarchical Token Bucket algorithm as queue discipline (qdisc to get bandwidth management accurately in order the user can get bandwidth properly. The result of this research is form the management bandwidth cheaply and efficiently by using Hierarchical Token Bucket qdisc on Linux operating system were able to manage the user as we want.

  4. Literature review on cyclic lateral loading effects of mono-bucket foundations

    DEFF Research Database (Denmark)

    Kapitanov, Lachezar Rosenov; Duroska, Peter; Quirante, Cesar Antonio Garcia

    2016-01-01

    and consequently cost-effectiveness compared to other common solutions. The long-term cyclic loading can cause degradation of soil-bucket system stiffness, which yields into accumulated and permanent deformations. Despite of the advantages, there is no standard procedure to design the foundation especially...... calculation is highly demanded at the different design phases. The intention of the current study is to present, review and summarize the existing techniques to assess the effect of cyclic loading on Mono-Bucket foundations while emphasizing the advantage and disadvantage of each of them. Additionally...

  5. IMPLEMENTASI MANAJEMEN BANDWIDTH DENGAN DISIPLIN ANTRIAN HIERARCHICAL TOKEN BUCKET (HTB PADA SISTEM OPERASI LINUX

    Directory of Open Access Journals (Sweden)

    Muhammad Nugraha

    2017-01-01

    Full Text Available Important Problem on Internet networking is exhausted resource and bandwidth by some user while other user did not get service properly. To overcome that problem we need to implement traffic control and bandwidth management system in router. In this research author want to implement Hierarchical Token Bucket algorithm as queue discipline (qdisc to get bandwidth management accurately in order the user can get bandwidth properly. The result of this research is form the management bandwidth cheaply and efficiently by using Hierarchical Token Bucket qdisc on Linux operating system were able to manage the user as we want.

  6. Metallurgical optimisation of PM superalloy N19

    Directory of Open Access Journals (Sweden)

    Locq Didier

    2014-01-01

    Full Text Available Microstructures of the new PM superalloy N19 have been investigated for various heat treatments in order to reach the best compromise between static strength and cyclic resistance. One subsolvus and several supersolvus heat treatments were applied to produce fine (7 μm and medium (25 μm grain sizes, respectively. The alloy is shown to be quite sensitive to the cooling conditions after solutioning as the γ′ hardening precipitates, both secondary and tertiary, have a direct influence on mechanical properties. Two cooling conditions after solutioning produce a high crack propagation resistance at 650 °C with dwell time cycles, which is one of the basic requirements. The low cycle fatigue behaviour appears to be correlated to the grain size, which determines the origin of crack initiation (from ceramic inclusions or not. The other mechanical properties (tensile, creep remain above target levels. Despite the medium size grain microstructure in the supersolvus condition, a high level of mechanical strength is observed in N19 at elevated temperature. It is understood that further improvement in properties can be achieved by developing coarse grain microstructures.

  7. Boride particles in a powder metallurgy superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Witt, M C; Charles, J A

    1985-12-01

    Using optical and electron metallography, the composition, morphology, and distribution of M/sub 3/B/sub 2/ borides in as-hipped (hot isostatically pressed) samples of the powder metallurgy superalloy Nimonic AP1 have been determined. Two types of boride are present depending on the HIP temperature. Hipping below the boride solvus results in low-aspect ratio particles, distributed both inter- and intragranularly. Hipping above the boride solvus produces high-aspect ratio particles which are exclusively intergranular. A small difference in both lattice parameter and composition has been measured. Electron energy loss spectroscopy of the particles has confirmed the presence of boron, and laser ion-induced mass analysis has indicated a low carbon level. The higher susceptibility to edge cracking during forging of material hipped above the boride solvus is related to the boride morphology. Studies of the subsequent recrystallization of the forged samples have indicated that necklace formation is neither inhibited nor accelerated by the presence of grain boundary borides. 18 references.

  8. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  9. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  10. Numerical Buckling Analysis of Large Suction Caissons for Wind Turbines on Deep Water

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    Using large suction caissons for offshore wind turbines is an upcoming cost-effective technology also referred to as bucket foundations. During operation, the monopod bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation...... the suction caisson is loaded by external pressure (internal suction) due to evacuation of water inside the bucket and vertical forces due to gravity. The risk of structural buckling during installation of large-diameter suction caissons is addressed using numerical methods. Initial imperfect geometries...

  11. Experimental damping assessment of a full scale offshore mono bucket foundation

    DEFF Research Database (Denmark)

    Gres, Szymon; Fejerskov, Morten; Ibsen, Lars Bo

    2016-01-01

    This paper quantifies the system damping of a offshore meteorological mast supported by a Mono Bucket foundation based on a long-term experimental campaign. The structure is located at Dogger Bank west, North Sea, and equipped with a measurement system monitoring acceleration, strain, inclination...

  12. A Similitude Theory for Bucket Foundations Under Monotonic Horizontal Load in Dense Sand

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    2013-01-01

    This paper aims at finding force-displacement relationships to be employed in the design of bucket foundations for offshore wind turbine. This is accomplished by combining small-scale tests and element tests within a theoretical framework. A similitude theory, regarding the lateral displacement o...

  13. Comparison of numerical formulations for the modeling of tensile loaded suction buckets

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan Christian; Damkilde, Lars

    2017-01-01

    The tensile resistance of a suction bucket is investigated using three different numerical formulations. The first formulation utilizes the three-field u-p-U formulation accounting for solid and fluid displacements, u and U, as well as the pore-fluid pressure, p. The two other formulations compri...

  14. Crafting the Set of Buckets in a R&D Portfolio

    DEFF Research Database (Denmark)

    Santiago, Leonardo; Soares, Verônica Mariana Oliveira

    2017-01-01

    of buckets. Our framework is composed of four strategic constructs, namely technology, marketing, capabilities and organizational processes. In addition, the external environment is also taken into account. We offer a series of propositions grounded on some theoretical insights concerning the strategic...

  15. Consideration on the 1 ton bucket elevator installed under water of pool in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ung Sup; Lee, Jong Heon; Lee, Hong Gi; Choo, Yong Sun; Jung, Yang Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The bucket elevator which can transfer examination capsule or fuel from pool to hot cell is installed under water of pool (3x6x10 m) in IMEF. A allowable load is 1 ton and the dimension of bucket is 25x25x150 cm. The upper and lower sides motion of bucket have about 63 degrees inclined duties with a chain driving system. A specialized made chain catches a rug of bucket with a roller sliding way between right and left guide rails which are fixed at inner of a square tube and moves to an upper and lower sides and it is made so that it is operated by sprocket wheel installed in a hot cell working table below. Sprocket wheel is executed to two steps of driving shaft by reduction geared motor installed at right outside of M1 hot cell. As for the starting operation, it is executed by push an operation button on a operating panel located at front of M1 hot cell.

  16. Dynamic behaviour of mono bucket foundations subjected to combined transient loading

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2015-01-01

    This article presents the results from small scale testing, investigating the effect of transient combined loading of a bucketfoundation. The tests are performed inside a pressure tank at Aalborg University, Denmark. The bucket foundation was installed in dense water saturated sand and transient ...

  17. The tale of two buckets and associated containers: impact on aedes albopictus oviposition

    Science.gov (United States)

    Aedes albopictus is an invasive species. Its oviposition behavior is the subject of several projects in our research unit. The main emphasis of this presentation is a study which utilizes two five gallon buckets, one heated and one with ambient temperature. The heat is provided by an aquarium hea...

  18. Wave Forces on Transition Pieces for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Thomas Lykke; Andersen, Lars Vabbersgaard

    to a bucket foundation (suction caisson) located at 35 m water depth in the North Sea. Several models of the TPs (wedge-shaped steel flange-reinforced shear panels, conical and doubly curved with or without cutaways) are tested in a wave flume and compared with respect to wave loading. Due to a larger size...

  19. Performance-Based Design Optimization of a Transition Piece for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Lars; Ibsen, Lars Bo

    2011-01-01

    This paper deals with optimization of the shape of the transition piece connecting turbine column with a suction bucket used as a monopod foundation for an offshore wind turbine. The structural behaviour of a transition piece made of compact reinforced composite (CRC) is analysed. Several...

  20. Development of bucket ion source for JFT-2M neutral beam injector

    International Nuclear Information System (INIS)

    Shibata, Takatoshi; Kazawa, Minoru; Yokoyama, Kenji; Shibuya, Toshihiro; Honda, Atsushi; Shiina, Tomio

    1987-02-01

    Detailed description is given of a new Bucket Ion Source for NBI heating experiments on JFT-2M. The source is designed to achieve the high proton ratio (∼ 80 %) as well as high power. Results of the performance test is also given. (author)

  1. Flow simulation of a Pelton bucket using finite volume particle method

    International Nuclear Information System (INIS)

    Vessaz, C; Jahanbakhsh, E; Avellan, F

    2014-01-01

    The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

  2. Measuring water and sediment discharge from a road plot with a settling basin and tipping bucket

    Science.gov (United States)

    Thomas A. Black; Charles H. Luce

    2013-01-01

    A simple empirical method quantifies water and sediment production from a forest road surface, and is well suited for calibration and validation of road sediment models. To apply this quantitative method, the hydrologic technician installs bordered plots on existing typical road segments and measures coarse sediment production in a settling tank. When a tipping bucket...

  3. Damping Estimation of a Prototype Bucket Foundation for Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2013-01-01

    -3.0 MW offshore wind turbine installed on a prototype bucket foundation. The foundation and the turbine tower are equipped with a monitoring system with 15 Kinemetrics force balance accelerometers and a Digitexx acquisition system. Using free vibration decays from “rotor-stop” tests and operational modal...

  4. The Bucket System – A computer mediated signaling system for group improvisation

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nilsson, Per Anders; Robair, Gino

    2015-01-01

    The Bucket System is a new system for computer-mediated ensemble improvisation, designed by improvisers for improvisers. Coming from a tradition of structured free ensemble improvisation practices (comprovisation), influenced by post-WW2 experimental music practices, it is a signaling system...

  5. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    Science.gov (United States)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  6. ANALYSIS OF INFLUENCE OF DESIGN CHARACTERISTICS OF INCLINED BUCKET ELEVATOR ON THE POWER OF ITS DRIVE

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2016-12-01

    Full Text Available Purpose.One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator’s power from design capacity (at fixed lifting height, type of cargo, belt speed is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using

  7. SABRE: A Sensitive Attribute Bucketization and REdistribution framework for t-closeness

    KAUST Repository

    Cao, Jianneng

    2010-05-19

    Today, the publication of microdata poses a privacy threat: anonymous personal records can be re-identified using third data sources. Past research has tried to develop a concept of privacy guarantee that an anonymized data set should satisfy before publication, culminating in the notion of t-closeness. To satisfy t-closeness, the records in a data set need to be grouped into Equivalence Classes (ECs), such that each EC contains records of indistinguishable quasi-identifier values, and its local distribution of sensitive attribute (SA) values conforms to the global table distribution of SA values. However, despite this progress, previous research has not offered an anonymization algorithm tailored for t-closeness. In this paper, we cover this gap with SABRE, a SA Bucketization and REdistribution framework for t-closeness. SABRE first greedily partitions a table into buckets of similar SA values and then redistributes the tuples of each bucket into dynamically determined ECs. This approach is facilitated by a property of the Earth Mover\\'s Distance (EMD) that we employ as a measure of distribution closeness: If the tuples in an EC are picked proportionally to the sizes of the buckets they hail from, then the EMD of that EC is tightly upper-bounded using localized upper bounds derived for each bucket. We prove that if the t-closeness constraint is properly obeyed during partitioning, then it is obeyed by the derived ECs too. We develop two instantiations of SABRE and extend it to a streaming environment. Our extensive experimental evaluation demonstrates that SABRE achieves information quality superior to schemes that merely applied algorithms tailored for other models to t-closeness, and can be much faster as well. © 2010 Springer-Verlag.

  8. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  9. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  10. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  11. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  12. Prediction of recrystallisation in single crystal nickel-based superalloys during investment casting

    Directory of Open Access Journals (Sweden)

    Panwisawas Chinnapat

    2014-01-01

    Full Text Available Production of gas turbines for jet propulsion and power generation requires the manufacture of turbine blades from single crystal nickel-based superalloys, most typically using investment casting. During the necessary subsequent solution heat treatment, the formation of recrystallised grains can occur. The introduction of grain boundaries into a single crystal component is potentially detrimental to performance, and therefore manufacturing processes and/or component geometries should be designed to prevent their occurrence. If the boundaries have very low strength, they can degrade the creep and fatigue properties. The root cause for recrystallisation is microscale plasticity caused by differential thermal contraction of metal, mould and core; when the plastic deformation is sufficiently large, recrystallisation takes place. In this work, numerical and thermo-mechanical modelling is carried out, with the aim of establishing computational methods by which recrystallisation during the heat treatment of single crystal nickel-based superalloys can be predicted and prevented prior to their occurrence. Elasto-plastic law is used to predict the plastic strain necessary for recrystallisation. The modelling result shows that recrystallisation is most likely to occur following 1.5–2.5% plastic strain applied at temperatures between 1000 ∘C and 1300 ∘C; this is validated with tensile tests at these elevated temperatures. This emphasises that high temperature deformation is more damaging than low temperature deformation.

  13. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    Science.gov (United States)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  14. Novel casting processes for single-crystal turbine blades of superalloys

    Science.gov (United States)

    Ma, Dexin

    2018-03-01

    This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

  15. MR imaging of meniscal bucket-handle tears: a review of signs and their relation to arthroscopic classification

    International Nuclear Information System (INIS)

    Aydingoez, Uestuen; Firat, Ahmet K.; Atay, Ahmet Oe.; Doral, Nedim M.

    2003-01-01

    Our objective was to review the MR imaging signs of meniscal bucket-handle tears and assess the relevance of these signs to the arthroscopic classification of displaced meniscal tears. Forty-five menisci in 42 patients who had a diagnosis of bucket-handle tear either on MR imaging or on subsequent arthroscopy (in which Dandy's classification of meniscal tears was used) were retrospectively analyzed for MR imaging findings of double posterior cruciate ligament (PCL), fragment within the intercondylar notch, absent bow tie, flipped meniscus, double-anterior horn, and disproportional posterior horn signs. Arthroscopy, which was considered as the gold standard, revealed 41 bucket-handle tears (either diagnosed or not diagnosed by MR imaging) in 38 patients (33 males, 5 females). There was a stastistically significant male preponderance for the occurrence of meniscal bucket-handle tears. Overall, sensitivity and positive predictive value of MR imaging for the detection of meniscal bucket-handle tears were calculated as 90%. Common MR imaging signs of meniscal bucket-handle tears in arthroscopically proven cases of such tears were the fragment in the notch and absent bow tie signs (98% frequency for each). Double-PCL, flipped meniscus, double-anterior horn, and disproportional posterior horn signs, however, were less common (32, 29, 29, and 27%, respectively). An arthroscopically proven bucket-handle tear was found in all patients who displayed at least three of the six MR imaging signs of meniscal bucket-handle tears. The presence of three or more MR imaging signs of meniscal bucket-handle tears is highly suggestive of this condition. (orig.)

  16. Precipitation in Powder Metallurgy, Nickel Base Superalloys: Review of Modeling Approach and Formulation of Engineering (Postprint)

    Science.gov (United States)

    2016-12-01

    AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These

  17. A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)

    Science.gov (United States)

    2017-04-01

    AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient

  18. Recent trends in superalloys research for critical aero-engine components

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Luc [Mine ParisTech, CNRS UMR 7633, 91 - Evry (France). Centre des Materiaux; Guedou, Jean-Yves [Snecma Safran Group, Moissy-Cramayel (France). Materials and Processes Dept.

    2010-07-01

    This paper is a brief survey of common research activity on superalloys for aero-engines between Snecma and Mines ParisTech Centre des Materiaux during recent years. First in disks applications, the development of new powder metallurgy superalloys is shown. Then grain boundary engineering is investigated in a wrought superalloy. Secondly, design oriented research on single crystals blades is shown: a damage model for low cycle fatigue is used for life prediction when cracks initiated at casting pores. The methodology developed for assessing coating life is illustrated for thermal barrier coating deposited on AMI single crystal superalloy. (orig.)

  19. Determination of p-y Curves using Finite Element Modelling for Bucket Foundation in Undrained Soft and Medium Clay

    DEFF Research Database (Denmark)

    Hvidberg, Mogens Bonde; Ibsen, Lars Bo

    In many years the types of foundation, such as monopiles and bucket foundation which are used in the offshore wind turbine industry, have been analysed analytically with formulations that are based on much slender piles, than are used today. Because of that, the analytical calculation...... is not describing the connection between the horizontal bearing capacity of the soil and the displacement of the foundation accurate, in particular for the bucket foundation because of the much smaller slenderness of the profile. Numerical modelling is used to examine that bearing capacity the bucket foundation has...... in soft and medium clay at different dimensions of the bucket, to a horizontal displacement. After that a mathematical formulation is determined, based on (Reese et al, 1975), so it is possible to get a more accurate result in an analytical calculation....

  20. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  1. Anamnestic prediction of bucket handle compared to other tear patterns of the medial meniscus in stable knees.

    Science.gov (United States)

    Haviv, Barak; Bronak, Shlomo; Kosashvili, Yona; Thein, Rafael

    2016-12-01

    The aim of this study was to analyze and compare the preoperative anamnestic details between patients with an arthroscopic diagnosis of bucket handle and other tear patterns of the medial meniscus in stable knees. A total of 204 patients (mean age 49.3 ± 13 years) were included in the study. The mean age was 49.3 ± 13 years. The study group included 65 patients (63 males, 2 females) with an arthroscopic diagnosis of bucket handle tear and the control group included 139 patients (90 males, 49 females) with non-bucket handle tear patterns. The preoperative clinical assessments of the two groups were analyzed retrospectively. Anamnestic prediction for the diagnosis of a bucket handle tear was based upon various medical history parameters. Multivariate logistic regression was carried out to identify independent anamnestic factors for predicting isolated bucket handle tears of the medial meniscus compared to non-bucket handle tears. Analysis of the multivariate logistic regression yielded 3 statistically significant independent anamnestic risk factors for predicting isolated bucket handle tears of the medial meniscus: male gender (OR, 9.7; 95% CI, 1.1-37.6), locking events (OR, 4.6; 95% CI, 1.8-11.3) and pain in extension (OR, 6.9; 95% CI, 2.5-23.7). Other preoperative variables such as age, BMI, activity level, comorbidities, duration of symptoms, pain location, preceding injury and its mechanism had no significant effect on tear pattern. Preoperative strong clues for bucket handle tears of the medial meniscus in stable knees are male gender, locking events and limitation in extension. Level III, Diagnostic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  2. Energy Bucket: A Tool for Power Profiling and Debugging of Sensor Nodes

    DEFF Research Database (Denmark)

    Andersen, Jacob; Hansen, Morten Tranberg

    2009-01-01

    The ability to precisely measure and compare energy consumption and relate this to particular parts of programs is a recurring theme in sensor network research. This paper presents the Energy Bucket, a low-cost tool designed for quick empirical measurements of energy consumptions across 5 decades...... of current draw. The Energy Bucket provides a light-weight state API for the target system, which facilitates easy scorekeeping of energy consumption between different parts of a target program. We demonstrate how this tool can be used to discover programming errors and debug sensor network applications.......Furthermore, we show how this tool, together with the target system API, offers a very detailed analysis of where energy is spent in an application, which proves to be very useful when comparing alternative implementations or validating theoretical energy consumption models....

  3. Painful locking of the knee due to bucket handle tear of

    Directory of Open Access Journals (Sweden)

    HE Rui

    2011-04-01

    Full Text Available 【Abstract】 A case of swelling and anterior painful knee due to tear of mediopatellar plica is reported. The patient also felt clunk of the patellofemoral joint and knee locking. Under arthroscopic examination, a thick and fibrous plica was found medial to patellar, and a bucket tear along the plica from medial patellar retinaculum to infrapatellar fat pad. Polarized microscopic examination showed collagen fiber fragment and loss of light reflecting property. Neuroimmunohistology suggested up-regulation of synovial plica innervation in the area around the crack. This may be related to the pain. The bucket tear of mediopatellar plicacaused pain and lock of knee are more common than previously reported. Key words: Knee injuries; Arthroscopy; Patellofemoral joint

  4. Material Composition of Bucket Foundation Transition Piece for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Lars; Ibsen, Lars Bo

    2010-01-01

    In Denmark, production of renewable energy is focused on offshore wind turbines, since they make little if any inconvenience for residents in inhabited areas. High requirements are placed on the installation of the foundations which can cost about 30% of the total cost of the wind turbine....... This paper deals with the transition piece for a relatively novel type of foundation, the so-called suction bucket (caisson), focusing on the design of a transition piece connecting the turbine column with a suction bucket used as a monopod foundation for an offshore wind turbine. Since the current design...... practice is limited to the use of steel-flange-reinforced shear panels for the transition piece—a production that requires extensive welding work—a desirable solution is to find a material that provides lower cost and easier manufacturing without compromising the strength and stiffness. The paper compares...

  5. Optimizing chain life in bucket elevators through proper design and elongation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Luglio, J.J. [Rexnord, Inc., Milwaukee, WI (United States)

    2001-04-01

    Since down time in the bulk solids handling industry is so expensive, bucket elevators must operate with extreme reliability, and, of course, the cost per ton of material conveyed must be minimized. This means balancing initial costs, operating and maintenance costs as well as minimizing the inventory of parts required in order to insure reliability. The elevator must be designed properly for each application. It must also be operated and maintained properly. (orig.)

  6. Prisen Årets studenter start-up går til Drop Bucket

    DEFF Research Database (Denmark)

    Lassen, Lisbeth

    2015-01-01

    DTU’s ny pris for årets mest innovative studerende blev ved universitetets årsfest givet til Heiða Gunnarsdóttir Nolsøe og Marie Stampe Berggreen, som står bag virksomheden Drop Bucket. Koncerndirektør for innovation og entreprenørskab, Marianne Thellersen, overakte prisen til de to innovatører s...

  7. An Experimental Study of the Drained Capacity of Bucket Foundations for Offshore Applications

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2013-01-01

    Today, wind energy offers the most competitive production prices for renewable energy. Therefore there are strong political and industrial forces, especially in northern Europe, which support the development of the offshore wind industry. The present paper presents the results of drained tests on....... Based on the results of the analyses, new failure criteria are calibrated for bucket foundations, in contrast to previous studies using the failure envelop e approach which have suggested that yield surface is constant in shape....

  8. Analysis of in-situ renewal technology for the backhoe bucket bores

    Energy Technology Data Exchange (ETDEWEB)

    Torims, Toms; Ratkus, Andris; Vilcans, Janis; Zarins, Marcis; Rusa, Aldis [Department of Material Processing Technology Faculty of Transport and Mechanical Engineering Riga Technical University, Riga (Latvia)

    2011-07-01

    The overall aim of this article is to outline the progress of the research on how to develop an economically and scientifically justified backhoe buckets boreholes renewal technology by using mobile on-site technological equipment. Today the new mobile (in-situ) repair technologies are extensively used for the specialized equipment and machinery repairs. This repair technology is deployed directly on the damaged product: repair equipment is installed by using specialized centering devices. The bucket bores central axes are used as a reference base and damaged layer of material is removed mechanically applying turning operation. Subsequently the renewable surface is covered by new material layer by means of regular MIG/MAG welding. The last technological operation is final turning to the nominal diameter. Outlined renewal technology should meet high expectations – this necessitates in-depth and systematic study of pins and bores which are the most repaired objects of shovel bucket excavators. Therefore, research on established accuracy and technical requirements, both for the repaired unit and technological equipment in line with in-situ repair technology specifics, has been done. It was supported by impact analysis of the technological regimes to surface integrity with ambition to provide practical recommendations for the optimal choice of the technological regimes. Key words: in-situ repair technology, surface integrity, technological parameters.

