WorldWideScience

Sample records for large shared memory

  1. Assessing Programming Costs of Explicit Memory Localization on a Large Scale Shared Memory Multiprocessor

    Directory of Open Access Journals (Sweden)

    Silvio Picano

    1992-01-01

    Full Text Available We present detailed experimental work involving a commercially available large scale shared memory multiple instruction stream-multiple data stream (MIMD parallel computer having a software controlled cache coherence mechanism. To make effective use of such an architecture, the programmer is responsible for designing the program's structure to match the underlying multiprocessors capabilities. We describe the techniques used to exploit our multiprocessor (the BBN TC2000 on a network simulation program, showing the resulting performance gains and the associated programming costs. We show that an efficient implementation relies heavily on the user's ability to explicitly manage the memory system.

  2. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  3. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  4. One-way shared memory

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2018-01-01

    Standard multicore processors use the shared main memory via the on-chip caches for communication between cores. However, this form of communication has two limitations: (1) it is hardly time-predictable and therefore not a good solution for real-time systems and (2) this single shared memory...... is a bottleneck in the system. This paper presents a communication architecture for time-predictable multicore systems where core-local memories are distributed on the chip. A network-on-chip constantly copies data from a sender core-local memory to a receiver core-local memory. As this copying is performed...... in one direction we call this architecture a one-way shared memory. With the use of time-division multiplexing for the memory accesses and the network-on-chip routers we achieve a time-predictable solution where the communication latency and bandwidth can be bounded. An example architecture for a 3...

  5. Monte Carlo photon transport on shared memory and distributed memory parallel processors

    International Nuclear Information System (INIS)

    Martin, W.R.; Wan, T.C.; Abdel-Rahman, T.S.; Mudge, T.N.; Miura, K.

    1987-01-01

    Parallelized Monte Carlo algorithms for analyzing photon transport in an inertially confined fusion (ICF) plasma are considered. Algorithms were developed for shared memory (vector and scalar) and distributed memory (scalar) parallel processors. The shared memory algorithm was implemented on the IBM 3090/400, and timing results are presented for dedicated runs with two, three, and four processors. Two alternative distributed memory algorithms (replication and dispatching) were implemented on a hypercube parallel processor (1 through 64 nodes). The replication algorithm yields essentially full efficiency for all cube sizes; with the 64-node configuration, the absolute performance is nearly the same as with the CRAY X-MP. The dispatching algorithm also yields efficiencies above 80% in a large simulation for the 64-processor configuration

  6. Performing an allreduce operation using shared memory

    Science.gov (United States)

    Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  7. A Shared Scratchpad Memory with Synchronization Support

    DEFF Research Database (Denmark)

    Hansen, Henrik Enggaard; Maroun, Emad Jacob; Kristensen, Andreas Toftegaard

    2017-01-01

    Multicore processors usually communicate via shared memory, which is backed up by a shared level 2 cache and a cache coherence protocol. However, this solution is not a good fit for real-time systems, where we need to provide tight guarantees on execution and memory access times. In this paper, we...... propose a shared scratchpad memory as a time-predictable communication and synchronization structure, instead of the level 2 cache. The shared on-chip memory is accessed via a time division multiplexing arbiter, isolating the execution time of load and store instructions between processing cores....... Furthermore, the arbiter supports an extended time slot where an atomic load and store instruction can be executed to implement synchronization primitives. In the evaluation we show that a shared scratchpad memory is an efficient communication structure for a small number of processors; in our setup, 9 cores...

  8. Switch/router architectures shared-bus and shared-memory based systems

    CERN Document Server

    Aweya, James

    2018-01-01

    A practicing engineer's inclusive review of communication systems based on shared-bus and shared-memory switch/router architectures. This book delves into the inner workings of router and switch design in a comprehensive manner that is accessible to a broad audience. It begins by describing the role of switch/routers in a network, then moves on to the functional composition of a switch/router. A comparison of centralized versus distributed design of the architecture is also presented. The author discusses use of bus versus shared-memory for communication within a design, and also covers Quality of Service (QoS) mechanisms and configuration tools. Written in a simple style and language to allow readers to easily understand and appreciate the material presented, Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems discusses the design of multilayer switches—starting with the basic concepts and on to the basic architectures. It describes the evolution of multilayer switch designs and highli...

  9. Multiprocessor shared-memory information exchange

    International Nuclear Information System (INIS)

    Santoline, L.L.; Bowers, M.D.; Crew, A.W.; Roslund, C.J.; Ghrist, W.D. III

    1989-01-01

    In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, is designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange

  10. Attention and Visuospatial Working Memory Share the Same Processing Resources

    Directory of Open Access Journals (Sweden)

    Jing eFeng

    2012-04-01

    Full Text Available Attention and visuospatial working memory (VWM share very similar characteristics; both have the same upper bound of about four items in capacity and they recruit overlapping brain regions. We examined whether both attention and visuospatial working memory share the same processing resources using a novel dual-task-costs approach based on a load-varying dual-task technique. With sufficiently large loads on attention and VWM, considerable interference between the two processes was observed. A further load increase on either process produced reciprocal increases in interference on both processes, indicating that attention and VWM share common resources. More critically, comparison among four experiments on the reciprocal interference effects, as measured by the dual-task costs, demonstrates no significant contribution from additional processing other than the shared processes. These results support the notion that attention and VWM share the same processing resources.

  11. Externalising the autobiographical self: sharing personal memories online facilitated memory retention.

    Science.gov (United States)

    Wang, Qi; Lee, Dasom; Hou, Yubo

    2017-07-01

    Internet technology provides a new means of recalling and sharing personal memories in the digital age. What is the mnemonic consequence of posting personal memories online? Theories of transactive memory and autobiographical memory would make contrasting predictions. In the present study, college students completed a daily diary for a week, listing at the end of each day all the events that happened to them on that day. They also reported whether they posted any of the events online. Participants received a surprise memory test after the completion of the diary recording and then another test a week later. At both tests, events posted online were significantly more likely than those not posted online to be recalled. It appears that sharing memories online may provide unique opportunities for rehearsal and meaning-making that facilitate memory retention.

  12. Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2011-07-27

    Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy in reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.

  13. Direct access inter-process shared memory

    Science.gov (United States)

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  14. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  15. A Comparison of Two Paradigms for Distributed Shared Memory

    NARCIS (Netherlands)

    Levelt, W.G.; Kaashoek, M.F.; Bal, H.E.; Tanenbaum, A.S.

    1992-01-01

    Two paradigms for distributed shared memory on loosely‐coupled computing systems are compared: the shared data‐object model as used in Orca, a programming language specially designed for loosely‐coupled computing systems, and the shared virtual memory model. For both paradigms two systems are

  16. Vertex trigger implementation using shared memory technology

    CERN Document Server

    Müller, H

    1998-01-01

    The implementation of a 1 st level vertex trigger for LHC-B is particularly difficult due to the high ( 1 MHz ) input data rate. With ca. 350 silicon hits per event, both the R strips and Phi strips of the detectors produce a total of ca 2 Gbyte/s zero-suppressed da ta.1 note succeeds to the ideas to use R-phi coordinates for fast integer linefinding in programmable hardware, as described in LHB note 97-006. For an implementation we propose a FPGA preprocessing stage operating at 1 MHz with the benefit to substantially reduce the amount of data to be transmitted to the CPUs and to liberate a large fraction of CPU time. Interconnected via 4 Gbit/s SCI technol-ogy 2 , a shared memory system can be built which allows to perform data driven eventbuilding with, or without preprocessing. A fully data driven architecture between source modules and destination memories provides a highly reliable memory-to-memory transfer mechanism of very low latency. The eventbuilding is performed via associating events at the sourc...

  17. Self-Stabilization of Wait-Free Shared Memory Objects

    NARCIS (Netherlands)

    Hoepman, J.H.; Papatriantafilou, Marina; Tsigas, Philippas

    2002-01-01

    This paper proposes a general definition of self-stabilizing wait-free shared memory objects. The definition ensures that, even in the face of processor failures, every execution after a transient memory failure is linearizable except for an a priori bounded number of actions. Shared registers have

  18. Is sharing specific autobiographical memories a distinct form of self-disclosure?

    Science.gov (United States)

    Beike, Denise R; Brandon, Nicole R; Cole, Holly E

    2016-04-01

    Theories of autobiographical memory posit a social function, meaning that recollecting and sharing memories of specific discrete events creates and maintains relationship intimacy. Eight studies with 1,271 participants tested whether sharing specific autobiographical memories in conversations increases feelings of closeness among conversation partners, relative to sharing other self-related information. The first 2 studies revealed that conversations in which specific autobiographical memories were shared were also accompanied by feelings of closeness among conversation partners. The next 5 studies experimentally introduced specific autobiographical memories versus general information about the self into conversations between mostly unacquainted pairs of participants. Discussing specific autobiographical memories led to greater closeness among conversation partners than discussing nonself-related topics, but no greater closeness than discussing other, more general self-related information. In the final study unacquainted pairs in whom feelings of closeness had been experimentally induced through shared humor were more likely to discuss specific autobiographical memories than unacquainted control participant pairs. We conclude that sharing specific autobiographical memories may express more than create relationship closeness, and discuss how relationship closeness may afford sharing of specific autobiographical memories by providing common ground, a social display, or a safety signal. (c) 2016 APA, all rights reserved).

  19. Working memory resources are shared across sensory modalities.

    Science.gov (United States)

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  20. A homotopy method for solving Riccati equations on a shared memory parallel computer

    International Nuclear Information System (INIS)

    Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.

    1993-01-01

    Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines

  1. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL...

  2. GOTHIC memory management : a multiprocessor shared single level store

    OpenAIRE

    Michel , Béatrice

    1990-01-01

    Gothic purpose is to build an object-oriented fault-tolerant distributed operating system for a local area network of multiprocessor workstations. This paper describes Gothic memory manager. It realizes the sharing of the secondary memory space between any process running on the Gothic system. Processes on different processors can communicate by sharing permanent information. The manager implements a shared single level storage with an invalidation protocol working on disk-pages to maintain s...

  3. A Stream Tilling Approach to Surface Area Estimation for Large Scale Spatial Data in a Shared Memory System

    Directory of Open Access Journals (Sweden)

    Liu Jiping

    2017-12-01

    Full Text Available Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.

  4. A shared resource between declarative memory and motor memory.

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  5. A shared resource between declarative memory and motor memory

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  6. Sharing specific "We" autobiographical memories in close relationships: the role of contact frequency.

    Science.gov (United States)

    Beike, Denise R; Cole, Holly E; Merrick, Carmen R

    2017-11-01

    Sharing memories in conversations with close others is posited to be part of the social function of autobiographical memory. The present research focused on the sharing of a particular type of memory: Specific memories about one-time co-experienced events, which we termed Specific We memories. Two studies with 595 total participants examined the factors that lead to and/or are influenced by the sharing of Specific We memories. In Study 1, participants reported on their most recent conversation. Specific We memories were reportedly discussed most often in conversations with others who were close and with whom the participant had frequent communication. In Study 2, participants were randomly assigned either to increase or to simply record the frequency of communication with a close other (parent). Increases in the frequency of reported sharing of Specific We memories as well as closeness to the parent resulted. Mediation analyses of both studies revealed causal relationships among reported sharing of Specific We memories and closeness. We discuss the relevance of these results for understanding the social function of autobiographical memory.

  7. Techniques for Reducing Consistency-Related Communication in Distributed Shared Memory System

    OpenAIRE

    Zwaenepoel, W; Bennett, J.K.; Carter, J.B.

    1995-01-01

    Distributed shared memory 8DSM) is an abstraction of shared memory on a distributed memory machine. Hardware DSM systems support this abstraction at the architecture level; software DSM systems support the abstraction within the runtime system. One of the key problems in building an efficient software DSM system is to reduce the amount of communication needed to keep the distributed memories consistent. In this paper we present four techniques for doing so: 1) software release consistency; 2)...

  8. Building a columnar database on shared main memory-based storage

    OpenAIRE

    Tinnefeld, Christian

    2014-01-01

    In the field of disk-based parallel database management systems exists a great variety of solutions based on a shared-storage or a shared-nothing architecture. In contrast, main memory-based parallel database management systems are dominated solely by the shared-nothing approach as it preserves the in-memory performance advantage by processing data locally on each server. We argue that this unilateral development is going to cease due to the combination of the following three trends: a) Nowad...

  9. Shared Semantics and the Use of Organizational Memories for E-Mail Communications.

    Science.gov (United States)

    Schwartz, David G.

    1998-01-01

    Examines the use of shared semantics information to link concepts in an organizational memory to e-mail communications. Presents a framework for determining shared semantics based on organizational and personal user profiles. Illustrates how shared semantics are used by the HyperMail system to help link organizational memories (OM) content to…

  10. Elastic pointer directory organization for scalable shared memory multiprocessors

    Institute of Scientific and Technical Information of China (English)

    Yuhang Liu; Mingfa Zhu; Limin Xiao

    2014-01-01

    In the field of supercomputing, one key issue for scal-able shared-memory multiprocessors is the design of the directory which denotes the sharing state for a cache block. A good direc-tory design intends to achieve three key attributes: reasonable memory overhead, sharer position precision and implementation complexity. However, researchers often face the problem that gain-ing one attribute may result in losing another. The paper proposes an elastic pointer directory (EPD) structure based on the analysis of shared-memory applications, taking the fact that the number of sharers for each directory entry is typical y smal . Analysis re-sults show that for 4 096 nodes, the ratio of memory overhead to the ful-map directory is 2.7%. Theoretical analysis and cycle-accurate execution-driven simulations on a 16 and 64-node cache coherence non uniform memory access (CC-NUMA) multiproces-sor show that the corresponding pointer overflow probability is reduced significantly. The performance is observed to be better than that of a limited pointers directory and almost identical to the ful-map directory, except for the slight implementation complex-ity. Using the directory cache to explore directory access locality is also studied. The experimental result shows that this is a promis-ing approach to be used in the state-of-the-art high performance computing domain.

  11. Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers

    KAUST Repository

    Woźniak, Maciej; Kuźnik, Krzysztof M.; Paszyński, Maciej R.; Calo, Victor M.; Pardo, D.

    2014-01-01

    In this paper we present computational cost estimates for parallel shared memory isogeometric multi-frontal solvers. The estimates show that the ideal isogeometric shared memory parallel direct solver scales as O( p2log(N/p)) for one dimensional problems, O(Np2) for two dimensional problems, and O(N4/3p2) for three dimensional problems, where N is the number of degrees of freedom, and p is the polynomial order of approximation. The computational costs of the shared memory parallel isogeometric direct solver are compared with those corresponding to the sequential isogeometric direct solver, being the latest equal to O(N p2) for the one dimensional case, O(N1.5p3) for the two dimensional case, and O(N2p3) for the three dimensional case. The shared memory version significantly reduces both the scalability in terms of N and p. Theoretical estimates are compared with numerical experiments performed with linear, quadratic, cubic, quartic, and quintic B-splines, in one and two spatial dimensions. © 2014 Elsevier Ltd. All rights reserved.

  12. Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers

    KAUST Repository

    Woźniak, Maciej

    2014-06-01

    In this paper we present computational cost estimates for parallel shared memory isogeometric multi-frontal solvers. The estimates show that the ideal isogeometric shared memory parallel direct solver scales as O( p2log(N/p)) for one dimensional problems, O(Np2) for two dimensional problems, and O(N4/3p2) for three dimensional problems, where N is the number of degrees of freedom, and p is the polynomial order of approximation. The computational costs of the shared memory parallel isogeometric direct solver are compared with those corresponding to the sequential isogeometric direct solver, being the latest equal to O(N p2) for the one dimensional case, O(N1.5p3) for the two dimensional case, and O(N2p3) for the three dimensional case. The shared memory version significantly reduces both the scalability in terms of N and p. Theoretical estimates are compared with numerical experiments performed with linear, quadratic, cubic, quartic, and quintic B-splines, in one and two spatial dimensions. © 2014 Elsevier Ltd. All rights reserved.

  13. Conditional load and store in a shared memory

    Science.gov (United States)

    Blumrich, Matthias A; Ohmacht, Martin

    2015-02-03

    A method, system and computer program product for implementing load-reserve and store-conditional instructions in a multi-processor computing system. The computing system includes a multitude of processor units and a shared memory cache, and each of the processor units has access to the memory cache. In one embodiment, the method comprises providing the memory cache with a series of reservation registers, and storing in these registers addresses reserved in the memory cache for the processor units as a result of issuing load-reserve requests. In this embodiment, when one of the processor units makes a request to store data in the memory cache using a store-conditional request, the reservation registers are checked to determine if an address in the memory cache is reserved for that processor unit. If an address in the memory cache is reserved for that processor, the data are stored at this address.

  14. Shared Memory Parallelization of an Implicit ADI-type CFD Code

    Science.gov (United States)

    Hauser, Th.; Huang, P. G.

    1999-01-01

    A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.

  15. Scaling Non-Regular Shared-Memory Codes by Reusing Custom Loop Schedules

    Directory of Open Access Journals (Sweden)

    Dimitrios S. Nikolopoulos

    2003-01-01

    Full Text Available In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors. The paper presents practical examples from real applications and experiments showing the efficiency of the approach.

  16. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    International Nuclear Information System (INIS)

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-01-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  17. Dataflow models for shared memory access latency analysis

    NARCIS (Netherlands)

    Staschulat, Jan; Bekooij, Marco Jan Gerrit

    2009-01-01

    Performance analysis of applications in multi-core platforms is challenging because of temporal interference while accessing shared resources. Especially, memory arbiters introduce a non-constant delay which signicantly in uences the execution time of a task. In this paper, we selected a

  18. Implementing Shared Memory Parallelism in MCBEND

    Directory of Open Access Journals (Sweden)

    Bird Adam

    2017-01-01

    Full Text Available MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.

  19. Efficient implementations of block sparse matrix operations on shared memory vector machines

    International Nuclear Information System (INIS)

    Washio, T.; Maruyama, K.; Osoda, T.; Doi, S.; Shimizu, F.

    2000-01-01

    In this paper, we propose vectorization and shared memory-parallelization techniques for block-type random sparse matrix operations in finite element (FEM) applications. Here, a block corresponds to unknowns on one node in the FEM mesh and we assume that the block size is constant over the mesh. First, we discuss some basic vectorization ideas (the jagged diagonal (JAD) format and the segmented scan algorithm) for the sparse matrix-vector product. Then, we extend these ideas to the shared memory parallelization. After that, we show that the techniques can be applied not only to the sparse matrix-vector product but also to the sparse matrix-matrix product, the incomplete or complete sparse LU factorization and preconditioning. Finally, we report the performance evaluation results obtained on an NEC SX-4 shared memory vector machine for linear systems in some FEM applications. (author)

  20. The performance of disk arrays in shared-memory database machines

    Science.gov (United States)

    Katz, Randy H.; Hong, Wei

    1993-01-01

    In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.

  1. Working Memory Span Development: A Time-Based Resource-Sharing Model Account

    Science.gov (United States)

    Barrouillet, Pierre; Gavens, Nathalie; Vergauwe, Evie; Gaillard, Vinciane; Camos, Valerie

    2009-01-01

    The time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004) assumes that during complex working memory span tasks, attention is frequently and surreptitiously switched from processing to reactivate decaying memory traces before their complete loss. Three experiments involving children from 5 to 14 years of age…

  2. Brain Information Sharing During Visual Short-Term Memory Binding Yields a Memory Biomarker for Familial Alzheimer's Disease.

    Science.gov (United States)

    Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin

    2017-01-01

    Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Graphical Visualization on Computational Simulation Using Shared Memory

    International Nuclear Information System (INIS)

    Lima, A B; Correa, Eberth

    2014-01-01

    The Shared Memory technique is a powerful tool for parallelizing computer codes. In particular it can be used to visualize the results ''on the fly'' without stop running the simulation. In this presentation we discuss and show how to use the technique conjugated with a visualization code using openGL

  4. The effect of the order in which episodic autobiographical memories versus autobiographical knowledge are shared on feelings of closeness.

    Science.gov (United States)

    Brandon, Nicole R; Beike, Denise R; Cole, Holly E

    2017-07-01

    Autobiographical memories (AMs) can be used to create and maintain closeness with others [Alea, N., & Bluck, S. (2003). Why are you telling me that? A conceptual model of the social function of autobiographical memory. Memory, 11(2), 165-178]. However, the differential effects of memory specificity are not well established. Two studies with 148 participants tested whether the order in which autobiographical knowledge (AK) and specific episodic AM (EAM) are shared affects feelings of closeness. Participants read two memories hypothetically shared by each of four strangers. The strangers first shared either AK or an EAM, and then shared either AK or an EAM. Participants were randomly assigned to read either positive or negative AMs from the strangers. Findings suggest that people feel closer to those who share positive AMs in the same way they construct memories: starting with general and moving to specific.

  5. Iterative schemes for parallel Sn algorithms in a shared-memory computing environment

    International Nuclear Information System (INIS)

    Haghighat, A.; Hunter, M.A.; Mattis, R.E.

    1995-01-01

    Several two-dimensional spatial domain partitioning S n transport theory algorithms are developed on the basis of different iterative schemes. These algorithms are incorporated into TWOTRAN-II and tested on the shared-memory CRAY Y-MP C90 computer. For a series of fixed-source r-z geometry homogeneous problems, it is demonstrated that the concurrent red-black algorithms may result in large parallel efficiencies (>60%) on C90. It is also demonstrated that for a realistic shielding problem, the use of the negative flux fixup causes high load imbalance, which results in a significant loss of parallel efficiency

  6. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    Science.gov (United States)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  7. MulticoreBSP for C : A high-performance library for shared-memory parallel programming

    NARCIS (Netherlands)

    Yzelman, A. N.; Bisseling, R. H.; Roose, D.; Meerbergen, K.

    2014-01-01

    The bulk synchronous parallel (BSP) model, as well as parallel programming interfaces based on BSP, classically target distributed-memory parallel architectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java library specifically for shared-memory architectures. In the

  8. Generalized Load Sharing for Homogeneous Networks of Distributed Environment

    Directory of Open Access Journals (Sweden)

    A. Satheesh

    2008-01-01

    Full Text Available We propose a method for job migration policies by considering effective usage of global memory in addition to CPU load sharing in distributed systems. When a node is identified for lacking sufficient memory space to serve jobs, one or more jobs of the node will be migrated to remote nodes with low memory allocations. If the memory space is sufficiently large, the jobs will be scheduled by a CPU-based load sharing policy. Following the principle of sharing both CPU and memory resources, we present several load sharing alternatives. Our objective is to reduce the number of page faults caused by unbalanced memory allocations for jobs among distributed nodes, so that overall performance of a distributed system can be significantly improved. We have conducted trace-driven simulations to compare CPU-based load sharing policies with our policies. We show that our load sharing policies not only improve performance of memory bound jobs, but also maintain the same load sharing quality as the CPU-based policies for CPU-bound jobs. Regarding remote execution and preemptive migration strategies, our experiments indicate that a strategy selection in load sharing is dependent on the amount of memory demand of jobs, remote execution is more effective for memory-bound jobs, and preemptive migration is more effective for CPU-bound jobs. Our CPU-memory-based policy using either high performance or high throughput approach and using the remote execution strategy performs the best for both CPU-bound and memory-bound job in homogeneous networks of distributed environment.

  9. Specification and development of the sharing memory data management module for a nuclear processes simulator

    International Nuclear Information System (INIS)

    Telesforo R, D.

    2003-01-01

    Actually it is developed in the Engineering Faculty of UNAM a simulator of nuclear processes with research and teaching purposes. It consists of diverse modules, included the one that is described in the present work that is the shared memory module. It uses the IPC mechanisms of the UNIX System V operative system, and it was codified with C language. To model the diverse components of the simulator the RELAP code is used. The function of the module is to generate locations of shared memory for to deposit in these the necessary variables for the interaction among the diverse ones processes of the simulator. In its it will be able read and to write the information that generate the running of the simulation program, besides being able to interact with the internal variables of the code in execution time. The graphic unfolding (mimic, pictorials, tendency graphics, virtual instrumentation, etc.) they also obtain information of the shared memory. In turn, actions of the user in interactive unfolding, they modify the segments of shared memory, and the information is sent to the RELAP code to modify the simulation course. The program has two beginning modes: automatic and manual. In automatic mode taking an enter file of RELAP (indta) and it joins in shared memory, the control variables that in this appear. In manual mode the user joins, he reads and he writes the wanted control variables, whenever they exist in the enter file (indta). This is a dynamic mode of interacting with the simulator in a direct way and of even altering the values as when its don't exist in the board elements associated to the variables. (Author)

  10. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila

    Science.gov (United States)

    Vogt, Katrin; Schnaitmann, Christopher; Dylla, Kristina V; Knapek, Stephan; Aso, Yoshinori; Rubin, Gerald M; Tanimoto, Hiromu

    2014-01-01

    In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI: http://dx.doi.org/10.7554/eLife.02395.001 PMID:25139953

  11. Nanographene charge trapping memory with a large memory window

    International Nuclear Information System (INIS)

    Meng, Jianling; Yang, Rong; Zhao, Jing; He, Congli; Wang, Guole; Shi, Dongxia; Zhang, Guangyu

    2015-01-01

    Nanographene is a promising alternative to metal nanoparticles or semiconductor nanocrystals for charge trapping memory. In general, a high density of nanographene is required in order to achieve high charge trapping capacity. Here, we demonstrate a strategy of fabrication for a high density of nanographene for charge trapping memory with a large memory window. The fabrication includes two steps: (1) direct growth of continuous nanographene film; and (2) isolation of the as-grown film into high-density nanographene by plasma etching. Compared with directly grown isolated nanographene islands, abundant defects and edges are formed in nanographene under argon or oxygen plasma etching, i.e. more isolated nanographene islands are obtained, which provides more charge trapping sites. As-fabricated nanographene charge trapping memory shows outstanding memory properties with a memory window as wide as ∼9 V at a relative low sweep voltage of ±8 V, program/erase speed of ∼1 ms and robust endurance of >1000 cycles. The high-density nanographene charge trapping memory provides an outstanding alternative for downscaling technology beyond the current flash memory. (paper)

  12. Shared random access memory resource for multiprocessor real-time systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Hardy, W.H. II

    1977-01-01

    A shared random-access memory resource is described which is used within real-time data acquisition and control systems with multiprocessor and multibus organizations. Hardware and software aspects are discussed in a specific example where interconnections are done via a UNIBUS. The general applicability of the approach is also discussed

  13. Sharing and Unsharing Memories of Jews of Moroccan Origin in Montréal and Paris Compared

    Directory of Open Access Journals (Sweden)

    Yolande Cohen

    2012-11-01

    Full Text Available This text 1 explores the memories of Moroccan Jews who left their country of origin to go to France and to Canada, through their life stories. By questioning the constitution of a shared memory and of a group memory, it stresses the interest to adopt a generational perspective to better understand the migration of this population. While some interviewees emphasize the rationalization of their departure, the younger ones, consider their leaving as a natural step in their many migrations. These distinctions are central to show how the memory of the departures and the depiction of the colonial society are shared by members of a group, and unshared with the larger Moroccan society.