  9. A Bibliometric Assessment of Global Ice Bucket Challenge (Amyotrophic Lateral Sclerosis) Research.

    Science.gov (United States)

    Ram, Shri

    2016-10-01

    This study is a quantitative and qualitative assessment of the global research trends on amyotrophic lateral sclerosis (ALS) (popularly known as Ice Bucket Challenge), through related literatures retrieved from SCOPUS multidisciplinary database for the period 1974-2013. This study is aimed at analyzing the literature on ALS in terms of document type, language, annual growth, productive country, journal, authors, subject, and most cited articles. The bibliographic data for this study was retrieved from the SCOPUS database using keywords 'amyotrophic lateral sclerosis', 'motor neurone disease', 'Charcot disease', 'Lou Gehrig's disease', 'Ice Bucket Challenge' available in title, abstract, and keyword fields of Scopus database from 1974 to 2013. The literature analysis included 21,750 articles during the period from 1974 to 2013 in different areas of ALS. USA was the most productive country in terms of literature produced, while Neurology was the most productive journal. An intensive awareness created by 'Ice Bucket Challenge' has attracted masses, and an intensive growth of literature is pertinent on ALS. The results of this study are expressed in terms of growth of literature, output of individual countries, and authors, and will be helpful in collaborative research in future.

  10. Erosion of Pelton buckets and changes in turbine efficiency measured in the HPP Fieschertal

    Science.gov (United States)

    Abgottspon, A.; Staubli, T.; Felix, D.

    2016-11-01

    Geometrical changes and material loss of Pelton turbine runners as well as changes in turbine efficiency were measured at HPP Fieschertal in Valais, Switzerland. The HPP is equipped with two horizontal axis Pelton units, with each 32 MW nominal power, 7.5 m3/s design discharge, 515 m head and two injectors. The injectors and the buckets are hard-coated. Hydro-abrasive erosion was quantified based on repeated measurements on two runner buckets using (i) 3d-scanning and (ii) a coating thickness gauge. Changes in efficiency were measured by applying the sliding needle procedure. In addition to these periodically performed measurements, efficiency was also continuously monitored. The highest erosion rate was measured during the first half of the sediment season 2012 including a major sediment transport event. Because the runner was not fully reconditioned at the beginning of this season, progressive damages occurred. After the event, a splitter width of 10 mm was measured, corresponding to 1.5 % of the inner bucket width. The cut-outs were eroded by up to 9 mm towards the axis. The efficiency reductions ranged from 1 % in the year with the major sediment transport event to insignificant differences in 2014, when the sediment load was small and only little hydro-abrasive erosion occurred.

  11. Numerical analysis of non-stationary free surface flow in a Pelton bucket

    Energy Technology Data Exchange (ETDEWEB)

    Hana, Morten

    1999-07-01

    Computation and analysis of flow in Pelton buckets have been carried out. First a graphical method is investigated and partially improved. In order to decide whether to improve the method further or disregard it in favour of commercial computational fluid dynamics (CFD) codes, a study on numerical methods for free surface flow was carried out. This part of this work concentrates on the theoretical background for different numerical methods, and describes some practical considerations. Although small programs were created based on the literature survey, but only one reported herein, it was soon found that commonly available numerical codes were favourable in use. A code, RIPPLE, was acquired to study the Volume of Fluid (VOF) method in detail. The commercial codes used were Flow-3D and CFX-4. These programs were used in three different cases. First, a simplified 2-dimensional case was verified experimentally. Next, a 3-dimensional fixed jet calculation was carried out. Finally, numerical calculations with relative motion between the jet and buckets were carried out with CFX-4. The conclusion is that commercial CFD codes can replace the graphical method. But careful implementation is needed in order to resolve the special features of Pelton turbines, which are the free surface, the complex geometry and the relative motion between the jet and the bucket.

  12. Microstructural Characterization and Modeling of SLM Superalloy 718

    Science.gov (United States)

    Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard

    2017-01-01

    Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.

  13. Analysis of laser beam weldability of Inconel 738 superalloy

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-01-01

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  14. Phase Stability of a Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  15. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718

    International Nuclear Information System (INIS)

    Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M.

    2008-01-01

    Microstructure evolution during dynamic recrystallization (DRX) of superalloy 718 was studied by optical microscope and electron backscatter diffraction (EBSD) technique. Compression tests were performed at different strains at temperatures from 950 deg. C to 1120 deg. C with a strain rate of 10 -1 s -1 . Microstructure observations show that the recrystallized grain size as well as the fraction of new grains increases with the increasing temperature. A power exponent relationship is obtained between the dynamically recrystallized grain size and the peak stress. It is found that different nucleation mechanisms for DRX are operated in hot deformed superalloy 718, which is closely related to deformation temperatures. DRX nucleation and development are discussed in consideration of subgrain rotation or twinning taking place near the original grain boundaries. Particular attention is also paid to the role of continuous dynamic recrystallization (CDRX) at both higher and lower temperatures

  16. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  17. Powder-metallurgy superalloy strengthened by a secondary gamma phase.

    Science.gov (United States)

    Kotval, P. S.

    1971-01-01

    Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.

  18. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling

    International Nuclear Information System (INIS)

    Epishin, Alexander; Fedelich, Bernard; Link, Thomas; Feldmann, Titus; Svetlov, Igor L.

    2013-01-01

    Pore annihilation during hot isostatic pressing (HIP) was investigated in the single-crystal nickel-base superalloy CMSX-4 experimentally by interrupted HIP tests at 1288 °C/103 MPa. The kinetics of pore annihilation was determined by density measurement and quantitative metallography. Transmission electron microscopy of a HIPed specimen showed that the pores shrink via dislocation movement on octahedral glide planes. Theoretically pore closure under HIP condition was modelled by the finite element method using crystal plasticity and large strain theories. The modelling gives a similar kinetics of pore annihilation as observed experimentally, however somewhat higher annihilation rate

  19. The use of knowledge-based Genetic Algorithm for starting time optimisation in a lot-bucket MRP

    Science.gov (United States)

    Ridwan, Muhammad; Purnomo, Andi

    2016-01-01

    In production planning, Material Requirement Planning (MRP) is usually developed based on time-bucket system, a period in the MRP is representing the time and usually weekly. MRP has been successfully implemented in Make To Stock (MTS) manufacturing, where production activity must be started before customer demand is received. However, to be implemented successfully in Make To Order (MTO) manufacturing, a modification is required on the conventional MRP in order to make it in line with the real situation. In MTO manufacturing, delivery schedule to the customers is defined strictly and must be fulfilled in order to increase customer satisfaction. On the other hand, company prefers to keep constant number of workers, hence production lot size should be constant as well. Since a bucket in conventional MRP system is representing time and usually weekly, hence, strict delivery schedule could not be accommodated. Fortunately, there is a modified time-bucket MRP system, called as lot-bucket MRP system that proposed by Casimir in 1999. In the lot-bucket MRP system, a bucket is representing a lot, and the lot size is preferably constant. The time to finish every lot could be varying depends on due date of lot. Starting time of a lot must be determined so that every lot has reasonable production time. So far there is no formal method to determine optimum starting time in the lot-bucket MRP system. Trial and error process usually used for it but some time, it causes several lots have very short production time and the lot-bucket MRP would be infeasible to be executed. This paper presents the use of Genetic Algorithm (GA) for optimisation of starting time in a lot-bucket MRP system. Even though GA is well known as powerful searching algorithm, however, improvement is still required in order to increase possibility of GA in finding optimum solution in shorter time. A knowledge-based system has been embedded in the proposed GA as the improvement effort, and it is proven that the

  20. Space charge effects and coherent stability limits in barrier buckets

    Directory of Open Access Journals (Sweden)

    Oliver Boine-Frankenheim

    2003-03-01

    Full Text Available A large-scale Vlasov simulation study of the microwave instability below transition energy in a beam confined between two barrier pulses is performed. Starting from a matched distribution function for the confined ion beam including the space charge impedance the stability threshold in the longitudinal impedance plane is obtained. A simple stability criterium is found to be in good agreement with the simulation results.

  1. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  2. Microstructural aspects of Ni-based superalloy 693

    International Nuclear Information System (INIS)

    Dutta, R.S.; Sengupta, P.; Tewari, R.; Kain, V.; Dey, G.K.; Sharma, A.K.; Raj, K.

    2009-01-01

    Alloy 693 is an austenitic, precipitation-hardenable Ni-based superalloy. It is a promising material for high temperature fuel cell, petrochemical processing industry, high temperature waste and biomass incinerators and as thermal processing equipment, burner nozzles, melter pot material and in other areas. Microstructure plays quite often a major role in regulating the properties of the materials. Keeping this in view, optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to characterize the microstructure of Alloy 693. Microanalyses of the phases were performed by using electron probe microanalysis (EPMA) and TEM along with energy dispersive spectroscopy (EDS). The alloy in as-received condition under an optic microscope and SEM revealed the presence of predominantly finer intergranular precipitates and randomly distributed coarser precipitates of various morphologies. EPMA of spherical-shaped coarse precipitate indicated that the major constituent of this precipitate has been chromium. Besides this, niobium-rich irregular-shaped coarse precipitate was also detected. The finer grain boundary precipitates in the alloy appeared to be of Cr-carbide. TEM examination on as-received alloy indicated very uniform distribution of a large volume fraction of fine precipitates in the austenite matrix. Selected area diffraction (SAD) pattern, dark-field TEM and detailed analyses confirmed that these fine precipitates have been ordered Ni 3 Al type phase. TEM investigation also revealed the presence of coarse particles of various morphologies. Analyses of such particles indicated this phase as M 6 C type. EDS analyses indicated that the major constituents of these coarse particles have been Cr and Ni. Minor elements like Fe, Al and Nb were also detected in all the particles with some variation of their contents from particle to particle. TEM investigation on annealed (1373 K/30 minutes, WQ) specimen of Alloy 693

  3. Rafting in single crystal nickel-base superalloys – An overview

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Page 1 ... aircraft engines as well as land-based power generation applications. Microstruc- ture and high temperature mechanical properties are the major factors controlling the performance of SX ... Single crystal (SX) superalloys are a group of nickel-base superalloys. They exhibit superior high temperatur mechanical ...

  4. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro ... gas turbines and they have designated this alloy as superalloy Superni-75. ... The nickel-based superalloy Superni-75 (19·5Cr-3Fe-0·3Ti-0·1C- Balance Ni) was ...

  5. An Innovative Physical Model for Testing Bucket Foundations

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    Pa), 20 (kPa), and 30 (kPa) respectively. The comparison between the tests conducted at stress level of 0 (kPa), and the tests with stress level increased, shows remarkable differences. The relationship between scaled overturning moment and rotation is well represented by a power law. The exponent...... of the power law is consistent among all tests carried out with stress level increased. Besides, attention is given to the instantaneous centre of rotation distribution. To validate the mode, the tests are compared with a large scale test by means of a scaling moment. The validation of the model is only...

  6. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  7. High temperature oxidation and corrosion behavior of Ni-base superalloy in He environment

    International Nuclear Information System (INIS)

    Lee, Gyoeng Geun; Park, Ji Yeon; Jung, Su jin

    2010-11-01

    Ni-base superalloy is considered as a IHX (Intermediate Heat Exchanger) material for VHTR (Very High Temperature Gas-Cooled Reactor). The helium environment in VHTR contains small amounts of impure gases, which cause oxidation, carburization, and decarburization. In this report, we conducted the literature survey about the high temperature behavior of Ni-base superalloys in air and He environments. The basic information of Ni-base superalloy and the basic metal-oxidation theory were briefly stated. The He effect on the corrosion of Ni-base superalloy was also summarized. This works would provide a brief suggestion for the next research topic for the application of Ni-base superalloy to VHTR

  8. Use of the V-sign in the diagnosis of bucket-handle meniscal tear of the knee

    International Nuclear Information System (INIS)

    Rao, Nisha; Patel, Yogita; Opsha, Oleg; Eisemon, Eric; Beltran, Javier; Chen, Qi; Owen, Joshua; Fogel, Joshua

    2012-01-01

    Bucket-handle tear is a displaced vertical longitudinal tear of the meniscus. Several signs of the tear have been described on MRI but none in the axial plane. We propose to describe such a sign named the V-sign that is seen at the junction of the displaced fragment and the meniscus, which is in place. MRI imaging of 25 surgically proven bucket-handle tears was reviewed for presence of the V-sign. Two control groups, one with normal menisci (n = 75) and one with surgically proven non-bucket-handle tears (n = 25), were also evaluated. Comparisons for presence or absence of the V-sign were performed among the three groups, and also for other commonly associated signs such as double PCL sign, double delta sign, and presence of ACL tear. Also, sensitivity, specificity, and positive and negative predictive values were calculated. Among those with bucket-handle tear, 72% demonstrated the V-sign while no participant in either control group had the V-sign (P ≤ 0.001). The V-sign occurred in 38% of those with double PCL sign, 55.6% with ACL tear, and 66.7% with double delta sign. The V-sign had higher sensitivity and negative predictive values than other signs related to bucket-handle tear. The V-sign, when seen on an axial plane image, is highly suggestive of bucket-handle tear. Our data suggest the benefit of using the V-sign for detecting bucket-handle tears, perhaps even above other commonly used approaches. (orig.)

  9. Use of the V-sign in the diagnosis of bucket-handle meniscal tear of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nisha [Radiology Associates of Tampa, Tampa, FL (United States); Patel, Yogita [Jamaica Hospital Medical Center, Jamaica, NY (United States); Opsha, Oleg; Eisemon, Eric; Beltran, Javier [Maimonides Medical Center, Brooklyn, NY (United States); Chen, Qi [SUNY Downstate Medical Center, Department of Radiology, Brooklyn, NY (United States); Owen, Joshua [Saint Louis University School of Medicine, Department of Radiology, St. Louis, MO (United States); Fogel, Joshua [Brooklyn College of the City University of New York, Department of Economics, Brooklyn, NY (United States)

    2012-03-15

    Bucket-handle tear is a displaced vertical longitudinal tear of the meniscus. Several signs of the tear have been described on MRI but none in the axial plane. We propose to describe such a sign named the V-sign that is seen at the junction of the displaced fragment and the meniscus, which is in place. MRI imaging of 25 surgically proven bucket-handle tears was reviewed for presence of the V-sign. Two control groups, one with normal menisci (n = 75) and one with surgically proven non-bucket-handle tears (n = 25), were also evaluated. Comparisons for presence or absence of the V-sign were performed among the three groups, and also for other commonly associated signs such as double PCL sign, double delta sign, and presence of ACL tear. Also, sensitivity, specificity, and positive and negative predictive values were calculated. Among those with bucket-handle tear, 72% demonstrated the V-sign while no participant in either control group had the V-sign (P {<=} 0.001). The V-sign occurred in 38% of those with double PCL sign, 55.6% with ACL tear, and 66.7% with double delta sign. The V-sign had higher sensitivity and negative predictive values than other signs related to bucket-handle tear. The V-sign, when seen on an axial plane image, is highly suggestive of bucket-handle tear. Our data suggest the benefit of using the V-sign for detecting bucket-handle tears, perhaps even above other commonly used approaches. (orig.)

  10. CAD-based strength analysis of EK-18 excavator bucket construction for mounting of anti-adhesive devices

    Science.gov (United States)

    Zenkov, S. A.; Lobanov, D. V.

    2018-03-01

    3D rigid-body model of a bucket of power shovel EK-18 was built using modern CAD-software. Tetrahedral grid with 10-node second-order elements was chosen, and the given model was imported to APM WinMachine - model preparation preprocessor for finite element analysis. The finite element model was based on the geometrical model, imported from KOMPAS-3D to APM Studio. Calculation of stressed-strained state of the bucket was carried out under the forces emerging while digging with “back hoe” equipment. Shift, deformation and tension charts were planned and the most and the least strained areas were pointed out. Wet coherent soil excavation deals with soil adhesion to working bodies of power shovels and leads to reduced performance. The performance decrease is caused by a reduction of useful bucket capacity and partial unloading, increased front resistance to cutting (digging) caused by wet soil adhesion to a working body, increased bucket entry resistance, increased idle time caused by necessity to clean working bodies. Also energy losses increase and quality of work drops because friction forces go up. Friction force occurs while digging and levelling account for 30…70 percent of total digging resistance while performance decreases 1.2…2 times and more. Vibrothermal exposure creates new technological effect which involves a wider humidity range of efficient application and a reduction of friction forces. Disintegrating adhesion bonds with heating requires less driving force from the vibrator. Vibration boosts up heating of the contact layer, which reduces thermal energy losses. However, the question of piezoelectric ceramic actuators location on the excavator bucket needs to be dealt with. The most suitable spots for mounting piezoelectric ceramic devices for reducing soil adhesion to the excavator bucket were defined. Their efficiency is derived from combined (vibrothermal) methods of exposure. Such devices eliminates soil adhesion to the bucket and increases

  11. Design and fabrication of a large rectangular magnetic cusp plasma source for high intensity neutral beam injectors

    International Nuclear Information System (INIS)

    Biagi, L.A.; Berkner, K.H.; Ehlers, K.W.; Paterson, J.A.; Porter, J.R.

    1979-11-01

    The design and fabrication techniques for a large, rectangular magnetic bucket plasma source are described. This source is compatible with the accelerator structures for the TFTR and DIII neutral-beam systems

  12. Observations on bucket foundations under cyclic loading in dense saturated sand

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Nicolai, Giulio

    2014-01-01

    Offshore wind farms will play a significant role in the European energy supply of the coming years. Today, one of the main challenges faced by the offshore wind market is to reduce the cost of turbine foundations. The monopod bucket foundation is a possible solution to this problem. The long......-term cyclic response of this foundation is not fully understood. In this article, a single gravity physical model is described, an experimental campaign is presented and the observed results are discussed. The aim of the study is to explore the general pattern of response of the foundation under cyclic...

  13. Computational design and performance prediction of creep-resistant ferritic superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Wang, Shao-Yu [Univ. of Tennessee, Knoxville, TN (United States); Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautum [Northwestern Univ., Evanston, IL (United States); Song, Gian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rawlings, Michael [Univ. of Tennessee, Knoxville, TN (United States); Baik, Sung Il [Northwestern Univ., Evanston, IL (United States)

    2017-12-04

    Ferritic superalloys containing the B2 phase with the parent L21 phase precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate-strengthened ferritic alloy (HPSFA), had been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by adding Ti into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). Following with the concept of HPSFAs, in the present research, a systematic investigation on adding other elements, such as Hf and Zr, and optimizing the Ti content within the alloy system, has been conducted, in order to further improve the creep resistance of the model alloys. Studies include advanced experimental techniques, first-principles calculations on thermodynamic and mechanical properties, and numerical simulations on precipitation hardening, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of alloys. The experimental techniques include transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), neutron diffraction (ND), and atom-probe tomography (APT), which provide the detailed microstructural information of the model alloys. Systematic tension/compression creep tests have also been conducted in order to verify the creep resistance of the potential alloy compositions. The results show that when replacing Ti with Hf and Zr, it does not form the L21 phase. Instead, the hexagonal Laves phase forms and distributes majorly along the grain boundary, or large segregation within grains. Since the Laves phase does not form parent to the B2-phase precipitates, it cannot bring the strengthening effect of HPSFAs. As a result, the FBB8 + 2 wt. % Hf and FBB8 + 2 wt. % Zr alloys have similar mechanical properties to the original FBB8. The FBB8 + Ti series alloys had also been studied, from the creep tests and microstructural characterizations, the FBB8 + 3.5 wt.% Ti

  14. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    Science.gov (United States)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  15. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  16. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  17. A load-displacement based approach to assess the bearing capacity and deformations of mono-bucket foundations

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Diaz, Alberto Troya; Nielsen, Søren

    2016-01-01

    It is now accepted that a larger effort must be made in order to optimize the design so that offshore wind turbines can be competitive with the other energy resources. In this regard, mono-buckets are known as a cost-effective offshore foundation solution. In the current study, a load–displacemen......It is now accepted that a larger effort must be made in order to optimize the design so that offshore wind turbines can be competitive with the other energy resources. In this regard, mono-buckets are known as a cost-effective offshore foundation solution. In the current study, a load...... and run the calculations is proposed. The model is validated, and its accuracy is analyzed, by comparison with field test results for a bucket foundation installed in silty, sandy soil....

  18. Determination of p-y Curves for Bucket Foundations in Silt and Sand Using Finite Element Modelling

    DEFF Research Database (Denmark)

    Vethanayagam, Vinojan; Ibsen, Lars Bo

    slender than the tested piles. The suction bucket has a slenderness ratio of 0.5-1, thus its response is a rigid movement, where slender piles undergoes a flexible movement. Due to the importance of precise estimations, p-y formulations for suction buckets in drained and undrained silt are sought...... developed with use of finite element. In general the developed p-y formulations for the drained and undrained silt are fairly precise. Furthermore, the same method and basic formulation of the drained silt is applied to data of the drained sand from Østergaard et al. [2015]. The developed formulation...... herefore shows to be more versatile and precise than the formulation suggested by Østergaard et al. [2015]. The developed p-y formulations are functions of the effective vertical in-situ stress, soil stiffness, diameter of the bucket and the internal friction angle/the undrained shear strength....

  19. Study of the oxidation kinetics of the MA 956 superalloy

    International Nuclear Information System (INIS)

    Garcia-Alonso, M.C.; Gonzalez-Carrasco, J.L.; Escudero, M.L.

    1998-01-01

    This work deals with the oxidation kinetics of the MA 956 superalloy in the temperature range of 800-1,200 degree centigree for up to 200 h exposure. During oxidation the alloy develops a fine, compact and very well adhered α-alumina layer, the thickness of which increases with increasing time and temperature. The oxidation kinetics obeys a sub parabolic type behaviour. The scale growth seems to occur by two different oxidation mechanisms; above 1,050 degree centigree, the oxidation process would be controlled by α-alumina, and below 900 degree centigree by γ-alumina. (Author) 17 refs

  20. Oxidation behavior and compositional analysis of aluminized superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.; Nawaz, F.

    2003-01-01

    The high temperature oxidation behavior of superalloy specimens used for the manufacture of turbine blades has been examined using scanning electron microscopy (SEM) and fine-probe spot and line scan EDS microanalysis techniques. The performance of aluminized coating applied to the specimens has also been examined. It was observed that complex oxides are formed in both coated and uncoated specimens. However the coated specimens revealed a greater stability of gamma phase and integrity of aluminized coating as compared with uncoated specimens. The microchemical and microstructural changes that occurred during oxidation have been analyzed to examine characteristics of oxide layers. (author)

  1. Microstructural causes of negative creep in cast superalloys

    International Nuclear Information System (INIS)

    Frank, G.