  14. Social Transmission of False Memory in Small Groups and Large Networks.

    Science.gov (United States)

    Maswood, Raeya; Rajaram, Suparna

    2018-05-21

    Sharing information and memories is a key feature of social interactions, making social contexts important for developing and transmitting accurate memories and also false memories. False memory transmission can have wide-ranging effects, including shaping personal memories of individuals as well as collective memories of a network of people. This paper reviews a collection of key findings and explanations in cognitive research on the transmission of false memories in small groups. It also reviews the emerging experimental work on larger networks and collective false memories. Given the reconstructive nature of memory, the abundance of misinformation in everyday life, and the variety of social structures in which people interact, an understanding of transmission of false memories has both scientific and societal implications. © 2018 Cognitive Science Society, Inc.

  15. Parallel SN algorithms in shared- and distributed-memory environments

    International Nuclear Information System (INIS)

    Haghighat, Alireza; Hunter, Melissa A.; Mattis, Ronald E.

    1995-01-01

    Different 2-D spatial domain partitioning Sn transport theory algorithms have been developed on the basis of the Block-Jacobi iterative scheme. These algorithms have been incorporated into TWOTRAN-II, and tested on a shared-memory CRAY Y-MP C90 and a distributed-memory IBM SP1. For a series of fixed source r-z geometry homogeneous problems, parallel efficiencies in a range of 50-90% are achieved on the C90 with 6 processors, and lower values (20-60%) are obtained on the SP1. It is demonstrated that better performance is attainable if one addresses issues such as convergence rate, load-balancing, and granularity for both architectures, as well as message passing (network bandwidth and latency) for SP1. (author). 17 refs, 4 figs

  16. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon

    International Nuclear Information System (INIS)

    D'Azevedo, E.F.; Romine, C.H.

    1994-12-01

    This report describes the use of shared memory emulation with DOLIB (Distributed Object Library) to simplify parallel programming on the Intel Paragon. A molecular dynamics application is used as an example to illustrate the use of the DOLIB shared memory library. SOTON-PAR, a parallel molecular dynamics code with explicit message-passing using a Lennard-Jones 6-12 potential, is rewritten using DOLIB primitives. The resulting code has no explicit message primitives and resembles a serial code. The new code can perform dynamic load balancing and achieves better performance than the original parallel code with explicit message-passing

  17. An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers

    NARCIS (Netherlands)

    Meijster, A.; Roerdink, J.B.T.M.

    1995-01-01

    In this paper a parallel implementation of a watershed algorithm is proposed. The algorithm can easily be implemented on shared memory parallel computers. The watershed transform is generally considered to be inherently sequential since the discrete watershed of an image is defined using recursion.

  18. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa

    2015-05-01

    In this work, we revisit the 1999 Gordon Bell Prize winning PETSc-FUN3D aerodynamics code, extending it with highly-tuned shared-memory parallelization and detailed performance analysis on modern highly parallel architectures. An unstructured-grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain decomposition approach, exposes tradeoffs between the number of threads assigned to each MPI-rank sub domain, and the total number of domains. By applying several algorithm- and architecture-aware optimization techniques for unstructured grids, we show a 6.9X speed-up in performance on a single-node Intel® XeonTM1 E5 2690 v2 processor relative to the out-of-the-box compilation. Our scaling studies on TACC Stampede supercomputer show that our optimizations continue to provide performance benefits over baseline implementation as we scale up to 256 nodes.

  19. Parallel discrete event simulation using shared memory

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1988-01-01

    With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.

  20. Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples

    Directory of Open Access Journals (Sweden)

    Hyunok Oh

    2003-05-01

    Full Text Available In multimedia and graphics applications, data samples of nonprimitive type require significant amount of buffer memory. This paper addresses the problem of minimizing the buffer memory requirement for such applications in embedded software synthesis from graphical dataflow programs based on the synchronous dataflow (SDF model with the given execution order of nodes. We propose a memory minimization technique that separates global memory buffers from local pointer buffers: the global buffers store live data samples and the local buffers store the pointers to the global buffer entries. The proposed algorithm reduces 67% memory for a JPEG encoder, 40% for an H.263 encoder compared with unshared versions, and 22% compared with the previous sharing algorithm for the H.263 encoder. Through extensive buffer sharing optimization, we believe that automatic software synthesis from dataflow program graphs achieves the comparable code quality with the manually optimized code in terms of memory requirement.

  1. Analytical derivation of traffic patterns in cache-coherent shared-memory systems

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Sparsø, Jens

    2011-01-01

    This paper presents an analytical method to derive the worst-case traffic pattern caused by a task graph mapped to a cache-coherent shared-memory system. Our analysis allows designers to rapidly evaluate the impact of different mappings of tasks to IP cores on the traffic pattern. The accuracy...

  2. Optimization and parallelization of B-spline based orbital evaluations in QMC on multi/many-core shared memory processors

    OpenAIRE

    Mathuriya, Amrita; Luo, Ye; Benali, Anouar; Shulenburger, Luke; Kim, Jeongnim

    2016-01-01

    B-spline based orbital representations are widely used in Quantum Monte Carlo (QMC) simulations of solids, historically taking as much as 50% of the total run time. Random accesses to a large four-dimensional array make it challenging to efficiently utilize caches and wide vector units of modern CPUs. We present node-level optimizations of B-spline evaluations on multi/many-core shared memory processors. To increase SIMD efficiency and bandwidth utilization, we first apply data layout transfo...

  3. Shared memory parallelism for 3D cartesian discrete ordinates solver

    International Nuclear Information System (INIS)

    Moustafa, S.; Dutka-Malen, I.; Plagne, L.; Poncot, A.; Ramet, P.

    2013-01-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multi-core + SIMD - Single Instruction on Multiple Data) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46*10 6 spatial cells and 1*10 12 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool. (authors)

  4. Large capacity temporary visual memory

    Science.gov (United States)

    Endress, Ansgar D.; Potter, Mary C.

    2014-01-01

    Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181

  5. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  6. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  7. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-01-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  8. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-06-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  9. Parallel k-means++ for Multiple Shared-Memory Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Patrick S.; Lewis, Robert R.

    2016-09-22

    In recent years k-means++ has become a popular initialization technique for improved k-means clustering. To date, most of the work done to improve its performance has involved parallelizing algorithms that are only approximations of k-means++. In this paper we present a parallelization of the exact k-means++ algorithm, with a proof of its correctness. We develop implementations for three distinct shared-memory architectures: multicore CPU, high performance GPU, and the massively multithreaded Cray XMT platform. We demonstrate the scalability of the algorithm on each platform. In addition we present a visual approach for showing which platform performed k-means++ the fastest for varying data sizes.

  10. Sharing Memories

    DEFF Research Database (Denmark)

    Rodil, Kasper; Nielsen, Emil Byskov; Nielsen, Jonathan Bernstorff

    2018-01-01

    in which it was to be contextualized and through a close partnership between aphasics and their caretakers. The underlying design methodology for the MemoryBook is Participatory Design manifested through the collaboration and creations by two aphasic residents and one member of the support staff. The idea...

  11. MULTI: a shared memory approach to cooperative molecular modeling.

    Science.gov (United States)

    Darden, T; Johnson, P; Smith, H

    1991-03-01

    A general purpose molecular modeling system, MULTI, based on the UNIX shared memory and semaphore facilities for interprocess communication is described. In addition to the normal querying or monitoring of geometric data, MULTI also provides processes for manipulating conformations, and for displaying peptide or nucleic acid ribbons, Connolly surfaces, close nonbonded contacts, crystal-symmetry related images, least-squares superpositions, and so forth. This paper outlines the basic techniques used in MULTI to ensure cooperation among these specialized processes, and then describes how they can work together to provide a flexible modeling environment.

  12. To share and be shared

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    2018-01-01

    to another. To a certain degree, they share their everyday lives, things, places, memories, and past/future, but as the ones who move back and forth, they belong a little less in each place. This article is about children who are shared between their parent, households and siblings. They are shared...

  13. Translation techniques for distributed-shared memory programming models

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Douglas James [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant porting for applications to new systems that do not support the application's library or language natively. While open-source APIs are abundant, they do not perform optimally everywhere. A translator would also allow performance testing using a single base code translated to a number of different APIs. Most significantly, this type of translator frees programmers to select the most appropriate API for a given application based on the application (and developer) itself instead of the underlying hardware.

  14. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    International Nuclear Information System (INIS)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min

    2016-01-01

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI

  15. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI.

  16. Concurrent Operations of O2-Tree on Shared Memory Multicore Architectures

    OpenAIRE

    Daniel Ohene-Kwofie; E. J. Otoo1, Gideon Nimako

    2014-01-01

    Modern computer architectures provide high performance computing capability by having multiple CPU cores. Such systems are also typically associated with very large main-memory capacities, thereby allowing them to be used for fast processing of in-memory database applications. However, most of the concurrency control mechanism associated with the index structures of these memory resident databases do not scale well, under high transaction rates. This paper presents the O2-Tree, a fast main me...

  17. Decomposing the relationship between cognitive functioning and self-referent memory beliefs in older adulthood: what's memory got to do with it?

    Science.gov (United States)

    Payne, Brennan R; Gross, Alden L; Hill, Patrick L; Parisi, Jeanine M; Rebok, George W; Stine-Morrow, Elizabeth A L

    2017-07-01

    With advancing age, episodic memory performance shows marked declines along with concurrent reports of lower subjective memory beliefs. Given that normative age-related declines in episodic memory co-occur with declines in other cognitive domains, we examined the relationship between memory beliefs and multiple domains of cognitive functioning. Confirmatory bi-factor structural equation models were used to parse the shared and independent variance among factors representing episodic memory, psychomotor speed, and executive reasoning in one large cohort study (Senior Odyssey, N = 462), and replicated using another large cohort of healthy older adults (ACTIVE, N = 2802). Accounting for a general fluid cognitive functioning factor (comprised of the shared variance among measures of episodic memory, speed, and reasoning) attenuated the relationship between objective memory performance and subjective memory beliefs in both samples. Moreover, the general cognitive functioning factor was the strongest predictor of memory beliefs in both samples. These findings are consistent with the notion that dispositional memory beliefs may reflect perceptions of cognition more broadly. This may be one reason why memory beliefs have broad predictive validity for interventions that target fluid cognitive ability.

  18. Functions of Memory Sharing and Mother-Child Reminiscing Behaviors: Individual and Cultural Variations

    Science.gov (United States)

    Kulkofsky, Sarah; Wang, Qi; Koh, Jessie Bee Kim

    2009-01-01

    This study examined maternal beliefs about the functions of memory sharing and the relations between these beliefs and mother-child reminiscing behaviors in a cross-cultural context. Sixty-three European American and 47 Chinese mothers completed an open-ended questionnaire concerning their beliefs about the functions of parent-child memory…

  19. Knowledge Sharing Strategies for Large Complex Building Projects.

    Directory of Open Access Journals (Sweden)

    Esra Bektas

    2013-06-01

    Full Text Available The construction industry is a project-based sector with a myriad of actors such as architects, construction companies, consultants, producers of building materials (Anumba et al., 2005. The interaction between the project partners is often quite limited, which leads to insufficient knowledge sharing during the project and knowledge being unavailable for reuse (Fruchter et al. 2002. The result can be a considerable amount of extra work, delays and cost overruns. Design outcomes that are supposed to function as boundary objects across different disciplines can lead to misinterpretation of requirements, project content and objectives. In this research, knowledge is seen as resulting from social interactions; knowledge resides in communities and it is generated through social relationships (Wenger 1998, Olsson et al. 2008. Knowledge is often tacit, intangible and context-dependent and it is articulated in the changing responsibilities, roles, attitudes and values that are present in the work environment (Bresnen et al., 2003. In a project environment, knowledge enables individuals to solve problems, take decisions, and apply these decisions to actions. In order to achieve a shared understanding and minimize the misunderstanding and misinterpretations among project actors, it is necessary to share knowledge (Fong 2003. Sharing knowledge is particularly crucial in large complex building projects (LCBPs in order to accelerate the building process, improve architectural quality and prevent mistakes or undesirable results. However, knowledge sharing is often hampered through professional or organizational boundaries or contractual concerns. When knowledge is seen as an organizational asset, there is little willingness among project organizations to share their knowledge. Individual people may recognize the need to promote knowledge sharing throughout the project, but typically there is no deliberate strategy agreed by all project partners to address

  20. Parallel discrete event simulation: A shared memory approach

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1987-01-01

    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.

  1. Decomposing the relationship between cognitive functioning and self-referent memory beliefs in older adulthood: What’s memory got to do with it?

    Science.gov (United States)

    Payne, Brennan R.; Gross, Alden L.; Hill, Patrick L.; Parisi, Jeanine M.; Rebok, George W.; Stine-Morrow, Elizabeth A. L.

    2018-01-01

    With advancing age, episodic memory performance shows marked declines along with concurrent reports of lower subjective memory beliefs. Given that normative age-related declines in episodic memory co-occur with declines in other cognitive domains, we examined the relationship between memory beliefs and multiple domains of cognitive functioning. Confirmatory bi-factor structural equation models were used to parse the shared and independent variance among factors representing episodic memory, psychomotor speed, and executive reasoning in one large cohort study (Senior Odyssey, N = 462), and replicated using another large cohort of healthy older adults (ACTIVE, N = 2,802). Accounting for a general fluid cognitive functioning factor (comprised of the shared variance among measures of episodic memory, speed, and reasoning) attenuated the relationship between objective memory performance and subjective memory beliefs in both samples. Moreover, the general cognitive functioning factor was the strongest predictor of memory beliefs in both samples. These findings are consistent with the notion that dispositional memory beliefs may reflect perceptions of cognition more broadly. This may be one reason why memory beliefs have broad predictive validity for interventions that target fluid cognitive ability. PMID:27685541

  2. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP

    Science.gov (United States)

    Mateescu, Radu; Serwe, Wendelin

    Mutual exclusion protocols are an essential building block of concurrent systems: indeed, such a protocol is required whenever a shared resource has to be protected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion protocols exist in the shared-memory setting, such as Peterson's or Dekker's well-known protocols. Although the functional correctness of these protocols has been studied extensively, relatively little attention has been paid to their non-functional aspects, such as their performance in the long run. In this paper, we report on experiments with the performance evaluation of mutual exclusion protocols using Interactive Markov Chains. Steady-state analysis provides an additional criterion for comparing protocols, which complements the verification of their functional properties. We also carefully re-examined the functional properties, whose accurate formulation as temporal logic formulas in the action-based setting turns out to be quite involved.

  3. Virtual memory support for distributed computing environments using a shared data object model

    Science.gov (United States)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  4. A Parallel Saturation Algorithm on Shared Memory Architectures

    Science.gov (United States)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  5. Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory

    KAUST Repository

    Pearce, Roger

    2010-11-01

    Processing large graphs is becoming increasingly important for many domains such as social networks, bioinformatics, etc. Unfortunately, many algorithms and implementations do not scale with increasing graph sizes. As a result, researchers have attempted to meet the growing data demands using parallel and external memory techniques. We present a novel asynchronous approach to compute Breadth-First-Search (BFS), Single-Source-Shortest-Paths, and Connected Components for large graphs in shared memory. Our highly parallel asynchronous approach hides data latency due to both poor locality and delays in the underlying graph data storage. We present an experimental study applying our technique to both In-Memory and Semi-External Memory graphs utilizing multi-core processors and solid-state memory devices. Our experiments using synthetic and real-world datasets show that our asynchronous approach is able to overcome data latencies and provide significant speedup over alternative approaches. For example, on billion vertex graphs our asynchronous BFS scales up to 14x on 16-cores. © 2010 IEEE.

  6. Shared filtering processes link attentional and visual short-term memory capacity limits.

    Science.gov (United States)

    Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C

    2011-09-30

    Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.

  7. Investigating Solution Convergence in a Global Ocean Model Using a 2048-Processor Cluster of Distributed Shared Memory Machines

    Directory of Open Access Journals (Sweden)

    Chris Hill

    2007-01-01

    Full Text Available Up to 1920 processors of a cluster of distributed shared memory machines at the NASA Ames Research Center are being used to simulate ocean circulation globally at horizontal resolutions of 1/4, 1/8, and 1/16-degree with the Massachusetts Institute of Technology General Circulation Model, a finite volume code that can scale to large numbers of processors. The study aims to understand physical processes responsible for skill improvements as resolution is increased and to gain insight into what resolution is sufficient for particular purposes. This paper focuses on the computational aspects of reaching the technical objective of efficiently performing these global eddy-resolving ocean simulations. At 1/16-degree resolution the model grid contains 1.2 billion cells. At this resolution it is possible to simulate approximately one month of ocean dynamics in about 17 hours of wallclock time with a model timestep of two minutes on a cluster of four 512-way NUMA Altix systems. The Altix systems' large main memory and I/O subsystems allow computation and disk storage of rich sets of diagnostics during each integration, supporting the scientific objective to develop a better understanding of global ocean circulation model solution convergence as model resolution is increased.

  8. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism

    OpenAIRE

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K.; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D. E.

    2016-01-01

    Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children,...

  9. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  10. Domain-general involvement of the posterior frontolateral cortex in time-based resource-sharing in working memory: An fMRI study

    NARCIS (Netherlands)

    Vergauwe, E.; Hartstra, E.; Barrouillet, P.; Brass, M.

    2015-01-01

    Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating

  11. Memory bias for negative emotional words in recognition memory is driven by effects of category membership.

    Science.gov (United States)

    White, Corey N; Kapucu, Aycan; Bruno, Davide; Rotello, Caren M; Ratcliff, Roger

    2014-01-01

    Recognition memory studies often find that emotional items are more likely than neutral items to be labelled as studied. Previous work suggests this bias is driven by increased memory strength/familiarity for emotional items. We explored strength and bias interpretations of this effect with the conjecture that emotional stimuli might seem more familiar because they share features with studied items from the same category. Categorical effects were manipulated in a recognition task by presenting lists with a small, medium or large proportion of emotional words. The liberal memory bias for emotional words was only observed when a medium or large proportion of categorised words were presented in the lists. Similar, though weaker, effects were observed with categorised words that were not emotional (animal names). These results suggest that liberal memory bias for emotional items may be largely driven by effects of category membership.

  12. Episodic memory in aspects of large-scale brain networks

    Science.gov (United States)

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  13. Episodic memory in aspects of large-scale brain networks

    Directory of Open Access Journals (Sweden)

    Woorim eJeong

    2015-08-01

    Full Text Available Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network. Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network. Altered patterns of functional connectivity among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment.

  14. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    Science.gov (United States)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  15. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Yun, Sangwon; Neto, André C.; Park, Mikyung; Lee, Sangil; Park, Kaprai

    2014-01-01

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  16. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  17. Evaluation of a Connectionless NoC for a Real-Time Distributed Shared Memory Many-Core System

    NARCIS (Netherlands)

    Rutgers, J.H.; Bekooij, Marco Jan Gerrit; Smit, Gerardus Johannes Maria

    2012-01-01

    Real-time embedded systems like smartphones tend to comprise an ever increasing number of processing cores. For scalability and the need for guaranteed performance, the use of a connection-oriented network-on-chip (NoC) is advocated. Furthermore, a distributed shared memory architecture is preferred

  18. Secret Sharing Schemes with a large number of players from Toric Varieties

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    A general theory for constructing linear secret sharing schemes over a finite field $\\Fq$ from toric varieties is introduced. The number of players can be as large as $(q-1)^r-1$ for $r\\geq 1$. We present general methods for obtaining the reconstruction and privacy thresholds as well as conditions...... for multiplication on the associated secret sharing schemes. In particular we apply the method on certain toric surfaces. The main results are ideal linear secret sharing schemes where the number of players can be as large as $(q-1)^2-1$. We determine bounds for the reconstruction and privacy thresholds...

  19. Concurrent Operations of O2-Tree on Shared Memory Multicore Architectures

    Directory of Open Access Journals (Sweden)

    Daniel Ohene-Kwofie

    2014-05-01

    Full Text Available Modern computer architectures provide high performance computing capability by having multiple CPU cores. Such systems are also typically associated with very large main-memory capacities, thereby allowing them to be used for fast processing of in-memory database applications. However, most of the concurrency control mechanism associated with the index structures of these memory resident databases do not scale well, under high transaction rates. This paper presents the O2-Tree, a fast main memory resident index, which is also highly scalable and tolerant of high transaction rates in a concurrent environment using the relaxed balancing tree algorithm. The O2-Tree is a modified Red-Black tree in which the leaf nodes are formed into blocks that hold key-value pairs, while each internal node stores a single key that results from splitting leaf nodes. Multi-threaded concurrent manipulation of the O2-Tree outperforms popular NoSQL based key-value stores considered in this paper.

  20. Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory

    Science.gov (United States)

    Gilbertsen, Noreen D.; Belytschko, Ted

    1990-01-01

    The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.

  1. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  2. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  3. Effects of motor congruence on visual working memory.

    Science.gov (United States)

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  4. Discrete memory impairments in largely pure chronic users of MDMA.

    Science.gov (United States)

    Wunderli, Michael D; Vonmoos, Matthias; Fürst, Marina; Schädelin, Katrin; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2017-10-01

    Chronic use of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has repeatedly been associated with deficits in working memory, declarative memory, and executive functions. However, previous findings regarding working memory and executive function are inconclusive yet, as in most studies concomitant stimulant use, which is known to affect these functions, was not adequately controlled for. Therefore, we compared the cognitive performance of 26 stimulant-free and largely pure (primary) MDMA users, 25 stimulant-using polydrug MDMA users, and 56 MDMA/stimulant-naïve controls by applying a comprehensive neuropsychological test battery. Neuropsychological tests were grouped into four cognitive domains. Recent drug use was objectively quantified by 6-month hair analyses on 17 substances and metabolites. Considerably lower mean hair concentrations of stimulants (amphetamine, methamphetamine, methylphenidate, cocaine), opioids (morphine, methadone, codeine), and hallucinogens (ketamine, 2C-B) were detected in primary compared to polydrug users, while both user groups did not differ in their MDMA hair concentration. Cohen's d effect sizes for both comparisons, i.e., primary MDMA users vs. controls and polydrug MDMA users vs. controls, were highest for declarative memory (d primary =.90, d polydrug =1.21), followed by working memory (d primary =.52, d polydrug =.96), executive functions (d primary =.46, d polydrug =.86), and attention (d primary =.23, d polydrug =.70). Thus, primary MDMA users showed strong and relatively discrete declarative memory impairments, whereas MDMA polydrug users displayed broad and unspecific cognitive impairments. Consequently, even largely pure chronic MDMA use is associated with decreased performance in declarative memory, while additional deficits in working memory and executive functions displayed by polydrug MDMA users are likely driven by stimulant co-use. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  5. Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance.

    Science.gov (United States)

    Cho, Soohyun; Holyoak, Keith J; Cannon, Tyrone D

    2007-09-01

    We report a series of experiments using a pictorial analogy task designed to manipulate relational integration, interference resolution, and active maintenance simultaneously. The difficulty of the problems was varied in terms of the number of relations to be integrated, the need for interference resolution, and the duration of maintenance required to correctly solve the analogy. The participants showed decreases in performance when integrating multiple relations, as compared with a single relation, and when interference resolution was required in solving the analogy. When the participants were required to integrate multiple relations while simultaneously engaged in interference resolution, performance was worse, as compared with problems that incorporated either of these features alone. Maintenance of information across delays in the range of 1-4.5 sec led to greater decrements in visual memory, as compared with analogical reasoning. Misleading information caused interference when it had been necessarily attended to and maintained in working memory and, hence, had to be actively suppressed. However, sources of conflict within information that had not been attended to or encoded into working memory did not interfere with the ongoing controlled information processing required for relational integration. The findings provide evidence that relational integration and interference resolution depend on shared cognitive resources in working memory during analogical reasoning.

  6. Peak performance: remote memory revisited

    NARCIS (Netherlands)

    Mühleisen, H.; Gonçalves, R.; Kersten, M.; Johnson, R.; Kemper, A.