    1990-01-01

    The dissertation examines by means of microstructural investigations and modelling calculations two types of superalloys: the nickel-base cast alloy IN 738 LC (γ'-hardened, containing MC and M 23 C 6 carbides), and the cobalt-base cast alloy FSX 414 (containing M 23 C 6 carbides, solid solution-hardened). The task was to determine the causes of microstructural volume contraction, in order to improve and facilitate explanation and extrapolation of the materials' long-term behaviour at high temperatures, and to derive if possible information on appropriate measures preventing negative creep, which may lead to critical damage of bolted joints, for instance. (orig./MM) [de

  2. Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloy

    International Nuclear Information System (INIS)

    Chen, Y.Q.; Francis, E.; Robson, J.; Preuss, M.; Haigh, S.J.

    2015-01-01

    Size-dependent compositional variations under different cooling regimes have been investigated for ordered L1 2 -structured gamma prime (γ′) precipitates in the commercial powder metallurgy Ni-based superalloy RR1000. Using scanning transmission electron microscope imaging combined with absorption-corrected energy-dispersive X-ray spectroscopy, we have discovered large differences in the Al, Ti and Co compositions for γ′ precipitates in the size range 10–300 nm. Our experimental results, coupled with complementary thermodynamic calculations, demonstrate the importance of kinetic factors on precipitate composition in Ni-based superalloys. In particular, these results provide new evidence for the role of elemental diffusion kinetics and aluminium antisite atoms on the low-temperature growth kinetics of fine-scale γ′ precipitates. Our findings have important implications for understanding the microstructure and precipitation behaviour of Ni-based superalloys, suggesting a transition in the mechanism of vacancy-mediated diffusion of Al from intrasublattice exchange at high temperatures to intersublattice antisite-assisted exchange at low temperatures

  3. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  4. One method for life time estimation of a bucket wheel machine for coal moving

    Science.gov (United States)

    Vîlceanu, Fl; Iancu, C.

    2016-08-01

    Rehabilitation of outdated equipment with lifetime expired, or in the ultimate life period, together with high cost investments for their replacement, makes rational the efforts made to extend their life. Rehabilitation involves checking operational safety based on relevant expertise of metal structures supporting effective resistance and assessing the residual lifetime. The bucket wheel machine for coal constitute basic machine within deposits of coal of power plants. The estimate of remaining life can be done by checking the loading on the most stressed subassembly by Finite Element Analysis on a welding detail. The paper presents step-by-step the method of calculus applied in order to establishing the residual lifetime of a bucket wheel machine for coal moving using non-destructive methods of study (fatigue cracking analysis + FEA). In order to establish the actual state of machine and areas subject to study, was done FEA of this mining equipment, performed on the geometric model of mechanical analyzed structures, with powerful CAD/FEA programs. By applying the method it can be calculated residual lifetime, by extending the results from the most stressed area of the equipment to the entire machine, and thus saving time and money from expensive replacements.

  5. Bucket elevator

    OpenAIRE

    Chromek, Jiří

    2013-01-01

    Cílem této bakalářské práce je návrh svislého korečkového elevátoru, který má sloužit k dopravě obilovin s dopravní výškou 19 m a dopravovaným množstvím 100 t/hod. Práce se skládá z popisu korečkového elevátoru a jeho hlavních částí, zmiňující se v úvodní rešerši. Tato práce je zaměřena na funkční a kapacitní výpočet, určení pohonu a napínacího zařízení. Další výpočet je kontrolní, skládající se z pevnostní kontroly hnacího hřídele, výpočtu pera, životnosti ložisek a výpočtu napínacího zaříze...

  6. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  7. Precipitate microstructure evolution in exposed IN738LC superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Strunz, Pavel, E-mail: strunz@ujf.cas.cz [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic); Petrenec, Martin [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Gasser, Urs [Laboratory for Neutron Scattering, PSI, CH-5232 Villigen (Switzerland); Tobiáš, Jiří; Polák, Jaroslav [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Šaroun, Jan [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic)

    2014-03-15

    Highlights: • Evolution of γ′-phase morphology in IN738LC Ni-base superalloy was examined by SANS. • In situ tests at high temperatures revealed trimodal precipitate distribution. • Formation, dissolution and (slow) kinetics of small γ′ precipitates was determined. • Equilibrium volume fraction of γ′ phase is significantly higher than 45%. • The small γ′ precipitates arise regardless the application of the mechanical load. -- Abstract: Nickel base superalloy IN738LC has been studied after low-cycle fatigue by Small Angle Neutron Scattering (SANS). Samples subjected to high-temperature low-cycle fatigue were annealed at various temperatures to change the size and the distribution of precipitates. Ex and in situ SANS and TEM studies were performed. It was found that additional precipitates are formed either during slow cooling from high temperatures or after reheating above 570 °C. Their size and distribution were evaluated. The precipitates arise regardless the application of the mechanical load. Nevertheless, these small precipitates influence low-cycle fatigue resistance. From the SANS data, it can be also deduced that the equilibrium volume fraction of γ′-precipitates at temperatures from room temperature to 825 °C is significantly higher than 45%. The kinetics of formation of small and medium-size γ′ precipitates at 700 and 800 °C was determined as well.

  8. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  9. Failure mechanisms of superhard materials when cutting superalloys

    International Nuclear Information System (INIS)

    Focke, A.E.; Westermann, F.E.; Ermi, A.; Yavelak, J.; Hoch, M.

    1975-01-01

    The present research studies the reasons for the failure of tungsten carbide tools while cutting superalloys. There is a continuous layer of the superalloy in the bottom of the crater which from time to time is torn away locally, taking tungsten carbide crystal with it. Under recommended cutting conditions a plateau (unworn cutting surface) separates the crater from the cutting edge of the tool when cutting AISI 4340. This plateau is totally absent in all cutting of Inconel 718, even in short, two-minute tests. The crater intersects the cutting edge--only a thin wedge of carbide is left which either breaks off or deforms and wears very rapidly. Temperature measurements carried out by use of an infrared detector aimed on the corner of the tungsten carbide indicate at recommended speeds a sharp rise of the temperature at the beginning of the cutting operation, then a steady-state very slow increase as the cutting continues, and finally just before tool failure a very rapid increase in the temperature again. Scanning and replica electron microscopy through the crater and flank face shows that both under the crater and in the back of the cutting edge a fairly deep layer of ''disturbed metal'' exists in which the tungsten carbide grains are much smaller and have much more rounded edges than in the original material. 10 figures, 4 tables

  10. Microstrain evolution during creep of a high volume fraction superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States); Brown, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Daymond, M.R. [Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Majumdar, B.S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States)]. E-mail: majumdar@nmt.edu

    2005-06-15

    The creep of superalloys containing a high volume fraction of {gamma}' phase is significantly influenced by initial misfit and by the evolution of internal stresses. An in situ neutron diffraction technique was used to monitor elastic microstrains in a polycrystalline superalloy, CM247 LC. The misfit was nearly zero at room temperature and it increased to -0.17% at 900 deg. C. These values are rationalized in terms of thermal mismatch using an eigenstrain formulation and a simple formula is derived to relate the thermal mismatch to the misfit strain. During creep at 425 MPa at 900 deg. C, the material exhibited primarily tertiary behavior. For grains with [0 0 1] axis close to the loading direction, the elastic microstrain in the loading direction increased with creep time for the {gamma}' phase, whereas the opposite occurred for the {gamma} phase. These results are explained in terms of constrained deformation in the narrow {gamma} channels and by an interface dislocation buildup. TEM analysis of the crept microstructure provides evidence of the interface dislocation network.

  11. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Honda, Yoshio; Matsuda, Shozo; Murase, Hirokazu

    1979-01-01

    Creep properties of candidate superalloys for VHTR components in a helium environment at both temperatures of 800 0 C and 900 0 C were compared with those of the same alloys in the atmospheric condition, and the superalloys were contrasted with each other from the viewpoint of high temperature structural design. At 800 0 C, no significant effect of a helium environment on creep properties of the superalloys is observed. At 900 0 C, however, creep strength of Inconel 617, Incoloy 800 and Incoloy 807 in the helium environment decrease more than in the atmospheric environment. In Hastelloy X and Inconel 625, there is no significant difference between creep strengths in helium and those in the atmospheric condition. Concerning So and St values in helium at 900 0 C, Inconel 617 and Hastelloy X are clearly superior to other superalloys. (author)

  12. Advanced Scale Bridging Microstructure Analysis of Single Crystal Ni-Base Superalloys

    Czech Academy of Sciences Publication Activity Database

    Parsa, A. B.; Wollgramm, P.; Buck, H.; Somsen, C.; Kostka, A.; Povstugar, I.; Choi, P.-P.; Raabe, D.; Dlouhý, Antonín; Müller, J.; Spiecker, E.; Demtroder, K.; Schreuer, J.; Neuking, K.; Eggeler, G.

    2015-01-01

    Roč. 17, č. 2 (2015), s. 216-230 ISSN 1438-1656 Institutional support: RVO:68081723 Keywords : High temperature materials * Nickel based superalloys * EPMA * HRTEM Subject RIV: JG - Metallurgy Impact factor: 1.817, year: 2015

  13. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pizúrová, Naděžda; Roupcová, Pavla; Dymáček, Petr

    2015-01-01

    Roč. 22, č. 2 (2015), s. 85-94 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : powder materials * polycrystalline Ni-based superalloy * creep machine grips * oxidation Subject RIV: JG - Metallurgy

  14. High temperature properties of polycrystalline γ"'-strengthened cobalt-base superalloys

    International Nuclear Information System (INIS)

    Bauer, Alexander

    2016-01-01

    The recent discovery of a stable γ"'-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ"'-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ"'-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  15. Nickel-base superalloy powder metallurgy: state-of-the-art

    International Nuclear Information System (INIS)

    Allen, M.M.; Athey, R.L.; Moore, J.B.

    1975-01-01

    Development of powder metallurgical methods for fabrication of Ni-base superalloy turbine engine disks is reviewed. Background studies are summarized and current state-of-art is discussed for the F100 jet engine, advanced applications, and forging processes

  16. Recovery of creep properties of the nickel-base superalloy nimonic 105

    CSIR Research Space (South Africa)

    Girdwood, RB

    1996-01-01

    Full Text Available Uniaxial constant stress creep tests were performed on the wrought nickel-base superalloy Nimonic 105. Entire creep curves were recorded and curve shapes analysed using the Theta Projection Concept. Rejuventive procedures were applied to pre...

  17. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  18. Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Gottardi, Guido; Govoni, Laura

    2015-01-01

    The response of bucket foundations on sand subjected to planar monotonic and cyclic loading is investigated in the paper. Thirteen monotonic and cyclic laboratory tests on a skirted footing model having a 0.3 m diameter and embedment ratio equal to 1 are presented. The loading regime reproduces t...

  19. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  20. Design of high entropy alloys based on the experience from commercial superalloys

    Science.gov (United States)

    Wang, Z.; Huang, Y.; Wang, J.; Liu, C. T.

    2015-01-01

    High entropy alloys (HEAs) have been drawing increasing attention recently and gratifying results have been obtained. However, the existing metallurgic rules of HEAs could not provide specific information of selecting candidate alloys for structural applications. Our brief survey reveals that many commercial superalloys have medium and even to high configurational entropies. The experience of commercial superalloys provides a clue for helping us in the development of HEAs for structural applications.

  1. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Directory of Open Access Journals (Sweden)

    Kaya Eren

    2017-12-01

    Full Text Available Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands.

  2. Predicting the morphologies of {\\gamma}' precipitates in cobalt-based superalloys

    OpenAIRE

    Jokisaari, Andrea M.; Naghavi, Shahab S.; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.

    2017-01-01

    Cobalt-based alloys with {\\gamma}/{\\gamma}' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-princip...

  3. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  4. The Effect of Forging Variables on the Supersolvus Heat-Treatment Response of Powder-Metallurgy Nickel-Base Superalloys

    Science.gov (United States)

    2014-12-01

    AFRL-RX-WP-JA-2015-0160 THE EFFECT OF FORGING VARIABLES ON THE SUPERSOLVUS HEAT-TREATMENT RESPONSE OF POWDER - METALLURGY NICKEL-BASE SUPERALLOYS... POWDER - METALLURGY NICKEL- BASE SUPERALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR...treatment (SSHT) of two powder - metallurgy , gamma–gamma prime superalloys, IN-100 and LSHR, was established. For this purpose, isothermal, hot

  5. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    Science.gov (United States)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  6. Quicksort, largest bucket, and min-wise hashing with limited independence

    DEFF Research Database (Denmark)

    Knudsen, Mathias Bæk Tejs; Stöckel, Morten

    2015-01-01

    Randomized algorithms and data structures are often analyzed under the assumption of access to a perfect source of randomness. The most fundamental metric used to measure how “random” a hash function or a random number generator is, is its independence: a sequence of random variables is said...... to be k-independent if every variable is uniform and every size k subset is independent. In this paper we consider three classic algorithms under limited independence. Besides the theoretical interest in removing the unrealistic assumption of full independence, the work is motivated by lower independence...... being more practical. We provide new bounds for randomized quicksort, min-wise hashing and largest bucket size under limited independence. Our results can be summarized as follows. Randomized Quicksort. When pivot elements are computed using a 5-independent hash function, Karloff and Raghavan, J.ACM’93...

  7. Design of Transition Pieces for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia

    Using bucket foundations for offshore wind turbines is an alternative solution to monopiles and other foundation types installed in shallow and transitional water depths (up to 50−60 m) due to its greater stiffness, fair simplicity and high speed of installation. However, as only a few prototypes...... was carried out, and the material models were compared in terms of sensitivity to small geometric imperfections that might appear during the fabrication process. This study showed that a TP structure made of pure CRC® was less sensitive to shape imperfections and was recommended in the further investigations...... and the equilibrium scour depth were investigated. Correspondingly, scour protection measures were addressed. Additionally, small-scale hydrodynamic loading tests were carried out on these models in small-scale deep water environment with regular and irregular wave conditions to study the effect of implementation...

  8. Effect of size and concentration of silt particles on erosion of Pelton turbine buckets

    Energy Technology Data Exchange (ETDEWEB)

    Padhy, M.K.; Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee (India)

    2009-10-15

    Erosive wear of hydro turbine runners depends upon different parameters such as size, hardness and concentration of silt particles, velocity of flow, properties of the base material of the turbine components and operating hours of the turbine. Various researchers have conducted experiments to study the effect of these parameters on erosive wear. Most of these experiments were on small-size samples at different types of test rigs to simulate the flow conditions in turbines, however actual flow conditions and the phenomenon of erosive wear are too complex to simulate. Under the present study, effect of these parameters on erosion in actual conditions has been investigated experimentally. An extensive experimental study has been carried out on a small scale Pelton turbine. Based on the experimental data collected for different parameters, correlations have been developed for wear rate of Pelton turbine buckets as a function of critical parameters, i.e., size and concentration of silt particles and jet velocity. (author)

  9. Structural Optimization of an Offshore Wind Turbines Transition Pieces for Bucket Foundations

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    Traditionally, offshore constructions are made of steel. The focus of this paper is optimization of a transition piece (TP) connecting the offshore wind turbine column with a suction bucket foundation. Suction caissons, typically used for shallow water depths, have been proved to be adequate...... in residual soil conditions for depths up to approximately 40 m. The existing design practice is limited to the use of steel-flange-reinforced shear panels. Desirable outcome is proposal of an alternative material which does not require extensive welding work. Compact reinforced composite (CRC) is suggested...... curved segments have been introduced between the conical part and the tubular parts of the structure. While the minimum amount of steel and concrete was required for the composite CRC–steel shell model, the pure CRC model appeared to be the least sensitive to geometrical imperfections, corresponding...

  10. Systems approach to modeling the Token Bucket algorithm in computer networks

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  11. Multi-leg Seat Inventory Control Based on EMSU and Virtual Bucket

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2014-01-01

    Full Text Available Expected marginal seat revenue (EMSR is a well-known method for airline seat inventory control airlines. However, this method employs a static model to study the dynamic reservation process, and does not take into account the risk tolerance of policy makers. Expected marginal seat utility (EMSU replaces revenue by utility, which addresses the real situation of seat inventory control. However, there is still a lack of multi-leg seat control algorithms based on EMSU. Therefore, using EMSU and bucket algorithms, this paper applies the Markov decision-making process to simulate the flight reservation process and builds a dynamic multi-leg seat inventory control model. Experimental results validate the effectiveness of the proposed method.

  12. Refractory metal superalloys: Design of yttrium aluminum garnet passivating niobium alloys

    Science.gov (United States)

    Bryan, David

    A systems-based approach, integrating computational modeling with experimental techniques to approach engineering problems in a time and cost efficient manner, was employed to design a Nb-based refractory superalloy for use at 1300°C. Ashby-type selection criteria for both thermodynamic and kinetic parameters were employed to identify a suitable protective oxide for Nb alloys. Yttrium aluminum garnet (YAG) was selected as the most promising candidate for its excellent combination of desirable properties. The alloy microstructural concept was based upon the gamma - gamma' nickel-based superalloys in which the multifunctional gamma' phase serves as both a creep strengthening dispersion and a source of reactive elements for oxide passivation. Candidate ternary Pd-Y-Al and Pt-Y-Al compounds were fabricated and characterized by XRD and DTA. Of the intermetallics studied, only PtYAl had a high enough melting point (1580°C) for use in an alloy operating at 1300°C. The alloy matrix design was based upon Wahl's extension of Wagner's criterion for protective oxidation, requiring a reduction of the product N ODO/DAl by 5 orders of magnitude relative to binary Nb-Al. A thermodynamic and kinetic analysis identified elements with large oxygen affinities as the most beneficial for reducing the magnitude of the quantity NOD O. Construction of a combined thermodynamic and mobility database identified increased Al solubility as the best approach for increasing D Al. Utilizing the thermodynamic and mobility databases, obtained from a combination of model alloys, oxidation experiments, and first principles calculations, theoretical designs predicted the large changes in solubility and transport parameters were achievable. Several prototype alloys were then fabricated and evaluated via oxidation tests at both 1300°C and 1100°C. YAG formation was demonstrated as part of multicomponent oxide scales in the alloys that exhibited the greatest reduction in oxidation rates. The oxidation

  13. The value of the absent bow tie sign in MRI of bucket-handle tears

    International Nuclear Information System (INIS)

    Watt, Andrew J.B.; Halliday, Tonya; Raby, Nigel

    2000-01-01

    AIM: To assess the accuracy of the absent bow tie sign in diagnosing bucket handle meniscal tears (BHT) of the knee menisci. MATERIALS AND METHODS: During a 3-year period, we correlated the MRI and arthroscopic findings and the presence of the various signs. One hundred and seven knees were reviewed: 74 where either MRI or arthroscopy had identified a BHT and 33 which were either normal (31), or a simple tear was identified (2). All cases were reviewed by a single radiologist with a musculoskeletal interest blinded to the original results. Each was assessed for the presence of (1) a central meniscal fragment, (2) the double posterior cruciate ligament (PCL) sign, (3) the bow tie sign and (4) the contribution of a 3D-volume sequence. RESULTS: Optimal results were obtained using standard sequences and a 3D-volume sequence, giving a sensitivity of 74% and positive predictive value of 89%. The bow tie sign gave a sensitivity of 71% and positive predictive value of 76%, significantly less than previous reports. The 18 BHTs diagnosed by arthroscopy but missed by MRI showed other abnormal findings at MRI and were not reported as normal. CONCLUSION: We were not able to reproduce the previously reported high sensitivity and specificity of the absent bow tie sign. Despite optimization of all factors, the accurate diagnosis of a bucket handle tear remains difficult, and is most reliably made by identifying a central meniscal fragment, rather than relying on secondary signs such as the absent bow tie sign. Watt, A.J.B. (2000)

  14. Transmissibility of the Ice Bucket Challenge among globally influential celebrities: retrospective cohort study

    Science.gov (United States)

    Chan, Brandford H Y; Leung, Gabriel M; Lau, Eric H Y; Pang, Herbert

    2014-01-01

    Objectives To estimate the transmissibility of the Ice Bucket Challenge among globally influential celebrities and to identify associated risk factors. Design Retrospective cohort study. Setting Social media (YouTube, Facebook, Twitter, Instagram). Participants David Beckham, Cristiano Ronaldo, Benedict Cumberbatch, Stephen Hawking, Mark Zuckerberg, Oprah Winfrey, Homer Simpson, and Kermit the Frog were defined as index cases. We included contacts up to the fifth generation seeded from each index case and enrolled a total of 99 participants into the cohort. Main outcome measures Basic reproduction number R0, serial interval of accepting the challenge, and odds ratios of associated risk factors based on fully observed nomination chains; R0 is a measure of transmissibility and is defined as the number of secondary cases generated by a single index in a fully susceptible population. Serial interval is the duration between onset of a primary case and onset of its secondary cases. Results Based on the empirical data and assuming a branching process we estimated a mean R0 of 1.43 (95% confidence interval 1.23 to 1.65) and a mean serial interval for accepting the challenge of 2.1 days (median 1 day). Higher log (base 10) net worth of the participants was positively associated with transmission (odds ratio 1.63, 95% confidence interval 1.06 to 2.50), adjusting for age and sex. Conclusions The Ice Bucket Challenge was moderately transmissible among a group of globally influential celebrities, in the range of the pandemic A/H1N1 2009 influenza. The challenge was more likely to be spread by richer celebrities, perhaps in part reflecting greater social influence. PMID:25514905

  15. Transmissibility of the Ice Bucket Challenge among globally influential celebrities: retrospective cohort study.

    Science.gov (United States)

    Ni, Michael Y; Chan, Brandford H Y; Leung, Gabriel M; Lau, Eric H Y; Pang, Herbert

    2014-12-16

    To estimate the transmissibility of the Ice Bucket Challenge among globally influential celebrities and to identify associated risk factors. Retrospective cohort study. Social media (YouTube, Facebook, Twitter, Instagram). David Beckham, Cristiano Ronaldo, Benedict Cumberbatch, Stephen Hawking, Mark Zuckerberg, Oprah Winfrey, Homer Simpson, and Kermit the Frog were defined as index cases. We included contacts up to the fifth generation seeded from each index case and enrolled a total of 99 participants into the cohort. Basic reproduction number R0, serial interval of accepting the challenge, and odds ratios of associated risk factors based on fully observed nomination chains; R0 is a measure of transmissibility and is defined as the number of secondary cases generated by a single index in a fully susceptible population. Serial interval is the duration between onset of a primary case and onset of its secondary cases. Based on the empirical data and assuming a branching process we estimated a mean R0 of 1.43 (95% confidence interval 1.23 to 1.65) and a mean serial interval for accepting the challenge of 2.1 days (median 1 day). Higher log (base 10) net worth of the participants was positively associated with transmission (odds ratio 1.63, 95% confidence interval 1.06 to 2.50), adjusting for age and sex. The Ice Bucket Challenge was moderately transmissible among a group of globally influential celebrities, in the range of the pandemic A/H1N1 2009 influenza. The challenge was more likely to be spread by richer celebrities, perhaps in part reflecting greater social influence. © Ni et al 2014.