    2013-01-01

    Many database systems share a need for large amounts of fast storage. However, economies of scale limit the utility of extending a single machine with an arbitrary amount of memory. The recent broad availability of the zero-copy data transfer protocol RDMA over low-latency and high-throughput

  7. A real-time multichannel memory controller and optimal mapping of memory clients to memory channels

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2015-01-01

    Ever-increasing demands for main memory bandwidth and memory speed/power tradeoff led to the introduction of memories with multiple memory channels, such as Wide IO DRAM. Efficient utilization of a multichannel memory as a shared resource in multiprocessor real-time systems depends on mapping of the

  8. A highly efficient parallel algorithm for solving the neutron diffusion nodal equations on shared-memory computers

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1990-01-01

    Modern parallel computer architectures offer an enormous potential for reducing CPU and wall-clock execution times of large-scale computations commonly performed in various applications in science and engineering. Recently, several authors have reported their efforts in developing and implementing parallel algorithms for solving the neutron diffusion equation on a variety of shared- and distributed-memory parallel computers. Testing of these algorithms for a variety of two- and three-dimensional meshes showed significant speedup of the computation. Even for very large problems (i.e., three-dimensional fine meshes) executed concurrently on a few nodes in serial (nonvector) mode, however, the measured computational efficiency is very low (40 to 86%). In this paper, the authors present a highly efficient (∼85 to 99.9%) algorithm for solving the two-dimensional nodal diffusion equations on the Sequent Balance 8000 parallel computer. Also presented is a model for the performance, represented by the efficiency, as a function of problem size and the number of participating processors. The model is validated through several tests and then extrapolated to larger problems and more processors to predict the performance of the algorithm in more computationally demanding situations

  9. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,; West, Brandon; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2015-01-01

    that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM

  10. Camera memory study for large space telescope. [charge coupled devices

    Science.gov (United States)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  11. Reducing the market impact of large shares of intermittent energy in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Zvingilaite, Erika

    2010-01-01

    The increasing prevalence of renewable and intermittent energy sources in the electricity system is creating new challenges for the interaction of the system. In Denmark, high renewable shares have been achieved without great difficulty, mainly due to the flexibility of the nearby Nordic hydro......-power dominated system. Further increases in the share of renewable energy sources require that additional options are considered to facilitate integration with the lowest possible cost. With large shares of intermittent energy, the impact can be observed on wholesale prices, giving both lower prices and higher...... and the attractiveness of additional interconnection capacity. This paper also analyses options for increasing the flexibility of heat generation involving large and decentralized CHP plants and heat generation based on electricity. The incentives that the market provides for shifting demand and using electricity...

  12. Key Recovery Using Noised Secret Sharing with Discounts over Large Clouds

    OpenAIRE

    JAJODIA , Sushil; Litwin , Witold; Schwarz , Thomas

    2013-01-01

    Encryption key loss problem is the Achilles's heel of cryptography. Key escrow helps, but favors disclosures. Schemes for recoverable encryption keys through noised secret sharing alleviate the dilemma. Key owner escrows a specifically encrypted backup. The recovery needs a large cloud. Cloud cost, money trail should rarefy illegal attempts. We now propose noised secret sharing schemes supporting discounts. The recovery request with discount code lowers the recovery complexity, easily by orde...

  13. A 32-bit computer for large memory applications on the FASTBUS

    International Nuclear Information System (INIS)

    Kellner, R.; Blossom, J.M.; Hung, J.P.

    1985-01-01

    A FASTBUS based 32-bit computer is being built at Los Alamos National Laboratory for use in systems requiring large fast memory in the FASTBUS environment. A separate local execution bus allows data reduction to proceed concurrently with other FASTBUS operations. The computer, which can operate in either master or slave mode, includes the National Semiconductor NS32032 chip set with demand paged memory management, floating point slave processor, interrupt control unit, timers, and time-of-day clock. The 16.0 megabytes of random access memory are interleaved to allow windowed direct memory access on and off the FASTBUS at 80 megabytes per second

  14. Resource-sharing in multiple-component working memory

    OpenAIRE

    Doherty, Jason M.; Logie, Robert H.

    2016-01-01

    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the fu...

  15. Coping with Memory Loss

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Coping With Memory Loss Share Tweet Linkedin Pin it More sharing ... be evaluated by a health professional. What Causes Memory Loss? Anything that affects cognition—the process of ...

  16. The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?

    Science.gov (United States)

    Chuderski, Adam; Necka, Edward

    2012-01-01

    Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…

  17. Domain-general involvement of the posterior frontolateral cortex in time-based resource-sharing in working memory: An fMRI study.

    Science.gov (United States)

    Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel

    2015-07-15

    Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,

    2015-05-01

    With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques that can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM and uses a paging-like technique to load sub graphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.

  19. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  20. Resource-sharing between internal maintenance and external selection modulates attentional capture by working memory content

    Directory of Open Access Journals (Sweden)

    Anastasia eKiyonaga

    2014-08-01

    Full Text Available It is unclear why and under what circumstances working memory (WM and attention interact. Here, we apply the logic of the time-based resource-sharing (TBRS model of WM (e.g., Barrouillet, Bernardin, & Camos, 2004 to explore the mixed findings of a separate, but related, literature that studies the guidance of visual attention by WM contents. Specifically, we hypothesize that the linkage between WM representations and visual attention is governed by a time-shared cognitive resource that alternately refreshes internal (WM and selects external (visual attention information. If this were the case, WM content should guide visual attention (involuntarily, but only when there is time for it to be refreshed in an internal focus of attention. To provide an initial test for this hypothesis, we examined whether the amount of unoccupied time during a WM delay could impact the magnitude of attentional capture by WM contents. Participants were presented with a series of visual search trials while they maintained a WM cue for a delayed-recognition test. WM cues could coincide with the search target, a distracter, or neither. We varied both the number of searches to be performed, and the amount of available time to perform them. Slowing of visual search by a WM matching distracter—and facilitation by a matching target—were curtailed when the delay was filled with fast-paced (refreshing-preventing search trials, as was subsequent memory probe accuracy. WM content may, therefore, only capture visual attention when it can be refreshed, suggesting that internal (WM and external attention demands reciprocally impact one another because they share a limited resource. The TBRS rationale can thus be applied in a novel context to explain why WM contents capture attention, and under what conditions that effect should be observed.

  1. Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.

    Science.gov (United States)

    Luhmann, Christian C; Rajaram, Suparna

    2015-12-01

    The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.

  2. Cooperative Data Sharing: Simple Support for Clusters of SMP Nodes

    Science.gov (United States)

    DiNucci, David C.; Balley, David H. (Technical Monitor)

    1997-01-01

    Libraries like PVM and MPI send typed messages to allow for heterogeneous cluster computing. Lower-level libraries, such as GAM, provide more efficient access to communication by removing the need to copy messages between the interface and user space in some cases. still lower-level interfaces, such as UNET, get right down to the hardware level to provide maximum performance. However, these are all still interfaces for passing messages from one process to another, and have limited utility in a shared-memory environment, due primarily to the fact that message passing is just another term for copying. This drawback is made more pertinent by today's hybrid architectures (e.g. clusters of SMPs), where it is difficult to know beforehand whether two communicating processes will share memory. As a result, even portable language tools (like HPF compilers) must either map all interprocess communication, into message passing with the accompanying performance degradation in shared memory environments, or they must check each communication at run-time and implement the shared-memory case separately for efficiency. Cooperative Data Sharing (CDS) is a single user-level API which abstracts all communication between processes into the sharing and access coordination of memory regions, in a model which might be described as "distributed shared messages" or "large-grain distributed shared memory". As a result, the user programs to a simple latency-tolerant abstract communication specification which can be mapped efficiently to either a shared-memory or message-passing based run-time system, depending upon the available architecture. Unlike some distributed shared memory interfaces, the user still has complete control over the assignment of data to processors, the forwarding of data to its next likely destination, and the queuing of data until it is needed, so even the relatively high latency present in clusters can be accomodated. CDS does not require special use of an MMU, which

  3. Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing

    Science.gov (United States)

    Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice

    2011-01-01

    Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154

  4. Division of attention as a function of the number of steps, visual shifts, and memory load

    Science.gov (United States)

    Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.

    1986-01-01

    The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.

  5. Information and processes underlying semantic and episodic memory across tasks, items, and individuals.

    Science.gov (United States)

    Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H

    2018-04-01

    The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa; Sridharan, Srinivas; Deshpande, Anand; Park, Jongsoo; Heinecke, Alexander; Smelyanskiy, Mikhail; Kaul, Bharat; Dubey, Pradeep; Kaushik, Dinesh; Keyes, David E.

    2015-01-01

    -grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain

  7. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array

    International Nuclear Information System (INIS)

    Cho, Ikjun; Cho, Jinhan; Kim, Beom Joon; Cho, Jeong Ho; Ryu, Sook Won

    2014-01-01

    Organic field-effect transistor (OFET) memories have rapidly evolved from low-cost and flexible electronics with relatively low-memory capacities to memory devices that require high-capacity memory such as smart memory cards or solid-state hard drives. Here, we report the high-capacity OFET memories based on the multilayer stacking of densely packed hydrophobic metal NP layers in place of the traditional transistor memory systems based on a single charge trapping layer. We demonstrated that the memory performances of devices could be significantly enhanced by controlling the adsorption isotherm behavior, multilayer stacking structure and hydrophobicity of the metal NPs. For this study, tetraoctylammonium (TOA)-stabilized Au nanoparticles (TOA-Au NPs ) were consecutively layer-by-layer (LbL) assembled with an amine-functionalized poly(amidoamine) dendrimer (PAD). The formed (PAD/TOA-Au NP ) n films were used as a multilayer stacked charge trapping layer at the interface between the tunneling dielectric layer and the SiO 2 gate dielectric layer. For a single Au NP layer (i.e. PAD/TOA-Au NP ) 1 ) with a number density of 1.82 × 10 12 cm −2 , the memory window of the OFET memory device was measured to be approximately 97 V. The multilayer stacked OFET memory devices prepared with four Au NP layers exhibited excellent programmable memory properties (i.e. a large memory window (ΔV th ) exceeding 145 V, a fast switching speed (1 μs), a high program/erase (P/E) current ratio (greater than 10 6 ) and good electrical reliability) during writing and erasing over a relatively short time scale under an operation voltage of 100 V applied at the gate. (paper)

  8. A shared representation of order between encoding and recognition in visual short-term memory.

    Science.gov (United States)

    Kalm, Kristjan; Norris, Dennis

    2017-07-15

    Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Shared cognitive impairments and aetiology in ADHD symptoms and reading difficulties.

    Directory of Open Access Journals (Sweden)

    Celeste H M Cheung

    Full Text Available Twin studies indicate that the frequent co-occurrence of attention deficit hyperactivity disorder (ADHD symptoms and reading difficulties (RD is largely due to shared genetic influences. Both disorders are associated with multiple cognitive impairments, but it remains unclear which cognitive impairments share the aetiological pathway, underlying the co-occurrence of the symptoms. We address this question using a sample of twins aged 7-10 and a range of cognitive measures previously associated with ADHD symptoms or RD.We performed multivariate structural equation modelling analyses on parent and teacher ratings on the ADHD symptom domains of inattention and hyperactivity, parent ratings on RD, and cognitive data on response inhibition (commission errors, CE, reaction time variability (RTV, verbal short-term memory (STM, working memory (WM and choice impulsivity, from a population sample of 1312 twins aged 7-10 years.Three cognitive processes showed significant phenotypic and genetic associations with both inattention symptoms and RD: RTV, verbal WM and STM. While STM captured only 11% of the shared genetic risk between inattention and RD, the estimates increased somewhat for WM (21% and RTV (28%; yet most of the genetic sharing between inattention and RD remained unaccounted for in each case.While response inhibition and choice impulsivity did not emerge as important cognitive processes underlying the co-occurrence between ADHD symptoms and RD, RTV and verbal memory processes separately showed significant phenotypic and genetic associations with both inattention symptoms and RD. Future studies employing longitudinal designs will be required to investigate the developmental pathways and direction of causality further.

  10. Reducing the market impact of large shares of intermittent energy in Denmark

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Zvingilaite, Erika

    2010-01-01

    The increasing prevalence of renewable and intermittent energy sources in the electricity system is creating new challenges for the interaction of the system. In Denmark, high renewable shares have been achieved without great difficulty, mainly due to the flexibility of the nearby Nordic hydro-power dominated system. Further increases in the share of renewable energy sources require that additional options are considered to facilitate integration with the lowest possible cost. With large shares of intermittent energy, the impact can be observed on wholesale prices, giving both lower prices and higher volatility. A lack of wind that causes high prices is rarely seen because long periods without wind are uncommon. Therefore we focus on the low price effects and the increased value of flexible demand options. On the supply side, there is an increase in the value of other flexible generation technologies and the attractiveness of additional interconnection capacity. This paper also analyses options for increasing the flexibility of heat generation involving large and decentralized CHP plants and heat generation based on electricity. The incentives that the market provides for shifting demand and using electricity for heat production are discussed based on the variability of prices observed from 2006 to 2008.

  11. Group Clustering Mechanism for P2P Large Scale Data Sharing Collaboration

    Institute of Scientific and Technical Information of China (English)

    DENGQianni; LUXinda; CHENLi

    2005-01-01

    Research shows that P2P scientific collaboration network will exhibit small-world topology, as do a large number of social networks for which the same pattern has been documented. In this paper we propose a topology building protocol to benefit from the small world feature. We find that the idea of Freenet resembles the dynamic pattern of social interactions in scientific data sharing and the small world characteristic of Freenet is propitious to improve the file locating performance in scientificdata sharing. But the LRU (Least recently used) datas-tore cache replacement scheme of Freenet is not suitableto be used in scientific data sharing network. Based onthe group locality of scientific collaboration, we proposean enhanced group clustering cache replacement scheme.Simulation shows that this scheme improves the request hitratio dramatically while keeping the small average hops per successful request comparable to LRU.

  12. Collaborative Work without Large, Shared Displays: Looking for “the Big Picture” on a Small Screen?

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2017-01-01

    Large, shared displays – such as electronic whiteboards – have proven successful in supporting actors in forming and maintaining an overview of tightly coupled collaborative activities. However, in many developing countries the technology of choice is mobile phones, which have neither a large nor...... a shared screen. It therefore appears relevant to ask: How may mobile devices with small screens support, or fail to support, actors in forming and maintaining an overview of their collaborative activities?...

  13. The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement

    Science.gov (United States)

    2015-01-01

    In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in serial order. These tasks were calibrated against traditional measures of simple and complex span. Clear age-related changes in these primary memory estimates were observed. There were marked individual differences in primary memory capacity, but each novel measure was predictive of simple span performance. Among older children, each measure shared variance with reading and mathematics performance, whereas for younger children, the interleaved lists task was the strongest single predictor of academic ability. We argue that these novel tasks have considerable potential for the measurement of primary memory capacity and provide new, complementary ways of measuring the transient memory processes that predict academic performance. The interleaved lists task also shared features with interference control tasks, and our findings suggest that young children have a particular difficulty in resisting distraction and that variance in the ability to resist distraction is also shared with measures of educational attainment. PMID:26075630

  14. Multiple-User, Multitasking, Virtual-Memory Computer System

    Science.gov (United States)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1993-01-01

    Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.

  15. Specification and development of the sharing memory data management module for a nuclear processes simulator; Especificacion y desarrollo del modulo de administracion de datos de memoria compartida para un simulador de procesos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Telesforo R, D. [UNAM, DEPFI, Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: cchavez2@cableonline.com.mx

    2003-07-01

    Actually it is developed in the Engineering Faculty of UNAM a simulator of nuclear processes with research and teaching purposes. It consists of diverse modules, included the one that is described in the present work that is the shared memory module. It uses the IPC mechanisms of the UNIX System V operative system, and it was codified with C language. To model the diverse components of the simulator the RELAP code is used. The function of the module is to generate locations of shared memory for to deposit in these the necessary variables for the interaction among the diverse ones processes of the simulator. In its it will be able read and to write the information that generate the running of the simulation program, besides being able to interact with the internal variables of the code in execution time. The graphic unfolding (mimic, pictorials, tendency graphics, virtual instrumentation, etc.) they also obtain information of the shared memory. In turn, actions of the user in interactive unfolding, they modify the segments of shared memory, and the information is sent to the RELAP code to modify the simulation course. The program has two beginning modes: automatic and manual. In automatic mode taking an enter file of RELAP (indta) and it joins in shared memory, the control variables that in this appear. In manual mode the user joins, he reads and he writes the wanted control variables, whenever they exist in the enter file (indta). This is a dynamic mode of interacting with the simulator in a direct way and of even altering the values as when its don't exist in the board elements associated to the variables. (Author)

  16. Assessing the effect of knowledge sharing on Employees\\' Psychological Empowerment by Clarifying Mediating Role of organizational memory and learning collaborative electronic in National Library and Archives of I.R of Iran

    Directory of Open Access Journals (Sweden)

    Davood Feiz

    2017-06-01

    Full Text Available Nowadays knowledge has been enumerated as a valuable and important source in libraries. Knowledge sharing among employees is necessary for libraries’ survive and goal achievement. On the other hand, empowerment people with high moral are an important factor in the libraries’ survival and life. In other words, the importance of human resources is far from the new technology and material and financial resources. As a result, this study aimed at evaluating the effect of knowledge sharing on psychological empowerment with regard to organizational memory and learning electronic participation the role of the mediator. The research data were gathered from four areas named at organizing; communicating; education and logistic by questioner. Construct validity and cronbach's alpha coefficient were used for assessing the validity and reliability respectively. To hypotheses test, structural equation modeling and Lisrel software were used. The results show that knowledge sharing has a directly significant impact on psychological empowerment. While knowledge sharing has an indirect impact on psychological empowerment, this impact via organizational memory and electronic participation learning is far greater than its direct impact. The results also show that organizational memory has not any effect on the psychological empowerment.

  17. A shared resource between declarative memory and motor memory

    OpenAIRE

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting....

  18. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism.

    Science.gov (United States)

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D E

    2016-03-01

    Individuals with reading disability or individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading or social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. White-matter structural connectivity via diffusion weighted imaging was examined in sixty-four children, ages 5-17 years, with reading disability, ASD, or typical development (TD), who were matched in age, gender, intelligence, and diffusion data quality. Children with reading disability and children with ASD exhibited reduced PWM compared to children with TD. The two diagnostic groups showed altered white-matter microstructure in the temporo-parietal portion of the left arcuate fasciculus (AF) and in the temporo-occipital portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups, but not in the TD group. These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left AF and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM.

  19. Destination memory impairment in older people.

    Science.gov (United States)

    Gopie, Nigel; Craik, Fergus I M; Hasher, Lynn

    2010-12-01

    Older adults are assumed to have poor destination memory-knowing to whom they tell particular information-and anecdotes about them repeating stories to the same people are cited as informal evidence for this claim. Experiment 1 assessed young and older adults' destination memory by having participants tell facts (e.g., "A dime has 118 ridges around its edge") to pictures of famous people (e.g., Oprah Winfrey). Surprise recognition memory tests, which also assessed confidence, revealed that older adults, compared to young adults, were disproportionately impaired on destination memory relative to spared memory for the individual components (i.e., facts, faces) of the episode. Older adults also were more confident that they had not told a fact to a particular person when they actually had (i.e., a miss); this presumably causes them to repeat information more often than young adults. When the direction of information transfer was reversed in Experiment 2, such that the famous people shared information with the participants (i.e., a source memory experiment), age-related memory differences disappeared. In contrast to the destination memory experiment, older adults in the source memory experiment were more confident than young adults that someone had shared a fact with them when a different person actually had shared the fact (i.e., a false alarm). Overall, accuracy and confidence jointly influence age-related changes to destination memory, a fundamental component of successful communication. (c) 2010 APA, all rights reserved).

  20. Memory Efficient PCA Methods for Large Group ICA.

    Science.gov (United States)

    Rachakonda, Srinivas; Silva, Rogers F; Liu, Jingyu; Calhoun, Vince D

    2016-01-01

    Principal component analysis (PCA) is widely used for data reduction in group independent component analysis (ICA) of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimensional temporally concatenated datasets into its group PCA space. Existing randomized PCA methods can determine the PCA subspace with minimal memory requirements and, thus, are ideal for solving large PCA problems. Since the number of dataloads is not typically optimized, we extend one of these methods to compute PCA of very large datasets with a minimal number of dataloads. This method is coined multi power iteration (MPOWIT). The key idea behind MPOWIT is to estimate a subspace larger than the desired one, while checking for convergence of only the smaller subset of interest. The number of iterations is reduced considerably (as well as the number of dataloads), accelerating convergence without loss of accuracy. More importantly, in the proposed implementation of MPOWIT, the memory required for successful recovery of the group principal components becomes independent of the number of subjects analyzed. Highly efficient subsampled eigenvalue decomposition techniques are also introduced, furnishing excellent PCA subspace approximations that can be used for intelligent initialization of randomized methods such as MPOWIT. Together, these developments enable efficient estimation of accurate principal components, as we illustrate by solving a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a regular desktop computer with only 4 GB RAM, in just a few hours. MPOWIT is also highly scalable and could realistically solve group-level PCA of fMRI on thousands of subjects, or more, using standard hardware, limited only by time, not memory. Also, the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed implementations ideal for big

  1. Memory efficient PCA methods for large group ICA

    Directory of Open Access Journals (Sweden)

    Srinivas eRachakonda

    2016-02-01

    Full Text Available Principal component analysis (PCA is widely used for data reduction in group independent component analysis (ICA of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimensional temporally concatenated datasets into its group PCA space. Existing randomized PCA methods can determine the PCA subspace with minimal memory requirements and, thus, are ideal for solving large PCA problems. Since the number of dataloads is not typically optimized, we extend one of these methods to compute PCA of very large datasets with a minimal number of dataloads. This method is coined multi power iteration (MPOWIT. The key idea behind MPOWIT is to estimate a subspace larger than the desired one, while checking for convergence of only the smaller subset of interest. The number of iterations is reduced considerably (as well as the number of dataloads, accelerating convergence without loss of accuracy. More importantly, in the proposed implementation of MPOWIT, the memory required for successful recovery of the group principal components becomes independent of the number of subjects analyzed. Highly efficient subsampled eigenvalue decomposition techniques are also introduced, furnishing excellent PCA subspace approximations that can be used for intelligent initialization of randomized methods such as MPOWIT. Together, these developments enable efficient estimation of accurate principal components, as we illustrate by solving a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a regular desktop computer with only 4GB RAM, in just a few hours. MPOWIT is also highly scalable and could realistically solve group-level PCA of fMRI on thousands of subjects, or more, using standard hardware, limited only by time, not memory. Also, the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed implementations

  2. Centrally managed unified shared virtual address space

    Science.gov (United States)

    Wilkes, John

    2018-02-13

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontend interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.

  3. Principles of Transactional Memory The Theory

    CERN Document Server

    Guerraoui, Rachid

    2010-01-01

    Transactional memory (TM) is an appealing paradigm for concurrent programming on shared memory architectures. With a TM, threads of an application communicate, and synchronize their actions, via in-memory transactions. Each transaction can perform any number of operations on shared data, and then either commit or abort. When the transaction commits, the effects of all its operations become immediately visible to other transactions; when it aborts, however, those effects are entirely discarded. Transactions are atomic: programmers get the illusion that every transaction executes all its operati

  4. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  5. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.

    Science.gov (United States)

    Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine

    2015-03-15

    Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.

  6. Theme II Joint Work Plan -2017 Collaboration and Knowledge Sharing on Large-scale Demonstration Projects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [World Resources Inst. (WRI), Washington, DC (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-25

    This effort is designed to expedite learnings from existing and planned large demonstration projects and their associated research through effective knowledge sharing among participants in the US and China.

  7. Inductive reasoning and implicit memory: evidence from intact and impaired memory systems.

    Science.gov (United States)

    Girelli, Luisa; Semenza, Carlo; Delazer, Margarete

    2004-01-01

    In this study, we modified a classic problem solving task, number series completion, in order to explore the contribution of implicit memory to inductive reasoning. Participants were required to complete number series sharing the same underlying algorithm (e.g., +2), differing in both constituent elements (e.g., 2468 versus 57911) and correct answers (e.g., 10 versus 13). In Experiment 1, reliable priming effects emerged, whether primes and targets were separated by four or ten fillers. Experiment 2 provided direct evidence that the observed facilitation arises at central stages of problem solving, namely the identification of the algorithm and its subsequent extrapolation. The observation of analogous priming effects in a severely amnesic patient strongly supports the hypothesis that the facilitation in number series completion was largely determined by implicit memory processes. These findings demonstrate that the influence of implicit processes extends to higher level cognitive domain such as induction reasoning.

  8. Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay

    Science.gov (United States)

    Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu

    2017-08-01

    Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.

  9. Centrally managed unified shared virtual address space

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, John

    2018-02-13

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontend interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.

  10. Memory Management for Safety-Critical Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    Safety-Critical Java (SCJ) is based on the Real-Time Specification for Java. To simplify the certification of Java programs, SCJ supports only a restricted scoped memory model. Individual threads share only immortal memory and the newly introduced mission memory. All other scoped memories...... implementation is evaluated on an embedded Java processor....

  11. The twentieth century in European Memory

    DEFF Research Database (Denmark)

    The Twentieth Century in European Memory investigates contested and divisive memories of conflicts, world wars, dictatorship, genocide and mass killing. Focusing on the questions of transculturality and reception, the book looks at the ways in which such memories are being shared, debated...

  12. Distributed terascale volume visualization using distributed shared virtual memory

    KAUST Repository

    Beyer, Johanna

    2011-10-01

    Table 1 illustrates the impact of different distribution unit sizes, different screen resolutions, and numbers of GPU nodes. We use two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB memory) and a mouse cortex EM dataset (see Figure 2) of resolution 21,494 x 25,790 x 1,850 = 955GB. The size of the virtual distribution units significantly influences the data distribution between nodes. Small distribution units result in a high depth complexity for compositing. Large distribution units lead to a low utilization of GPUs, because in the worst case only a single distribution unit will be in view, which is rendered by only a single node. The choice of an optimal distribution unit size depends on three major factors: the output screen resolution, the block cache size on each node, and the number of nodes. Currently, we are working on optimizing the compositing step and network communication between nodes. © 2011 IEEE.

  13. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  14. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

    Science.gov (United States)

    Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-08-09

    System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.

  15. NUMA obliviousness through memory mapping

    NARCIS (Netherlands)

    M.M. Gawade (Mrunal); M.L. Kersten (Martin)

    2015-01-01

    htmlabstractWith the rise of multi-socket multi-core CPUs a lot of effort is being put into how to best exploit their abundant CPU power. In a shared memory setting the multi-socket CPUs are equipped with their own memory module, and access memory modules across sockets in a non-uniform

  16. Grouping and binding in visual short-term memory.

    Science.gov (United States)

    Quinlan, Philip T; Cohen, Dale J

    2012-09-01

    Findings of 2 experiments are reported that challenge the current understanding of visual short-term memory (VSTM). In both experiments, a single study display, containing 6 colored shapes, was presented briefly and then probed with a single colored shape. At stake is how VSTM retains a record of different objects that share common features: In the 1st experiment, 2 study items sometimes shared a common feature (either a shape or a color). The data revealed a color sharing effect, in which memory was much better for items that shared a common color than for items that did not. The 2nd experiment showed that the size of the color sharing effect depended on whether a single pair of items shared a common color or whether 2 pairs of items were so defined-memory for all items improved when 2 color groups were presented. In explaining performance, an account is advanced in which items compete for a fixed number of slots, but then memory recall for any given stored item is prone to error. A critical assumption is that items that share a common color are stored together in a slot as a chunk. The evidence provides further support for the idea that principles of perceptual organization may determine the manner in which items are stored in VSTM. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  17. A general model for memory interference in a multiprocessor system with memory hierarchy

    Science.gov (United States)

    Taha, Badie A.; Standley, Hilda M.

    1989-01-01

    The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.

  18. Reliability analysis of load-sharing systems with memory.

    Science.gov (United States)

    Wang, Dewei; Jiang, Chendi; Park, Chanseok

    2018-02-22

    The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.

  19. NUMA obliviousness through memory mapping

    NARCIS (Netherlands)

    Gawade, M.; Kersten, M.; Pandis, I.; Kersten, M.

    2015-01-01

    With the rise of multi-socket multi-core CPUs a lot of effort is being put into how to best exploit their abundant CPU power. In a shared memory setting the multi-socket CPUs are equipped with their own memory module, and access memory modules across sockets in a non-uniform access pattern (NUMA).

  20. Wealth Share Analysis with “Fundamentalist/Chartist” Heterogeneous Agents

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Xu

    2014-01-01

    Full Text Available We build a multiassets heterogeneous agents model with fundamentalists and chartists, who make investment decisions by maximizing the constant relative risk aversion utility function. We verify that the model can reproduce the main stylized facts in real markets, such as fat-tailed return distribution and long-term memory in volatility. Based on the calibrated model, we study the impacts of the key strategies’ parameters on investors’ wealth shares. We find that, as chartists’ exponential moving average periods increase, their wealth shares also show an increasing trend. This means that higher memory length can help to improve their wealth shares. This effect saturates when the exponential moving average periods are sufficiently long. On the other hand, the mean reversion parameter has no obvious impacts on wealth shares of either type of traders. It suggests that no matter whether fundamentalists take moderate strategy or aggressive strategy on the mistake of stock prices, it will have no different impact on their wealth shares in the long run.

  1. Study of large shareholders’ behavior after non-tradable shares reform: A perspective of related party transactions

    Directory of Open Access Journals (Sweden)

    Hongbo Zhang

    2013-09-01

    Full Text Available Purpose: This paper explores the behavior choice of large shareholders in the related party transactions which occur between the large shareholders and listed companies by using the data of shares from 2007 to 2010. Design/methodology/appraoch: Based on the classical research paradigm (that is, LLSV, we analysis controlling shareholders’ propping and tunneling behaviors aiming to make sure their impacts to the medium and small shareholders in theory. Findings: We get the following findings: After our capital market entering the era of full circulation, we find that the relationship between the ratio of controlling shareholders and the related party transactions present (RPTs an inverted “U” shape curve, which means that it exits a typical “Grab-synergy” effect. we should take different measures to the transactions occurred between the large shareholders and listed companies according to the property nature of the large shareholders. State-owned shareholders choose to realize their private benefits by means of RPTs, while the non state-owned shareholders conduct RPTs with an expectation of reducing costs.Practical implications: Since Guo Shuqing, the Chairman of China Securities Regulatory Commission, took office, he has taken a lot measures to curb the related party transactions harshly. Under this circumstance, it is just the right time to have a research on large shareholders’ behavior. It has important significance both in theory and practice. Originality/value: Considering the Chinese special national conditions, this paper added lots of comprehensive facts to study large shareholders’ behavior including the rate of the share held by indirect controller, the probability of thievish behaviors have been discovered, and the strict punishment regulations. The discussions in this paper help to bring into focus a highly topical issue within the context of the large shareholders’ behavior after Non-tradable Shares Reform.

  2. A method for real-time memory efficient implementation of blob detection in large images

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir L.

    2017-01-01

    Full Text Available In this paper we propose a method for real-time blob detection in large images with low memory cost. The method is suitable for implementation on the specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It uses parallelism to speed-up the blob detection. The input image is divided into blocks of equal sizes to which the maximally stable extremal regions (MSER blob detector is applied in parallel. We propose the usage of multiresolution analysis for detection of large blobs which are not detected by processing the small blocks. This method can find its place in many applications such as medical imaging, text recognition, as well as video surveillance or wide area motion imagery (WAMI. We explored the possibilities of usage of detected blobs in the feature-based image alignment as well. When large images are processed, our approach is 10 to over 20 times more memory efficient than the state of the art hardware implementation of the MSER.

  3. Enhanced memory architecture for massively parallel vision chip

    Science.gov (United States)

    Chen, Zhe; Yang, Jie; Liu, Liyuan; Wu, Nanjian

    2015-04-01

    Local memory architecture plays an important role in high performance massively parallel vision chip. In this paper, we propose an enhanced memory architecture with compact circuit area designed in a full-custom flow. The memory consists of separate master-stage static latches and shared slave-stage dynamic latches. We use split transmission transistors on the input data path to enhance tolerance for charge sharing and to achieve random read/write capabilities. The memory is designed in a 0.18 μm CMOS process. The area overhead of the memory achieves 16.6 μm2/bit. Simulation results show that the maximum operating frequency reaches 410 MHz and the corresponding peak dynamic power consumption for a 64-bit memory unit is 190 μW under 1.8 V supply voltage.

  4. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  5. Speedup predictions on large scientific parallel programs

    International Nuclear Information System (INIS)

    Williams, E.; Bobrowicz, F.

    1985-01-01

    How much speedup can we expect for large scientific parallel programs running on supercomputers. For insight into this problem we extend the parallel processing environment currently existing on the Cray X-MP (a shared memory multiprocessor with at most four processors) to a simulated N-processor environment, where N greater than or equal to 1. Several large scientific parallel programs from Los Alamos National Laboratory were run in this simulated environment, and speedups were predicted. A speedup of 14.4 on 16 processors was measured for one of the three most used codes at the Laboratory

  6. Shared reality in interpersonal relationships.

    Science.gov (United States)

    Andersen, Susan M; Przybylinski, Elizabeth

    2017-11-24

    Close relationships afford us opportunities to create and maintain meaning systems as shared perceptions of ourselves and the world. Establishing a sense of mutual understanding allows for creating and maintaining lasting social bonds, and as such, is important in human relations. In a related vein, it has long been known that knowledge of significant others in one's life is stored in memory and evoked with new persons-in the social-cognitive process of 'transference'-imbuing new encounters with significance and leading to predictable cognitive, evaluative, motivational, and behavioral consequences, as well as shifts in the self and self-regulation, depending on the particular significant other evoked. In these pages, we briefly review the literature on meaning as interpersonally defined and then selectively review research on transference in interpersonal perception. Based on this, we then highlight a recent series of studies focused on shared meaning systems in transference. The highlighted studies show that values and beliefs that develop in close relationships (as shared reality) are linked in memory to significant-other knowledge, and thus, are indirectly activated (made accessible) when cues in a new person implicitly activate that significant-other knowledge (in transference), with these shared beliefs then actively pursued with the new person and even protected against threat. This also confers a sense of mutual understanding, and all told, serves both relational and epistemic functions. In concluding, we consider as well the relevance of co-construction of shared reality n such processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exploring Shared SRAM Tables in FPGAs for Larger LUTs and Higher Degree of Sharing

    Directory of Open Access Journals (Sweden)

    Ali Asghar

    2017-01-01

    Full Text Available In modern SRAM based Field Programmable Gate Arrays, a Look-Up Table (LUT is the principal constituent logic element which can realize every possible Boolean function. However, this flexibility of LUTs comes with a heavy area penalty. A part of this area overhead comes from the increased amount of configuration memory which rises exponentially as the LUT size increases. In this paper, we first present a detailed analysis of a previously proposed FPGA architecture which allows sharing of LUTs memory (SRAM tables among NPN-equivalent functions, to reduce the area as well as the number of configuration bits. We then propose several methods to improve the existing architecture. A new clustering technique has been proposed which packs NPN-equivalent functions together inside a Configurable Logic Block (CLB. We also make use of a recently proposed high performance Boolean matching algorithm to perform NPN classification. To enhance area savings further, we evaluate the feasibility of more than two LUTs sharing the same SRAM table. Consequently, this work explores the SRAM table sharing approach for a range of LUT sizes (4–7, while varying the cluster sizes (4–16. Experimental results on MCNC benchmark circuits set show an overall area reduction of ~7% while maintaining the same critical path delay.

  8. An optimal multi-channel memory controller for real-time systems

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2013-01-01

    Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor platforms depends on the mapping of memory clients to the memory channels, the granularity at which the memory requests are interleaved in each channel, and the bandwidth and memory capacity

  9. Insights on consciousness from taste memory research.

    Science.gov (United States)

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  10. Toward self-stabilizing wait-free shared memory objects

    NARCIS (Netherlands)

    J.H. Hoepman (Jaap-Henk); M. Papatriantafilou (Marina); P. Tsigas (Philippas)

    1995-01-01

    textabstractPast research on fault tolerant distributed systems has focussed on either processor failures, ranging from benign crash failures to the malicious byzantine failure types, or on transient memory failures, which can suddenly corrupt the state of the system. An interesting question in the

  11. System and method for programmable bank selection for banked memory subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Hoenicke, Dirk (Seebruck-Seeon, DE); Ohmacht, Martin (Yorktown Heights, NY); Salapura, Valentina (Chappaqua, NY); Sugavanam, Krishnan (Mahopac, NY)

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  12. The effect of listening to others remember on subsequent memory: The roles of expertise and trust in socially shared retrieval-induced forgetting and social contagion

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Wohl, Dana; Meksin, Robert

    2014-01-01

    Speakers reshape listeners’ memories through at least two discrete means: (1) social contagion and (2) socially shared retrieval-induced forgetting (SS-RIF). Three experiments explored how social relationships between speaker and listener moderate these conversational effects, focusing specifically......-RIF than untrustworthy speakers. These findings suggest that how speakers shape listeners’ memories depends on the social dynamic that exists between speaker and listener....... on two speaker characteristics, expertise and trustworthiness. We examined their effect on SS-RIF and contrasted, within-subjects, their effects on both SS-RIF and the previously studied social contagion. Experiments 1 and 2 explored the effects of perceived expertise; Experiment 3 explored trust. We...

  13. Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures

    Science.gov (United States)

    2017-10-04

    to the memory architectures of CPUs and GPUs to obtain good performance and result in good memory performance using cache management. These methods ...Accomplishments: The PI and students has developed new methods for path and ray tracing and their Report Date: 14-Oct-2017 INVESTIGATOR(S): Phone...The efficiency of our method makes it a good candidate for forming hybrid schemes with wave-based models. One possibility is to couple the ray curve

  14. Chimpanzees and bonobos exhibit divergent spatial memory development.

    Science.gov (United States)

    Rosati, Alexandra G; Hare, Brian

    2012-11-01

    Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children. © 2012 Blackwell Publishing Ltd.

  15. Fast transfer of shared data

    International Nuclear Information System (INIS)

    Timmer, C.; Abbott, D.J.; Heyes, W.G.; Jostizembski, E.; MacLeod, R.W.; Wolin, E.

    2000-01-01

    The Event Transfer system enables its users to produce events (data) and share them with other users by utilizing shared memory on either Solaris or Linux-based computers. Its design emphasizes speed, reliability, ease of use, and recoverability from crashes. In addition to fast local operation, the ET system allows network transfer of events. Using multi-threaded code based on POSIX threades and mutexes, a successful implementation was developed which allowed passing events over 500 kHz on a 4 cpu Sun workstation and 150 kHz on a dual cpu PC

  16. The distribution and the functions of autobiographical memories: Why do older adults remember autobiographical memories from their youth?

    Science.gov (United States)

    Wolf, Tabea; Zimprich, Daniel

    2016-09-01

    In the present study, the distribution of autobiographical memories was examined from a functional perspective: we examined whether the extent to which long-term autobiographical memories were rated as having a self-, a directive, or a social function affects the location (mean age) and scale (standard deviation) of the memory distribution. Analyses were based on a total of 5598 autobiographical memories generated by 149 adults aged between 50 and 81 years in response to 51 cue-words. Participants provided their age at the time when the recalled events had happened and rated how frequently they recall these events for self-, directive, and social purposes. While more frequently using autobiographical memories for self-functions was associated with an earlier mean age, memories frequently shared with others showed a narrower distribution around a later mean age. The directive function, by contrast, did not affect the memory distribution. The results strengthen the assumption that experiences from an individual's late adolescence serve to maintain a sense of self-continuity throughout the lifespan. Experiences that are frequently shared with others, in contrast, stem from a narrow age range located in young adulthood.

  17. SECRET SHARING SCHEMES WITH STRONG MULTIPLICATION AND A LARGE NUMBER OF PLAYERS FROM TORIC VARIETIES

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    2017-01-01

    This article consider Massey's construction for constructing linear secret sharing schemes from toric varieties over a finite field $\\Fq$ with $q$ elements. The number of players can be as large as $(q-1)^r-1$ for $r\\geq 1$. The schemes have strong multiplication, such schemes can be utilized in ...

  18. The Association of Perceived Memory Loss with Osteoarthritis and Related Joint Pain in a Large Appalachian Population.

    Science.gov (United States)

    Innes, Kim E; Sambamoorthi, Usha

    2017-05-19

    Previous studies have documented memory impairment in several chronic pain syndromes. However, the potential link between memory loss and osteoarthritis (OA), the second most common cause of chronic pain, remains little explored. In this cross-sectional study, we examine the association of perceived memory loss to OA and assess the potential mediating influence of sleep and mood disturbance in a large Appalachian population.  Cross-sectional.  US Ohio Valley.  A total of 21,982 Appalachian adults age 40 years or older drawn from the C8 Health Project (N = 19,004 adults without and 2,478 adults with OA). All participants completed a comprehensive health survey between 2005 and 2006. Medical history, including physician diagnosis of OA, lifestyle factors, short- and long-term memory loss, sleep quality, and mood were assessed via self-report.  After adjustment for demographic, lifestyle, health-related, and other factors, participants with OA were almost three times as likely to report frequent memory loss (adjusted odds ratios [ORs] for short- and long-term memory loss, respectively = 2.7, 95% confidence interval [CI] = 2.2-3.3, and 2.6, 95% CI = 2.0-3.3). The magnitude of these associations increased significantly with rising frequency of reported joint pain (adjusted OR for OA with frequent joint pain vs no OA = 3.3, 95% CI = 2.6-4.1, P trend  memory loss = 2.0, 95% CI = 1.6-2.4, and 2.1, 95% CI = 1.7-2.8, adjusted for sleep and mood impairment, respectively; OR = 1.8, 95% CI = 1.4-2.2, adjusted for both factors).  In this large cross-sectional study, OA and related joint pain were strongly associated with perceived memory loss; these associations may be partially mediated by sleep and mood disturbance. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Memory control with selective retention

    NARCIS (Netherlands)

    2012-01-01

    The present invention relates to a memory circuit and a method of controlling data retention in the memory circuit, wherein a supply signal is selectively switched to a respective one of at least two virtual supply lines (24) each shared by a respective one of a plurality of groups (30-1 to 30-n) of

  20. Memory control with selective retention

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a memory circuit and a method of controlling data retention in the memory circuit, wherein a supply signal is selectively switched to a respective one of at least two virtual supply lines (24) each shared by a respective one of a plurality of groups (30-1 to 30-n) of

  1. A Time-predictable Memory Network-on-Chip

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Chong, David VH; Puffitsch, Wolfgang

    2014-01-01

    To derive safe bounds on worst-case execution times (WCETs), all components of a computer system need to be time-predictable: the processor pipeline, the caches, the memory controller, and memory arbitration on a multicore processor. This paper presents a solution for time-predictable memory...... arbitration and access for chip-multiprocessors. The memory network-on-chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based arbitration completely decouples processor cores and allows WCET analysis of the memory accesses on individual cores without...

  2. European Union of Memories?

    DEFF Research Database (Denmark)

    Wæhrens, Anne

    After a very brief introduction to history and memory in Europe after 1989, as seen by Aleida Assmann, I will give a short introduction to the EP and to their adoption of resolutions and declarations. Then I will define some concepts central to my study before I proceed to the analysis. Finally I...... these changes have come about. Moreover, I show that there seems to be a political memory split between Left and Right and I suggest that the time might not be ripe for a shared European memory....

  3. Mind-to-mind heteroclinic coordination: Model of sequential episodic memory initiation

    Science.gov (United States)

    Afraimovich, V. S.; Zaks, M. A.; Rabinovich, M. I.

    2018-05-01

    Retrieval of episodic memory is a dynamical process in the large scale brain networks. In social groups, the neural patterns, associated with specific events directly experienced by single members, are encoded, recalled, and shared by all participants. Here, we construct and study the dynamical model for the formation and maintaining of episodic memory in small ensembles of interacting minds. We prove that the unconventional dynamical attractor of this process—the nonsmooth heteroclinic torus—is structurally stable within the Lotka-Volterra-like sets of equations. Dynamics on this torus combines the absence of chaos with asymptotic instability of every separate trajectory; its adequate quantitative characteristics are length-related Lyapunov exponents. Variation of the coupling strength between the participants results in different types of sequential switching between metastable states; we interpret them as stages in formation and modification of the episodic memory.

  4. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  5. Behavioral, Attitudinal, and Cultural Factors Influencing Interagency Information Sharing

    Science.gov (United States)

    2011-05-01

    Conflict ( Prosocial Behavior ) Cognitive Processes - Shared Team Mental Models, Transactive Memory Action Processes - Team Coordination...information sharing behaviors after the experiment unfolded. To explore this further, an independent sample t -test was conducted, where the difference in...U.S. Army Research Institute for the Behavioral and Social Sciences Research Report 1944 Behavioral , Attitudinal, and Cultural Factors

  6. DMZ Cultural Center: The Role of Shared Space in the Korean Peninsula Crisis

    Directory of Open Access Journals (Sweden)

    Jin Young Song

    2016-08-01

    Full Text Available If we view urban space as a framework of events and memory, conflict infrastructure is inevitably understood as a memorial practice – it either solidifies the conflict or promotes positive associations. Using the mechanism of memorialization, this article examines the function of shared space, namely the built environment that occupies space between the highly conflicted borders of the Korean peninsula. In order to overcome the limitations of two recent inter-Korean projects that focused on economic cooperation, we analyze the Demilitarized Zone (DMZ Cultural Center’s planning and design strategy, which is based on the role of shared space contributing to peace and reconciliation.

  7. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  8. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  9. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    Science.gov (United States)

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.

  10. Towards a psychology of collective memory.

    Science.gov (United States)

    Hirst, William; Manier, David

    2008-04-01

    This article discusses the place of psychology within the now voluminous social scientific literature on collective memory. Many social scientists locate collective memories in the social resources that shape them. For scholars adopting this perspective, collective memories are viewed as transcending individuals; that is, as being "in the world". Others recognise that, in the final analysis, individuals must remember collective as well as individual memories. These scholars treat collective memories as shared individual memories. We attempt to bridge these two approaches by distinguishing between the design of social resources and memory practices, on one hand, and on the other, the effectiveness of each in forming and transforming the memories held by individuals and the psychological mechanisms that guide this effectiveness.

  11. An Adaptive Insertion and Promotion Policy for Partitioned Shared Caches

    Science.gov (United States)

    Mahrom, Norfadila; Liebelt, Michael; Raof, Rafikha Aliana A.; Daud, Shuhaizar; Hafizah Ghazali, Nur

    2018-03-01

    Cache replacement policies in chip multiprocessors (CMP) have been investigated extensively and proven able to enhance shared cache management. However, competition among multiple processors executing different threads that require simultaneous access to a shared memory may cause cache contention and memory coherence problems on the chip. These issues also exist due to some drawbacks of the commonly used Least Recently Used (LRU) policy employed in multiprocessor systems, which are because of the cache lines residing in the cache longer than required. In image processing analysis of for example extra pulmonary tuberculosis (TB), an accurate diagnosis for tissue specimen is required. Therefore, a fast and reliable shared memory management system to execute algorithms for processing vast amount of specimen image is needed. In this paper, the effects of the cache replacement policy in a partitioned shared cache are investigated. The goal is to quantify whether better performance can be achieved by using less complex replacement strategies. This paper proposes a Middle Insertion 2 Positions Promotion (MI2PP) policy to eliminate cache misses that could adversely affect the access patterns and the throughput of the processors in the system. The policy employs a static predefined insertion point, near distance promotion, and the concept of ownership in the eviction policy to effectively improve cache thrashing and to avoid resource stealing among the processors.

  12. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  13. Large-Scale Unsupervised Hashing with Shared Structure Learning.

    Science.gov (United States)

    Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong

    2015-09-01

    Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.

  14. Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information.

    Science.gov (United States)

    Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T

    2017-11-01

    Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.

  15. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  16. The broadcast of shared attention and its impact on political persuasion.

    Science.gov (United States)

    Shteynberg, Garriy; Bramlett, James M; Fles, Elizabeth H; Cameron, Jaclyn

    2016-11-01

    In democracies where multitudes yield political influence, so does broadcast media that reaches those multitudes. However, broadcast media may not be powerful simply because it reaches a certain audience, but because each of the recipients is aware of that fact. That is, watching broadcast media can evoke a state of shared attention, or the perception of simultaneous coattention with others. Whereas past research has investigated the effects of shared attention with a few socially close others (i.e., friends, acquaintances, minimal ingroup members), we examine the impact of shared attention with a multitude of unfamiliar others in the context of televised broadcasting. In this paper, we explore whether shared attention increases the psychological impact of televised political speeches, and whether fewer numbers of coattending others diminishes this effect. Five studies investigate whether the perception of simultaneous coattention, or shared attention, on a mass broadcasted political speech leads to more extreme judgments. The results indicate that the perception of synchronous coattention (as compared with coattending asynchronously and attending alone) renders persuasive speeches more persuasive, and unpersuasive speeches more unpersuasive. We also find that recall memory for the content of the speech mediates the effect of shared attention on political persuasion. The results are consistent with the notion that shared attention on mass broadcasted information results in deeper processing of the content, rendering judgments more extreme. In all, our findings imply that shared attention is a cognitive capacity that supports large-scale social coordination, where multitudes of people can cognitively prioritize simultaneously coattended information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Shared reality in intergroup communication: Increasing the epistemic authority of an out-group audience.

    Science.gov (United States)

    Echterhoff, Gerald; Kopietz, René; Higgins, E Tory

    2017-06-01

    Communicators typically tune messages to their audience's attitude. Such audience tuning biases communicators' memory for the topic toward the audience's attitude to the extent that they create a shared reality with the audience. To investigate shared reality in intergroup communication, we first established that a reduced memory bias after tuning messages to an out-group (vs. in-group) audience is a subtle index of communicators' denial of shared reality to that out-group audience (Experiments 1a and 1b). We then examined whether the audience-tuning memory bias might emerge when the out-group audience's epistemic authority is enhanced, either by increasing epistemic expertise concerning the communication topic or by creating epistemic consensus among members of a multiperson out-group audience. In Experiment 2, when Germans communicated to a Turkish audience with an attitude about a Turkish (vs. German) target, the audience-tuning memory bias appeared. In Experiment 3, when the audience of German communicators consisted of 3 Turks who all held the same attitude toward the target, the memory bias again appeared. The association between message valence and memory valence was consistently higher when the audience's epistemic authority was high (vs. low). An integrative analysis across all studies also suggested that the memory bias increases with increasing strength of epistemic inputs (epistemic expertise, epistemic consensus, and audience-tuned message production). The findings suggest novel ways of overcoming intergroup biases in intergroup relations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Absolute symbolic addressing, a structure making time-sharing easier

    International Nuclear Information System (INIS)

    Debraine, P.