  16. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  17. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  18. Optimising mechanical properties of hot forged nickel superalloy 625 components

    Science.gov (United States)

    Singo, Nthambe; Coles, John; Rosochowska, Malgorzata; Lalvani, Himanshu; Hernandez, Jose; Ion, William

    2018-05-01

    Hot forging and subsequent heat treatment were resulting in substandard mechanical properties of nickel superalloy, Alloy 625, components. The low strength was found to be due to inadequate deformation during forging, excessive grain growth and precipitation of carbides during subsequent heat treatment. Experimentation in a drop forging company and heat treatment facility led to the establishment of optimal parameters to minimise grain size and mitigate the adverse effects of carbide precipitation, leading to successful fulfilment of mechanical property specifications. This was achieved by reducing the number of operations, maximising the extent of deformation by changing the slug dimensions and its orientation in the die, and minimising the time of exposure to elevated temperatures in both the forging and subsequent heat treatment processes to avoid grain growth.

  19. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  20. Computer aided design of nickel-base superalloys

    International Nuclear Information System (INIS)

    Lawrence, P.J.

    1988-01-01

    This paper describes a computer aided design process for Ni-base superalloys developed and employed at ASEA Brown Boveri. The technique involves a series of modules each of which predicts a particular property of a hypothetical new composition. In the first stage of the development of this design techniques modules were produced to predict phase stability, using PHACOMP, and high temperature creep strength and hot corrosion resistance, using multiple linear regression equations derived from the data in the literature. Alloys designed using these technique are also discussed and, in particular, shortcomings of the design process are highlighted. This information was then used to produce a revamped design methodology involving extra modules, including prediction of an alloy's gamma-prime content. (orig.)

  1. STABILITY ANALYSIS OF RADIAL TURNING PROCESS FOR SUPERALLOYS

    Directory of Open Access Journals (Sweden)

    Alberto JIMÉNEZ

    2017-07-01

    Full Text Available Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC environments, are set in four different states depending on materials grain size and Hard-ness (LGA, LGS, SGA and SGS. Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.

  2. Electron-microscopic investigations of dispersion-strengthened superalloys

    International Nuclear Information System (INIS)

    Schroeder, J.H.; Arzt, E.

    1988-01-01

    Oxide dispersion strengthened (ODS) superalloys possess a high creep strength up to temperatures above 1000 0 C. This is due to a fine dispersion of incoherent Y 2 O 3 particles in connection with a highly elongated grain structure. To investigate the production and properties of ODS alloys, the grain structure was studied and the shape and distribution of dispersoids were characterized after each of the various production steps. Because the interactions between lattice dislocations and dispersoids control the deformation behaviour at high temperatures, the dislocation-dispersoid configurations in crept specimens have been studied by a TEM stereo technique and under weak-beam conditions. It was possible to detect strain fields around the dispersoids using TEM. The results lead to an improved understanding of dispersion strengthening at high temperatures and provide guidelines for the optimum use of this strengthening mechanism. (orig.) [de

  3. Near-surface residual stresses and microstructural changes after turning of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Schlauer, Christian

    2003-07-01

    Nickel-based superalloys are precipitation hardened alloys with complex compositions. They are used in aircraft engines and land-based gas turbines in load bearing structural components that are exposed to high temperatures. Failure mechanisms in this environment are high and low cycle fatigue, creep, and corrosion. During manufacturing, residual stresses are often introduced into the material due to inhomogeneous plastic deformations, both intentionally and unintentionally. One such manufacturing process is metal cutting, which introduces residual stresses in the surface layer. The stress state in the near-surface zone of components is of special interest as the surface often experiences peak loads and cracks have their starting point there. In this thesis, near-surface residual stress distributions and microstructural changes are studied in the nickel-based superalloy Inconel 718 for two different turning operations, face grooving and facing. Process variables are in both cases cutting speed and feed that have been varied between (10 and 1200) m/min and (0.01 and 0.5) mm, respectively. The first turning technique face grooving, which gives cutting conditions similar to orthogonal cutting, showed a clear dependency of the residual stresses on the cutting speed. The tensile stress at the surface, the maximum compressive stress below the surface, and the thickness of the affected layer increase with increasing cutting speed. The tensile stresses are constrained to a thin surface layer and compressive residual stresses below the surface dominate the depth profile of the residual stresses. Only at low cutting speed, residual stresses were largely avoided. The second turning technique facing confirmed the dependency of the residual stresses on the cutting speed and revealed a similar dependency on the feed. Microstructural investigations of near-surface cross-sections by means of transmission electron microscopy showed a zone where the grains had undergone plastic

  4. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep

    International Nuclear Information System (INIS)

    Zhang, J.X.; Wang, J.C.; Harada, H.; Koizumi, Y.

    2005-01-01

    The development of dislocation configurations in two single-crystal superalloys during high-temperature low-stress creep (1100 deg C, 137 MPa) was investigated with the use of transmission electron microscopy. Detailed analysis showed that the lattice misfit has an important influence on the dislocation movement. For an alloy with a large negative lattice misfit, the dislocations are able to move smoothly by cross-slip in the horizontal γ channels. During subsequent formation of γ/γ' rafted structure, the dislocations on the surface of γ' cuboids rapidly re-orientate themselves from to direction and form a complete network. For an alloy with a small lattice misfit, the dislocations move by the combination of climbing and gliding processes, and the resultant γ/γ' interfacial dislocation network is incomplete. A good explanation of the creep curves is obtained from these differences in the microstructures

  5. Effects of High-Temperature Exposures on the Fatigue Life of Superalloy Udimet(Registered Trademark) 720

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.

    2002-01-01

    The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  6. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  7. Effect of carbides on the creep properties of a Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    Effect of carbides on the creep properties of a cast Ni-base superalloy M963 tested at 800 and 900 deg. C over a broad stress range has been investigated. Correlation between the carbides and creep properties of the alloy is enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During high temperature creep tests, the primary MC carbide decomposes sluggishly and a large amount of secondary carbides precipitate. The cubic and acicular M 6 C carbide precipitates at the dendritic core region. Extremely fine chromium-rich M 23 C 6 carbide precipitates preferentially at grain boundaries. The M 6 C and M 23 C 6 carbides are found to be beneficial to the creep properties of the alloy. At lower temperature (800 deg. C), the interface of MC carbide with matrix is one of the principal sites for crack initiation. At higher temperature (900 deg. C), the oxidation and the precipitation of μ phase are the main factors for significant loss in creep strength of the alloy

  8. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.

    1984-07-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material

  9. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  10. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    International Nuclear Information System (INIS)

    Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.

    2015-01-01

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

  11. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  12. Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys

    International Nuclear Information System (INIS)

    Wang, W.Z.; Jin, T.; Jia, J.H.; Liu, J.L.; Hu, Z.Q.

    2015-01-01

    The influences of cobalt (Co) on creep rupture lives and dislocation structures in nickel base superalloys with and without rhenium (Re) are investigated. The creep rupture test conditions were high temperature low stress (1100 °C/150 MPa), intermediate temperature and stress (982 °C, 1010 °C) and low temperature high stress (850 °C/586 MPa). The results show that increasing Co content could enhance the creep rupture lives at low and intermediate temperature, and does not degrade the creep rupture lives of alloys at high temperature. In Re-containing alloys, at high temperature low stress (1100 °C/150 MPa), the effects of Co on the dislocation structures are negligible, while at low temperature high stress (850 °C/586 MPa), stacking faults are generated in alloy with 12% Co, and in alloy with 3% Co and free of Co, gamma prime particles are sheared by dislocation pairs. In Re-free alloys, at intermediate temperature and stress (1010 °C/248 MPa), large quantities of stacking faults appear in alloy without Co, while in alloy having 12% Co, gamma prime particles are sheared by dislocation pairs coupled by anti-phase boundary (APB). The gamma prime sheared by stacking faults or by dislocation pairs coupled by APB depends on the competition of stacking faults energy and APB energy which is affected by temperature and the interaction of Re and Co

  13. Food offerings, flowers, a bronze bucket and a waggon: a multidisciplinary approach regarding the Hallstatt princely grave from Prague-Letňany, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kozáková, Radka; Kyselý, René; Trefný, M.; Drábková, K.; Kočár, Petr; Frolíková, Drahomíra; Kočárová, R.; Moravcová, Kamila

    -, - (2017) ISSN 1866-9557 Institutional support: RVO:67985912 Keywords : grave * meat offerings * pollen * bronze bucket * paint * infrared spectroscopy * xylotomic analysis Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 1.844, year: 2016

  14. Temperature profile data from bucket, surface seawater intake, and XBT casts in a world wide distribution from 07 December 1995 to 18 October 1996 (NODC Accession 9600167)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bucket, surface seawater intake, and XBT casts from several vessels in a world wide distribution from December 07, 1995...

  15. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  16. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes

    Directory of Open Access Journals (Sweden)

    N. Romano

    2011-12-01

    Full Text Available We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM. The single-layer BM of Guswa et al. (2002 is employed, whereas the Richards equation (RE based Soil Water Atmosphere Plant (SWAP model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002. Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are

  17. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  18. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  19. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  20. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  1. ALS Ice Bucket Challenge: Warum die Kampagne über einen „Tsunami Effekt“ beim Spendenverhalten Eisberge versetzen kann

    OpenAIRE

    Decieux, Jean Philippe Pierre

    2015-01-01

    Im Sommer 2014 beherrschte eine Kampagne die sozialen Medien, welche auf originelle Art und Weise auf die Nervenkrankheit Amyotrophe Lateralsklerose (ALS) aufmerksam machen und dadurch Spendengelder für die Erforschung dieser Krankheit generieren wollte. Im Rahmen der sogenannten ALS-Ice-Bucket-Challenge-Kampagne gossen sich die Hauptdarsteller/innen von kleinen Internetclips eiskaltes Wasser über den Kopf und nominierten im Anschluss weitere Personen für die Challenge. Die Herausforderung bz...

  2. MRI evaluation of the bucket handle tears of menisci of the knee

    International Nuclear Information System (INIS)

    Zheng Zhuozhao; Fan Jiadong; Xie Jingxia

    2003-01-01

    Objective: To determine the value of five MR imaging signs in diagnosing the bucket handle tears (BHT) of menisci of the knee. Methods: MR imaging of 139 knees with subsequent arthroscopy exams were retrospectively evaluated. Based on the results of arthroscopy, 19 knees had BHT of menisci. Two radiologists evaluated each MR exam independently, with discrepancies resolved by consensus. Each MR exam was analyzed for five signs: a double posterior cruciate ligament sign, a flipped meniscus sign, an absent bow tie sign, an internal displaced fragment sign, and an abnormal circumferential meniscus sign. Sensitivity, specificity, positive and negative predictive values, and accuracy for diagnosing BHT of menisci were calculated for the presence of each individual sign. Results: The sensitivities of these five signs ranged between 52.6% and 89.5%, and specificities ranged between 83.3% and 98.3%, respectively. Positive and negative predictive values ranged between 42.9% and 88.2%, and between 92.7% and 98.3%, respectively. The accuracy of these five signs ranged between 82.7% and 96.4%. Conclusion: BHT of menisci may have many signs on MR imaging. The diagnostic sensitivities of the internal displaced fragment sign and the abnormal circumferential meniscus sign are the highest. The double posterior cruciate ligament sign has the highest specificity and positive predictive value, while the internal displaced fragment sign has the highest negative predictive value and accuracy

  3. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  4. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications

    International Nuclear Information System (INIS)

    Zheng, Liang; Zhang, Guoqing; Lee, Tung L.; Gorley, Michael J.; Wang, Yue; Xiao, Chengbo; Li, Zhou

    2014-01-01

    Highlights: • An equiaxed superalloy has high rupture life equivalent to single crystal alloy DD3. • Low Cr and high W superalloys possess good microstructrual stability at 850–1100 °C. • Tantalum promotes, strengthens and stabilizes the eutectic γ′ and MC carbides. • Excessive Ta leads to form harmful abnormal primary α and plate-like M 6 C phases. • Proper Ta can improve the stress rupture life at intermediate and high temperatures. - Abstract: A novel polycrystalline Ni-base superalloy was developed for land-based high temperature applications, such as isothermal forging dies and industrial gas turbines. The alloy possessed surprisingly high stress rupture life of 52 h at 1100 °C/118 MPa which is comparable to the first generation single crystal (SC) superalloy and exhibited good microstructural stability. The effects of Ta addition on the phase change, stress rupture properties and microstructural stability of the alloy were investigated. The results indicated that Ta is a γ′-former and promotes the formation of eutectic γ′. The alloys with ∼7 vol.% eutectic γ′ possess higher stress rupture life at 1100 °C/118 MPa than the alloys with higher ∼20 vol.% eutectic. However, ∼20 vol.% excessive eutectic phases will enhance the stress rupture life at intermediate temperature of 760 °C for 686 MPa but weaken high temperature stress rupture properties. The (Al + Ta) content over 14.4 at.% led to the formation of large amounts of eutectic γ′ and exceeded the solubility of W and Mo in the residue liquid pool, which then promoted the precipitation of primary α-(W,Mo) and M 6 C phases. Tantalum was also found as a strong MC carbides forming element. The order of ability to form monocarbide decreased from NbC to TaC to TiC. 6Al–0Ta (wt.%) alloys possessed good microstructural stability with no harmful topologically close-packed (TCP) phases being observed after thermal exposure at 850 °C/3000 h, 900 °C/1000 h. Only trace amounts of

  5. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  6. A new method in prediction of TCP phases formation in superalloys

    International Nuclear Information System (INIS)

    Mousavi Anijdan, S.H.; Bahrami, A.

    2005-01-01

    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used to predict the electron-hole number (N v ) and TCP phases formation in superalloys

  7. Degradation of creep properties in a long-term thermally exposed nickel base superalloy

    International Nuclear Information System (INIS)

    Zrnik, J.; Strunz, P.; Vrchovinsky, V.; Muransky, O.; Novy, Z.; Wiedenmann, A.

    2004-01-01

    When exposed for long time at elevated temperatures of 430 and 650 deg. C the nickel base superalloy EI 698 VD can experience a significant decrease in creep resistance. The cause of the creep degradation of nickel base superalloy is generally attributed to the microstructural instability at prolonged high temperature exposure. In this article, the creep-life data, generated on long thermally exposed nickel base superalloy EI698 VD were related to the local microstructural changes observed using SEM and TEM analysing techniques. While structure analysis provided supporting evidence concerning the changes associated with grain boundary carbide precipitation, no persuasive evidence of a morphological and/or dimensional gamma prime change was showed. For clarifying of the role of gamma prime precipitates on alloy on creep degradation, the SANS (small angle neutron scattering) experiment was crucial in the characterization of the bulk-averaged gamma prime morphology and its size distribution with respect to the period of thermal exposure

  8. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  9. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  10. ON THE INFLUENCE OF COLD WORK ON RESISTIVITY VARIATIONS WITH THERMAL EXPOSURE IN IN-718 NICKEL-BASE SUPERALLOY

    International Nuclear Information System (INIS)

    Madhi, Elhoucine; Nagy, Peter B.

    2010-01-01

    In nickel-base superalloys, irreversible electrical conductivity changes occur above a transition temperature where thermally-activated microstructural evolution initiates. The electrical conductivity first decreases above about 450 deg. C then increases above 600 deg. C. However, the presence of plastic deformation results in accelerated microstructure evolution at an earlier transition temperature. It was recently suggested that this well-known phenomenon might explain the notable conductivity difference between the peened near-surface part and the intact part at sufficiently large depth in surface-treated specimens. The influence of cold work on the electrical conductivity change with thermal exposure offers a probable answer to one of the main remaining questions in eddy current residual stress assessment, namely unusually fast and occasionally even non-monotonic decay of the apparent eddy current conductivity (AECC) change that was observed at temperatures as low as 400 deg. C. To validate this explanation, the present study investigates the influence of cold work on low-frequency Alternating Current Potential Drop (ACPD) resistivity variations with thermal exposure. In-situ resistivity monitoring was conducted throughout various heating cycles using the ACPD technique. IN-718 nickel-base superalloy specimens with different levels of cold work were exposed to gradually increasing peak temperatures from 400 deg. C to 800 deg. C. The results indicate that the initial irreversible rise in resistivity is approximately one order of magnitude higher and occurs at about 50 deg. C lower temperature in cold-worked samples of 30% plastic strain than in the intact material.

  11. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy

    Directory of Open Access Journals (Sweden)

    Tongjin Zhou

    2018-02-01

    Full Text Available In order to comprehensively understand the forming mechanism of abnormal phases solidified in a nickel-base cast superalloy with additives of tungsten and molybdenum, the coupling effects of W and Mo on the microstructure and stress-rupture properties were investigated in this paper. The results indicated that the precipitation of primary α-(W, Mo phase depended tremendously on the amount of W and Mo addition. When the total amount of W and Mo was greater than 5.79 at%, α-(W, Mo phase became easily precipitated in the alloy. With increasing of Mo/W ratio, the dendrite-like α-(W, Mo phases were apt to convert into small bars or blocky-like phases at the vicinities of γ′/γ eutectic. The morphological changes of α-(W, Mo phase can be interpreted as the non-equilibrium solidification of W and Mo in the alloy. Since the large sized α-(W, Mo phase has detrimental effects on stress-rupture properties in as-cast conditions, secondary cracks may mainly initiate at and then propagate along the interfaces of brittle phases and soft matrix. During exposing at 1100 ℃ for 1000 h, the α-(W, Mo phases transformed gradually into bigger and harder M6C carbide, which results in decreasing of stress-rupture properties of the alloy. Finally, the alloy with an addition of 14W-1Mo(wt% maintained the longest stress lives at high temperatures and therefore it revealed the best microstructure stability after 1100 ℃/1000 h thermal exposure. Keywords: Superalloy, Tungsten and molybdenum, Cast, Microstructure, Stress-rupture properties

  12. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  13. Corrosion Behavior of Superalloys in Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo-Haeng; Hur, Jin-Mok; Seo, Chung-Seok; Park, Seoung-Won

    2006-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at ∼ 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  14. High Temperature Deformation Mechanisms in a DLD Nickel Superalloy

    Directory of Open Access Journals (Sweden)

    Sean Davies

    2017-04-01

    Full Text Available The realisation of employing Additive Layer Manufacturing (ALM technologies to produce components in the aerospace industry is significantly increasing. This can be attributed to their ability to offer the near-net shape fabrication of fully dense components with a high potential for geometrical optimisation, all of which contribute to subsequent reductions in material wastage and component weight. However, the influence of this manufacturing route on the properties of aerospace alloys must first be fully understood before being actively applied in-service. Specimens from the nickel superalloy C263 have been manufactured using Powder Bed Direct Laser Deposition (PB-DLD, each with unique post-processing conditions. These variables include two build orientations, vertical and horizontal, and two different heat treatments. The effects of build orientation and post-process heat treatments on the materials’ mechanical properties have been assessed with the Small Punch Tensile (SPT test technique, a practical test method given the limited availability of PB-DLD consolidated material. SPT testing was also conducted on a cast C263 variant to compare with PB-DLD derivatives. At both room and elevated temperature conditions, differences in mechanical performances arose between each material variant. This was found to be instigated by microstructural variations exposed through microscopic and Energy Dispersive X-ray Spectroscopy (EDS analysis. SPT results were also compared with available uniaxial tensile data in terms of SPT peak and yield load against uniaxial ultimate tensile and yield strength.

  15. Kinetics of Grain Growth in 718 Ni-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Huda Z.

    2014-10-01

    Full Text Available The Haynes® 718 Ni-base superalloy has been investigated by use of modern material characterization, metallographic and heat treatment equipment. Grain growth annealing experiments at temperatures in the range of 1050 – 1200 oC (1323–1473K for time durations in the range of 20 min-22h have been conducted. The kinetic equations and an Arrhenius-type equation have been applied to compute the grain-growth exponent n and the activation energy for grain growth, Qg, for the investigated alloy. The grain growth exponent, n, was computed to be in the range of 0.066-0.206; and the n values have been critically discussed in relation to the literature. The activation energy for grain growth, Qg, for the investigated alloy has been computed to be around 440 kJ/mol; and the Qg data for the investigated alloy has been compared with other metals and alloys and ceramics; and critically analyzed in relation to our results.

  16. The precipitation behavior of superalloy ATI Allvac 718Plus

    Energy Technology Data Exchange (ETDEWEB)

    Zickler, Gerald A.; Schnitzer, Ronald; Leitner, Harald [Department of Physical Metallurgy and Materials Testing, Christian Doppler Laboratory Early Stages of Precipitation, Montanuniversitaet Leoben (Austria); Radis, Rene [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Institute for Materials Science and Welding, Graz University of Technology (Austria); Kozeschnik, Ernst [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co. KG., Kapfenberg (Austria)

    2010-03-15

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace gas turbines. The precipitation kinetics of the intermetallic {delta} (Ni{sub 3}Nb) and {gamma}' (Ni{sub 3}(Al,Ti)) phases in this alloy are of scientific as well as technological interest because of their significant influence on the mechanical properties. Important parameters like grain size are controlled by coarse {delta} precipitates located at grain boundaries, whereas small {gamma}' precipitates are responsible for strengthening by precipitation hardening. In the present study, the microstructure is investigated by three-dimensional atom probe tomography and simulated by computer modeling using the thermo-kinetic software MatCalc. The results of numerical simulations and experimental data are compared and critically discussed. It is shown that the chemical compositions of the phases change during isothermal aging, and the precipitation kinetics of {delta} and {gamma}' phases interact with each other as shown in a time temperature precipitation (TTP) plot. The TTP plot shows C-shaped curves with characteristic discontinuities in the temperature range, where simultaneous and concurrent precipitation of the {delta} and {gamma}' phases occurs. This leads to a competition in the diffusion of Nb and Al, which are partly present in both phases. Thus, the present study gives important information on heat treatments for ATI Allvac 718Plus in order to achieve the desired microstructure and mechanical properties. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Niobium-base superalloys via powder metallurgy technology

    International Nuclear Information System (INIS)

    Loria, E.A.

    1987-01-01

    This paper provides some insight into an area that has been neglected, namely the possibility of developing high-strength, niobium-base alloys by improved oxidation resistance via the consolidation of rapidly solidified powders. Powder metallurgy (P/M) is an attractive processing technique because of its flexibility and versatility, and it may provide the alloys with properties and workability not obtainable via metal casting. A critical review of both U.S. and Russian literature is presented along with suggestions on the most promising compositions and processing techniques available to meet these competing goals. Previous work on many niobium alloys reveals that long term properties are retained well above those obtained on nickel-base superalloys. Cast and wrought alloys extend specific strength beyond 1200 0 C (2200 0 F), but lack oxidation resistance. Remarkable oxidation resistance is obtained, however, on miniature castings of certain ternary alloys which are too brittle for any processing. A better understanding of the oxidation mechanism is necessary before the proper P/M (RST) approach is taken on compositions which could provide compatibility between the two competing goals through grain refinement and a homogeneous distribution of the contributory phases. Finally, ways to up-scale production of Nb powder are discussed, including thermodynamic feasibility for the direct reduction of NbCl/sub 5/ in a 1.5 MW plasma reactor

  18. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  19. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  20. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  1. Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation

    Science.gov (United States)

    Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.

  2. Process of welding gamma prime-strengthened nickel-base superalloys

    Science.gov (United States)

    Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

    2003-11-25

    A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

  3. High-temperature and low-stress creep anisotropy of single-crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jacome, L. A.; Nortershauser, P.; Heyer, J. K.; Lahni, A.; Frenzel, J.; Dlouhý, Antonín; Somsen, C.; Eggeler, G.