    1968-08-01

    Time-sharing of computers asks for a certain number of conditions, particularly, an efficient dynamic loading of programs and data. This paper indicates a paging method making linkages with a minimum of table-looking operations. The principle is to use associative memory registers for calling blocks of physical memory, the block address being given by the concatenation of a file number (located in a base register) and a page number (located in the instruction proper). The position within the block is given by a displacement located in the instruction. A second associated base register contains the local part (page number + displacement) of the base address. This extended base register system allows executing programs in a very large programming complex without loss of time. The addresses are fixed at assembly time and the blocks can be loaded anywhere without modification for execution. The various problems associated with the execution of complex programs are presented in this context and shown to be easily solved by the proposed system, the realization of which would be very easy starting from the computer structures existing now. (author) [fr

  19. Experiences constructing and running large shared clusters at CERN

    International Nuclear Information System (INIS)

    Bahyl, V.; Barroso, M.; Charbonnier, C.; Eldik, J. van; Jones, P.; Kleinwort, T.; Smith, T.

    2001-01-01

    The latest steps in the steady evolution of the CERN Computer Centre have been to reduce the multitude of clusters and architectures and to concentrate on commodity hardware. An active RISC decommissioning program has been undertaken to encourage migration to Linux, and a program of merging dedicated experiment clusters into larger shared facilities has been launched. The authors describe these programs and the experiences running the resultant multi-hundred node shared Linux clusters

  20. Distributed terascale volume visualization using distributed shared virtual memory

    KAUST Repository

    Beyer, Johanna; Hadwiger, Markus; Schneider, Jens; Jeong, Wonki; Pfister, Hanspeter

    2011-01-01

    Table 1 illustrates the impact of different distribution unit sizes, different screen resolutions, and numbers of GPU nodes. We use two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB memory) and a mouse cortex EM dataset (see Figure 2) of resolution

  1. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  2. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  3. 3D-LIN: A Configurable Low-Latency Interconnect for Multi-Core Clusters with 3D Stacked L1 Memory

    OpenAIRE

    Beanato, Giulia; Loi, Igor; De Micheli, Giovanni; Leblebici, Yusuf; Benini, Luca

    2012-01-01

    Shared L1 memories are of interest for tightly- coupled processor clusters in programmable accelerators as they provide a convenient shared memory abstraction while avoiding cache coherence overheads. The performance of a shared-L1 memory critically depends on the architecture of the low-latency interconnect between processors and memory banks, which needs to provide ultra-fast access to the largest possible L1 working set. The advent of 3D technology provides new opportunities to improve the...

  4. Categorical and associative relations increase false memory relative to purely associative relations.

    Science.gov (United States)

    Coane, Jennifer H; McBride, Dawn M; Termonen, Miia-Liisa; Cutting, J Cooper

    2016-01-01

    The goal of the present study was to examine the contributions of associative strength and similarity in terms of shared features to the production of false memories in the Deese/Roediger-McDermott list-learning paradigm. Whereas the activation/monitoring account suggests that false memories are driven by automatic associative activation from list items to nonpresented lures, combined with errors in source monitoring, other accounts (e.g., fuzzy trace theory, global-matching models) emphasize the importance of semantic-level similarity, and thus predict that shared features between list and lure items will increase false memory. Participants studied lists of nine items related to a nonpresented lure. Half of the lists consisted of items that were associated but did not share features with the lure, and the other half included items that were equally associated but also shared features with the lure (in many cases, these were taxonomically related items). The two types of lists were carefully matched in terms of a variety of lexical and semantic factors, and the same lures were used across list types. In two experiments, false recognition of the critical lures was greater following the study of lists that shared features with the critical lure, suggesting that similarity at a categorical or taxonomic level contributes to false memory above and beyond associative strength. We refer to this phenomenon as a "feature boost" that reflects additive effects of shared meaning and association strength and is generally consistent with accounts of false memory that have emphasized thematic or feature-level similarity among studied and nonstudied representations.

  5. Rhesus monkeys (Macaca mulatta) show robust primacy and recency in memory for lists from small, but not large, image sets.

    Science.gov (United States)

    Basile, Benjamin M; Hampton, Robert R

    2010-02-01

    The combination of primacy and recency produces a U-shaped serial position curve typical of memory for lists. In humans, primacy is often thought to result from rehearsal, but there is little evidence for rehearsal in nonhumans. To further evaluate the possibility that rehearsal contributes to primacy in monkeys, we compared memory for lists of familiar stimuli (which may be easier to rehearse) to memory for unfamiliar stimuli (which are likely difficult to rehearse). Six rhesus monkeys saw lists of five images drawn from either large, medium, or small image sets. After presentation of each list, memory for one item was assessed using a serial probe recognition test. Across four experiments, we found robust primacy and recency with lists drawn from small and medium, but not large, image sets. This finding is consistent with the idea that familiar items are easier to rehearse and that rehearsal contributes to primacy, warranting further study of the possibility of rehearsal in monkeys. However, alternative interpretations are also viable and are discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Discrete-Slots Models of Visual Working-Memory Response Times

    Science.gov (United States)

    Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.

    2014-01-01

    Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956

  7. Symbiosis of Executive and Selective Attention in Working Memory

    Directory of Open Access Journals (Sweden)

    André eVandierendonck

    2014-08-01

    Full Text Available The notion of working memory was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated working memory system that controls task coordination. To that end, working memory models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in working memory activities. A model is proposed in which selective attention control is directly linked to the executive control part of the working memory system. The model assumes that apart from storage of declarative information, the system also includes an executive working memory module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met.. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  8. Sensory memory for ambiguous vision.

    Science.gov (United States)

    Pearson, Joel; Brascamp, Jan

    2008-09-01

    In recent years the overlap between visual perception and memory has shed light on our understanding of both. When ambiguous images that normally cause perception to waver unpredictably are presented briefly with intervening blank periods, perception tends to freeze, locking into one interpretation. This indicates that there is a form of memory storage across the blank interval. This memory trace codes low-level characteristics of the stored stimulus. Although a trace is evident after a single perceptual instance, the trace builds over many separate stimulus presentations, indicating a flexible, variable-length time-course. This memory shares important characteristics with priming by non-ambiguous stimuli. Computational models now provide a framework to interpret many empirical observations.

  9. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    Science.gov (United States)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  10. Performance of large-scale scientific applications on the IBM ASCI Blue-Pacific system

    International Nuclear Information System (INIS)

    Mirin, A.

    1998-01-01

    The IBM ASCI Blue-Pacific System is a scalable, distributed/shared memory architecture designed to reach multi-teraflop performance. The IBM SP pieces together a large number of nodes, each having a modest number of processors. The system is designed to accommodate a mixed programming model as well as a pure message-passing paradigm. We examine a number of applications on this architecture and evaluate their performance and scalability

  11. Static Memory Deduplication for Performance Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Gangyong Jia

    2017-04-01

    Full Text Available In a cloud computing environment, the number of virtual machines (VMs on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  12. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    Science.gov (United States)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  13. Visual memory and visual perception: when memory improves visual search.

    Science.gov (United States)

    Riou, Benoit; Lesourd, Mathieu; Brunel, Lionel; Versace, Rémy

    2011-08-01

    This study examined the relationship between memory and perception in order to identify the influence of a memory dimension in perceptual processing. Our aim was to determine whether the variation of typical size between items (i.e., the size in real life) affects visual search. In two experiments, the congruency between typical size difference and perceptual size difference was manipulated in a visual search task. We observed that congruency between the typical and perceptual size differences decreased reaction times in the visual search (Exp. 1), and noncongruency between these two differences increased reaction times in the visual search (Exp. 2). We argue that these results highlight that memory and perception share some resources and reveal the intervention of typical size difference on the computation of the perceptual size difference.

  14. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  15. Using memories to understand others: the role of episodic memory in theory of mind impairment in Alzheimer disease.

    Science.gov (United States)

    Moreau, Noémie; Viallet, François; Champagne-Lavau, Maud

    2013-09-01

    Theory of mind (TOM) refers to the ability to infer one's own and other's mental states. Growing evidence highlighted the presence of impairment on the most complex TOM tasks in Alzheimer disease (AD). However, how TOM deficit is related to other cognitive dysfunctions and more specifically to episodic memory impairment - the prominent feature of this disease - is still under debate. Recent neuroanatomical findings have shown that remembering past events and inferring others' states of mind share the same cerebral network suggesting the two abilities share a common process .This paper proposes to review emergent evidence of TOM impairment in AD patients and to discuss the evidence of a relationship between TOM and episodic memory. We will discuss about AD patients' deficit in TOM being possibly related to their difficulties in recollecting memories of past social interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Feature-based memory-driven attentional capture: Visual working memory content affects visual attention.

    NARCIS (Netherlands)

    Olivers, C.N.L.; Meijer, F.; Theeuwes, J.

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly

  17. The evolution of episodic memory

    Science.gov (United States)

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  18. Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.

    Science.gov (United States)

    Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu

    2016-09-01

    When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. © The Author(s) 2016.

  19. Operational Semantics of a Weak Memory Model inspired by Go

    OpenAIRE

    Fava, Daniel Schnetzer; Stolz, Volker; Valle, Stian

    2017-01-01

    A memory model dictates which values may be returned when reading from memory. In a parallel computing setting, the memory model affects how processes communicate through shared memory. The design of a proper memory model is a balancing act. On one hand, memory models must be lax enough to allow common hardware and compiler optimizations. On the other, the more lax the model, the harder it is for developers to reason about their programs. In order to alleviate the burden on programmers, a wea...

  20. Episodic memory in nonhuman animals.

    Science.gov (United States)

    Templer, Victoria L; Hampton, Robert R

    2013-09-09

    Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of 'having been there', has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhuman species. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhuman animals and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap; however, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question "do nonhuman animals have episodic memory" to instead asking "what aspects of episodic memory are shared by humans and nonhumans" are making progress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A loss in the family: silence, memory, and narrative identity after bereavement.

    Science.gov (United States)

    Baddeley, Jenna; Singer, Jefferson A

    2010-02-01

    Grief theories have converged on the idea that the sharing of autobiographical memory narratives of loss and of the deceased person, especially within the family, is a major way to maintain and/or reconfigure a healthy sense of identity after a loss. In contrast, we examine unspoken memory-the withholding of socially sharing autobiographical memories about the loss and the departed family member-as a way to either conserve an existing narrative identity or assert a new narrative identity. Depending on its context and function, silence about memory can play either a positive or negative role in an individual griever's ongoing narrative identity, as well as in the larger family narrative in which the griever's identity is embedded.

  2. Synapsin determines memory strength after punishment- and relief-learning.

    Science.gov (United States)

    Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo; Gerber, Bertram

    2015-05-13

    Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. Copyright © 2015 Niewalda et al.

  3. Synapsin Determines Memory Strength after Punishment- and Relief-Learning

    Science.gov (United States)

    Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo

    2015-01-01

    Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: “negative” memories for stimuli preceding them and “positive” memories for stimuli experienced at the moment of “relief.” Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (“forward conditioning” of the odor), whereas after shock-odor training (“backward conditioning” of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. PMID:25972175

  4. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Ji-Hyun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of); Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Lee, Dongsoo [Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Jeon, Sanghun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of)

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  5. Share your sweets

    DEFF Research Database (Denmark)

    Byrnit, Jill; Høgh-Olesen, Henrik; Makransky, Guido

    2015-01-01

    study to examine the sharing behavior of groups of captive chimpanzees and bonobos when introducing the same type of food (branches) manipulated to be of two different degrees of desirability (with or without syrup). Results showed that, the large majority of food transfers in both species came about...... as sharing in which group members were allowed to co-feed or remove food from the stock of the food possessor, and the introduction of high-value food resulted in more sharing, not less. Food sharing behavior differed between species in that chimpanzees displayed significantly more begging behavior than...

  6. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Design issues for block-oriented reflective memory system

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M; Tomasevic, M; Milutinovic, V

    1996-12-31

    The block-oriented reflective memory (BORM) system represents a modular bus-based system architecture that belongs to the class of distributed shared memory systems. The results of the evaluation study of the BORM implementation strategies and design decisions in regard to the different values of input parameters are presented. 5 refs.

  8. Socially shared mourning: construction and consumption of collective memory

    Science.gov (United States)

    Harju, Anu

    2015-04-01

    Social media, such as YouTube, is increasingly a site of collective remembering where personal tributes to celebrity figures become sites of public mourning. YouTube, especially, is rife with celebrity commemorations. Examining fans' online mourning practices on YouTube, this paper examines video tributes dedicated to the late Steve Jobs, with a focus on collective remembering and collective construction of memory. Combining netnography with critical discourse analysis, the analysis focuses on the user comments where the past unfolds in interaction and meanings are negotiated and contested. The paper argues that celebrity death may, for avid fans, be a source of disenfranchised grief, a type of grief characterised by inadequate social support, usually arising from lack of empathy for the loss. The paper sheds light on the functions digital memorials have for mourning fans (and fandom) and argues that social media sites have come to function as spaces of negotiation, legitimisation and alleviation of disenfranchised grief. It is also suggested that when it comes to disenfranchised grief, and grief work generally, the concept of community be widened to include communities of weak ties, a typical form of communal belonging on social media.

  9. [Neuroscience and collective memory: memory schemas linking brain, societies and cultures].

    Science.gov (United States)

    Legrand, Nicolas; Gagnepain, Pierre; Peschanski, Denis; Eustache, Francis

    2015-01-01

    During the last two decades, the effect of intersubjective relationships on cognition has been an emerging topic in cognitive neurosciences leading through a so-called "social turn" to the formation of new domains integrating society and cultures to this research area. Such inquiry has been recently extended to collective memory studies. Collective memory refers to shared representations that are constitutive of the identity of a group and distributed among all its members connected by a common history. After briefly describing those evolutions in the study of human brain and behaviors, we review recent researches that have brought together cognitive psychology, neuroscience and social sciences into collective memory studies. Using the reemerging concept of memory schema, we propose a theoretical framework allowing to account for collective memories formation with a specific focus on the encoding process of historical events. We suggest that (1) if the concept of schema has been mainly used to describe rather passive framework of knowledge, such structure may also be implied in more active fashions in the understanding of significant collective events. And, (2) if some schema researches have restricted themselves to the individual level of inquiry, we describe a strong coherence between memory and cultural frameworks. Integrating the neural basis and properties of memory schema to collective memory studies may pave the way toward a better understanding of the reciprocal interaction between individual memories and cultural resources such as media or education. © Société de Biologie, 2016.

  10. On the architecture for the X part of a very large FX correlator using two-accumulator CMACs

    Science.gov (United States)

    Lapshev, Stepan; Rezaul Hasan, S. M.

    2016-02-01

    This paper presents an improved input-buffer architecture for the X part of a very large FX correlator that optimizes memory use to both increase performance and reduce the overall power consumption. The architecture uses an array of two-accumulator CMACs that are reused for different pairs of correlated signals. Using two accumulators in every CMAC allows the processing array to alternately correlate two sets of signal pairs selected in such a way so that they share some or all of the processed data samples. This leads to increased processing bandwidth and a significant reduction of the memory read rate due to not having to update some or all of the processing buffers in every second processing cycle. The overall memory access rate is at most 75 % of that of the single-accumulator CMAC array. This architecture is intended for correlators of very large multi-element radio telescopes such as the Square Kilometre Array (SKA), and is suitable for an ASIC implementation.

  11. Parallel statistical image reconstruction for cone-beam x-ray CT on a shared memory computation platform

    International Nuclear Information System (INIS)

    Kole, J S; Beekman, F J

    2005-01-01

    Statistical reconstruction methods offer possibilities of improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications. To reduce reconstruction times we have parallelized a statistical reconstruction algorithm for cone-beam x-ray CT, the ordered subset convex algorithm (OSC), and evaluated it on a shared memory computer. Two different parallelization strategies were developed: one that employs parallelism by computing the work for all projections within a subset in parallel, and one that divides the total volume into parts and processes the work for each sub-volume in parallel. Both methods are used to reconstruct a three-dimensional mathematical phantom on two different grid densities. The reconstructed images are binary identical to the result of the serial (non-parallelized) algorithm. The speed-up factor equals approximately 30 when using 32 to 40 processors, and scales almost linearly with the number of cpus for both methods. The huge reduction in computation time allows us to apply statistical reconstruction to clinically relevant studies for the first time

  12. Contributions of Medial Temporal Lobe and Striatal Memory Systems to Learning and Retrieving Overlapping Spatial Memories

    Science.gov (United States)

    Brown, Thackery I.; Stern, Chantal E.

    2014-01-01

    Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868

  13. Hybrid shared/distributed parallelism for 3D characteristics transport solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.

    2005-01-01

    In this paper, we will present a new hybrid parallel model for solving large-scale 3-dimensional neutron transport problems used in nuclear reactor simulations. Large heterogeneous reactor problems, like the ones that occurs when simulating Candu cores, have remained computationally intensive and impractical for routine applications on single-node or even vector computers. Based on the characteristics method, this new model is designed to solve the transport equation after distributing the calculation load on a network of shared memory multi-processors. The tracks are either generated on the fly at each characteristics sweep or stored in sequential files. The load balancing is taken into account by estimating the calculation load of tracks and by distributing batches of uniform load on each node of the network. Moreover, the communication overhead can be predicted after benchmarking the latency and bandwidth using appropriate network test suite. These models are useful for predicting the performance of the parallel applications and to analyze the scalability of the parallel systems. (authors)

  14. Collective Empowerment through Local Memory Websites : balancing between group interest and common good

    NARCIS (Netherlands)

    M. de Kreek (Mike)

    2017-01-01

    markdownabstractThe research in this dissertation explores the social significance of local memory websites. Local memory websites offer local residents a platform where they collect and share memories about particular places or experiences in their neighbourhoods and districts. Following a

  15. How Does Knowledge Promote Memory? The Distinctiveness Theory of Skilled Memory

    Science.gov (United States)

    Rawson, Katherine A.; Van Overschelde, James P.

    2008-01-01

    The robust effects of knowledge on memory for domain-relevant information reported in previous research have largely been attributed to improved organizational processing. The present research proposes the distinctiveness theory of skilled memory, which states that knowledge improves memory not only through improved organizational processing but…

  16. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    OpenAIRE

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their...

  17. The sensory components of high-capacity iconic memory and visual working memory

    OpenAIRE

    Claire eBradley; Claire eBradley; Joel ePearson

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their c...

  18. Conglomerate memory and cosmopolitanism

    Directory of Open Access Journals (Sweden)

    Susannah Ryan

    2016-01-01

    Full Text Available Under what conditions do countries and cultures considered radically different find a basis for allegiance and kinship? What part does memory play in this process? This article responds to these questions in two ways: 1 Through Emmanuel Levinas and Hannah Arendt, I propose that when an other appears in empathetic discourses that both honor difference and cite shared human experiences, seemingly irreconcilable people can develop a sense of mutual responsibility and 2 Conglomerate memory, memories that fuse together others through common pains, contributes to such an appearance. To illustrate this point, I turn to Congolese voices as they are articulated in online American discourses; although currently, authors of online texts typically rely on traditional narrative forms that position Central Africa as incommensurate to Western civilizations, the Internet's worldwide accessibility and intertextual capacities render it a place primed for developing international collectives by connecting memories while maintaining difference.

  19. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  20. Communication and Memory Architecture Design of Application-Specific High-End Multiprocessors

    Directory of Open Access Journals (Sweden)

    Yahya Jan

    2012-01-01

    Full Text Available This paper is devoted to the design of communication and memory architectures of massively parallel hardware multiprocessors necessary for the implementation of highly demanding applications. We demonstrated that for the massively parallel hardware multiprocessors the traditionally used flat communication architectures and multi-port memories do not scale well, and the memory and communication network influence on both the throughput and circuit area dominates the processors influence. To resolve the problems and ensure scalability, we proposed to design highly optimized application-specific hierarchical and/or partitioned communication and memory architectures through exploring and exploiting the regularity and hierarchy of the actual data flows of a given application. Furthermore, we proposed some data distribution and related data mapping schemes in the shared (global partitioned memories with the aim to eliminate the memory access conflicts, as well as, to ensure that our communication design strategies will be applicable. We incorporated these architecture synthesis strategies into our quality-driven model-based multi-processor design method and related automated architecture exploration framework. Using this framework, we performed a large series of experiments that demonstrate many various important features of the synthesized memory and communication architectures. They also demonstrate that our method and related framework are able to efficiently synthesize well scalable memory and communication architectures even for the high-end multiprocessors. The gains as high as 12-times in performance and 25-times in area can be obtained when using the hierarchical communication networks instead of the flat networks. However, for the high parallelism levels only the partitioned approach ensures the scalability in performance.

  1. Mnemonic transmission, social contagion, and emergence of collective memory: Influence of emotional valence, group structure, and information distribution.

    Science.gov (United States)

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2017-09-01

    Social transmission of memory and its consequence on collective memory have generated enduring interdisciplinary interest because of their widespread significance in interpersonal, sociocultural, and political arenas. We tested the influence of 3 key factors-emotional salience of information, group structure, and information distribution-on mnemonic transmission, social contagion, and collective memory. Participants individually studied emotionally salient (negative or positive) and nonemotional (neutral) picture-word pairs that were completely shared, partially shared, or unshared within participant triads, and then completed 3 consecutive recalls in 1 of 3 conditions: individual-individual-individual (control), collaborative-collaborative (identical group; insular structure)-individual, and collaborative-collaborative (reconfigured group; diverse structure)-individual. Collaboration enhanced negative memories especially in insular group structure and especially for shared information, and promoted collective forgetting of positive memories. Diverse group structure reduced this negativity effect. Unequally distributed information led to social contagion that creates false memories; diverse structure propagated a greater variety of false memories whereas insular structure promoted confidence in false recognition and false collective memory. A simultaneous assessment of network structure, information distribution, and emotional valence breaks new ground to specify how network structure shapes the spread of negative memories and false memories, and the emergence of collective memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Only visual impressions are almost always present in long-term memories, and reported completeness, accuracy, and verbalizability of recollections increase with age.

    Science.gov (United States)

    Westman, A S; Orellana, C

    1996-10-01

    In two studies, students answered questions about their earliest memories from childhood and either elementary school and high school or college and yesterday. Visual sensory impressions were present in all childhood and almost all later memories. Sound aspects were more frequent in memories from high school and college than in those from childhood. Earliest memories from yesterday almost always included internal sensations. Recollections were rated as more accurate, complete, and verbalizable as events occurred later in life. Memories from childhood, elementary, and high school were thought about, found useful, or shared equally frequently. Yesterday's events were less likely shared, but, if shared, enhanced social relationships.

  3. Deaf Children Building Narrative Texts. Effect of Adult-Shared vs. Non-Shared Perception of a Picture Story

    Directory of Open Access Journals (Sweden)

    Tarwacka-Odolczyk Agata

    2014-08-01

    Full Text Available This paper discusses the communicative competence of deaf children. It illustrates the process in which such children build narrative texts in interaction with a deaf teacher, and presents the diversity of this process due to the shared vs. non-shared perception of a picture - the source of the topic. Detailed analyses focus on the formal and semantic aspect of the stories, including the length of the text in sign language, the content selected, information categories, and types of answers to the teacher’s questions. This text is our contribution in memory of Professor Grace Wales Shugar, whose idea of dual agentivity of child-adult interaction inspired the research presented here.

  4. Collective memory: a perspective from (experimental) clinical psychology.

    Science.gov (United States)

    Wessel, Ineke; Moulds, Michelle L

    2008-04-01

    This paper considers the concept of collective memory from an experimental clinical psychology perspective. Exploration of the term collective reveals a broad distinction between literatures that view collective memories as a property of groups (collectivistic memory) and those that regard these memories as a property of individuals who are, to a greater or lesser extent, an integral part of their social environment (social memory). First, we argue that the understanding of collectivistic memory phenomena may benefit from drawing parallels with current psychological models such as the self-memory system theory of individualistic autobiographical memory. Second, we suggest that the social memory literature may inform the study of trauma-related disorders. We argue that a factual focus induced by collaborative remembering may be beneficial to natural recovery in the immediate aftermath of trauma, and propose that shared remembering techniques may provide a useful addition to the treatment of post-traumatic stress disorder.

  5. Knowledge of memory functions in European and Asian American adults and children: the relation to autobiographical memory.

    Science.gov (United States)

    Wang, Qi; Koh, Jessie Bee Kim; Song, Qingfang; Hou, Yubo

    2015-01-01

    This study investigated explicit knowledge of autobiographical memory functions using a newly developed questionnaire. European and Asian American adults (N = 57) and school-aged children (N = 68) indicated their agreement with 13 statements about why people think about and share memories pertaining to four broad functions-self, social, directive and emotion regulation. Children were interviewed for personal memories concurrently with the memory function knowledge assessment and again 3 months later. It was found that adults agreed to the self, social and directive purposes of memory to a greater extent than did children, whereas European American children agreed to the emotion regulation purposes of memory to a greater extent than did European American adults. Furthermore, European American children endorsed more self and emotion regulation functions than did Asian American children, whereas Asian American adults endorsed more directive functions than did European American adults. Children's endorsement of memory functions, particularly social functions, was associated with more detailed and personally meaningful memories. These findings are informative for the understanding of developmental and cultural influences on memory function knowledge and of the relation of such knowledge to autobiographical memory development.

  6. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    International Nuclear Information System (INIS)

    Hou, Huilong; Stasak, Drew; Hasan, Naila Al; Takeuchi, Ichiro; Simsek, Emrah; Ott, Ryan; Cui, Jun; Qian, Suxin

    2017-01-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g −1 . Adiabatic compression on as-fabricated TiNi displays cooling Δ T as high as  −7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2 Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2 Ni precipitates is believed to be the origin of the unique superelasticity behavior. (paper)

  7. Distributed-Memory Fast Maximal Independent Set

    Energy Technology Data Exchange (ETDEWEB)

    Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew

    2017-09-13

    The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluate their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.