    2013-01-01

    Roč. 61, č. 8 (2013), s. 2926-2943 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA202/09/2073 Institutional support: RVO:68081723 Keywords : superalloy single crystals * creep anisotropy * rafting * dislocations * deformation mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  4. σ and η Phase formation in advanced polycrystalline Ni-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, Stoichko, E-mail: santonov@hawk.iit.edu [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States); Huo, Jiajie; Feng, Qiang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Isheim, Dieter; Seidman, David N. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Northwestern University Center for Atom Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208 (United States); Helmink, Randolph C.; Sun, Eugene [Rolls-Royce Corporation, 450 S. Meridian Street, Indianapolis, IN 46225 (United States); Tin, Sammy [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States)

    2017-02-27

    In polycrystalline Ni-base superalloys, grain boundary precipitation of secondary phases can be significant due to the effects they pose on the mechanical properties. As new alloying concepts for polycrystalline Ni-base superalloys are being developed to extend their temperature capability, the effect of increasing levels of Nb alloying additions on long term phase stability and the formation of topologically close packed (TCP) phases needs to be studied. Elevated levels of Nb can result in increased matrix supersaturation and promote the precipitation of secondary phases. Long term thermal exposures on two experimental powder processed Ni-base superalloys containing various levels of Nb were completed to assess the stability and precipitation of TCP phases. It was found that additions of Nb promoted the precipitation of η-Ni{sub 6}AlNb along the grain boundaries in powder processed, polycrystalline Ni-base superalloys, while reduced Nb levels favored the precipitation of blocky Cr and Mo – rich σ phase precipitates along the grain boundary. Evaluation of the thermodynamic stability of these two phases in both alloys using Thermo-calc showed that while σ phase predictions are fairly accurate, predictions of the η phase are limited.

  5. Creep deformation and microstructural examination of a prior thermally exposed nickel base superalloy

    Czech Academy of Sciences Publication Activity Database

    Zrník, J.; Strunz, Pavel; Vrchovinský, V.; Muránsky, O.; Horňák, P.; Wiedenmann, A.

    2004-01-01

    Roč. 274 (2004), s. 925-930 ISSN 1013-9826 R&D Projects: GA AV ČR KSK1010104 Keywords : superalloy * thermal exposition * creep Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.278, year: 2004

  6. SANS investigation of precipitate microstructure in nickel-base superalloys Waspaloy and DT750

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Zrník, J.; Seliga, T.; Penkalla, H.J.

    2006-01-01

    Roč. 2, č. 23 (2006), s. 363-368 ISSN 0044-2968 R&D Projects: GA ČR GA202/06/0601 Institutional research plan: CEZ:AV0Z10480505 Keywords : small-angle-neutron scattering * superalloys * precipitation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.897, year: 2006

  7. Ledges and grooves at γ/γ′ interfaces of single crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Parsa, A. B.; Wollgramm, P.; Buck, H.; Kostka, A.; Somsen, C.; Dlouhý, Antonín; Eggeler, G.

    2015-01-01

    Roč. 90, MAY (2015), s. 105-117 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Ni-base single crystal superalloys * γ/γ′ interfaces * Interface dislocations * Rafting * Grooves Subject RIV: JG - Metallurgy Impact factor: 5.058, year: 2015

  8. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  9. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C.

    2004-01-01

    The weld fusion zone microstructure of a commercial aerospace superalloy IN 738 was examined. Elemental segregation induced interdendritic microconstituents were identified to include terminal solidification product M 3 B 2 and Ni 7 Zr 2 in association with γ-γ' eutectic constituent, which require proper consideration during the development of optimum post weld heat treatment

  10. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  11. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  12. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-04-01

    Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

  13. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.

    Science.gov (United States)

    Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas

    2016-11-16

    Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  14. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys

    Directory of Open Access Journals (Sweden)

    Jianping Hong

    2016-11-01

    Full Text Available Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS and single crystal (SX hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  15. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are ... mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the ...

  16. Constitutive modeling of a nickel base superalloy -with a focus on gas turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Almroth, Per

    2003-05-01

    Gas turbines are used where large amounts of energy is needed, typically as engines in aircraft, ferries and power plants. From an efficiency point of view it is desirable to increase the service temperature as much as possible. One of the limiting factors is then the maximum allowable metal temperatures in the turbine stages, primarily in the blades of the first stage, that are exposed to the highest gas temperatures. Specially designed materials are used to cope with these severe conditions, such as the nickel base superalloy IN792. In order to be able to design the components for higher temperatures and tighter tolerances, a detailed understanding and computationel models of the material behaviour is needed. The models presented in this work have been developed with the objective of being physically well motivated, and with the intention of avoiding excessive numbers of parameters. The influence of the parameters should also be as easy as possible to interpret. The models are to describe the behaviour of IN792, under conditions typically found for a gas turbine blade. Specifically the high- and intermediate temperature isothermal modelling of IN792 have been addressed. One main issue when characterising the material and calibrating the models is the use of relevant tests, that are representative of component conditions. Therefore isothermal tests with an eye on the typical environment of a turbine blade have been planned and performed. Using numerical optimization techniques the material parameters for the isothermal behaviour of IN792 at 650 deg and 850 deg have been estimated. The good overall calibration results for these specific temperatures, using the presented modeling concept and nonstandard constitutive tests, suggests that the model can describe the behaviour of IN792 in gas turbine hot part applications.

  17. MGI-oriented High-throughput Measurement of Interdiffusion Coefficient Matrices in Ni-based Superalloys

    Directory of Open Access Journals (Sweden)

    TANG Ying

    2017-01-01

    Full Text Available One of the research hotspots in the field of high-temperature alloys was to search the substitutional elements for Re in order to prepare the single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients in comparison with that of Re was one of the effective strategies. In multicomponent alloys, the interdiffusivity matrix were used to comprehensively characterize the diffusion ability of any alloying elements. Therefore, accurate determination of the composition-dependant and temperature-dependent interdiffusivities matrices of different elements in γ and γ' phases of Ni-based superalloys was high priority. The paper briefly introduces of the status of the interdiffusivity matrices determination in Ni-based superalloys, and the methods for determining the interdiffusivities in multicomponent alloys, including the traditional Matano-Kirkaldy method and recently proposed numerical inverse method. Because the traditional Matano-Kirkaldy method is of low efficiency, the experimental reports on interdiffusivity matrices in ternary and higher order sub-systems of the Ni-based superalloys were very scarce in the literature. While the numerical inverse method newly proposed in our research group based on Fick's second law can be utilized for high-throughput measurement of accurate interdiffusivity matrices in alloys with any number of components. After that, the successful application of the numerical inverse method in the high-throughput measurement of interdiffusivity matrices in alloys is demonstrated in fcc (γ phase of the ternary Ni-Al-Ta system. Moreover, the validation of the resulting composition-dependant and temperature-dependent interdiffusivity matrices is also comprehensively made. Then, this paper summarizes the recent progress in the measurement of interdiffusivity matrices in γ and γ' phases of a series of core ternary Ni-based superalloys achieved in

  18. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy

    International Nuclear Information System (INIS)

    Al-Jarba, K.A.; Fuchs, G.E.

    2004-01-01

    In an effort to reduce grain defects in large single crystal Ni-base superalloy components, carbon is intentionally added. In this study, the effect of carbon additions on the microstructure and solidification defect formation of a model Ni-based superalloy, LMSX-1, was examined. The results show that the tendency of the alloy to form all types of solidification defects decreased as the carbon content increased. The as-cast microstructures also exhibited a decrease in the amount of γ-γ' eutectic structure and an increase in the volume fraction of carbides and porosity, as the carbon content was increased. The carbides formed in these alloys were mostly of script-type MC carbides which formed continuous, dendritic networks in the interdendritic region. Microprobe analysis of the as-cast structures showed that the partitioning coefficients did not change with carbon additions. Therefore, the reduction in defect formation with increasing carbon content could not be attributed to changes in segregation behavior of alloying elements. Instead, the presence of these carbides in the interdendritic regions of the alloy appeared to have prevented the thermosolutal fluid flow

  19. Development of advanced P/M Ni-base superalloys for turbine disks

    Directory of Open Access Journals (Sweden)

    Garibov Genrikh S.

    2014-01-01

    Full Text Available In the process of evolution of powder metallurgy in Russia the task permanently formulated was the following: to improve strength properties of P/M superalloys without application of additional complex HIPed blanks deformation operation. On the other hand development of a turbine disk material structure to ensure an improvement in aircraft engine performance requires the use of special HIP and heat treatment conditions. To ensure maximum strength properties of disk materials it is necessary to form a structure which would have optimum size of solid solution grains, γ′-phases and carbides. Along with that heating of the material up to a temperature determined by solvus of an alloy ensures a stable and reproducible level of mechanical properties of the disks. The above-said can be illustrated by successful mastering of new complex-alloyed VVP-class superalloys with the use of powder size − 100 μm. Application of special HIP and heat treatment conditions for these superalloys to obtain the desired grain size and the strengthening γ′-phase precipitates allowed a noticeable improvement in ultimate tensile strength and yield strength up to ≥1600 MPa and ≥1200 MPa respectively. 100 hrs rupture strength at 650 ∘C and 750 ∘C was improved up to 1140 MPa and 750 MPa respectively. P/M VVP nickel-base superalloys offer higher characteristics in comparison with many superalloys designed for the same purposes. HIPed disc compacts manufactured from PREP-powder have a homogeneous micro- and macrostructure, a stable level of mechanical properties.

  20. ABOUT MODELING COMPLEX ASSEMBLIES IN SOLIDWORKS – LARGE AXIAL BEARING

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2017-12-01

    Full Text Available In this paperwork is presented the modeling strategy used in SOLIDWORKS for modeling special items as large axial bearing and the steps to be taken in order to obtain a better design. In the paper are presented the features that are used for modeling parts, and then the steps that must be taken in order to obtain the 3D model of a large axial bearing used for bucket-wheel equipment for charcoal moving.

  1. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    Bai, C.-Y.

    2007-01-01

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 o C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  2. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-10-15

    The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

  3. The impact of a windshield in a tipping bucket rain gauge on the reduction of losses in precipitation measurements during snowfall events

    Science.gov (United States)

    Buisan, Samuel T.; Collado, Jose Luis; Alastrue, Javier

    2016-04-01

    The amount of snow available controls the ecology and hydrological response of mountainous areas and cold regions and affects economic activities including winter tourism, hydropower generation, floods and water supply. An accurate measurement of snowfall accumulation amount is critical and source of error for a better evaluation and verification of numerical weather forecast, hydrological and climate models. It is well known that the undercatch of solid precipitation resulting from wind-induced updrafts at the gauge orifice is the main factor affecting the quality and accuracy of the amount of snowfall precipitation. This effect can be reduced by the use of different windshields. Overall, Tipping Bucket Rain Gauges (TPBRG) provide a large percentage of the precipitation amount measurements, in all climate regimes, estimated at about 80% of the total of observations by automatic instruments. In the frame of the WMO-SPICE project, we compared at the Formigal-Sarrios station (Spanish Pyrenees, 1800 m a.s.l.) the measured precipitation in two heated TPBRGs, one of them protected with a single alter windshield in order to reduce the wind bias. Results were contrasted with measured precipitation using the SPICE reference gauge (Pluvio2 OTT) in a Double Fence Intercomparison Reference (DFIR). Results reported that shielded reduces undercatch up to 40% when wind speed exceeds 6 m/s. The differences when compared with the reference gauge reached values higher than 70%. The inaccuracy of these measurements showed a significant impact in nowcasting operations and climatology in Spain, especially during some heavy snowfall episodes. Also, hydrological models showed a better agreement with the observed rivers flow when including the precipitation not accounted during these snowfall events. The conclusions of this experiment will be used to take decisions on the suitability of the installation of windshields in stations characterized by a large quantity of snowfalls during the

  4. Microstructure and Mechanical Properties in Gamma(face-centered cubic) + Gamma Prime(L12) Precipitation-Strengthened Cobalt-based Superalloys

    Science.gov (United States)

    Bocchini, Peter J.

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x

  5. Focused Ion Beam Nanotomography of ruthenium-bearing nickel-base superalloys with focus on cast-microstructure and phase stability

    International Nuclear Information System (INIS)

    Cenanovic, Samir

    2012-01-01

    The influence of rhenium and ruthenium on the multi component system nickel-base superalloy is manifold and complex. An experimental nickel-base superalloy containing rhenium and ruthenium within defined contents, named Astra, was used to investigate the influences of these two elements on the alloy system. The last stage solidification of nickel-base superalloys after Bridgman casting and the high temperature phase stability of these alloys, could be explored with the aid of focused ion beam nanotomography. FIB-nt therefore was introduced and realized at the chair of General Materials Properties of the University Erlangen-Nuremberg. Cast Astra alloys are like other nickel-base superalloys morphologically very inhomogeneous and affected by segregation. In the interdendritic region different structures with huge γ' precipitates are formed. These inhomogeneities and remaining eutectics degrade the mechanical properties, witch makes an understanding of the subsiding processes at solidification of residual melt important for the casting process and the heat treatment. This is why the last stage solidification in the interdendritic region was analyzed. With the help of focused ion beam nanotomography, three different structures identified from 2-D sections could be assigned to one original 3-D structure. It was pointed out, that only the orientation of the plane of the 2-D cut influences the appearance in the 2-D section. The tomography information was used to explain the development during solidification and to create a model of last stage solidification. The interdendritic region is solidifying under the development of eutectic islands. The structure nucleates eutectically epitaxially at primary dendrite arms, with formation of fine γ/γ' precipitates. During solidification the γ' precipitates coarsen in a rod-like structure, and end up in large γ' precipitates. Simulations and other investigations could approve this model. First three

  6. A study on microstructures and extended defects in Ni- and Co-base superalloys. Development and application of advanced TEM techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Julian

    2016-04-21

    To improve the efficiency of stationary gas turbines and air craft jet engines, it is crucial to increase the maximum temperature capabilities of single crystalline superalloys by appropriate alloy design and microstructure tuning. The mechanical properties of superalloys are largely influenced by the physical constitution of the microstructure. To develop a better understanding of fundamental aspects of creep deformation, like the stress states, defect structures and other degradation processes, it is necessary to employ scale-bridging characterization. In the present work, Ni- and Co-based superalloys are investigated by a series of advanced transmission electron microscopy techniques and by the application of specifically developed characterization methods to identify dominating processes on atomic scale and hence to make a direct correlation to the macroscopic creep behavior. For instance, the misfit between γ and γ' in the initial microstructure is of great importance, since it strongly influences the rafting process and the interfacial dislocation network. To address the stress state, on the one hand misfit measurements in undeformed samples are conducted and are directly compared to finite-element simulations. On the other hand, deformed samples are investigated to assess the influence of an initial rafting process and the formation of an interface dislocation network. For this, characterization methods are used which are based on the evaluation of atomically resolved images and on electron diffraction. Moreover, the temperature dependency of the misfit and of the microstructure stability is specifically investigated for different Co-base alloys in in situ heating experiments. The characterization of defect structures in Ni-base superalloys after creep deformation builds the second pillar of this work. Specific cutting processes of superdislocations are studied to elucidate which atomic processes take place. A series of left angle 100 right angle and

  7. Microstructure evolution of superalloy for large exhaust valve during hot forging

    International Nuclear Information System (INIS)

    Jeong, H.S.; Cho, J.R.; Park, H.C.

    2004-01-01

    The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05-5s-1 using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05, 5s-1, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time. The developed modeling equation was combined with thermo-viscoplastic finite element modeling to predict various microstructure change evolution during thermo mechanical processing. The predicted grain size in developed FE simulation results is compared with results obtained in various tests. In order to obtain a final microstructure and good mechanical properties in forging, the FEM would become a useful tool in the simulation of the microstructure development

  8. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  9. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    Science.gov (United States)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  10. Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Chen

    2018-05-01

    Full Text Available The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC, fine borides (M3B2 and M5B3, η-Ni3Ti, σ (Cr-Co and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries.

  11. Metallurgical joining of engine parts. Inertia welding of nickel superalloy HP compressor disks

    International Nuclear Information System (INIS)

    Ferte, J.P.

    1993-01-01

    The main part of this paper describes upside metallurgical and mechanical work done at SNECMA, on inertia welding of powder metallurgy nickel base superalloys ASTROLOY and N18, allowing appliance of this process to engine parts : Inertia welding of superalloys leads to deap microstructural changes in the H.A.Z. which have been, as well as upset, correlated to process parameters, weld geometry and base material microstructure; a full mechanical testing of welds shown properties equivalent to base material ones up to 650 C except for fatigue crack growth behavior under specific conditions (T>600 C-hold time at maximum load) which is drastically reduced for in weld plane propagation. A significant improvement of this later property has been done through post-welding heat treatment and optimization of welding parameters. Last part of this paper summarize the main teachings gained, on the complete welding procedure, from welding of scale one parts. (orig.)

  12. On the microstructural origin of primary creep in nickel-base superalloys

    International Nuclear Information System (INIS)

    Heilmaier, M.; Reppich, B.

    1997-01-01

    The nature of primary creep in nickel-base superalloys is strongly correlated to the different hardening species present in the material. In fine-grained single-phase material the classical assumption of a homogeneous dislocation distribution enables the prediction of the transition from normal via sigmoidal to inverse primary creep with decreasing applied stress σ. In coarse-grained material the back stress σ b of hard subgrain boundaries evolving during plastic deformation must be additionally taken into account. Second-phase particles influence creep in a 2-fold manner via reducing the effective stress σ eff , namely directly by the stress σ p * for particle overcoming, and indirectly by increasing the dislocation density ρ. The proposed approach accounts for the observed pronounced normal primary creep in particle-strengthened superalloys. (orig.)

  13. Intermediate Co/Ni-base model superalloys — Thermophysical properties, creep and oxidation

    International Nuclear Information System (INIS)

    Zenk, Christopher H.; Neumeier, Steffen; Engl, Nicole M.; Fries, Suzana G.; Dolotko, Oleksandr; Weiser, Martin; Virtanen, Sannakaisa; Göken, Mathias

    2016-01-01

    The mechanical properties of γ′-strengthened Co–Ni–Al–W–Cr model superalloys extending from pure Ni-base to pure Co-base superalloys have been assessed. Differential scanning calorimetry measurements and thermodynamic calculations match well and show that the γ′ solvus temperature decreases with increasing Co-content. The γ/γ′ lattice misfit is negative on the Ni- and positive on the Co-rich side. High Ni-contents decelerate the oxidation kinetics up to a factor of 15. The creep strength of the Ni-base alloy increases by an order of magnitude with additions of Co before it deteriorates strongly upon higher additions despite an increasing γ′ volume fraction.

  14. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  15. Development of superalloys for 1700 C ultra-efficient gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hiroshi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    Mitigation of global warming is one of the most outstanding issues for the humankind. The Japanese government announced that it will reduce its greenhouse gas emissions by 25% from the 1990 level by 2020 as a medium-term goal. One of the promising approaches to achieving this is to improve the efficiency of thermal power plants emitting one-third of total CO{sub 2} gas in Japan. The key to improving the thermal efficiency is high temperature materials with excellent temperature capabilities allowing higher inlet gas temperatures. In this context, new single crystal superalloys for turbine blades and vanes, new coatings and turbine disk superalloys have been successfully developed for various gas turbine applications, typically 1700 C ultra-efficient gas turbines for next generation combine cycle power plants. (orig.)

  16. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  17. Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

    Science.gov (United States)

    Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming

    The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.

  18. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting

    Science.gov (United States)

    Ramsperger, Markus; Singer, Robert F.; Körner, Carolin

    2016-03-01

    Powder bed-based additive manufacturing (AM) processes are characterized by very high-temperature gradients and solidification rates. These conditions lead to microstructures orders of magnitude smaller than in conventional casting processes. Especially in the field of high performance alloys, like nickel-base superalloys, this opens new opportunities for homogenization and alloy development. Nevertheless, the high susceptibility to cracking of precipitation-hardenable superalloys is a challenge for AM. In this study, electron beam-based AM is used to fabricate samples from gas-atomized pre-alloyed CMSX-4 powder. The influence of the processing strategy on crack formation is investigated. The samples are characterized by optical and SEM microscopy and analyzed by microprobe analysis. Differential scanning calorimetry is used to demonstrate the effect of the fine microstructure on characteristic temperatures. In addition, in situ heat treatment effects are investigated.

  19. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  20. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  1. Effect of cobalt on microstructural parameters and mechanical properties of Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Suzuki, Takanobu; Imai, Hachiro; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Koizumi, Yutaka; Harada, Hiroshi

    2007-01-01

    The alloying effect of Cobalt (Co) to microstructural parameters and mechanical properties, such as partitioning ratios of alloying elements and creep strength, of Re-bearing Ni-base single crystal superalloys have been investigated. The second generation single crystal superalloys, TMS-82+, Ni-7.8Co-4.9Cr-1.9Mo-8.7W-5.3Al-6.0Ta-2.4Re-0.1Hf, in mass% (8Co) was compared to a Co-free (0Co) and 15 mass% Co (15Co) alloy which had the same chemical composition as TMS-82+ except that Co was changed. It was shown that the partitioning ratios of alloying elements trend to k(=X γ /X' γ )=1, as the content of Co was increased. Furthermore, it was found that there was suitable content of Co for the creep strength under various temperature-stress conditions. (author)

  2. STUDY OF THE MECHANICAL PROPERTIES OF INCONEL 718 SUPERALLOY AFTER HOT TENSILE TESTS

    Directory of Open Access Journals (Sweden)

    Tarcila Sugahara

    2014-10-01

    Full Text Available This research work investigated some important mechanical properties of Inconel 718 superalloy using hot tensile tests like conventional yield strength to 0.2% strain (σe , ultimate strength (σr , and specific elongation (εu . Samples were strained to failure at temperatures of 600°C, 650°C, 700°C, 750°C, 800°C and 850°C and strain rate of 0.5 mm/min (2 × 10–4 s–1 according to ASTM E-8. The results showed higher values σe of yield strength at 700°C, this anomalous behavior can be attributed to the presence of hardening precipitates as observed in the TTT diagram of superalloy Inconel 718. Examination of the sample’s surfaces tensile fracture showed that with increasing temperature test the actuating mechanism changes from intergranular fracture to coalescence of the microcavities.

  3. Phase Transformations in Nickel base Superalloy Inconel 718 during Cyclic Loading at High Temperature

    Directory of Open Access Journals (Sweden)

    Michal Jambor

    2017-06-01

    Full Text Available Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.

  4. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  5. The Effectiveness of a NiCrY-Coating on a Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Nesbitt, James A.; Draper, Susan L.; Rogers, Richard B.; Telesman, Jack

    2018-01-01

    Protective ductile coatings could be necessary to mitigate oxidation and corrosion attack on superalloy disks in some turbine engine applications. However, the effects of coatings on fatigue life of the disk during service are an important concern. The objective of this study was to investigate how such a coating could perform after varied post-coating processing. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, preparation treated, exposed, and then subjected to fatigue at high temperature. The effects of varied shot peening, preparation treatment, and exposures on fatigue life with and without the coating were compared. Each of these variables and several of their interactions significantly influenced fatigue life.

  6. A one-step separation of human serum high density lipoproteins 2 and 3 by rate-zonal density gradient ultracentrifugation in a swinging bucket rotor

    NARCIS (Netherlands)

    Groot, P.H.E.; Scheek, L.M.; Havekes, L.; Noort, W.L. van; Hooft, F.M. van 't

    1982-01-01

    A method was developed for the separation of the high density lipoprotein subclasses HDL2 and HDL3 from human serum. Six serum samples are fractionated in a single-step ultracentrifugal procedure using the Beckman (SW-40) swinging bucket rotor. The method is based on a difference in flotation rate

  7. Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petrenec, Martin; Chlupová, Alice; Tobiáš, Jiří; Petráš, Roman

    2015-01-01

    Roč. 57, č. 2 (2015), s. 119-125 ISSN 0025-5300 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : cyclic plasticity * elevat ed temperature * superalloys * hysteresis loop * statistical theory Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.266, year: 2015

  8. Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Fine, Morris E. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautam [Northwestern Univ., Evanston, IL (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Liu, Chain T. [Auburn Univ., AL (United States); Sun, Zhiqian [Univ. of Tennessee, Knoxville, TN (United States); Huang, Shenyan [Univ. of Tennessee, Knoxville, TN (United States); Teng, Zhenke [Univ. of Tennessee, Knoxville, TN (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States)

    2012-04-13

    Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β' with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.

  9. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  10. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  11. On γ and γ' phases composition in IN-100 superalloy after high-temperature exposure

    International Nuclear Information System (INIS)

    Matteazzi, P.; Principi, G.; Ramous, E.

    1981-01-01

    The chemistry and volume fraction of UPSILON' phase in IN-100 superalloy after high-temperature exposure in furnace and in service have been examined. Increasing the time of exposure aluminium plus titanium content remains nearly constant and very close to 25 at.%; the little decrease of nickel together with the increase of iron and molybdenum suggest that the last two elements are preferentially occupying Ni-type sites, according to the pair potential model of UPSILON'. (orig.)

  12. Discussion of "Investigation of Oxide Bifilms in Investment Cast Superalloy IN100 Parts I and II"*

    Science.gov (United States)

    Campbell, John

    2017-10-01

    Fuchs and Kaplan carried out experiments in an attempt to ascertain whether oxide bifilms were present in a vacuum-cast Ni-base superalloy but concluded negatively. Although this author challenged their interpretation of their findings, both parties had overlooked the presence in the alloy of boron which is now known to inhibit bifilm formation. However, even though boron can help significantly, improved filling system designs remain important if other damaging entrainment defects are to be avoided.

  13. Analysis of microstructure in electro-spark deposited IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanrewaju.ojo@umanitoba.ca

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free of the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.

  14. CYCLIC STRAIN LOCALIZATION IN CAST NICKEL BASED SUPERALLOY INCONEL 792-5A AT ROOM TEMPERATURE

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Man, Jiří; Obrtlík, Karel; Polák, Jaroslav

    308/2005, č. 86 (2005), s. 269-274 ISSN 1429-6055. [Metody oceny struktury oraz wlasności materialów i wyrobów. Ustroń-Jaszowiec, 07.12.2005-09.12.2005] Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloy * cyclic strain localization Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  16. Behaviour and damage of a superalloy prepared by hot isostatic compression

    International Nuclear Information System (INIS)

    Dubiez-Le-Goff, Sophie

    2003-01-01

    This work deals with the behavior and damage of Udimet 720 superalloy prepared by hot isostatic compression. This alloy is considered for manufacturing turbine disks of high temperature reactors (HTR). The material choice for HTR turbine disk depends on the following criteria: a good creep resistance until 700 C, a good behaviour under an helium impure atmosphere, a possible implementation under a disk of 1.5 m diameter. (author) [fr

  17. The influence of high temperature on the microstructure properties of Ni-based superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Král, Petr; Dymáček, Petr

    2014-01-01

    Roč. 14, č. 4 (2014), s. 190-198 ISSN 1335-8987. [Deformation and Fracture in PM Materials. Stará Lesná, 26.10.2014-29.10.2014] R&D Projects: GA MPO FR-TI4/406; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : powder materials * Ni-based PM superalloy * grip of creep machine * oxidation Subject RIV: JG - Metallurgy

  18. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  19. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs)

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Zhou, Cong; Liang, Houquan [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2016-01-15

    Powder metallurgy (P/M) has been introduced as an innovative process to manufacture high performance components with fine, homogenous and segregation-free microstructure. Unfortunately, previous particle boundary (PPB) precipitated during the powder metallurgy process. Since undesirable PPB is detrimental to mechanical properties, hot extrusion or/and isothermal forging are needed. In present research, isothermal compression tests were conducted on P/M FGH4096 superalloys with typical PPBs. Abnormal flow behavior during high-speed deformation has been quantitatively investigated. Caused by the competition mechanism between work-hardening and dynamic-softening, abnormal flow behaves typical four stages (viz., work-hardening, stable, softening and steady). Microstructure observation for hardening or/and softening mechanism has been investigated. Meanwhile, necklace microstructure was observed by scanning electron microscope, and the grain fraction analysis was performed by using electron backscatter diffraction. Transmission electron microscopy was used for characterizing the boundary structure. Necklace microstructural mechanism for processing P/M superalloys has been developed, and the dynamic recrystallization model has also been conducted. Bulge–corrugation model is the primary nucleation mechanism for P/M superalloys with PPBs. When PPB is entirely covered with new grains, necklace microstructure has formed. Bulge–corrugation mechanism can repeatedly take place in the following necklace DRX.

  20. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    International Nuclear Information System (INIS)

    Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.

    2011-01-01

    Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  1. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  2. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  3. A continuum model for the anisotropic creep of single crystal nickel-based superalloys

    International Nuclear Information System (INIS)

    Prasad, Sharat C.; Rajagopal, K.R.; Rao, I.J.

    2006-01-01

    In this paper, we extend the constitutive theory developed by Prasad et al. [Prasad SC, Rao IJ, Rajagopal KR. A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater 2005;53(3):669-79], to describe the creep anisotropy associated with crystallographic orientation in single crystal nickel-based superalloys. The constitutive theory is cast within a general thermodynamic framework that has been developed to describe the response of materials capable of existing in multiple stress free configurations ('natural configurations'). Central to the theory is the prescription of the forms for the stored energy and rate of dissipation functions. The stored energy reflects the fact that the elastic response exhibits cubic symmetry. The model takes into account the fact that the symmetry of single crystals does not change with inelastic deformation. The rate of dissipation function is also chosen to be anisotropic, in that it reflects invariance to transformations that belong to the cubic symmetry group. The model is used to simulate uniaxial creep of single crystal nickel-based superalloy CMSX-4 for loading along the , and orientations. The predictions of the theory agree well with the experimental data

  4. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    International Nuclear Information System (INIS)

    Lin, Y.C.; Chen, Xiao-Min; Chen, Ming-Song; Wen, Dong-Xu; Zhou, Ying; He, Dao-Guang

    2016-01-01

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, 'maximum stress method', is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy. (orig.)

  5. Implementation of a structural dependent model for the superalloy IN738LC in ABAQUS-code

    International Nuclear Information System (INIS)

    Wolters, J.; Betten, J.; Penkalla, H.J.

    1994-05-01

    Superalloys, mainly consisting of nickel, are used for applications in aerospace as well as in stationary gas turbines. In the temperature range above 800 C the blades, which are manufactured of these superalloys, are subjected to high centrifugal forces and thermal induced loads. For computer based analysis of the thermo-mechanical behaviour of the blades models for the stress-strain behaviour are necessary. These models have to give a reliable description of the stress-strain behaviour, with emphasis on inelastic affects. The implementation of the model in finite element codes requires a numerical treatment of the constitutive equations with respect to the given interface of the used code. In this paper constitutive equations for the superalloy IN738LC are presented and the implementation in the finite element code ABAQUS with the numerical preparation of the model is described. In order to validate the model calculations were performed for simple uniaxial loading conditions as well as for a complete cross section of a turbine blade under combined thermal and mechanical loading. The achieved results were compared with those of additional calculations by using ABAQUS, including Norton's law, which was already implemented in this code. (orig.) [de

  6. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  7. Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction

    Science.gov (United States)

    Tung, David C.

    Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.

  8. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  9. Neutron Reference Benchmark Field Specifications: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Environment (ACRR-PLG-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parm, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integral dosimetry measurements in the neutron field are reported.

  10. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  11. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature

    Directory of Open Access Journals (Sweden)

    Zi-qi Jie

    2016-03-01

    Full Text Available In order to improve the filling ability of large complex thin wall castings, the pouring temperature should be increased, but this will result in the grain coarsening. To overcome this problem, two kinds of grain refiners of Co-Fe-Nb and Cr-Fe-Nb ternary alloys, which contain high stability compound particles, were prepared. The effects of the refiners on the as-cast structures and tensile properties of the K4169 superalloy with different casting conditions were studied by analyzing specimens 110 mm long and 20 mm in diameter. Results showed that the mixture addition of the two refiners in the melt of K4169 can reduce the columnar grain region and decrease the equiaxed grain size greatly. After refinement, the amount of Laves phase decreases and its morphology changes from island to blocky structure. The carbides in the fine grain samples are fine and dispersive. Meanwhile, the porosity in specimens is decreased due to grain refinement. As a result, the yield strength, ultimate strength and the elongation of the specimens are increased. The grain refinement mechanisms are also discussed.

  12. Fatigue crack initiation in nickel-based superalloys studied by microstructure-based FE modeling and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Fried M.

    2014-01-01

    Full Text Available In this work stage I crack initiation in polycrystalline nickel-based superalloys is investigated by analyzing anisotropic mechanical properties, local stress concentrations and plastic deformation on the microstructural length scale. The grain structure in the gauge section of fatigue specimens was characterized by EBSD. Based on the measured data, a microstructure-based FE model could be established to simulate the strain and stress distribution in the specimens during the first loading cycle of a fatigue test. The results were in fairly good agreement with experimentally measured local strains. Furthermore, the onset of plastic deformation was predicted by identifying shear stress maxima in the microstructure, presumably leading to activation of slip systems. Measurement of plastic deformation and observation of slip traces in the respective regions of the microstructure confirmed the predicted slip activity. The close relation between micro-plasticity, formation of slip traces and stage I crack initiation was demonstrated by SEM surface analyses of fatigued specimens and an in-situ fatigue test in a large chamber SEM.

  13. Factors which influence directional coarsening of Gamma prime during creep in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.; Ebert, L.J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated

  14. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  15. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  16. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.

    Science.gov (United States)

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-02-24

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.

  17. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  18. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1995-02-24 to 1996-06-23 (NODC Accession 9700060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from February 24,...

  19. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1994-06-29 to 1996-06-08 (NODC Accession 9600120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from multiple vessels in a world wide distribution from June 29, 1994 to...

  20. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-03-01 to 1997-01-03 (NODC Accession 9700036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from March 1, 1996 to...

  1. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-08-11 to 1997-07-16 (NODC Accession 9700213)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts in a world wide distribution by several vessels from August 11, 1996 to...

  2. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-09-30 to 1997-05-27 (NODC Accession 9700161)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from September 30,...

  3. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-09-19 to 1997-03-25 (NODC Accession 9700061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from September 19,...

  4. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  5. Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K

    International Nuclear Information System (INIS)

    Li, H.; Wang, L.; Lou, L.H.

    2010-01-01

    Dendritic coarsening of γ' was investigated in a directionally solidified Ni-base superalloy during exposure at 1173 K for 24,000 h. Chemical homogeneity along different directions and residual internal strain in the experimental superalloy were measured by electronic probe microanalysis (EPMA) and electron back-scattered diffraction (EBSD) technique. It was indicated that the gradient of element distribution was anisotropic and the inner strain between dendrite core and interdendritic regions was different even after 24,000 h of exposure at 1173 K, which influenced the kinetics for the dendrite coarsening of γ' phase.

  6. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

    2006-01-01

    The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

  7. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys

    Science.gov (United States)

    Chandran, Mahesh; Lee, S. C.; Shim, Jae-Hyeok

    2018-02-01

    A disordered configuration of atoms in a multicomponent solid solution presents a computational challenge for first-principles calculations using density functional theory (DFT). The challenge is in identifying the few probable (low energy) configurations from a large configurational space before DFT calculation can be performed. The search for these probable configurations is possible if the configurational energy E({\\boldsymbol{σ }}) can be calculated accurately and rapidly (with a negligibly small computational cost). In this paper, we demonstrate such a possibility by constructing a machine learning (ML) model for E({\\boldsymbol{σ }}) trained with DFT-calculated energies. The feature vector for the ML model is formed by concatenating histograms of pair and triplet (only equilateral triangle) correlation functions, {g}(2)(r) and {g}(3)(r,r,r), respectively. These functions are a quantitative ‘fingerprint’ of the spatial arrangement of atoms, familiar in the field of amorphous materials and liquids. The ML model is used to generate an accurate distribution P(E({\\boldsymbol{σ }})) by rapidly spanning a large number of configurations. The P(E) contains full configurational information of the solid solution and can be selectively sampled to choose a few configurations for targeted DFT calculations. This new framework is employed to estimate (100) interface energy ({σ }{{IE}}) between γ and γ \\prime at 700 °C in Alloy 617, a Ni-based superalloy, with composition reduced to five components. The estimated {σ }{{IE}} ≈ 25.95 mJ m-2 is in good agreement with the value inferred by the precipitation model fit to experimental data. The proposed new ML-based ab initio framework can be applied to calculate the parameters and properties of alloys with any number of components, thus widening the reach of first-principles calculation to realistic compositions of industrially relevant materials and alloys.

  8. The effects of Re addition to the nanostructure of a Ni-Cr-Al model superalloy

    International Nuclear Information System (INIS)

    Yoon, K.E.; Seidman, D.N.; Noebe, R.D.

    2004-01-01

    Full text: The refractory elements, such as W, Mo, Ta, and Re, have been at the center of focus since the late 1970s for the development of single-crystal turbine-blades, and they have improved significantly the high-temperature properties of Ni-based superalloys. The optimum mechanical properties and operating temperature of single-crystal blades are achieved by increasing the total amounts of refractory elements. In spite of the improvement of mechanical properties of Ni-based superalloys utilizing the addition of refractory elements, their effects on the microstructure of superalloys are mostly unidentified at the subnano- to nanoscale. Rhenium (2 at.%) was added to a model ternary Ni-8.5 at.% Cr-10 at.% Al superalloy to study its effects on the temporal evolution. The temporal evolution of γ' (L1 2 ) precipitates in a Ni-Cr-AI-Re FCC alloy, aged at 1073 K from 0.25 to 264 h, is investigated by transmission-electron and three-dimensional atom-probe (3DAP) microscopies. The coarsening kinetics of γ' precipitates is investigated by measuring the mean radius, number density of precipitates and matrix supersaturation, and compared with Umantsev-Olson's (UO) coarsening theory for multicomponent alloys. The coarsening experiments do not agree with the time dependencies prediction of UO theory. The cluster-diffusion-coagulation mechanism is involved in coarsening, as well as evaporation-condenzation mechanism, and is suggested to generate discrepancy between the experiments and theory. The addition of Re reduces the lattices parameter misfit between the matrix and precipitates. Therefore, unlike other Ni-based superalloys, this Ni-Cr-AI-Re alloy does not undergo the sphere-to-cube morphological transition and maintains the spheroidal morphology of the γ' precipitates for extended aging times. In addition, the γ' precipitates do not align along [100] direction, even at the longest aging time of 264 h. Contrary to a commercial superalloy Rene N6, significant Re

  9. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  10. Thermal evolution behavior of carbides and γ′ precipitates in FGH96 superalloy powder

    International Nuclear Information System (INIS)

    Zhang Lin; Liu Hengsan; He Xinbo; Rafi-ud-din; Qu Xuanhui; Qin Mingli; Li Zhou; Zhang Guoqing

    2012-01-01

    The characteristics of rapidly solidified FGH96 superalloy powder and the thermal evolution behavior of carbides and γ′ precipitates within powder particles were investigated. It was observed that the reduction of powder size and the increase of cooling rate had transformed the solidification morphologies of atomized powder from dendrite in major to cellular structure. The secondary dendritic spacing was measured to be 1.02–2.55 μm and the corresponding cooling rates were estimated to be in the range of 1.4 × 10 4 –4.7 × 10 5 K·s −1 . An increase in the annealing temperature had rendered the phase transformation of carbides evolving from non-equilibrium MC′ carbides to intermediate transition stage of M 23 C 6 carbides, and finally to thermodynamically stable MC carbides. The superfine γ′ precipitates were formed at the dendritic boundaries of rapidly solidified superalloy powder. The coalescence, growth, and homogenization of γ' precipitates occurred with increasing annealing temperature. With decreasing cooling rate from 650 °C·K −1 to 5 °C·K −1 , the morphological development of γ′ precipitates had been shown to proceed from spheroidal to cuboidal and finally to solid state dendrites. Meanwhile, a shift had been observed from dendritic morphology to recrystallized structure between 900 °C and 1050 °C. Moreover, accelerated evolution of carbides and γ' precipitates had been facilitated by the formation of new grain boundaries which provide fast diffusion path for atomic elements. - Highlights: ► Microstructural characteristic of FGH96 superalloy powder was investigated. ► The relation between microstructure, particle size, and cooling rate was studied. ► Thermal evolution behavior of γ′ and carbides in loose FGH96 powder was studied.

  11. Motivations behind donations for health-related organizations: Threat appraisal and coping appraisal-the case of the ALS Ice Bucket Challenge.

    Science.gov (United States)

    Li, Jo-Yun; Wen, Jing

    2017-01-01

    This study explores the influence of social media involvement and other factors on individuals' donation intentions in the context of the ALS Ice Bucket Challenge. An online survey with 306 participants revealed that social media involvement had a direct effect on intentions to contribute donations and had an indirect effect that was mediated by the response efficacy on intentions after controlling for individuals' issue involvement with the disease.

  12. Formation and Dissolution of gamma ' Precipitates in IN792 Superalloy at Elevated Temperatures

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Petrenec, Martin; Polák, Jaroslav; Gasser, U.; Farkas, G.

    2016-01-01

    Roč. 6, č. 2 (2016), č. článku 37. ISSN 2075-4701 R&D Projects: GA ČR GB14-36566G; GA MŠk(CZ) LM2011019 EU Projects: European Commission(XE) 283883 - NMI3-II Institutional support: RVO:61389005 ; RVO:68081723 Keywords : metals * high temperature alloys * superalloy * precipitation * neutron scattering * in-situ neutron diffraction * small-angle neutron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism; JL - Materials Fatigue, Friction Mechanics (UFM-A) Impact factor: 1.984, year: 2016

  13. Microstructural investigation of thermally aged nickel-based superalloy 718Plus

    International Nuclear Information System (INIS)

    Whitmore, Lawrence; Ahmadi, Mohammad Reza; Stockinger, Martin; Povoden-Karadeniz, Erwin; Kozeschnik, Ernst; Leitner, Harald

    2014-01-01

    The effects of thermal aging upon the nickel-based 718Plus superalloy are investigated and modelled. Yield strength and micro-hardness measurements are made after solution annealing and after aging at 788 °C for 4 h. In order to explain the differences in strength and hardness, a detailed investigation of the microstructure is performed using transmission electron microscopy. The size and phase fraction of the γ′ precipitates are measured and related to the measured hardness and yield strength using a theoretical model of precipitation strengthening based on the shearing of precipitates in terms of coherency strengthening and the formation of an antiphase boundary

  14. Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering.

    Science.gov (United States)

    Zhang, Fan; Levine, Lyle E; Allen, Andrew J; Campbell, Carelyn E; Lass, Eric A; Cheruvathur, Sudha; Stoudt, Mark R; Williams, Maureen E; Idell, Yaakov

    2017-04-01

    Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.

  15. Development of a Ni-based superalloy with cellular structure and interconnected micro porosity

    International Nuclear Information System (INIS)

    Bernabe, A.; Lopez, E.; Gil-Sevillano, J.

    1998-01-01

    A cellular metallic material with interconnected porosity of controlled size of an order of 10 μm has been developed by electrochemical dissolution of tungsten grains in a W-Ni-Fe heavy alloy. The nickel superalloy with sponge structure and high surface/volume ratio can also be processed recycling chips from heavy metal machining (Patent number p9700191, 1997). Applications for the new materials could be found as support for catalysts, high temperature filters for corrosive fluids, burners, etc. (Author) 10 refs

  16. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy

    Institute of Scientific and Technical Information of China (English)

    Chung-Seok KIM; Cliff J.LISSENDEN

    2009-01-01

    The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy,which is subjected to creep deformation.During creep deformation,the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis.The length and shape factor of the γ' precipitate increase with creep time.The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate,which is closely related to the scattering and distortion of the acoustic wave.

  17. Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [University of Nottingham, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham (United Kingdom); Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, Shanghai (China); Cui, Zhenshan [Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, Shanghai (China); Ou, Hengan [University of Nottingham, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham (United Kingdom); Long, Hui [University of Sheffield, Department of Mechanical Engineering, Sheffield (United Kingdom)

    2016-10-15

    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the two-dimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters. (orig.)

  18. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    Science.gov (United States)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  19. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  20. Phase transformation and liquid density redistribution during solidification of Ni-based superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-08-01

    Full Text Available The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant segregation in liquid prompts high Nb phase to precipitate directly from liquid, which results in the redistribution of alloy elements and liquid density in their vicinity. The term “inter-precipitate liquid density” is therefore proposed and this concept should be applied to determine the solidification behavior of superalloy Inconel 718.

  1. Superior creep strength of a nickel-based superalloy produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Pröbstle, M., E-mail: martin.proebstle@fau.de [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany); Neumeier, S.; Hopfenmüller, J.; Freund, L.P. [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany); Niendorf, T. [Institut für Werkstofftechnik (Materials Engineering), Universität Kassel, Mönchebergstr. 3, D-34125 Kassel (Germany); Schwarze, D. [SLM Solutions GmbH, Roggenhorster Straße 9c, D-23556 Lübeck (Germany); Göken, M. [Department of Materials Science & Engineering Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5, D-91058 Erlangen (Germany)

    2016-09-30

    The creep properties of a polycrystalline nickel-based superalloy produced via selective laser melting were investigated in this study. All heat treatment conditions of the additively manufactured material show superior creep strength compared to conventional cast and wrought material. The process leads to a microstructure with fine subgrains. In comparison to conventional wrought material no Niobium rich δ phase is necessary to control the grain size and thus more Niobium is available for precipitation hardening and solid solution strengthening resulting in improved creep strength.

  2. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  3. Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures

    International Nuclear Information System (INIS)

    Petrenec, Martin; Obrtlik, Karel; Polak, Jaroslav

    2005-01-01

    The dislocations arrangement was studied using transmission electron microscopy in specimens of polycrystalline INCONEL 713 LC superalloy cyclically strained up to failure with constant total strain amplitudes at temperatures 300, 773, 973 and 1073 K. Planar dislocation arrangements in the form of bands parallel to the {1 1 1} planes were observed in specimens cycled at all the temperatures. The bands showed up as thin slabs of high dislocation density cutting both the γ channels and γ' precipitates. Ladder-like bands were observed at room temperature

  4. Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures

    International Nuclear Information System (INIS)

    Polak, Jaroslav; Petrenec, Martin; Chlupova, Alice; Tobias, Jiri; Petras, Roman

    2015-01-01

    Nickel-based cast IN 738LC superalloy has been cycled at increasing strain amplitudes at room temperature and at 800 C. Hysteresis loops were analyzed using general statistical theory of the hysteresis loop. Dislocation structures of specimens cycled at these two temperatures were studied. They revealed localization of the cyclic plastic strain in the thin bands which are rich in dislocations. The analysis of the loop shapes yields effective stresses of the matrix and of the precipitates and the probability density function of the critical internal stresses at both temperatures. It allows to find the sources of the high cyclic stress.