  8. A Comparison of Laboratory and Clinical Working Memory Tests and Their Prediction of Fluid Intelligence

    Science.gov (United States)

    Shelton, Jill T.; Elliott, Emily M.; Hill, B. D.; Calamia, Matthew R.; Gouvier, Wm. Drew

    2010-01-01

    The working memory (WM) construct is conceptualized similarly across domains of psychology, yet the methods used to measure WM function vary widely. The present study examined the relationship between WM measures used in the laboratory and those used in applied settings. A large sample of undergraduates completed three laboratory-based WM measures (operation span, listening span, and n-back), as well as the WM subtests from the Wechsler Adult Intelligence Scale-III and the Wechsler Memory Scale-III. Performance on all of the WM subtests of the clinical batteries shared positive correlations with the lab measures; however, the Arithmetic and Spatial Span subtests shared lower correlations than the other WM tests. Factor analyses revealed that a factor comprising scores from the three lab WM measures and the clinical subtest, Letter-Number Sequencing (LNS), provided the best measurement of WM. Additionally, a latent variable approach was taken using fluid intelligence as a criterion construct to further discriminate between the WM tests. The results revealed that the lab measures, along with the LNS task, were the best predictors of fluid abilities. PMID:20161647

  9. Implementing Explicit and Finding Implicit Sharing in Embedded DSLs

    Directory of Open Access Journals (Sweden)

    Oleg Kiselyov

    2011-09-01

    Full Text Available Aliasing, or sharing, is prominent in many domains, denoting that two differently-named objects are in fact identical: a change in one object (memory cell, circuit terminal, disk block is instantly reflected in the other. Languages for modelling such domains should let the programmer explicitly define the sharing among objects or expressions. A DSL compiler may find other identical expressions and share them, implicitly. Such common subexpression elimination is crucial to the efficient implementation of DSLs. Sharing is tricky in embedded DSL, since host aliasing may correspond to copying of the underlying objects rather than their sharing. This tutorial summarizes discussions of implementing sharing in Haskell DSLs for automotive embedded systems and hardware description languages. The technique has since been used in a Haskell SAT solver and the DSL for music synthesis. We demonstrate the embedding in pure Haskell of a simple DSL with a language form for explicit sharing. The DSL also has implicit sharing, implemented via hash-consing. Explicit sharing greatly speeds up hash-consing. The seemingly imperative nature of hash-consing is hidden beneath a simple combinator language. The overall implementation remains pure functional and easy to reason about.

  10. Job sharing. Part 1.

    Science.gov (United States)

    Anderson, K; Forbes, R

    1989-01-01

    This article is the first of a three part series discussing the impact of nurses job sharing at University Hospital, London, Ontario. This first article explores the advantages and disadvantages of job sharing for staff nurses and their supervising nurse manager, as discussed in the literature. The results of a survey conducted on a unit with a large number of job sharing positions, concur with literature findings. The second article will present the evaluation of a pilot project in which two nurses job share a first line managerial position in the Operating Room. The third article will relate the effects of job sharing on women's perceived general well being. Job sharing in all areas, is regarded as a positive experience by both nurse and administrators.

  11. [Artificial intelligence meeting neuropsychology. Semantic memory in normal and pathological aging].

    Science.gov (United States)

    Aimé, Xavier; Charlet, Jean; Maillet, Didier; Belin, Catherine

    2015-03-01

    Artificial intelligence (IA) is the subject of much research, but also many fantasies. It aims to reproduce human intelligence in its learning capacity, knowledge storage and computation. In 2014, the Defense Advanced Research Projects Agency (DARPA) started the restoring active memory (RAM) program that attempt to develop implantable technology to bridge gaps in the injured brain and restore normal memory function to people with memory loss caused by injury or disease. In another IA's field, computational ontologies (a formal and shared conceptualization) try to model knowledge in order to represent a structured and unambiguous meaning of the concepts of a target domain. The aim of these structures is to ensure a consensual understanding of their meaning and a univariant use (the same concept is used by all to categorize the same individuals). The first representations of knowledge in the AI's domain are largely based on model tests of semantic memory. This one, as a component of long-term memory is the memory of words, ideas, concepts. It is the only declarative memory system that resists so remarkably to the effects of age. In contrast, non-specific cognitive changes may decrease the performance of elderly in various events and instead report difficulties of access to semantic representations that affect the semantics stock itself. Some dementias, like semantic dementia and Alzheimer's disease, are linked to alteration of semantic memory. We propose in this paper, using the computational ontologies model, a formal and relatively thin modeling, in the service of neuropsychology: 1) for the practitioner with decision support systems, 2) for the patient as cognitive prosthesis outsourced, and 3) for the researcher to study semantic memory.

  12. Memory by association: Integrating memories prolongs retention by two-year-olds.

    Science.gov (United States)

    Hayne, Harlene; Gross, Julien

    2017-02-01

    Recalling one memory often leads to the recollection of other memories that share overlapping features. This phenomenon, spreading activation, was originally documented in studies conducted with verbal adults, and more recently, it has been demonstrated with preverbal infants. Here, we examine the effect of spreading activation on long-term retention by 2-year-olds. Participants were tested in the Visual Recognition Memory (VRM) paradigm and the deferred imitation paradigm. Typically, infants of this age exhibit retention in the VRM paradigm for 24h, while they exhibit retention in the deferred imitation paradigm for at least 8 weeks. In the present experiment, we paired these tasks together during original encoding and tested infants after an 8-week delay. Two-year-olds exhibited retention in both tasks. That is, when these two tasks initially occurred together - one task that is extremely memorable and one that is not - retrieving the memory of the more memorable task cued retrieval of the less memorable task, extending its longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Memory, Conviviality and Coexistence

    DEFF Research Database (Denmark)

    Duru, Deniz Neriman

    2016-01-01

    that postulates cohesion and conflict as rooted in ethnic and religious differences. It suggests ‘conviviality’ as the production of space, by arguing that hard times, tensions as well as sensorial pleasures produce a sense of belonging in a place, through shared ways of living. While memories of ‘coexistence......The article explores the narratives and memories of past diversity and current practices of conviviality to investigate how class, lifestyle and tastes affect the daily interactions between people belonging to different ethno-religious backgrounds. This chapter critiques ‘coexistence’ as a concept......’ emphasize the fragmentation of people into ethnic and religious groups as a consequence of the homogenization process in the post-Ottoman Turkish context, bitter sweet memories of conviviality create a sense of belonging to Burgaz....

  14. The Precategorical Nature of Visual Short-Term Memory

    Science.gov (United States)

    Quinlan, Philip T.; Cohen, Dale J.

    2016-01-01

    We conducted a series of recognition experiments that assessed whether visual short-term memory (VSTM) is sensitive to shared category membership of to-be-remembered (tbr) images of common objects. In Experiment 1 some of the tbr items shared the same basic level category (e.g., hand axe): Such items were no better retained than others. In the…

  15. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    Science.gov (United States)

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  16. Individual variation in working memory is associated with fear extinction performance.

    Science.gov (United States)

    Stout, Daniel M; Acheson, Dean T; Moore, Tyler M; Gur, Ruben C; Baker, Dewleen G; Geyer, Mark A; Risbrough, Victoria B

    2018-03-01

    PTSD has been associated consistently with abnormalities in fear acquisition and extinction learning and retention. Fear acquisition refers to learning to discriminate between threat and safety cues. Extinction learning reflects the formation of a new inhibitory-memory that competes with a previously learned threat-related memory. Adjudicating the competition between threat memory and the new inhibitory memory during extinction may rely, in part, on cognitive processes such as working memory (WM). Despite significant shared neural circuits and signaling pathways the relationship between WM, fear acquisition, and extinction is poorly understood. Here, we analyzed data from a large sample of healthy Marines who underwent an assessment battery including tests of fear acquisition, extinction learning, and WM (N-back). Fear potentiated startle (FPS), fear expectancy ratings, and self-reported anxiety served as the primary dependent variables. High WM ability (N = 192) was associated with greater CS + fear inhibition during the late block of extinction and greater US expectancy change during extinction learning compared to individuals with low WM ability (N = 204). WM ability was not associated with magnitude of fear conditioning/expression. Attention ability was unrelated to fear acquisition or extinction supporting specificity of WM associations with extinction. These results support the conclusion that individual differences in WM may contribute to regulating fear responses. Copyright © 2018. Published by Elsevier Ltd.

  17. What drives memory-driven attentional capture? The effects of memory type, display type and search type

    NARCIS (Netherlands)

    Olivers, C.N.L.

    2009-01-01

    An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered

  18. Orchestrating Information Sharing among Intra- And Inter-Organisational Core Actors in a Large New Product Development Project - The Particular Role of The Project Manager

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde

    The success of NPD projects of high-cost, engineering-intensive, and customized development products is largely dependent on information sharing with actors from customers regarding their specific requirements (Von Hippel, 1986). But information sharing is also necessary among actors from different...... information sharing among other intra- or inter-organisational actors during the progression of an NPD project. In other words, this study emphasises the importance of the PM’s relationships on a day-to-day basis in information sharing among intra- and inter-organisational actors during the phases of an NPD...... organisations. Further, the findings show that to orchestrate the information sharing during the NPD project, the PM relies on relationships with several core intra-organisational actors who are particularly important to the orchestrating of information sharing during the early phases of the NPD project...

  19. Susceptibility of memory consolidation during lapses in recall

    Science.gov (United States)

    Marra, Vincenzo; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory. PMID:23481386

  20. Susceptibility of memory consolidation during lapses in recall.

    Science.gov (United States)

    Marra, Vincenzo; O'Shea, Michael; Benjamin, Paul R; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory.

  1. Dedup Est Machina : Memory Deduplication as an Advanced Exploitation Vector

    NARCIS (Netherlands)

    Bosman, Erik; Razavi, Kaveh; Bos, Herbert; Giuffrida, Cristiano

    2016-01-01

    Memory deduplication, a well-known technique to reduce the memory footprint across virtual machines, is now also a default-on feature inside the Windows 8.1 and Windows 10 operating systems. Deduplication maps multiple identical copies of a physical page onto a single shared copy with copy-on-write

  2. Short-term memory for tactile and temporal stimuli in a shared-attention recall task.

    Science.gov (United States)

    Bowers, R L; Mollenhauer, M S; Luxford, J

    1990-06-01

    The present study examined short-term memory for tactile and temporal stimuli. Subjects were required to touch three-dimensional sample objects of different shapes and textures, presented for three durations: short, medium, or long. After the sample duration elapsed, a retention interval (5 sec.-20 sec.) occurred followed by a recall test for one of the sample dimensions of shape, texture, or time, across trials. Analysis showed that accuracy for shape and texture was high throughout testing (95-99%), but memory for perceived duration was relatively poor (60%). Further analysis indicated that poor recall on the time dimension was isolated to the medium and long samples; accuracy for short durations was consistently high (90%). In addition, a reliable response bias emerged; subjects recalled durations shorter than the actual duration presented. The results were discussed in terms of two lines of research, one indicating that haptic short-term memory is strong relative to other memory systems, and the other suggesting that the choose-short bias occurs across species.

  3. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Tramm, J.R.; Siegel, A.R.

    2013-01-01

    The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)

  4. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  5. External Memory Pipelining Made Easy With TPIE

    OpenAIRE

    Arge, Lars; Rav, Mathias; Svendsen, Svend C.; Truelsen, Jakob

    2017-01-01

    When handling large datasets that exceed the capacity of the main memory, movement of data between main memory and external memory (disk), rather than actual (CPU) computation time, is often the bottleneck in the computation. Since data is moved between disk and main memory in large contiguous blocks, this has led to the development of a large number of I/O-efficient algorithms that minimize the number of such block movements. TPIE is one of two major libraries that have been developed to sup...

  6. Parallel discrete ordinates algorithms on distributed and common memory systems

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.; Brickner, R.G.

    1987-01-01

    The S/sub n/ algorithm employs iterative techniques in solving the linear Boltzmann equation. These methods, both ordered and chaotic, were compared on both the Denelcor HEP and the Intel hypercube. Strategies are linked to the organization and accessibility of memory (common memory versus distributed memory architectures), with common concern for acquisition of global information. Apart from this, the inherent parallelism of the algorithm maps directly onto the two architectures. Results comparing execution times, speedup, and efficiency are based on a representative 16-group (full upscatter and downscatter) sample problem. Calculations were performed on both the Los Alamos National Laboratory (LANL) Denelcor HEP and the LANL Intel hypercube. The Denelcor HEP is a 64-bit multi-instruction, multidate MIMD machine consisting of up to 16 process execution modules (PEMs), each capable of executing 64 processes concurrently. Each PEM can cooperate on a job, or run several unrelated jobs, and share a common global memory through a crossbar switch. The Intel hypercube, on the other hand, is a distributed memory system composed of 128 processing elements, each with its own local memory. Processing elements are connected in a nearest-neighbor hypercube configuration and sharing of data among processors requires execution of explicit message-passing constructs

  7. Why are you telling me that? A conceptual model of the social function of autobiographical memory.

    Science.gov (United States)

    Alea, Nicole; Bluck, Susan

    2003-03-01

    In an effort to stimulate and guide empirical work within a functional framework, this paper provides a conceptual model of the social functions of autobiographical memory (AM) across the lifespan. The model delineates the processes and variables involved when AMs are shared to serve social functions. Components of the model include: lifespan contextual influences, the qualitative characteristics of memory (emotionality and level of detail recalled), the speaker's characteristics (age, gender, and personality), the familiarity and similarity of the listener to the speaker, the level of responsiveness during the memory-sharing process, and the nature of the social relationship in which the memory sharing occurs (valence and length of the relationship). These components are shown to influence the type of social function served and/or, the extent to which social functions are served. Directions for future empirical work to substantiate the model and hypotheses derived from the model are provided.

  8. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    Science.gov (United States)

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Beyond the Archive: Cultural Memory in Dance and Theater

    Directory of Open Access Journals (Sweden)

    Carol L. Bernstein

    2007-01-01

    Full Text Available This essay uses the concept of the constellation to characterize the relations among interdisciplinarity, cultural memory, and comparative literature. To do so entails: (a reviewing the paradoxical interdisciplinarity of comparative literature, (b tracing its establishment at a liberal arts college (Bryn Mawr College, USA, and (c describing a course on “The Cultural Politics of Memory” that tested the limits of scholarship and testimony. The discussion includes an account of an unusual conference on cultural memory: that is, the ways in which different cultural groups identify and describe their shared pasts. The informality and collegial dialogue of the conference were associated with a liberal arts context. It then turns to the question of theorizing aspects of cultural memory that are conveyed at the margins of conventional discourse: by what is largely unsaid, or represented in dance or pantomime. Because each of the performances discussed here is related in a distinct way to a preceding historical trauma (the Khmer Rouge regime in Cambodia, African American slavery in the USA, the terrorism of the Shining Path in Peru, it was important to determine what source of memory, what archival materials, could persist through traumas that often suppress memory. Traditional archives consist of written documents. Moreover, they often support or represent official histories. New ways of thinking about archives--their composition, their place in cultural history, and their theoretical dimensions--have suggested new approaches to cultural memory. The essay ends with accounts of three forms of dance or pantomime that convey cultural histories informed by trauma in significantly different ways. A narrative thread foregrounds the close relations between scholarship and pedagogy.

  10. Can Web 2.0 shape meta-memory?

    OpenAIRE

    Sá, Alberto

    2009-01-01

    The social features of recent Web 2.0 technologies applications can bear a strong relationship to memory production and can help to shape personal identity through emotional connections by synchronizing people’s subjective experiences. When added to life, the proliferation of mechanical memory, experienced and produced by technology, makes for a new type of shared awareness. Therefore, we should look at these tools as instruments of reminiscence and as creative mnemonic aids. The input of ...

  11. Improvement of multiprocessing performance by using optical centralized shared bus

    Science.gov (United States)

    Han, Xuliang; Chen, Ray T.

    2004-06-01

    With the ever-increasing need to solve larger and more complex problems, multiprocessing is attracting more and more research efforts. One of the challenges facing the multiprocessor designers is to fulfill in an effective manner the communications among the processes running in parallel on multiple multiprocessors. The conventional electrical backplane bus provides narrow bandwidth as restricted by the physical limitations of electrical interconnects. In the electrical domain, in order to operate at high frequency, the backplane topology has been changed from the simple shared bus to the complicated switched medium. However, the switched medium is an indirect network. It cannot support multicast/broadcast as effectively as the shared bus. Besides the additional latency of going through the intermediate switching nodes, signal routing introduces substantial delay and considerable system complexity. Alternatively, optics has been well known for its interconnect capability. Therefore, it has become imperative to investigate how to improve multiprocessing performance by utilizing optical interconnects. From the implementation standpoint, the existing optical technologies still cannot fulfill the intelligent functions that a switch fabric should provide as effectively as their electronic counterparts. Thus, an innovative optical technology that can provide sufficient bandwidth capacity, while at the same time, retaining the essential merits of the shared bus topology, is highly desirable for the multiprocessing performance improvement. In this paper, the optical centralized shared bus is proposed for use in the multiprocessing systems. This novel optical interconnect architecture not only utilizes the beneficial characteristics of optics, but also retains the desirable properties of the shared bus topology. Meanwhile, from the architecture standpoint, it fits well in the centralized shared-memory multiprocessing scheme. Therefore, a smooth migration with substantial

  12. Applications for Packetized Memory Interfaces

    OpenAIRE

    Watson, Myles Glen

    2015-01-01

    The performance of the memory subsystem has a large impact on the performance of modern computer systems. Many important applications are memory bound and others are expected to become memory bound in the future. The importance of memory performance makes it imperative to understand and optimize the interactions between applications and the system architecture. Prototyping and exploring various configurations of memory systems can give important insights, but current memory interfaces are lim...

  13. Developmental Differences in the Use of Recognition Memory Rejection Mechanisms

    Science.gov (United States)

    Odegard, Timothy N.; Jenkins, Kara M.; Koen, Joshua D.

    2010-01-01

    The current experiment examined the use of plausibility judgments by children to reject distractors presented on "yes/no" recognition memory tests. Participants studied two lists of word pairs that shared either a categorical or rhyme association, which constituted the global nature of the two study conditions. During the recognition memory tests,…

  14. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    Science.gov (United States)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  15. Dissociation of immediate and delayed effects of emotional arousal on episodic memory.

    Science.gov (United States)

    Schümann, Dirk; Bayer, Janine; Talmi, Deborah; Sommer, Tobias

    2018-02-01

    Emotionally arousing events are usually better remembered than neutral ones. This phenomenon is in humans mostly studied by presenting mixed lists of neutral and emotional items. An emotional enhancement of memory is observed in these studies often already immediately after encoding and increases with longer delays and consolidation. A large body of animal research showed that the more efficient consolidation of emotionally arousing events is based on an activation of the central noradrenergic system and the amygdala (Modulation Hypothesis; Roozendaal & McGaugh, 2011). The immediately superior recognition of emotional items is attributed primarily to their attraction of attention during encoding which is also thought to be based on the amygdala and the central noradrenergic system. To investigate whether the amygdala and noradrenergic system support memory encoding and consolidation via shared neural substrates and processes a large sample of participants (n = 690) encoded neutral and arousing pictures. Their memory was tested immediately and after a consolidation delay. In addition, they were genotyped in two relevant polymorphisms (α 2B -adrenergic receptor and serotonin transporter). Memory for negative and positive emotional pictures was enhanced at both time points where these enhancements were correlated (immediate r = 0.60 and delayed test r = 0.46). Critically, the effects of emotional arousal on encoding and consolidation correlated only very low (negative r = 0.14 and positive r = 0.03 pictures) suggesting partly distinct underlying processes consistent with a functional heterogeneity of the central noradrenergic system. No effect of genotype on either effect was observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. HydroShare for iUTAH: Collaborative Publication, Interoperability, and Reuse of Hydrologic Data and Models for a Large, Interdisciplinary Water Research Project

    Science.gov (United States)

    Horsburgh, J. S.; Jones, A. S.

    2016-12-01

    Data and models used within the hydrologic science community are diverse. New research data and model repositories have succeeded in making data and models more accessible, but have been, in most cases, limited to particular types or classes of data or models and also lack the type of collaborative, and iterative functionality needed to enable shared data collection and modeling workflows. File sharing systems currently used within many scientific communities for private sharing of preliminary and intermediate data and modeling products do not support collaborative data capture, description, visualization, and annotation. More recently, hydrologic datasets and models have been cast as "social objects" that can be published, collaborated around, annotated, discovered, and accessed. Yet it can be difficult using existing software tools to achieve the kind of collaborative workflows and data/model reuse that many envision. HydroShare is a new, web-based system for sharing hydrologic data and models with specific functionality aimed at making collaboration easier and achieving new levels of interactive functionality and interoperability. Within HydroShare, we have developed new functionality for creating datasets, describing them with metadata, and sharing them with collaborators. HydroShare is enabled by a generic data model and content packaging scheme that supports describing and sharing diverse hydrologic datasets and models. Interoperability among the diverse types of data and models used by hydrologic scientists is achieved through the use of consistent storage, management, sharing, publication, and annotation within HydroShare. In this presentation, we highlight and demonstrate how the flexibility of HydroShare's data model and packaging scheme, HydroShare's access control and sharing functionality, and versioning and publication capabilities have enabled the sharing and publication of research datasets for a large, interdisciplinary water research project

  17. Transcranial magnetic stimulation of visual cortex in memory: cortical state, interference and reactivation of visual content in memory.

    Science.gov (United States)

    van de Ven, Vincent; Sack, Alexander T

    2013-01-01

    Memory for perceptual events includes the neural representation of the sensory information at short or longer time scales. Recent transcranial magnetic stimulation (TMS) studies of human visual cortex provided evidence that sensory cortex contributes to memory functions. In this review, we provide an exhaustive overview of these studies and ascertain how well the available evidence supports the idea of a causal role of sensory cortex in memory retention and retrieval. We discuss the validity and implications of the studies using a number of methodological and theoretical criteria that are relevant for brain stimulation of visual cortex. While most studies applied TMS to visual cortex to interfere with memory functions, a handful of pioneering studies used TMS to 'reactivate' memories in visual cortex. Interestingly, similar effects of TMS on memory were found in different memory tasks, which suggests that different memory systems share a neural mechanism of memory in visual cortex. At the same time, this neural mechanism likely interacts with higher order brain areas. Based on this overview and evaluation, we provide a first attempt to an integrative framework that describes how sensory processes contribute to memory in visual cortex, and how higher order areas contribute to this mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. KCNQ channels regulate age-related memory impairment.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment.

  19. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism in these......The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism...... in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...

  20. SharePoint governance

    OpenAIRE

    Ali, Mudassar

    2013-01-01

    Masteroppgave i informasjons- og kommunikasjonsteknologi IKT590 2013 – Universitetet i Agder, Grimstad SharePoint is a web-based business collaboration platform from Microsoft which is very robust and dynamic in nature. The platform has been in the market for more than a decade and has been adapted by large number of organisations in the world. The platform has become larger in scale, richer in features and is improving consistently with every new version. However, SharePoint ...

  1. Accessing forgotten memory traces from long-term memory via visual movements

    Directory of Open Access Journals (Sweden)

    Estela eCamara

    2014-11-01

    Full Text Available Because memory retrieval often requires overt responses, it is difficult to determine to what extend forgetting occurs as a problem in explicit accessing of long-term memory traces. In this study, we used eye-tracking measures in combination with a behavioural task that favoured high forgetting rates to investigate the existence of memory traces from long-term memory in spite of failure in accessing them consciously. In 2 experiments, participants were encouraged to encode a large set of sound-picture-location associations. In a later test, sounds were presented and participants were instructed to visually scan, before a verbal memory report, for the correct location of the associated pictures in an empty screen. We found the reactivation of associated memories by sound cues at test biased oculomotor behaviour towards locations congruent with memory representations, even when participants failed to consciously provide a memory report of it. These findings reveal the emergence of a memory-guided behaviour that can be used to map internal representations of forgotten memories from long-term memory.

  2. Panorama 2014 - Car-sharing

    International Nuclear Information System (INIS)

    Vinot, Simon

    2013-10-01

    Car-sharing is a new mode of transportation that consists of multiple users sharing the same vehicle. This type of service is expanding with the arrival of larger players, such as traditional car rental companies, automotive manufacturers, and large firms specializing in transportation. This new mode of transportation offers real potential and is currently finding its users, in France and worldwide. (author)

  3. Ad Hoc Categories and False Memories: Memory Illusions for Categories Created On-The-Spot

    Science.gov (United States)

    Soro, Jerônimo C.; Ferreira, Mário B.; Semin, Gün R.; Mata, André; Carneiro, Paula

    2017-01-01

    Three experiments were designed to test whether experimentally created ad hoc associative networks evoke false memories. We used the DRM (Deese, Roediger, McDermott) paradigm with lists of ad hoc categories composed of exemplars aggregated toward specific goals (e.g., going for a picnic) that do not share any consistent set of features. Experiment…

  4. Universal algorithm of time sharing

    International Nuclear Information System (INIS)

    Silin, I.N.; Fedyun'kin, E.D.