  5. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures

  6. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  7. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  8. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  9. Building Multi-Discipline, Multi-Format Digital Libraries Using Clusters and Buckets. Degree rewarded by Old Dominion Univ. on Aug. 1997

    Science.gov (United States)

    Nelson, Michael L.

    1997-01-01

    Our objective was to study the feasibility of extending the Dienst protocol to enable a multi-discipline, multi-format digital library. We implemented two new technologies: cluster functionality and publishing buckets. We have designed a possible implementation of clusters and buckets, and have prototyped some aspects of the resultant digital library. Currently, digital libraries are segregated by the disciplines they serve (computer science, aeronautics, etc.), and by the format of their holdings (reports, software, datasets, etc.). NCSTRL+ is a multi-discipline, multi-format digital library (DL) prototype created to explore the feasibility of the design and implementation issues involved with created a unified, canonical scientific and technical information (STI) DL. NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible DL that provides access to over 80 university departments and laboratories. We have extended the Dienst protocol (version 4.1.8), the protocol underlying NCSTRL, to provide the ability to cluster independent collections into a logically centralized DL based upon subject category classification, type of organization, and genre of material. The concept of buckets provides a mechanism for publishing and managing logically linked entities with multiple data formats.

  10. Contrastación de esquemas de ensayo en carros cesta; Test schemes contrastation in bucket trucks

    Directory of Open Access Journals (Sweden)

    José Á Martínez Barbado

    2011-02-01

    Full Text Available La verificación de las condiciones dieléctricas de los dispositivos y equipos utilizados en trabajos conlíneas energizadas resulta vital para la seguridad del personal. Los laboratorios de ensayos especializadosen este campo tienen la responsabilidad de aplicar métodos y procedimientos normalizados o validados,con el fin de obtener resultados confiables. En este trabajo se presentan los resultados de un estudiodonde se aplicó el método de ensayo de medición de la corriente de filtración en carros cesta, empleandodos esquemas diferentes. Los resultados indican diferencias estadísticamente significativas en los valoresde la corriente de filtración entre ambos esquemas para la sección aislante superior y en dos niveles detensión de ensayo. Verification of the dielectric conditions of devices and equipments used in works with energized lines isimportant for the personnel's security. The specialized test laboratories in this field have the responsibilityof applying methods and normalized or validated procedures, with the purpose of obtaining reliable results.In this paper there are presented the results of a study where the test method of the leakage currentmeasurement is applied in bucket trucks, using two different schemes. The results indicate statisticallysignificant differences between both schemes in the leakage current values for the superior boom and twotest voltage levels.

  11. Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

    Science.gov (United States)

    Risteiu, M.; Dobra, R.; Andras, I.; Roventa, M.; Lorincz, A.

    2017-06-01

    The paper shows the results of a lab model for strain gauges based measuring system for multiple measuring heads of the mechanical stress in lattice structures of the bucket wheel excavator for open pit mines-harsh environment. The system is designed around a microcontroller system. Because of specific working conditions, the measuring system sends data to a processing system (a PC with Matlab software), we have implemented a secure communication solution based on ISM standard, by using NRF24L01 module. The transceiver contains a fully integrated frequency synthesizer based on crystal oscillator, and a Enhanced ShockBurst™ protocol engine. The proposed solution has a current consumption around 9.0 mA at an output power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes makes power saving easily realizable for our solution battery powered. The stress from structures is taken by specific strain gauges adapted to low frequency vibrations. We are using a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor-instrumentation device, with low drift voltage, low noise, common mode rejection signal, frequency and temperature stability. As backup implementation for measurements a high speed storage implementation is used.

  12. Strain-induced γ{sup '}-coarsening during aging of Ni-based superalloys under uniaxial load. Modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mushongera, Leslie T.

    2016-07-28

    Turbine blades which are used in the hot paths of aerospace or industrial gas turbines are usually manufactured as casted single crystalline parts. However, even though grain boundaries are excluded, the degradation behavior of respectively developed single crystal nickel-base superalloys, is still quite complex involving a number of very different microscopic effects. One of these is the diffusion-limited coarsening of the γ{sup '}-precipitates. Long-term aging or creep loading along the <100> crystallographic orientation results in the anisotropic coarsening of the γ{sup '}-precipitates. In the end, the microstructure contains quite large, irregularly shaped precipitates or plate-like precipitates aligned either parallel (P-type rafts) or perpendicular (N-type rafts) to the loading direction. This behavior is detrimental for the properties of these materials since their superior properties emanate from the size, morphology and distribution of the γ{sup '}-precipitates [R. Reed: Cambridge University Press, (2006)]. In order to efficiently design these materials, the phenomenon of coarsening should be known in detail to optimize the materials accurately. On this background, the general objective of this thesis is to develop an integrated computational approach for simulating morphological evolution in single crystal Ni-base superalloys. As a first step towards that aim, a multi-component phase field model coupled to inputs from CALPHAD-type and kinetic databases for the relevant driving forces was developed based on the grand-potential formalism similar to Plapp [Phys. Rev. E, 84: 031601 (2011)]. The thermodynamic formulation of the model was validated by comparisons to ThermoCalc equilibrium calculations and DICTRA sharp-interface simulations. Phase field approaches that allow for anisotropies of the interfacial energy sufficiently high so that the interface develops sharp corners due to missing crystallographic orientations were formulated. This

  13. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition

    International Nuclear Information System (INIS)

    Mahesh, R.A.; Jayaganthan, R.; Prakash, S.

    2008-01-01

    Ni-5Al coating was obtained on three superalloy substrates viz. Superni 76, Superni 750 and Superfer 800 using high velocity oxy-fuel (HVOF) spray process. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 deg. C for 100 cycles. The weight change was measured at the end of each cycle and observed that the weight gain was high in Superni 750 alloy when compared to Superni 76 and Superfer 800. A nearly parabolic oxidation behavior was observed for Ni-5Al coated Superni 750 and Superfer 800 alloys but a Ni-5Al coated Superni 76 substrate showed a slight deviation. The scale was analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and electron probe microanalysis (EPMA). The coating increased the oxidation resistance for all the alloy substrates at 900 deg. C. Among the three-coated superalloys, Superfer 800 substrate has shown the best resistance to oxidation. The protective nature of the Ni-5Al coated superalloys was due to the formation of protective oxide scales such as NiO, Al 2 O 3 and Cr 2 O 3

  14. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [GE Global Research, NIskayuna, NY (United States); Gupta, Vipul [GE Global Research, NIskayuna, NY (United States); Huang, Shenyan [GE Global Research, NIskayuna, NY (United States); Soare, Monica [GE Global Research, NIskayuna, NY (United States); Zhao, Pengyang [GE Global Research, NIskayuna, NY (United States); Wang, Yunzhi [GE Global Research, NIskayuna, NY (United States)

    2017-02-28

    The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and their long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.

  15. Microstructural characterization of a modified 706-type Ni-Fe superalloy by small-angle neutron scattering and electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Del Genovese, D.; Strunz, Pavel; Mukherji, D.; Gilles, R.; Rösler, J.

    36A, - (2005), s. 3439-3450 ISSN 1073-5623 Institutional research plan: CEZ:AV0Z10480505 Keywords : superalloys * small-angle neutron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.232, year: 2005

  16. Superalloys. Volume 2. 1977-February 1978 (citations from the NTIS data base). Report for 1977--Feb 78

    International Nuclear Information System (INIS)

    Smith, M.F.

    1978-03-01

    Federally-funded research on cobalt- and nickel-based superalloys is cited. Casting and powder metallurgy of these alloys are covered. Properties such as heat resistance, corrosion resistance, microstructure, fracture, and creep are described. The use of these materials in nuclear reactors, gas turbine parts, and high-temperature equipment is a major part of this compilation

  17. Transformed model fitting. A straightforward approach to evaluation of anisotropic SANS from nickel-base single-crystal superalloys

    International Nuclear Information System (INIS)

    Strunz, P.

    1999-01-01

    Schematic description of a special evaluation procedure for data treatment of anisotropic Small-Angle Neutron Scattering (SANS) is presented. The use of the discussed procedure is demonstrated on a data taken from investigation of precipitation in single-crystal nickel-base superalloys. (author)

  18. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy

    Czech Academy of Sciences Publication Activity Database

    Guth, S.; Petráš, Roman; Škorík, Viktor; Kruml, Tomáš; Man, Jiří; Lang, K. H.; Polák, Jaroslav

    2015-01-01

    Roč. 80, NOV (2015), s. 426-433 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Nickel base superalloy * Thermomechanical fatigue * Dwell time * Lifetime behavior * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  19. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  20. Enhancing the Oxidation Performance of Wrought Ni-Base Superalloy by Minor Additions of Active Elements

    Science.gov (United States)

    Tawancy, H. M.

    2016-12-01

    We show that the oxidation performance of Cr2O3-forming superalloy based upon the Ni-Cr-W system is significantly improved by the presence of minor concentrations of La, Si and Mn, which outweigh the detrimental effect of high W concentration in the alloy. Although Cr2O3 is known to transform into volatile CrO3 at temperatures ≥950 °C, the respective protection is extended to temperatures reaching 1150 °C, which has also been correlated with the beneficial effects of La, Si and Mn. During high-temperature oxidation, an inner protective La- and Si-modified layer of α-Cr2O3 in contact with the superalloy substrate is developed and shielded by an outermost layer of MnCr2O4. The distribution of La and Si in the inner oxide layer has been characterized down to the scale of transmission electron microscopy, and the possible mechanisms underlying their beneficial effects are elucidated.

  1. Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

    2011-02-27

    The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

  2. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Chang, J.X.; Wang, D.; Liu, T.; Zhang, G.; Lou, L.H.; Zhang, J.

    2015-01-01

    Highlights: • Ta is beneficial to hot corrosion resistance. • Ta promoted the formation of a new type sulphide TaS 2 . • Thermodynamic factors affect the constituent of sulphide layer. • Ta can substitute Cr for sulphur catcher in hot corrosion. • The result provides new perspective in hot corrosion resistant superalloys design. - Abstract: Hot corrosion behaviour of a Ni-base single crystal superalloy with low Cr, Ti and high Ta contents in molten sodium sulphate (Na 2 SO 4 ) at 900 °C in static air was investigated using the “deposit recoat” method. The corrosion scale was composed of an outer NiO layer, an inner Al 2 O 3 -dominant oxide network layer and a (CrS x(1.000

  3. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    Science.gov (United States)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  4. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2015-05-01

    Full Text Available The aim of present work is to study the high temperature degradation of the powder-processed polycrystalline superalloy Ni-15Cr-18Co-4Al-3.5Ti-5Mo. This superalloy has been applied as material for grips of a creep machine. The material was exposed at 1100 °C for about 10 days at 10 MPa stress. During the creep test occurred unacceptable creep deformation of grips as well as severe surface oxidation with scales peeling off. Three types of the microstructure were observed in the studied alloy: (i unexposed state; (ii heat treated (annealing - 10 min/1200 °C and (iii after using as a part of the equipment of the creep machine during the creep test. It is shown that the microstructure degradation resulting from the revealed γ´ phase fcc Ni3(Al,Ti particles preferentially created at the grain boundaries of the samples after performing creep tests affects mechanical properties of the alloy and represents a significant contribution to all degradation processes affecting performance and service life of the creep machine grips. Based on investigation and obtained results, the given material is not recommended to be used for grips of creep machine at temperatures above 1000 °C.

  5. Solidification behaviors of a single-crystal superalloy under lateral constraints

    International Nuclear Information System (INIS)

    Zhuangqi Hu; Huaming Wang

    1993-01-01

    The effect of lateral constraints ahead of solidification interface on the solidification behaviors of a newly developed hot corrosion resistant single-crystal nickel-base superalloy was investigated under commercial single-crystal production conditions. The lateral constraints or section variations ahead of solidification front were found to have drastic influences both on the modes of solidification and the profiles of solute segregation. As lateral constraints were imposed ahead of the directionally solidifying interface, the solidification microstructure of the single-crystal superalloy changed suddenly, through a γ/γ' eutectic-free zone which is characterized by an extremely-fine and highly-developed dendrite network, from the original well-branched dendritic structure to a fine cellular-dendrite or regular cell structure, accompanying which the primary arm spacing, the severity of segregation and the amount of microporosity decreased remarkably. The newly formed cellular dendrite or cell structure transforms always gradually to the initial coarse dendrite structure as the lateral constraint is finally released whether gradually or sharply. Moreover, an abnormal porosity zone was readily observed in the initial section beneath and away from the eutectic-free zone. The solidification microstructural changes were attributed to the drastic dynamical changes in local solidification cooling conditions and in momentum transport during solidification due to the presence of lateral constraint

  6. Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification

    Science.gov (United States)

    Babu, S. S.; Raghavan, N.; Raplee, J.; Foster, S. J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M. K.; Plotkowski, A.; Lee, Y.; Dehoff, R. R.

    2018-06-01

    Innovative designs for turbines can be achieved by advances in nickel-based superalloys and manufacturing methods, including the adoption of additive manufacturing. In this regard, selective electron beam melting (SEBM) and selective laser melting (SLM) of nickel-based superalloys do provide distinct advantages. Furthermore, the direct energy deposition (DED) processes can be used for repair and reclamation of nickel alloy components. The current paper explores opportunities for innovation and qualification challenges with respect to deployment of AM as a disruptive manufacturing technology. In the first part of the paper, fundamental correlations of processing parameters to defect tendency and microstructure evolution will be explored using DED process. In the second part of the paper, opportunities for innovation in terms of site-specific control of microstructure during processing will be discussed. In the third part of the paper, challenges in qualification of AM parts for service will be discussed and potential methods to alleviate these issues through in situ process monitoring, and big data analytics are proposed.

  7. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  8. High-temperature γ (FCC/γ′ (L12 Co-Al-W based superalloys

    Directory of Open Access Journals (Sweden)

    Knop Matthias

    2014-01-01

    Full Text Available Interim results from the development of a polycrystalline Co-Al-W based superalloy are presented. Cr has been added to provide oxidation resistance and Ni has then been added to widen and stabilise the γ′ phase field. The alloy presented has a solvus of 1010 °C and a density of 8.7 g cm−3. The room temperature flow stress is over 1000 MPa and this reduces dramatically above 800 °C. The flow stress anomaly is observed. A microstructure with both ∼ 50 nm γ′ produced on cooling and larger 100–200 nm γ′ can be obtained. Isothermal oxidation at 800 °C in air for 200 h gave a mass gain of 0.96 mg cm−2. After hot deformation in the 650–850 °C temperature range, both anti phase boundaries (APBs and stacking faults could be observed. An APB energy of 71 mJ m−2 was measured, which is comparable to that found in commercial nickel superalloys.

  9. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  10. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, M.P.; Yu, F.; Nagy, P.B.

    2005-01-01

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation

  11. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    Science.gov (United States)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in \\{100\\} slip systems and \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  12. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  13. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    Science.gov (United States)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  14. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  15. Synergistic effect of rhenium and ruthenium in nickel-based single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.X. [Department of Physics, Tsinghua University, Beijing 100084 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, C.Y., E-mail: cywang@mail.tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Central Iron and Steel Research Institute, Beijing 100081 (China); Zhang, X.N. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Yan, P. [Central Iron and Steel Research Institute, Beijing 100081 (China); Zhang, Z., E-mail: zezhang@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-05

    Highlights: • Re and Ru synergistic effects in nickel-based superalloys are investigated. • The Al site occupation of Re atom in the γ′ phase is observed directly. • The addition of Ru results in the repartitioning of Re to γ phase. -- Abstract: The microstructures of ternary Ni–Al–Re and quaternary Ni–Al–Re–Ru single-crystal alloys were investigated at atomic and electronic levels to clarify the synergistic effect of Re and Ru in nickel-based single-crystal superalloys. In the Ni–Al–Re alloy, it was directly observed that Re atom occupied the Al site of γ′ phase. In the Ni–Al–Re–Ru alloy, the mechanisms of Re repartition between γ and γ′ phases were proposed. In the dendritic cores, high concentrations of Re exceeded the solubility limit of γ′ phase and partitioned to γ phase, which led to the homogenization. In the interdendritic regions, Ru resulted in the repartitioning of Re to γ phase which was proved by transmission electron microscopy and first-principles calculations.

  16. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    Science.gov (United States)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  17. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  18. Spray forming and mechanical properties of a new type powder metallurgy superalloy

    International Nuclear Information System (INIS)

    Jia Chong-Lin; Ge Chang-Chun; Xia Min; Gu Tian-Fu

    2015-01-01

    The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufacturing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the γ′ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IF. This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material. (paper)

  19. Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.

    2017-01-01

    Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  20. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloys

    International Nuclear Information System (INIS)

    Chen, J.Y.; Feng, Q.; Cao, L.M.; Sun, Z.Q.

    2011-01-01

    Research highlights: → Cr improved the stress-rupture life of single crystal superalloys significantly. → Cr increased the Re partitioning ratio and resulted in more negative misfit. → Mechanism for improving the stress-rupture life by Cr addition is addressed here. - Abstract: The effects of Cr addition on the microstructure and stress-rupture property have been investigated in three experimental Ni-based single crystal superalloys containing various levels of Cr addition (0-5.7 wt.%). The Re partitioning ratio increased and the lattice misfit became more negative with increasing the Cr addition in both dendrite core and interdendritic region. The changes of elemental partitioning behaviors and the lattice misfit show good agreement with the change of γ' morphology. Cr addition increased the stress-rupture life at 1100 deg. C/140 MPa significantly due to higher γ' volume fraction, more negative lattice misfit and a well rafting structure as well as less width of γ channels. High Cr addition (5.7 wt.%) increased the degree of Re and Cr supersaturation in the γ phase and promoted the formation of topologically close-packed (TCP) phases significantly under thermal exposure and creep deformation at 1100 deg. C.

  1. Effect of HIP Combined with RHT Process on Creep Damage of DZ125 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Tian-you

    2017-02-01

    Full Text Available Four different processes of hot isostatic pressing (HIP combined with rejuvenation heat treatments (RHT were adopted to reveal the microstructural evolution of creep damaged DZ125 specimens, finally the mechanical properties were evaluated.The results show that both γ' precipitate degeneration and creep cavities for the creep damaged DZ125 superalloy are found after the pre-endurance damage test.However, the carbided compositions from MC type to M23C6 type or M6C type has not been observed for DZ125.In addition, it is found that the HIP temperature play a dominant role in the cavity healing process for the damaged specimens. The concentrically oriented γ' rafting structure and the incipient melting are observed at 1200℃ and 1250℃ respectively.Meanwhile, it is found that the appropriate HIP schedule adopted can effectively avoid the internal recrystallization for the directionally solidified nickel-based superalloy DZ125. The appropriate HIP schedule combined with RHT process can successfully restore the microstructure induced by creep damage and recover the degraded micro-hardness to the original one, in addition improve the creep rupture life.

  2. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    Science.gov (United States)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  3. Response to Discussion of "Investigation of Oxide Bifilms in Investment Cast Superalloy IN100 Part I and II"

    Science.gov (United States)

    Kaplan, M. A.; Fuchs, G. E.

    2017-10-01

    In his most recent letter (Campbell in Met Trans A, 2017), Professor Campbell provides additional comments on Kaplan and Fuchs papers "Oxides Bifilms in Superalloy: IN100, Parts I and II (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016) and on their response to his initial comments (Met Trans A 47A:3806-3809, 2016). In this recent submission, Campbell provides some very interesting thoughts on why bifilms were not observed by Kaplan and Fuchs and creates a new theory for the formation of defects referred to as bifilms. However, Campbell again provides no evidence to substantiate the presence of bifilms in Ni-base superalloys or his newly theorized mechanism. The vast majority of Campbell's comments are based solely on the re-interpretation of the photomicrographs and the data reported in the literature, including those presented by Kaplan and Fuchs (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016). Campbell claims that bifilms are present throughout Ni-base superalloys, even though no one else has reported the presence of bifilms in Ni-base superalloys. In re-interpreting the data and images, Campbell ignores the extensive surface characterization results reported by Kaplan and Fuchs (Met Trans A 47A:2346-2361, 2016; Met Trans A 47A:2362-2375, 2016) that clearly indicate that there are no oxide films or bifilms on the fracture surfaces examined. Please note that this discussion of Campbell's most recent letter will be limited to Ni-base superalloys, since that is the subject of the research reported by Kaplan and Fuchs.

  4. High temperature properties of polycrystalline γ{sup '}-strengthened cobalt-base superalloys; Hochtemperatureigenschaften polykristalliner γ{sup '}-gehaerteter Kobaltbasis-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alexander

    2016-07-01

    The recent discovery of a stable γ{sup '}-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ{sup '}-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ{sup '}-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  5. On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jácome, L. A.; Nörtershäuser, P.; Somsen, C.; Dlouhý, Antonín; Eggeler, G.

    2014-01-01

    Roč. 69, MAY (2014), s. 246-264 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Ni-base single crystal superalloys * Creep * Anisotropy * Dislocation * Rafting Subject RIV: JG - Metallurgy Impact factor: 4.465, year: 2014

  6. Effect of empty buckets on coupled bunch instability in RHIC Booster: Longitudinal phase-space simulation

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Griffin, J.E.; Khiari, F.Z.

    1988-05-01

    Excitation of large amplitude coherent dipole bunch oscillations by beam induced voltages in spurious narrow resonances are simulated using a longitudinal phase-space tracking code (ESME). Simulation of the developing instability in a high intensity proton beam driven by a spurious parasitic resonance of the rf cavities allows one to estimate the final longitudinal emittance of the beam at the end of the cycle, which puts serious limitations on the machine performance. The growth of the coupled bunch modes is significantly enhanced if a gap of missing bunches is present, which is an inherent feature of the high intensity proton machines. A strong transient excitation of the parasitic resonance by the Fourier components of the beam spectrum resulting from the presence of the gap is suggested as a possible mechanism of this enhancement. 10 refs., 4 figs., 1 tab

  7. Bulky goods separation from the stream of conveyed coal. RWE Power - Garzweiler opencast mine - bucket-wheel excavator 261; Sperrgutaushaltung aus dem laufenden Foerderstrom. RWE Power - Tagebau Garzweiler - Schaufelradbagger 261

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Guenter; Gums, Bernd; Pyrcik, Jaroslaw [RWE Power AG, Grevenbroich (Germany). Tagebau Garzweiler; Jansen, Klemens [RWE Power AG, Eschweiler (Germany). Tagebau Inden

    2011-01-15

    Bucket-wheel excavator 261 is deployed on the two upper benches of the Garzweiler opencast mine. Large stones and other bulk material, the separation of which caused considerable output losses in the past, are frequently found in the mining horizons in situ. Stones and other bulk material that are not detected cause substantial damage to the machine belts on the excavator, to the downstream transfer substations of the belt conveyors, and to the spreader, and generate associated maintenance costs. In addition, the stone-separation method used so far carries a serious risk of injury for the employees concerned. A sensor-based stone detection system on the one hand and an automatic bulk material discharge system on the other were developed to improve the situation. Within the scope of the static analyses performed prior to installing the new bulk material discharge system, the amount and position of overweight and underweight were checked. Owing to the symmetrical distribution of the weights of the built-in structure, a change of ballast was not necessary. In the main, the new, fully revised bulk material separation system differs from the original design in three points: - considerably more robust design, - hydraulic rake drive, - the stone storage container on the excavator is designed as a self-discharging push-floor conveyor. (orig.)