    1979-01-01

    Timesharing system algorithm is proposed for the wide class of one- and multiprocessor computer configurations. Dynamical priority is the piece constant function of the channel characteristic and system time quantum. The interactive job quantum has variable length. Characteristic recurrent formula is received. The concept of the background job is introduced. Background job loads processor if high priority jobs are inactive. Background quality function is given on the base of the statistical data received in the timesharing process. Algorithm includes optimal trashing off procedure for the jobs replacements in the memory. Sharing of the system time in proportion to the external priorities is guaranteed for the all active enough computing channels (back-ground too). The fast answer is guaranteed for the interactive jobs, which use small time and memory. The external priority control is saved for the high level scheduler. The experience of the algorithm realization on the BESM-6 computer in JINR is discussed

  5. Personal semantics: at the crossroads of semantic and episodic memory.

    Science.gov (United States)

    Renoult, Louis; Davidson, Patrick S R; Palombo, Daniela J; Moscovitch, Morris; Levine, Brian

    2012-11-01

    Declarative memory is usually described as consisting of two systems: semantic and episodic memory. Between these two poles, however, may lie a third entity: personal semantics (PS). PS concerns knowledge of one's past. Although typically assumed to be an aspect of semantic memory, it is essentially absent from existing models of knowledge. Furthermore, like episodic memory (EM), PS is idiosyncratically personal (i.e., not culturally-shared). We show that, depending on how it is operationalized, the neural correlates of PS can look more similar to semantic memory, more similar to EM, or dissimilar to both. We consider three different perspectives to better integrate PS into existing models of declarative memory and suggest experimental strategies for disentangling PS from semantic and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Unique and shared validity of the "Wechsler logical memory test", the "California verbal learning test", and the "verbal learning and memory test" in patients with epilepsy.

    Science.gov (United States)

    Helmstaedter, Christoph; Wietzke, Jennifer; Lutz, Martin T

    2009-12-01

    This study was set-up to evaluate the construct validity of three verbal memory tests in epilepsy patients. Sixty-one consecutively evaluated patients with temporal lobe epilepsy (TLE) or extra-temporal epilepsy (E-TLE) underwent testing with the verbal learning and memory test (VLMT, the German equivalent of the Rey auditory verbal learning test, RAVLT); the California verbal learning test (CVLT); the logical memory and digit span subtests of the Wechsler memory scale, revised (WMS-R); and testing of intelligence, attention, speech and executive functions. Factor analysis of the memory tests resulted in test-specific rather than test over-spanning factors. Parameters of the CVLT and WMS-R, and to a much lesser degree of the VLMT, were highly correlated with attention, language function and vocabulary. Delayed recall measures of logical memory and the VLMT differentiated TLE from E-TLE. Learning and memory scores off all three tests differentiated mesial temporal sclerosis from other pathologies. A lateralization of the epilepsy was possible only for a subsample of 15 patients with mesial TLE. Although the three tests provide overlapping indicators for a temporal lobe epilepsy or a mesial pathology, they can hardly be taken in exchange. The tests have different demands on semantic processing and memory organization, and they appear differentially sensitive to performance in non-memory domains. The tests capability to lateralize appears to be poor. The findings encourage the further discussion of the dependency of memory outcomes on test selection.

  7. Making Memories Matter

    OpenAIRE

    Gold, Paul E.; Korol, Donna L.

    2012-01-01

    This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes en...

  8. A compact PE memory for vision chips

    Science.gov (United States)

    Cong, Shi; Zhe, Chen; Jie, Yang; Nanjian, Wu; Zhihua, Wang

    2014-09-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm2/bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction.

  9. A compact PE memory for vision chips

    International Nuclear Information System (INIS)

    Shi Cong; Chen Zhe; Yang Jie; Wu Nanjian; Wang Zhihua

    2014-01-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm 2 /bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction. (semiconductor integrated circuits)

  10. Challenge in Sharing Tacit Knowledge: Academicians’ Behavior towards Developing A Web Portal for Sharing Research Ideas

    Directory of Open Access Journals (Sweden)

    Hafiza Adenan

    2013-08-01

    Full Text Available Academicians’ collective memories soft information, such as research ideas, expertise, experiences, academic skills, know-what, know-how and know-why which inevitability it is considered should made accessible. The Higher Education Institution needs to identify, collect, classify, verbalize and diffuse the academicians’ soft information specifically research ideas present in the university for knowledge enrichment. This can be implemented by the academicians actively sharing their research ideas with others. Actively sharing research ideas by academicians will have great impact on the enrichment of their intellectual capability as most of the valuable knowledge resides in one’s brain. However, as there is no specific medium to bring their research ideas into the surface and be visible to others, the precious research ideas still remain in the academicians’ brains. Therefore, the objective of the study is to explore academicians’ behavior toward the development of a sharing research ideas web portal at private university colleges in Malaysia. This study used the qualitative method that is a multiple cases study. The study refers to four private university colleges in Malaysia. In-depth interview, focus group discussion and document analysis were formed the data collection for this study. The theory of Planned Behavior by Ajzen (1991 was used to determine academicians’ behavior. This study showed that the academicians’ attitude, subjective norms, and perceived behavioral control towards developing a web portal for sharing research ideas all affect their intention to share their research ideas with others.

  11. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    Science.gov (United States)

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  12. When remembering the past suppresses memory for future actions.

    Science.gov (United States)

    Utsumi, Kenta; Saito, Satoru

    2016-01-01

    Remembering planned actions at the correct time in the future is an integral component of prospective cognition. Recent studies on future remembering have led to suggestions that prospective cognition might be based on past experience. To test this hypothesis, we focused on retrieval-induced forgetting (RIF), which usually indicates that remembering past events suppresses memory for related but different past events. The current study assessed RIF in two kinds of event-based prospective memory (PM) tasks using either focal or non-focal cues for ongoing tasks. Participants studied six members from each of eight taxonomic categories and then practiced recalling three of the six members from four of the eight categories using category-stem cues. This retrieval practice suppressed the detection of non-practiced members of the practiced categories during the PM task with non-focal cues (Experiment 1) but not with focal cues (Experiment 2). The results suggest that recall of certain items inhibits the function of the others as PM cues, but only if the PM task does not largely share its processing with the ongoing task.

  13. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  14. Comparative Evaluation and Case Studies of Shared-Memory and Data-Parallel Execution Patterns

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    1999-01-01

    Full Text Available Shared‐memory and data‐parallel programming models are two important paradigms for scientific applications. Both models provide high‐level program abstractions, and simple and uniform views of network structures. The common features of the two models significantly simplify program coding and debugging for scientific applications. However, the underlining execution and overhead patterns are significantly different between the two models due to their programming constraints, and due to different and complex structures of interconnection networks and systems which support the two models. We performed this experimental study to present implications and comparisons of execution patterns on two commercial architectures. We implemented a standard electromagnetic simulation program (EM and a linear system solver using the shared‐memory model on the KSR‐1 and the data‐parallel model on the CM‐5. Our objectives are to examine the execution pattern changes required for an implementation transformation between the two models; to study memory access patterns; to address scalability issues; and to investigate relative costs and advantages/disadvantages of using the two models for scientific computations. Our results indicate that the EM program tends to become computation‐intensive in the KSR‐1 shared‐memory system, and memory‐demanding in the CM‐5 data‐parallel system when the systems and the problems are scaled. The EM program, a highly data‐parallel program performed extremely well, and the linear system solver, a highly control‐structured program suffered significantly in the data‐parallel model on the CM‐5. Our study provides further evidence that matching execution patterns of algorithms to parallel architectures would achieve better performance.

  15. Meeting Organizational Performance with Shared Knowledge Management Processes

    OpenAIRE

    Franco, Massimo; Mariano, Stefania

    2010-01-01

    Using empirical research data, this study investigated how knowledge is stored and retrieved in an American company and contributed to the growing body of literature on the use of knowledge, technology, and memory systems to improve organizational performance. It demonstrated the importance of individual motivation and efforts, managerial capabilities, and shared organizational technologies in the management of organizational processes and revealed factors influencing the processes of knowled...

  16. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  17. The Importance of Memory Specificity and Memory Coherence for the Self: Linking Two Characteristics of Autobiographical Memory

    Directory of Open Access Journals (Sweden)

    Elien Vanderveren

    2017-12-01

    Full Text Available Autobiographical memory forms a network of memories about personal experiences that defines and supports well-being and effective functioning of the self in various ways. During the last three decades, there have been two characteristics of autobiographical memory that have received special interest regarding their role in psychological well-being and psychopathology, namely memory specificity and memory coherence. Memory specificity refers to the extent to which retrieved autobiographical memories are specific (i.e., memories about a particular experience that happened on a particular day. Difficulty retrieving specific memories interferes with effective functioning of the self and is related to depression and post-traumatic stress disorder. Memory coherence refers to the narrative expression of the overall structure of autobiographical memories. It has likewise been related to psychological well-being and the occurrence of psychopathology. Research on memory specificity and memory coherence has developed as two largely independent research domains, even though they show much overlap. This raises some important theoretical questions. How do these two characteristics of autobiographical memory relate to each other, both theoretically and empirically? Additionally, how can the integration of these two facilitate our understanding of the importance of autobiographical memory for the self? In this article, we give a critical overview of memory specificity and memory coherence and their relation to the self. We link both features of autobiographical memory by describing some important similarities and by formulating hypotheses about how they might relate to each other. By situating both memory specificity and memory coherence within Conway and Pleydell-Pearce’s Self-Memory System, we make a first attempt at a theoretical integration. Finally, we suggest some new and exciting research possibilities and explain how both research fields could benefit

  18. Oscillatory mechanisms of process binding in memory.

    Science.gov (United States)

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. One Share-One Vote

    DEFF Research Database (Denmark)

    Poulsen, Thomas; Eklund, Johan E.

    Shares with more voting rights than cash flow rights provide their owners with a disproportional influence that is often found to destroy the value of outside equity. This is taken as evidence of discretionary use of power. However, concentration of power does not necessarily result from control...... enhancing mechanisms; it could also be that some shareholders retain a large block in a one share-one vote structure. In this paper, we develop a methodology to disentangle disproportionality, which allows us to test the effect of deviations from one share-one vote more precisely. Our empirical findings add...

  20. What Drives Memory-Driven Attentional Capture? The Effects of Memory Type, Display Type, and Search Type

    Science.gov (United States)

    Olivers, Christian N. L.

    2009-01-01

    An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered more strongly with a visual search task when they…

  1. Shared Variable Oriented Parallel Precompiler for SPMD Model

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    For the moment,commercial parallel computer systems with distributed memory architecture are usually provided with parallel FORTRAN or parallel C compliers,which are just traditional sequential FORTRAN or C compilers expanded with communication statements.Programmers suffer from writing parallel programs with communication statements. The Shared Variable Oriented Parallel Precompiler (SVOPP) proposed in this paper can automatically generate appropriate communication statements based on shared variables for SPMD(Single Program Multiple Data) computation model and greatly ease the parallel programming with high communication efficiency.The core function of parallel C precompiler has been successfully verified on a transputer-based parallel computer.Its prominent performance shows that SVOPP is probably a break-through in parallel programming technique.

  2. From Nose to Memory: The Involuntary Nature of Odor-evoked Autobiographical Memories in Alzheimer's Disease.

    Science.gov (United States)

    El Haj, Mohamad; Gandolphe, Marie Charlotte; Gallouj, Karim; Kapogiannis, Dimitrios; Antoine, Pascal

    2017-12-25

    Research suggests that odors may serve as a potent cue for autobiographical retrieval. We tested this hypothesis in Alzheimer's disease (AD) and investigated whether odor-evoked autobiographical memory is an involuntary process that shares similarities with music-evoked autobiographical memory. Participants with mild AD and controls were asked to retrieve 2 personal memories after odor exposure, after music exposure, and in an odor-and music-free condition. AD participants showed better specificity, emotional experience, mental time travel, and retrieval time after odor and music exposure than in the control condition. Similar beneficial effects of odor and music exposure were observed for autobiographical characteristics (i.e., specificity, emotional experience, and mental time travel), except for retrieval time which was more improved after odor than after music exposure. Interestingly, regression analyses suggested executive involvement in memories evoked in the control condition but not in those evoked after music or odor exposure. These findings suggest the involuntary nature of odor-evoked autobiographical memory in AD. They also suggest that olfactory cuing could serve as a useful and ecologically valid tool to stimulate autobiographical memory, at least in the mild stage of the disease. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Memory transition between communicating agents

    Directory of Open Access Journals (Sweden)

    Elena FELL

    2012-01-01

    Full Text Available What happens to a memory when it has been externalised and embodied but has not reached its addressee yet? A letter that has been written but has not been read, a monument before it is unveiled or a Neolithic tool buried in the ground – all these objects harbour human memories engrained in their physicality; messages intended for those who will read the letter, admire the monument and hold the tool. According to Ilyenkov’s theory of objective idealism, the conscious and wilful input encoded in all manmade objects as the ‘ideal’ has an objective existence, independent from the author, but this existence lasts only while memories are shared between communicating parties. If all human minds were absent from the world for a period of time, the ‘ideal’, or memories, would cease to exist. They would spring back to existence, however, once humans re-entered the world. Ilyenkov’s analysis of memories existing outside an individual human consciousness is informative and thorough but, following his line of thought, we would have to accept an ontological gap in the process of memory acquisition, storage and transmission. If there is a period, following memory acquisition and preceding its transmission, when memories plainly do not exist, then each time a new reader, spectator or user perceives them, he or she must create the author’s memories ex nihilo. Bergson’s theory of duration and intuition can help us to resolve this paradox.This paper will explore the ontological characteristics of memory passage in communication taken at different stages of the process. There will be an indication of how the findings of this investigation could be applicable to concrete cases of memory transmission. In particular, this concerns intergenerational communication, technological memory, the use of digital devices and the Internet.

  4. Transactional Memory

    CERN Document Server

    Harris, Tim; Rajwar, Ravi

    2010-01-01

    The advent of multicore processors has renewed interest in the idea of incorporating transactions into the programming model used to write parallel programs.This approach, known as transactional memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that concurrent reads and writes of shared data do not produce inconsistent or incorrect results. At a higher level, a computation wrapped in a transaction executes atomically - either it completes successfullyand

  5. Colouring in the Blanks: Memory Drawings of the 1990 Kuwait Invasion

    Science.gov (United States)

    Pepin-Wakefield, Yvonne

    2009-01-01

    This study used drawing tasks to examine the similarities and differences between females and males who shared a collective traumatic event in early childhood. Could these childhood memories be recorded, measured, and compared for gender differences in drawings by young adults who had shared a similar experience as children? Exploration of this…

  6. Building a DBMS on top of the JuxMem Grid Data-Sharing Service

    OpenAIRE

    Almousa Almaksour , Abdullah; Antoniu , Gabriel; Bougé , Luc; Cudennec , Loïc; Gançarski , Stéphane

    2007-01-01

    Held in conjunction with Parallel Architectures and Compilation Techniques 2007 (PACT2007); International audience; We claim that building a distributed DBMS on top of a general-purpose grid data-sharing service is a natural extension of previous approaches based on the distributed shared memory paradigm. The approach we propose consists in providing the DBMS with a transparent, persistent and fault-tolerant access to the stored data, within a unstable, volatile and dynamic environment. The D...

  7. En-gendering Memory through Holocaust Alimentary Life Writing

    OpenAIRE

    Vasvári, Louise O.

    2015-01-01

    In her article "En-gendering Memory through Holocaust Alimentary Life Writing" Louise O. Vasvári aims to underline the cultural and gendered significance of the sharing of recipes as a survival tool by starving women in concentration camps during the Holocaust and the continuing role of food memories in the writing of Holocaust survivor women she considers a genealogy of intergenerational remembrance and transmission into the postmemory writing of their second generation daughters and occasio...

  8. The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals.

    Science.gov (United States)

    Shaw, Liam; Ribeiro, Andre L R; Levine, Adam P; Pontikos, Nikolas; Balloux, Francois; Segal, Anthony W; Roberts, Adam P; Smith, Andrew M

    2017-09-12

    The human microbiome is affected by multiple factors, including the environment and host genetics. In this study, we analyzed the salivary microbiomes of an extended family of Ashkenazi Jewish individuals living in several cities and investigated associations with both shared household and host genetic similarities. We found that environmental effects dominated over genetic effects. While there was weak evidence of geographical structuring at the level of cities, we observed a large and significant effect of shared household on microbiome composition, supporting the role of the immediate shared environment in dictating the presence or absence of taxa. This effect was also seen when including adults who had grown up in the same household but moved out prior to the time of sampling, suggesting that the establishment of the salivary microbiome earlier in life may affect its long-term composition. We found weak associations between host genetic relatedness and microbiome dissimilarity when using family pedigrees as proxies for genetic similarity. However, this association disappeared when using more-accurate measures of kinship based on genome-wide genetic markers, indicating that the environment rather than host genetics is the dominant factor affecting the composition of the salivary microbiome in closely related individuals. Our results support the concept that there is a consistent core microbiome conserved across global scales but that small-scale effects due to a shared living environment significantly affect microbial community composition. IMPORTANCE Previous research shows that the salivary microbiomes of relatives are more similar than those of nonrelatives, but it remains difficult to distinguish the effects of relatedness and shared household environment. Furthermore, pedigree measures may not accurately measure host genetic similarity. In this study, we include genetic relatedness based on genome-wide single nucleotide polymorphisms (SNPs) (rather than

  9. Autobiographical memory functions of nostalgia in comparison to rumination and counterfactual thinking: similarity and uniqueness.

    Science.gov (United States)

    Cheung, Wing-Yee; Wildschut, Tim; Sedikides, Constantine

    2018-02-01

    We compared and contrasted nostalgia with rumination and counterfactual thinking in terms of their autobiographical memory functions. Specifically, we assessed individual differences in nostalgia, rumination, and counterfactual thinking, which we then linked to self-reported functions or uses of autobiographical memory (Self-Regard, Boredom Reduction, Death Preparation, Intimacy Maintenance, Conversation, Teach/Inform, and Bitterness Revival). We tested which memory functions are shared and which are uniquely linked to nostalgia. The commonality among nostalgia, rumination, and counterfactual thinking resides in their shared positive associations with all memory functions: individuals who evinced a stronger propensity towards past-oriented thought (as manifested in nostalgia, rumination, and counterfactual thinking) reported greater overall recruitment of memories in the service of present functioning. The uniqueness of nostalgia resides in its comparatively strong positive associations with Intimacy Maintenance, Teach/Inform, and Self-Regard and weak association with Bitterness Revival. In all, nostalgia possesses a more positive functional signature than do rumination and counterfactual thinking.

  10. The Climate-G testbed: towards a large scale data sharing environment for climate change

    Science.gov (United States)

    Aloisio, G.; Fiore, S.; Denvil, S.; Petitdidier, M.; Fox, P.; Schwichtenberg, H.; Blower, J.; Barbera, R.

    2009-04-01

    The Climate-G testbed provides an experimental large scale data environment for climate change addressing challenging data and metadata management issues. The main scope of Climate-G is to allow scientists to carry out geographical and cross-institutional climate data discovery, access, visualization and sharing. Climate-G is a multidisciplinary collaboration involving both climate and computer scientists and it currently involves several partners such as: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Institut Pierre-Simon Laplace (IPSL), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI), National Center for Atmospheric Research (NCAR), University of Reading, University of Catania and University of Salento. To perform distributed metadata search and discovery, we adopted a CMCC metadata solution (which provides a high level of scalability, transparency, fault tolerance and autonomy) leveraging both on P2P and grid technologies (GRelC Data Access and Integration Service). Moreover, data are available through OPeNDAP/THREDDS services, Live Access Server as well as the OGC compliant Web Map Service and they can be downloaded, visualized, accessed into the proposed environment through the Climate-G Data Distribution Centre (DDC), the web gateway to the Climate-G digital library. The DDC is a data-grid portal allowing users to easily, securely and transparently perform search/discovery, metadata management, data access, data visualization, etc. Godiva2 (integrated into the DDC) displays 2D maps (and animations) and also exports maps for display on the Google Earth virtual globe. Presently, Climate-G publishes (through the DDC) about 2TB of data related to the ENSEMBLES project (also including distributed replicas of data) as well as to the IPCC AR4. The main results of the proposed work are: wide data access/sharing environment for climate change; P2P/grid metadata approach; production-level Climate-G DDC; high quality tools for

  11. RAM-efficient external memory sorting

    DEFF Research Database (Denmark)

    Arge, Lars; Thorup, Mikkel

    2013-01-01

    In recent years a large number of problems have been considered in external memory models of computation, where the complexity measure is the number of blocks of data that are moved between slow external memory and fast internal memory (also called I/Os). In practice, however, internal memory time...... often dominates the total running time once I/O-efficiency has been obtained. In this paper we study algorithms for fundamental problems that are simultaneously I/O-efficient and internal memory efficient in the RAM model of computation....

  12. The dynamics of zero: on digital memories of Mars and the human foetus in the globital memory field

    Directory of Open Access Journals (Sweden)

    Anna READING

    2012-01-01

    Full Text Available The dynamics of digitisation and globalisation are synergetically and dialectically changing the ways in which human beings individually and collectively capture, document, share and preserve memories of the past. This paper develops further the concept of the “globital memory field” with a discursive overview of the development of “digital memory” and the significance of zero in the meaning and practice of digital memory. The paper then explains the key elements of this epistemology, with an emphasis on the significance of zero or nothing in relation to two contrasting examples of the medical imaging of the human fœtus to the capturing and sending back to Earth by NASA’s Curiosity robot images from the surface of Mars.

  13. Does developmental timing of exposure to child maltreatment predict memory performance in adulthood? Results from a large, population-based sample.

    Science.gov (United States)

    Dunn, Erin C; Busso, Daniel S; Raffeld, Miriam R; Smoller, Jordan W; Nelson, Charles A; Doyle, Alysa E; Luk, Gigi

    2016-01-01

    Although maltreatment is a known risk factor for multiple adverse outcomes across the lifespan, its effects on cognitive development, especially memory, are poorly understood. Using data from a large, nationally representative sample of young adults (Add Health), we examined the effects of physical and sexual abuse on working and short-term memory in adulthood. We examined the association between exposure to maltreatment as well as its timing of first onset after adjusting for covariates. Of our sample, 16.50% of respondents were exposed to physical abuse and 4.36% to sexual abuse by age 17. An analysis comparing unexposed respondents to those exposed to physical or sexual abuse did not yield any significant differences in adult memory performance. However, two developmental time periods emerged as important for shaping memory following exposure to sexual abuse, but in opposite ways. Relative to non-exposed respondents, those exposed to sexual abuse during early childhood (ages 3-5), had better number recall and those first exposed during adolescence (ages 14-17) had worse number recall. However, other variables, including socioeconomic status, played a larger role (than maltreatment) on working and short-term memory. We conclude that a simple examination of "exposed" versus "unexposed" respondents may obscure potentially important within-group differences that are revealed by examining the effects of age at onset to maltreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Working memory training improves reading processes in typically developing children.

    Science.gov (United States)

    Loosli, Sandra V; Buschkuehl, Martin; Perrig, Walter J; Jaeggi, Susanne M

    2012-01-01

    The goal of this study was to investigate whether a brief cognitive training intervention results in a specific performance increase in the trained task, and whether there are transfer effects to other nontrained measures. A computerized, adaptive working memory intervention was conducted with 9- to 11-year-old typically developing children. The children considerably improved their performance in the trained working memory task. Additionally, compared to a matched control group, the experimental group significantly enhanced their reading performance after training, providing further evidence for shared processes between working memory and reading.

  15. Memory effects on stochastic resonance

    Science.gov (United States)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  16. Factor structure of overall autobiographical memory usage: the directive, self and social functions revisited.

    Science.gov (United States)

    Rasmussen, Anne S; Habermas, Tilmann

    2011-08-01

    According to theory, autobiographical memory serves three broad functions of overall usage: directive, self, and social. However, there is evidence to suggest that the tripartite model may be better conceptualised in terms of a four-factor model with two social functions. In the present study we examined the two models in Danish and German samples, using the Thinking About Life Experiences Questionnaire (TALE; Bluck, Alea, Habermas, & Rubin, 2005), which measures the overall usage of the three functions generalised across concrete memories. Confirmatory factor analysis supported the four-factor model and rejected the theoretical three-factor model in both samples. The results are discussed in relation to cultural differences in overall autobiographical memory usage as well as sharing versus non-sharing aspects of social remembering.

  17. A class Hierarchical, object-oriented approach to virtual memory management

    Science.gov (United States)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  18. Large-Capacity Three-Party Quantum Digital Secret Sharing Using Three Particular Matrices Coding

    International Nuclear Information System (INIS)

    Lai Hong; Tao Li; Liu Zhi-Ming; Luo Ming-Xing; Pieprzyk, Josef; Orgun, Mehmet A.

    2016-01-01

    In this paper, we develop a large-capacity quantum digital secret sharing (QDSS) scheme, combined the Fibonacci- and Lucas-valued orbital angular momentum (OAM) entanglement with the recursive Fibonacci and Lucas matrices. To be exact, Alice prepares pairs of photons in the Fibonacci- and Lucas-valued OAM entangled states, and then allocates them to two participants, say, Bob and Charlie, to establish the secret key. Moreover, the available Fibonacci and Lucas values from the matching entangled states are used as the seed for generating the Fibonacci and Lucas matrices. This is achieved because the entries of the Fibonacci and Lucas matrices are recursive. The secret key can only be obtained jointly by Bob and Charlie, who can further recover the secret. Its security is based on the facts that nonorthogonal states are indistinguishable, and Bob or Charlie detects a Fibonacci number, there is still a twofold uncertainty for Charlie' (Bob') detected value. (paper)

  19. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  20. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Directory of Open Access Journals (Sweden)

    Yaser Afshar

    Full Text Available Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10 pixels, but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  1. Clinical Perspectives on Autobiographical Memory

    DEFF Research Database (Denmark)

    Autobiographical memory plays a key role in psychological well-being, and the field has been investigated from multiple perspectives for more than thirty years. One large body of research has examined the basic mechanisms and characteristics of autobiographical memory during general cognition......, and another body has studied what happens to it during psychological disorders, and how psychological therapies targeting memory disturbances can improve psychological well-being. This edited collection reviews and integrates current theories on autobiographical memory when viewed in a clinical perspective....... It presents an overview of basic applied and clinical approaches to autobiographical memory, covering memory specificity, traumatic memories, involuntary and intrusive memories, and the role of self-identity. The book discusses a wide range of psychological disorders, including depression, posttraumatic...