  8. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtarov, Sh; Ermachenko, A, E-mail: shamil@anrb.r [Institute for Metals Superplasticity Problems RAS, 39, Khalturina, Ufa, 450001 (Russian Federation)

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of {gamma}-phase grains with disperse precipitations of {gamma}{sup -}phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of {delta}-phase, primarily along grain boundaries. In the duplex ({gamma}+{delta}) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  9. Relationship of heat treatment-mechanical properties of nickel base superalloys

    International Nuclear Information System (INIS)

    Zamora R, L.

    1997-01-01

    The nickel-base superalloys have high strength, excellent corrosion resistant, and good creep and fatigue resistance. These alloy improved properties at high temperature derive their mechanical and creep behavior on γ precipitate morphology, and the evolution of such morphology during different heat treatment conditions. The main microstructural variable of Nickel-based superalloys, responsible for the mechanical properties are: a) amount and morphology of precipitates; b) size and shape of grains; and c) carbide distribution. In this work, a Nickel-base superalloy Nimonic 80A, modified little with Zr prepared by melting and casting practices of materials electrolytic in vacuum-induction melting (VIM) type Balzers, to obtain five alloys different and ingots of 2 Kg and 1 Kg, with composition in weight % of Nimonic 80-A is: Ni = bal (76.66), C = 0.01, Cr = 19.83, Fe = 2.4, Mn = 0.17, Si 0.47, Al = 0.19, Zr = 0.4. The solidification process is made in a steel mold. After having realized four thermal treatments, the most representative microstructures there were obtained. The results from tensile tests performed on Instron Servohydraulic testing systems at uniaxial dynamic testing, at constant speeds to ,0.2 cm/min, were: the yield strength, the ultimate strength value, percentage elongation and area reduction. Creep tests were performed at in stress of 90 and 129 MPa, at a temperature of 600 and 680 Centigrades at different times and width of specimen of 1 mm. The alloys were analyzed by MEB(JEOL 35CF) at different magnifications. The nucleation and growth of intergranular cavities during creep of alloy Nimonic M3, were investigated. One sample was deformed in creep at 129 MPa and 680 Centigrades during 110 hs. Creep samples were annealing heat treated at 800 Centigrades, during 7 days. After a careful sample preparation procedure, 3100 of cavities were measured in the sample . The cavity size distributions in the sample were obtained. The cavity growth rate, was

  10. Focused Ion Beam Nanotomography of ruthenium-bearing nickel-base superalloys with focus on cast-microstructure and phase stability; Focused Ion Beam Nanotomographie von rutheniumhaltigen Nickelbasis-Superlegierungen mit Fokus auf Gussgefuege und Phasenstabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Cenanovic, Samir

    2012-12-03

    The influence of rhenium and ruthenium on the multi component system nickel-base superalloy is manifold and complex. An experimental nickel-base superalloy containing rhenium and ruthenium within defined contents, named Astra, was used to investigate the influences of these two elements on the alloy system. The last stage solidification of nickel-base superalloys after Bridgman casting and the high temperature phase stability of these alloys, could be explored with the aid of focused ion beam nanotomography. FIB-nt therefore was introduced and realized at the chair of General Materials Properties of the University Erlangen-Nuremberg. Cast Astra alloys are like other nickel-base superalloys morphologically very inhomogeneous and affected by segregation. In the interdendritic region different structures with huge γ' precipitates are formed. These inhomogeneities and remaining eutectics degrade the mechanical properties, witch makes an understanding of the subsiding processes at solidification of residual melt important for the casting process and the heat treatment. This is why the last stage solidification in the interdendritic region was analyzed. With the help of focused ion beam nanotomography, three different structures identified from 2-D sections could be assigned to one original 3-D structure. It was pointed out, that only the orientation of the plane of the 2-D cut influences the appearance in the 2-D section. The tomography information was used to explain the development during solidification and to create a model of last stage solidification. The interdendritic region is solidifying under the development of eutectic islands. The structure nucleates eutectically epitaxially at primary dendrite arms, with formation of fine γ/γ' precipitates. During solidification the γ' precipitates coarsen in a rod-like structure, and end up in large γ' precipitates. Simulations and other investigations could approve this model. First three

  11. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    Science.gov (United States)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  12. Phase-field simulation of microstructure evolution in Ni-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki; Murata, Yoshinori; Morinaga, Masahiko [Nagoya Univ. (Japan). Dept. of Materials, Physics and Energy Engineering; Koyama, Toshiyuki [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    The morphological evolution of the ({gamma} + {gamma}') microstructure in Ni-based superalloys is investigated by a series of phase-field simulations. In the simulation for simple aging heat treatment, the effect of elastic constant inhomogeneity between the {gamma} and {gamma}' phases is investigated. The elastic anisotropy or the shear modulus is changed independently in the simulation. The variation of the anisotropy affects the morphology, particle size distribution and coarsening kinetics of the {gamma}' phase, whereas the variation of the shear modulus does not affect them. In the simulation for high temperature creep, formation and collapse of the rafted structure are reproduced under the assumption that the creep strain in the {gamma} matrix increases with creep time. This morphological evolution is related to the change in the energetically stable morphology of the {gamma}' phase with increasing the creep strain. (orig.)

  13. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  14. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  15. The effects of thermomechanical history on the microstructure of a nickel-base superalloy during forging

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S., E-mail: 485354@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Li, W. [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Coleman, M. [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Johnston, R., E-mail: r.johnston@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom)

    2016-06-21

    The effect of thermo-mechanical history on hot compression behaviour and resulting microstructures of a nickel base superalloy is presented. Hot compression tests were carried out on HAYNES® 282® specimens to varying strains from 0.1 to 0.8. Both single pass and multi-pass tests were completed. 60 min inter-pass times were utilized to accurately replicate industrial forging practices. The effect of dynamic, metadynamic and static recrystallization during inter-pass times on flow stress was investigated. The resulting microstructures were analysed using scanning electron, optical microscopy and EBSD to relate grain size and homogeneity with flow stress data. The study showed a negligible difference between multi-pass and single pass tests for strain increments above 0.2. Therefore, when modelling similar low strain and strain rate forging processes in HAYNES® 282®, previous forging steps can be ignored.

  16. Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Chaoyuan

    2016-10-01

    Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.

  17. Tensile behavior of nickel-base single-crystal superalloy DD6

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinhong, E-mail: xiongxh@whut.edu.cn [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Quan, Dunmiao; Dai, Pengdan; Wang, Zhiping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Zhang, Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070 (China); Yue, Zhufeng [School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-06-11

    Tensile behavior of the nickel-base single-crystal superalloy DD6 was studied from room temperature to 1020 °C. The plate specimens were along [001] orientation parallel to the loading axis in tension. The microstructures on the surface and fracture morphology were investigated after tensile test to rupture by scanning electron microscopy (SEM). The results of the present investigation indicate that the yield strength at 650 °C is superior to that at room temperature, 850 °C and 1020 °C. Low ductility and serrated flow in stress–strain curves were also observed at 650 °C. The microstructures on the surface of the plate specimens and fracture morphology observation indicated that localized slip which resulted in glide plane decohesion caused the low ductility of DD6 alloy.

  18. Quantifying the effect of microstructure variability on the yield strength predictions of Ni-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Tiley, J.S. [Air Force Research Laboratory, Wright Patterson AFB, OH 45433 (United States); Kim, S.L.; Parthasarathy, T.A. [UES, Inc., Wright Patterson AFB, OH 45433 (United States); Loughnane, G.T. [Wright State University, Dayton, OH 45435 (United States); Kublik, R.; Salem, A.A. [Materials Resources LLC, Dayton, OH 45402 (United States)

    2017-02-08

    Physics-based models for predicting the mechanical behavior of Ni-based superalloys as a function of microstructure features require the use of microstructure data for calibration and verification. Accurate representation of the heterogeneity of microstructure features requires accurate selection of the representative microstructure data size (i.e. image size). Thus, this work is carried out to address the influence of microstructure data size on the accuracy of a discrete dislocation dynamic model in predicting the critical resolved share stress (CRSS) of IN100. Microstructure features from backscattered electron images were extracted using image processing techniques. Single point statistics (e.g. area fraction, precipitate size, and distance between γ' particles) and higher order statistics using two-point correlations were calculated from segmented 2-D images. Modified Bhattacharyya Coefficient analysis techniques were employed to calculate three-dimensional particle size distributions. Results indicate a significant influence of the microstructure data size on the calculated CRSS.

  19. Low Cycle Fatigue of Single Crystal Nickel-based Superalloy DD6 at 1100℃

    Directory of Open Access Journals (Sweden)

    ZHANG Shichao

    2018-02-01

    Full Text Available The total strain-controlled low cycle fatigue(LCF behaviors of a single crystal superalloy DD6 at 1100℃ for R=-1 and 0.05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the relationship with the microstructure of the material, but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude; when R=-1, the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime prediction, the precision rates predicted are fallen into the factor of±2 times scatter band.

  20. Study on the hot corrosion behavior of a cast Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Guo, J.T.; Zhang, J.; Yuan, C.; Zhou, L.Z.; Hu, Z.Q. [Chinese Academy of Sciences, Shenyang (China). Inst. of Metal Research

    2010-07-01

    Hot corrosion behavior of Nickel-base cast superalloy K447 in 90% Na{sub 2}SO{sub 4} + 10% NaCl melting salt at 850 C and 900 C was studied. The hot corrosion kinetic of the alloy follows parabolic rate law under the experimental conditions. The external layer is mainly Cr{sub 2}O{sub 3} scale which is protective to the alloy, the intermediate layer is the Ti-rich phase, and the internal layer is mainly the international oxides and sulfides. With increased corrosion time and temperature, the oxide scales are gradually dissolved in the molten salt and then precipitate as a thick and non-protective scale. Chlorides cause the formation of volatile species, which makes the oxide scale disintegrate and break off. The corrosion kinetics and morphology examinations tend to support the basic dissolution model for hot corrosion mechanisms. (orig.)

  1. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Warnken, N., E-mail: n.warnken@bham.ac.uk [University of Birmingham, Department of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Ma, D. [Foundry Institute of the RWTH-Aachen, Intzestr. 5, 52072 Aachen (Germany); Drevermann, A. [ACCESS e.V., Intzestr. 5, 52072 Aachen (Germany); Reed, R.C. [University of Birmingham, Department of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Fries, S.G. [SGF Consultancy, 52064 Aachen (Germany)] [ICAMS, Ruhr University Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany); Steinbach, I. [ICAMS, Ruhr University Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany)

    2009-11-15

    A modelling approach is presented for the prediction of microstructure evolution during directional solidification of nickel-based superalloys. A phase-field model is coupled to CALPHAD thermodynamic and kinetic (diffusion) databases, so that a multicomponent alloy representative of those used in industrial practice can be handled. Dendritic growth and the formation of interdendritic phases in an isothermal (2-D) cross-section are simulated for a range of solidification parameters. The sensitivity of the model to changes in the solidification input parameters is investigated. It is demonstrated that the predicted patterns of microsegregation obtained from the simulations compare well to the experimental ones; moreover, an experimentally observed change in the solidification sequence is correctly predicted. The extension of the model to 3-D simulations is demonstrated. Simulations of the homogenization of the as-cast structure during heat treatment are presented.

  2. The mechanical properties of the polycrystalline investment casting superalloy IN738LC

    International Nuclear Information System (INIS)

    Im, H.J.; Banerji, A.

    1995-01-01

    The mechanical properties of the polycrystaline investment casting superalloys, IN738LC in the present case, require an optimization of the microstructure. This is generally achieved by suitable founding measures as well as through the subsequent heat-treatment. Thereby, however, it is necessary to control the casting and solidification parameters. In the present study, additional measures have been adopted to inoculate the melt with a suitable chemical additive with the aim of obtaining a uniformly distributed fine equiaxial cast microstructure throughout the test-specimen. The addition of a suitable refiner substance increases the nucleation sites within the melt, which results into a fine equiaxial solidification. This imparts better casting properties thereby improving most of the mechanical properties significantly. The present report deals with refinement of cast microstructure through melt-treatment with chemical additions under varying casting and solidification parameters, wherein the grain size and dendrite arm spacing (DAS) have been quantified. (orig.) [de

  3. Regenerative heat treatments for the extension of the creep life of the superalloy IN-738

    International Nuclear Information System (INIS)

    Stevens, R.A.; Flewitt, P.E.J.

    1979-01-01

    Uniaxial creep tests have been performed on the cast nickel-base superalloy IN-738 at 1023K and 1123K. Microstructural damage occurring during creep has been characterised using transmission electron microscopy of surface and extraction replicas. Considerable coarsening of the γ' precipitates occurs during creep causing a progressive loss of creep strength. Intermediate heat treatment of interrupted specimens regenerates a microstructure similar to the original, and on re-testing significant creep life extensions are observed. These heat treatments do not completely recover the creep life due to the development of grain boundary cavitation. Additional heat treatments were performed under a superimposed hydrostatic pressure of 138 MPa to remove these cavities. (orig.) [de

  4. The microstructure of heat-treated nickel-based superalloy 718Plus

    International Nuclear Information System (INIS)

    Whitmore, Lawrence; Ahmadi, Mohammad Reza; Guetaz, Laure; Leitner, Harald; Povoden-Karadeniz, Erwin; Stockinger, Martin; Kozeschnik, Ernst

    2014-01-01

    The microstructure of thermally aged nickel-based 718Plus superalloy is investigated using transmission electron microscopy (TEM). Solution annealing at 980 °C for 30 min is followed by either the standard quenching to room temperature or quenching directly to 788 °C, before isothermal aging at 788 °C for four hours. Micro-hardness and yield strength are measured to compare the effects of the two variations. The size and phase fraction of γ′ precipitates are measured using dark-field TEM and related to the hardness and yield strength through a theoretical model based on coherency and antiphase boundary effects. A population of very small sub-precipitates is observed and the larger γ′ precipitates are investigated in detail using high resolution scanning TEM to reveal information about the chemical ordering

  5. Microstructure and mechanical properties of the superalloy ATI Allvac 718Plus

    International Nuclear Information System (INIS)

    Zickler, Gerald A.; Schnitzer, Ronald; Radis, Rene; Hochfellner, Rainer; Schweins, Ralf; Stockinger, Martin; Leitner, Harald

    2009-01-01

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace turbines. In the present study the high-resolution investigation techniques, atom probe tomography, electron microscopy and in situ high-temperature small-angle neutron scattering were used for a comprehensive microstructural characterization. The alloy contains nanometer-sized spherical γ' phase precipitates (Ni 3 (Al,Ti)) and plate-shaped δ phase precipitates (Ni 3 Nb) of micrometer size. The precipitation kinetics of the γ' phase can be described by a classical model for coarsening. The precipitation strongly influences the mechanical properties and is of high scientific and technological interest.

  6. Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2017-06-01

    Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.

  7. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys

    International Nuclear Information System (INIS)

    Warnken, N.; Ma, D.; Drevermann, A.; Reed, R.C.; Fries, S.G.; Steinbach, I.

    2009-01-01

    A modelling approach is presented for the prediction of microstructure evolution during directional solidification of nickel-based superalloys. A phase-field model is coupled to CALPHAD thermodynamic and kinetic (diffusion) databases, so that a multicomponent alloy representative of those used in industrial practice can be handled. Dendritic growth and the formation of interdendritic phases in an isothermal (2-D) cross-section are simulated for a range of solidification parameters. The sensitivity of the model to changes in the solidification input parameters is investigated. It is demonstrated that the predicted patterns of microsegregation obtained from the simulations compare well to the experimental ones; moreover, an experimentally observed change in the solidification sequence is correctly predicted. The extension of the model to 3-D simulations is demonstrated. Simulations of the homogenization of the as-cast structure during heat treatment are presented.

  8. FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    Directory of Open Access Journals (Sweden)

    Ruitao Peng

    2016-01-01

    Full Text Available Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear.

  9. Effect of heat treatment on microstructures and tensile properties of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The effect of solution treatment (ST) on tensile properties of M963 Ni-base superalloy tested at 800 deg. C has been investigated. The detailed microstructures, fracture surfaces and dislocation structures are examined through energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). With increasing solution treated temperature, the yield strength (YS) and ultimate tensile strength (UTS) increase, however, the elongation decreases. Microstructural observations show that the morphologies of carbide, primary γ' and re-precipitated γ' change significantly with increasing solution treated temperature. The main deformation mode is γ' by-pass when solution treated temperature is lower than 1220 deg. C, and changes to γ' shearing at 1230 deg. C. The interface of carbide with matrix is the main site of crack initiation and propagation under all testing conditions

  10. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning

    International Nuclear Information System (INIS)

    Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L.

    2009-01-01

    The present paper is an attempt of an experimental investigation on the machinability of superalloy, Inconel 718 during high speed turning using tungsten carbide insert (K20) tool. The effect of machining parameters on the cutting force, specific cutting pressure, cutting temperature, tool wear and surface finish criteria were investigated during the experimentation. The machining parameters have been optimized by measuring forces. The effect of machining parameters on the tool wear was examined through SEM micrographs. During high speed turning acoustic emission signal were collected and analyzed to understand the effect of cutting parameters during online. The research work findings will also provide useful economic machining solution by utilizing economical tungsten carbide tooling during high speed processing of Inconel 718, which is otherwise usually machined by costly PCD or CBN tools. The present approach and results will be helpful for understanding the machinability of Inconel 718 during high speed turning for the manufacturing engineers

  11. Segregation assisted microtwinning during creep of a polycrystalline L12-hardened Co-base superalloy

    International Nuclear Information System (INIS)

    Freund, Lisa P.; Messé, Olivier M.D.M.; Barnard, Jonathan S.; Göken, Mathias; Neumeier, Steffen; Rae, Catherine M.F.

    2017-01-01

    A polycrystalline L1 2 -hardened Co-base superalloy was creep deformed at 750 °C. The investigation of the deformed microstructure in the transmission electron microscope revealed microtwinning to be the prevailing deformation mechanism. The detected twins spanned the entire grain and cut through both, γ and γ′. Detailed high-resolution transmission electron microscopy investigations indicated that twin growth takes place by the slip of single a/6 〈112〉 partial dislocations along the twin boundary. Further analysis of the twin boundaries in the γ′ phase revealed segregation of elements known to decrease the stacking fault energy and a local depletion of γ′ forming elements. We propose that this segregation behavior enables subsequent a/6〈112〉 dislocations to easily slip along the twin boundary and further thicken the twins in the process.

  12. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, Peter M.; Whitis, Deborah H.; Mills, Michael J.

    2005-01-01

    Creep deformation substructures in superalloy Rene 88 DT have been investigated at two applied stress levels after small-strain (0.5%) creep at 650 deg. C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and substructures have been observed as a function of applied stress. It has been established that at intermediate temperatures microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress. At higher applied stress the mechanism changes to planar shearing of the matrix by 1/2 unit dislocations and Orowan looping of the precipitates. Detailed experimental evidences for these operating processes are shown and possible explanation is provided

  13. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: srjian@gmail.com [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-02-08

    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  14. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  15. Retrieval results on various properties of superalloy using 'Data-Free-Way'. Joint research

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Tsuji, Hirokazu; Sakino, Takao

    1999-02-01

    The pilot system on the distributed database for advanced nuclear materials named 'Data-Free-Way' was constructed under the collaboration of National Research Institute for Metals, Japan Atomic Energy Research Institute, and Power Reactor and Nuclear Fuel Development Corporation during fiscal years from 1990 through 1994. In order to make the system more substantial, the second stage collaborative research activity in which the main objective was to develop the utilization techniques for 'Data-Free-Way' was initiated in 1995 among three above-mentioned organizations and Japan Science and Technology Corporation, which newly joined this program. In the second stage collaborative research activity, some trials of attractive utilization of the system focused on the issues relating to various properties of superalloy were performed by using the PC on the Internet. In future each organization will update the system for improving the interface of the system and enrich the stored data with debugging. (author)

  16. TEM microstructural analysis of creep deformed CM186LC single crystal Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Blackler, M. [Howmet Ltd., Exeter (United Kingdom); Barnard, P.M. [ALSTOM Power Turbo-Systems Technology Centre, Rugby (United Kingdom)

    2006-07-01

    The nickel based single crystal superalloy CM186LC was extensively investigated as a potential low cost material for industrial gas turbine vanes within the COST522 programme. The alloy exhibits inhomogeneous structure consisting of dendritic regions and eutectic colonies. In the present work attention is focused on microstructural changes observed in single crystal CM186LC following creep deformation at 750 C. Creep tests were conducted at 750 C with an applied stress of 560 or 675 MPa for up to 11440 hours. The microstructure o ruptured and terminated specimens was investigated by scanning (SEM) and transmission (TEM) electron microscopy. TEM analysis revealed the microstructural changes in the CM186LC at primary and secondary creep as well as after creep rupture. (orig.)

  17. Low Cost Heat Treatment Process for Production of Dual Microstructure Superalloy Disks

    Science.gov (United States)

    Gayda, John; Gabb, Tim; Kantzos, Pete; Furrer, David

    2003-01-01

    There are numerous incidents where operating conditions imposed on a component mandate different and distinct mechanical property requirements from location to location within the component. Examples include a crankshaft in an internal combustion engine, gears for an automotive transmission, and disks for a gas turbine engine. Gas turbine disks are often made from nickel-base superalloys, because these disks need to withstand the temperature and stresses involved in the gas turbine cycle. In the bore of the disk where the operating temperature is somewhat lower, the limiting material properties are often tensile and fatigue strength. In the rim of the disk, where the operating temperatures are higher than those of the bore, because of the proximity to the combustion gases, resistance to creep and crack growth are often the limiting properties.

  18. Influence of cobalt, tantalum, and tungsten on the microstructure and mechanical properties of superalloy single crystals

    International Nuclear Information System (INIS)

    Nathal, M.V.; Ebert, L.J.

    1982-01-01

    The influence of Co, Ta, and W on the microstructure and mechanical properties of nickel base super-alloy single crystals was investigated. A matrix of alloys was based on Mar-M 247 stripped of C, B, Zr, and Hf. The microstructures of the alloys were examined using optical and electron microscopy, phase extraction, X-ray diffraction, and differential thermal analysis. Tensile and creep-rupture tests were performed at 1000 C. An increase in tensile and creep strength resulted when Co was removed from alloys containing high refractory metal contents, but Co effects were negligible for alloys with lower refractory metal levels. In the composition range studied, W was more effective than Ta in increasing the creep resistance. The mechanical properties are discussed in relation to the microstructures of the alloys

  19. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    Science.gov (United States)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  20. Influence of cobalt, tantalum, and tungsten on the microstructure and mechanical properties of superalloy single crystals

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1982-01-01

    The influence of Co, Ta, and W on the microstructure and mechanical properties of nickel base super-alloy single crystals was investigated. A matrix of alloys was based on Mar-M 247 stripped of C, B, Zr, and Hf. The microstructures of the alloys were examined using optical and electron microscopy, phase extraction, X-ray diffraction, and differential thermal analysis. Tensile and creep-rupture tests were performed at 1000 C. An increase in tensile and creep strength resulted when Co was removed from alloys containing high refractory metal contents, but Co effects were negligible for alloys with lower refractory metal levels. In the composition range studied, W was more effective than Ta in increasing the creep resistance. The mechanical properties are discussed in relation to the microstructures of the alloys.