  2. Forensic Memory Analysis for Apple OS X

    Science.gov (United States)

    2012-06-14

    those subscribing to the virtual node (vnode) interface. The excluded types mean POSIX semaphores and shared memory files, kernel event queue files...The set of non-vnode handles (sockets, pipes, semaphores , etc.) make up a significant portion of the lsof results (C2). This observation highlights

  3. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Science.gov (United States)

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-03-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  4. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Directory of Open Access Journals (Sweden)

    Ioannis Vlachos

    2011-03-01

    Full Text Available The basal nucleus of the amygdala (BA is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS-related input from the adjacent lateral nucleus (LA and contextual input from the hippocampus or medial prefrontal cortex (mPFC. We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  5. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    Science.gov (United States)

    Voigt, Babett; Mahy, Caitlin E. V.; Ellis, Judi; Schnitzspahn, Katharina; Krause, Ivonne; Altgassen, Mareike; Kliegel, Matthias

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was…

  6. Towards Memory-Aware Services and Browsing through Lifelogging Sensing

    Directory of Open Access Journals (Sweden)

    Carlos Cetina

    2013-11-01

    Full Text Available Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time.

  7. Working, declarative and procedural memory in specific language impairment

    DEFF Research Database (Denmark)

    Lum, J. A. G.; Conti-Ramsden, G.; Page, D.

    2012-01-01

    at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed......According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which...... in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact...

  8. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".

    Science.gov (United States)

    Başar, Erol

    2005-01-01

    According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.

  10. Benefits and Costs of Context Reinstatement in Episodic Memory: An ERP Study.

    Science.gov (United States)

    Bramão, Inês; Johansson, Mikael

    2017-01-01

    This study investigated context-dependent episodic memory retrieval. An influential idea in the memory literature is that performance benefits when the retrieval context overlaps with the original encoding context. However, such memory facilitation may not be driven by the encoding-retrieval overlap per se but by the presence of diagnostic features in the reinstated context that discriminate the target episode from competing episodes. To test this prediction, the encoding-retrieval overlap and the diagnostic value of the context were manipulated in a novel associative recognition memory task. Participants were asked to memorize word pairs presented together with diagnostic (unique) and nondiagnostic (shared) background scenes. At test, participants recognized the word pairs in the presence and absence of the previously encoded contexts. Behavioral data show facilitated memory performance in the presence of the original context but, importantly, only when the context was diagnostic of the target episode. The electrophysiological data reveal an early anterior ERP encoding-retrieval overlap effect that tracks the cost associated with having nondiagnostic contexts present at retrieval, that is, shared by multiple previous episodes, and a later posterior encoding-retrieval overlap effect that reflects facilitated access to the target episode during retrieval in diagnostic contexts. Taken together, our results underscore the importance of the diagnostic value of the context and suggest that context-dependent episodic memory effects are multiple determined.

  11. Working, declarative and procedural memory in specific language impairment

    Science.gov (United States)

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  12. Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory.

    Science.gov (United States)

    Shields, Grant S; Doty, Dominique; Shields, Rebecca H; Gower, Garrett; Slavich, George M; Yonelinas, Andrew P

    2017-11-01

    Although substantial research has examined the effects of stress on cognition, much of this research has focused on acute stress (e.g. manipulated in the laboratory) or chronic stress (e.g. persistent interpersonal or financial difficulties). In contrast, the effects of recent life stress on cognition have been relatively understudied. To address this issue, we examined how recent life stress is associated with long-term, working memory, and self-reported memory in a sample of 142 healthy young adults who were assessed at two time points over a two-week period. Recent life stress was measured using the newly-developed Stress and Adversity Inventory for Daily Stress (Daily STRAIN), which assesses the frequency of relatively common stressful life events and difficulties over the preceding two weeks. To assess memory performance, participants completed both long-term and working memory tasks. Participants also provided self-reports of memory problems. As hypothesized, greater recent life stress exposure was associated with worse performance on measures of long-term and working memory, as well as more self-reported memory problems. These associations were largely robust while controlling for possible confounds, including participants' age, sex, and negative affect. The findings indicate that recent life stress exposure is broadly associated with worse memory. Future studies should thus consider assessing recent life stress as a potential predictor, moderator, or covariate of memory performance.

  13. From smells to stories : The design and evaluation of the smell memory kit

    NARCIS (Netherlands)

    Leret, Susana Camara; Visch, V.T.

    2017-01-01

    The study presented is a research through design of the motivational, story sharing effects of smell, within the context of addiction care. This investigation led to the co-design of the Smell Memory Kit: a kit using eight selected smells as motivational elements to evoke and share

  14. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  15. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Dynamic memory searches: Selective output interference for the memory of facts.

    Science.gov (United States)

    Aue, William R; Criss, Amy H; Prince, Melissa A

    2015-12-01

    The benefits of testing on later memory performance are well documented; however, the manner in which testing harms memory performance is less well understood. This research is concerned with the finding that accuracy decreases over the course of testing, a phenomena termed "output interference" (OI). OI has primarily been investigated with episodic memory, but there is limited research investigating OI in measures of semantic memory (i.e., knowledge). In the current study, participants were twice tested for their knowledge of factual questions; they received corrective feedback during the first test. No OI was observed during the first test, when participants presumably searched semantic memory to answer the general-knowledge questions. During the second test, OI was observed. Conditional analyses of Test 2 performance revealed that OI was largely isolated to questions answered incorrectly during Test 1. These were questions for which participants needed to rely on recent experience (i.e., the feedback in episodic memory) to respond correctly. One possible explanation is that episodic memory is more susceptible to the sort of interference generated during testing (e.g., gradual changes in context, encoding/updating of items) relative to semantic memory. Alternative explanations are considered.

  17. Efficient accesses of data structures using processing near memory

    Science.gov (United States)

    Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera

    2018-05-22

    Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory where the atomic queue is allocated.

  18. Autobiographical memory and hyperassociativity in the dreaming brain: Implications for memory consolidation in sleep

    Directory of Open Access Journals (Sweden)

    Caroline L Horton

    2015-07-01

    Full Text Available In this paper we argue that autobiographical memory activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography. They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualising those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of autobiographical memory to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of autobiographical memory during sleep.

  19. Recollection of Emotional Memories in Schizophrenia: Autonoetic awareness and specificity deficits

    Directory of Open Access Journals (Sweden)

    Aurore Neumann

    2006-03-01

    Full Text Available Episodic memory impairments seem to play a crucial role in schizophrenia. Most of the studies that have demonstrated such a deficit have used neutral material, leaving the recollection of emotional memories in schizophrenia unexplored. An overview is presented of a series of studies investigating the influence of emotion on episodic and autobiographical memory in schizophrenia. These experiments share a common experimental approach in which states of awareness accompanying recollection are considered. Results show that schizophrenia impairs conscious recollection in episodic and autobiographical memory tasks using emotional material. Schizophrenia is also associated with a reduction of the specificity with which autobiographical memories are recalled. An hypothesis in terms of a fundamental executive deficit underlying these impairments is proposed.

  20. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    Science.gov (United States)

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  1. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  2. Virtual Prototyping and Performance Analysis of Two Memory Architectures

    Directory of Open Access Journals (Sweden)

    Huda S. Muhammad

    2009-01-01

    Full Text Available The gap between CPU and memory speed has always been a critical concern that motivated researchers to study and analyze the performance of memory hierarchical architectures. In the early stages of the design cycle, performance evaluation methodologies can be used to leverage exploration at the architectural level and assist in making early design tradeoffs. In this paper, we use simulation platforms developed using the VisualSim tool to compare the performance of two memory architectures, namely, the Direct Connect architecture of the Opteron, and the Shared Bus of the Xeon multicore processors. Key variations exist between the two memory architectures and both design approaches provide rich platforms that call for the early use of virtual system prototyping and simulation techniques to assess performance at an early stage in the design cycle.

  3. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    Science.gov (United States)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  4. Total recall in distributive associative memories

    Science.gov (United States)

    Danforth, Douglas G.

    1991-01-01

    Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.

  5. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    Science.gov (United States)

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  6. Examining Age-Related Shared Variance Between Face Cognition, Vision, and Self-Reported Physical Health: A Test of the Common Cause Hypothesis for Social Cognition

    Directory of Open Access Journals (Sweden)

    Sally eOlderbak

    2015-08-01

    Full Text Available The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing, and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain. We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities, specifically face perception and face memory. Based on a sample of 443 adults (17 to 88 years old, we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident.

  7. Effects of Aging on True and False Memory Formation: An fMRI Study

    Science.gov (United States)

    Dennis, Nancy A.; Kim, Hongkeun; Cabeza, Roberto

    2007-01-01

    Compared to young, older adults are more likely to forget events that occurred in the past as well as remember events that never happened. Previous studies examining false memories and aging have shown that these memories are more likely to occur when new items share perceptual or semantic similarities with those presented during encoding. It is…

  8. Construction and Application of an AMR Algorithm for Distributed Memory Computers

    OpenAIRE

    Deiterding, Ralf

    2003-01-01

    While the parallelization of blockstructured adaptive mesh refinement techniques is relatively straight-forward on shared memory architectures, appropriate distribution strategies for the emerging generation of distributed memory machines are a topic of on-going research. In this paper, a locality-preserving domain decomposition is proposed that partitions the entire AMR hierarchy from the base level on. It is shown that the approach reduces the communication costs and simplifies the im...

  9. A balanced memory network.

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2007-09-01

    Full Text Available A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  10. Content Analysis of Memory and Memory-Related Research Studies on Children with Hearing Loss

    Science.gov (United States)

    Dogan, Murat; Hasanoglu, Gülcihan

    2016-01-01

    Memory plays a profound role in explaining language development, academic learning, and learning disabilities. Even though there is a large body of research on language development, literacy skills, other academic skills, and intellectual characteristics of children with hearing loss, there is no holistic study on their memory processes.…

  11. Transactive memory in organizational groups: the effects of content, consensus, specialization, and accuracy on group performance.

    Science.gov (United States)

    Austin, John R

    2003-10-01

    Previous research on transactive memory has found a positive relationship between transactive memory system development and group performance in single project laboratory and ad hoc groups. Closely related research on shared mental models and expertise recognition supports these findings. In this study, the author examined the relationship between transactive memory systems and performance in mature, continuing groups. A group's transactive memory system, measured as a combination of knowledge stock, knowledge specialization, transactive memory consensus, and transactive memory accuracy, is positively related to group goal performance, external group evaluations, and internal group evaluations. The positive relationship with group performance was found to hold for both task and external relationship transactive memory systems.

  12. Cultural differences in categorical memory errors persist with age.

    Science.gov (United States)

    Gutchess, Angela; Boduroglu, Aysecan

    2018-01-02

    This cross-sectional experiment examined the influence of aging on cross-cultural differences in memory errors. Previous research revealed that Americans committed more categorical memory errors than Turks; we tested whether the cognitive constraints associated with aging impacted the pattern of memory errors across cultures. Furthermore, older adults are vulnerable to memory errors for semantically-related information, and we assessed whether this tendency occurs across cultures. Younger and older adults from the US and Turkey studied word pairs, with some pairs sharing a categorical relationship and some unrelated. Participants then completed a cued recall test, generating the word that was paired with the first. These responses were scored for correct responses or different types of errors, including categorical and semantic. The tendency for Americans to commit more categorical memory errors emerged for both younger and older adults. In addition, older adults across cultures committed more memory errors, and these were for semantically-related information (including both categorical and other types of semantic errors). Heightened vulnerability to memory errors with age extends across cultural groups, and Americans' proneness to commit categorical memory errors occurs across ages. The findings indicate some robustness in the ways that age and culture influence memory errors.

  13. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  14. Learning and memory.

    Science.gov (United States)

    Brem, Anna-Katharine; Ran, Kathy; Pascual-Leone, Alvaro

    2013-01-01

    Learning and memory functions are crucial in the interaction of an individual with the environment and involve the interplay of large, distributed brain networks. Recent advances in technologies to explore neurobiological correlates of neuropsychological paradigms have increased our knowledge about human learning and memory. In this chapter we first review and define memory and learning processes from a neuropsychological perspective. Then we provide some illustrations of how noninvasive brain stimulation can play a major role in the investigation of memory functions, as it can be used to identify cause-effect relationships and chronometric properties of neural processes underlying cognitive steps. In clinical medicine, transcranial magnetic stimulation may be used as a diagnostic tool to understand memory and learning deficits in various patient populations. Furthermore, noninvasive brain stimulation is also being applied to enhance cognitive functions, offering exciting translational therapeutic opportunities in neurology and psychiatry. © 2013 Elsevier B.V. All rights reserved.

  15. Making memories matter

    Directory of Open Access Journals (Sweden)

    Paul E. Gold

    2012-12-01

    Full Text Available This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes engaged by learning and memory. These brain processes include augmentation of neurotransmitter release and of energy metabolism, the latter apparently including a key role for astrocytic glycogen. In addition to up- and down-regulation of learning and memory in general, physiological concomitants of emotion and arousal can also switch the neural system that controls learning at a particular time, at once improving some attributes of learning and impairing others in a manner that results in a change in the strategy used to solve a problem.

  16. Making Memories Matter

    Science.gov (United States)

    Gold, Paul E.; Korol, Donna L.

    2012-01-01

    This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes engaged by learning and memory. These brain processes include augmentation of neurotransmitter release and of energy metabolism, the latter apparently including a key role for astrocytic glycogen. In addition to up- and down-regulation of learning and memory in general, physiological concomitants of emotion and arousal can also switch the neural system that controls learning at a particular time, at once improving some attributes of learning and impairing others in a manner that results in a change in the strategy used to solve a problem. PMID:23264764

  17. Akuisisi dan Budaya Knowledge Sharing

    Directory of Open Access Journals (Sweden)

    Nuril Kusumawardhani Soeprapto Putri

    2011-06-01

    Full Text Available Large companies which are experiencing barriers in innovation often take a radical step to acquire knowledge, namely acquisition. Though innovation is not the only reason, acquisition will result in the company wishes to achieve competitive advantage affected by the creation of ideas, creativity and innovation. The three points can be achieved more easily when the knowledge sharing within the organization / company runs well. However, the acquisition maybe impacts as a counter-attack for the knowledge sharing culture both in the acquisitor and and company which obtains the acquisition. Therefore, a key to succeed the acquisition is a sharing culture among individuals within a company that runs well or even better. Individuals from the acquisitor and those of the company that obtains the acquisition can adapt to each other and have confidence in order not to hinder them to share knowledge. This study discusses in detail the potential impacts of an acquisition upon a knowledge sharing culture in a company. 

  18. Close Associations and Memory in Brainwriting Groups

    Science.gov (United States)

    Coskun, Hamit

    2011-01-01

    The present experiment examined whether or not the type of associations (close (e.g. apple-pear) and distant (e.g. apple-fish) word associations) and memory instruction (paying attention to the ideas of others) had effects on the idea generation performances in the brainwriting paradigm in which all participants shared their ideas by using paper…

  19. Architectures for a quantum random access memory

    Science.gov (United States)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-11-01

    A random access memory, or RAM, is a device that, when interrogated, returns the content of a memory location in a memory array. A quantum RAM, or qRAM, allows one to access superpositions of memory sites, which may contain either quantum or classical information. RAMs and qRAMs with n -bit addresses can access 2n memory sites. Any design for a RAM or qRAM then requires O(2n) two-bit logic gates. At first sight this requirement might seem to make large scale quantum versions of such devices impractical, due to the difficulty of constructing and operating coherent devices with large numbers of quantum logic gates. Here we analyze two different RAM architectures (the conventional fanout and the “bucket brigade”) and propose some proof-of-principle implementations, which show that, in principle, only O(n) two-qubit physical interactions need take place during each qRAM call. That is, although a qRAM needs O(2n) quantum logic gates, only O(n) need to be activated during a memory call. The resulting decrease in resources could give rise to the construction of large qRAMs that could operate without the need for extensive quantum error correction.

  20. Load and distinctness interact in working memory for lexical manual gestures

    Directory of Open Access Journals (Sweden)

    Mary eRudner

    2015-08-01

    Full Text Available The Ease of Language Understanding model (ELU, Rönnberg et al., 2013 predicts that decreasing the distinctness of language stimuli increases working memory load; in the speech domain this notion is supported by empirical evidence. Our aim was to determine whether such an over-additive interaction can be generalized to sign processing in sign-naïve individuals and whether it is modulated by experience of computer gaming. Twenty young adults with no knowledge of sign language performed an n-back working memory task based on manual gestures lexicalized in sign language; the visual resolution of the signs and working memory load were manipulated. Performance was poorer when load was high and resolution was low. These two effects interacted over-additively, demonstrating that reducing the resolution of signed stimuli increases working memory load when there is no pre-existing semantic representation. This suggests that load and distinctness are handled by a shared amodal mechanism which can be revealed empirically when stimuli are degraded and load is high, even without pre-existing semantic representation. There was some evidence that the mechanism is influenced by computer gaming experience. Future work should explore how the shared mechanism is influenced by pre-existing semantic representation and sensory factors together with computer gaming experience.

  1. Load and distinctness interact in working memory for lexical manual gestures.

    Science.gov (United States)

    Rudner, Mary; Toscano, Elena; Holmer, Emil

    2015-01-01

    The Ease of Language Understanding model (Rönnberg et al., 2013) predicts that decreasing the distinctness of language stimuli increases working memory load; in the speech domain this notion is supported by empirical evidence. Our aim was to determine whether such an over-additive interaction can be generalized to sign processing in sign-naïve individuals and whether it is modulated by experience of computer gaming. Twenty young adults with no knowledge of sign language performed an n-back working memory task based on manual gestures lexicalized in sign language; the visual resolution of the signs and working memory load were manipulated. Performance was poorer when load was high and resolution was low. These two effects interacted over-additively, demonstrating that reducing the resolution of signed stimuli increases working memory load when there is no pre-existing semantic representation. This suggests that load and distinctness are handled by a shared amodal mechanism which can be revealed empirically when stimuli are degraded and load is high, even without pre-existing semantic representation. There was some evidence that the mechanism is influenced by computer gaming experience. Future work should explore how the shared mechanism is influenced by pre-existing semantic representation and sensory factors together with computer gaming experience.

  2. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity.

    Science.gov (United States)

    Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén

    2016-10-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Latent Factor Analysis of Working Memory Measures Using Large-Scale Data

    Directory of Open Access Journals (Sweden)

    Otto Waris

    2017-06-01

    Full Text Available Working memory (WM is a key cognitive system that is strongly related to other cognitive domains and relevant for everyday life. However, the structure of WM is yet to be determined. A number of WM models have been put forth especially by factor analytical studies. In broad terms, these models vary by their emphasis on WM contents (e.g., visuospatial, verbal vs. WM processes (e.g., maintenance, updating as critical, dissociable elements. Here we conducted confirmatory and exploratory factor analyses on a broad set of WM tasks, half of them numerical-verbal and half of them visuospatial, representing four commonly used task paradigms: simple span, complex span, running memory, and n-back. The tasks were selected to allow the detection of both content-based (visuospatial, numerical-verbal and process-based (maintenance, updating divisions. The data were collected online which allowed the recruitment of a large and demographically diverse sample of adults (n = 711. Both factor analytical methods pointed to a clear division according to task content for all paradigms except n-back, while there was no indication for a process-based division. Besides the content-based division, confirmatory factor analyses supported a model that also included a general WM factor. The n-back tasks had the highest loadings on the general factor, suggesting that this factor reflected high-level cognitive resources such as executive functioning and fluid intelligence that are engaged with all WM tasks, and possibly even more so with the n-back. Together with earlier findings that indicate high variability of process-based WM divisions, we conclude that the most robust division of WM is along its contents (visuospatial vs. numerical-verbal, rather than along its hypothetical subprocesses.

  4. A theory of working memory without consciousness or sustained activity

    Science.gov (United States)

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  5. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    Science.gov (United States)

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. The prevalence and quality of silent, socially silent, and disclosed autobiographical memories across adulthood.

    Science.gov (United States)

    Alea, Nicole

    2010-02-01

    Two separate studies examined the prevalence and quality of silent (infrequently recalled), socially silent (i.e., recalled but not shared), and disclosed autobiographical memories. In Study 1 young and older men and women remembered positive events. Positive memories were more likely to be disclosed than to be kept socially silent or completely silent. However, socially silent and disclosed memories did not differ in memory quality: the memories were equally vivid, significant, and emotional. Silent memories were less qualitatively rich. This pattern of results was generally replicated in Study 2 with a lifespan sample for both positive and negative memories, and with additional qualitative variables. The exception was that negative memories were kept silent more often. Age differences were minimal. Women disclosed their autobiographical memories more, but men told a greater variety of people. Results are discussed in terms of the functions that memory telling and silences might serve for individuals.

  7. The sensory components of high-capacity iconic memory and visual working memory.

    Science.gov (United States)

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  8. The sensory components of high-capacity iconic memory and visual working memory

    Directory of Open Access Journals (Sweden)

    Claire eBradley

    2012-09-01

    Full Text Available Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of 3 different visual features (colour, orientation and motion across a range of durations from 0 to 6 seconds. We found that the amount of information stored in iconic memory is smaller for motion than for colour or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ~2 seconds. Further experiments showed that performance for the 10 items at 1 second was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory and an effortful ‘lower-capacity’ visual working memory.

  9. Iconic Memories Die a Sudden Death.

    Science.gov (United States)

    Pratte, Michael S

    2018-06-01

    Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.

  10. Ecphory of Autobiographical Memories: an fMRI Study on Recent and Remote Memory Retrieval

    Science.gov (United States)

    Steinvorth, Sarah; Corkin, Suzanne; Halgren, Eric

    2006-01-01

    Ecphory occurs when one recollects a past event cued by a trigger, such as a picture, odor, or name. It is a central component of autobiographical memory, which allows us to “travel mentally back in time” and re-experience specific events from our personal past. Using fMRI and focusing on the role of medial temporal lobe (MTL) structures, we investigated the brain bases of autobiographical memory and whether they change with the age of memories. Importantly, we used an ecphory task in which the remote character of the memories was ensured. The results showed that a large bilateral network supports autobiographical memory: temporal lobe, temporo-occipito-parietal junction, dorsal prefrontal cortex, medial frontal cortex, retrosplenial cortex and surrounding areas, and MTL structures. This network, including MTL structures, changed little with the age of the memories. PMID:16257547

  11. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.

    Science.gov (United States)

    Yin, Cong; Wei, Kunlin

    2014-08-01

    Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.

  12. Bus Arbitration for FDUMA Shared Memory Architecture

    OpenAIRE

    森垣,利彦; 弘中,哲夫; 児島,彰; 藤野,清次

    1997-01-01

    近年, プロセッサとDRAMを1つのLSI上に混載することでメモリバンド幅を広げる研究が行われている. しかし, この方法ではベクトル処理的な用途以外では得られるメモリバンド幅を有効に活用できず, On Chip Multiprocessorなどの共有メモリとして利用しにくい. そこで我々はこの問題を解決するメモリ・アーキテクチャとして, FDUMAマルチポートメモリシステムを提案している. 本稿では, 現在開発中であるFDUMAメモリシステムの試作機で用いるバス・アービトレーションについて述べ, その後ソフトウェア・シミュレータによるFDUMAメモリシステムの特性評価を行う. / Many research are done on deriving high memory bandwidth by merging the DRAM and logic on one chip. This merged DRAM/logic chip is effective for vector-style processing. Although it is not suitable for ...

  13. Distributed memory in a heterogeneous network, as used in the CERN-PS complex timing system

    CERN Document Server

    Kovaltsov, V I

    1995-01-01

    The Distributed Table Manager (DTM) is a fast and efficient utility for distributing named binary data structures called Tables, of arbitrary size and structure, around a heterogeneous network of computers to a set of registered clients. The Tables are transmitted over a UDP network between DTM servers in network format, where the servers perform the conversions to and from host format for local clients. The servers provide clients with synchronization mechanisms, a choice of network data flows, and table options such as keeping table disc copies, shared memory or heap memory table allocation, table read/write permissions, and table subnet broadcasting. DTM has been designed to be easily maintainable, and to automatically recover from the type of errors typically encountered in a large control system network. The DTM system is based on a three level server daemon hierarchy, in which an inter daemon protocol handles network failures, and incorporates recovery procedures which will guarantee table consistency w...

  14. Collectors practices and the preserving of their memories: Objects of the First World War in Nord Pas de Calais and west Flanders

    Directory of Open Access Journals (Sweden)

    Agnieszka SMOLCZEWSKA-TONA

    2012-01-01

    Full Text Available This article examines the preserving of the memory shared by collectors and mediators of objects from the Great War in the context of museum mediation. The notion of the memory is understood in this article as the body of knowledge acquired, held and shared by these collectors within the framework of their practice of collection and mediation. We look firstly at the informational and communicative dimension of these collectors’ memory. We show that the collector’s memory relating to the objects collected takes a variety of different forms and that it is primarily communicated in oral and gestural form. The results of our analysis lead us to the conclusion that, today, only audiovisual recording techniques allow preserving a precise copy of memories for the long term. The second part of our analysis presents an audiovisual protocol for preparing, recording and storage of these memory traces.

  15. Teuchos C++ memory management classes, idioms, and related topics, the complete reference : a comprehensive strategy for safe and efficient memory management in C++ for high performance computing.

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Roscoe Ainsworth

    2010-05-01

    The ubiquitous use of raw pointers in higher-level code is the primary cause of all memory usage problems and memory leaks in C++ programs. This paper describes what might be considered a radical approach to the problem which is to encapsulate the use of all raw pointers and all raw calls to new and delete in higher-level C++ code. Instead, a set of cooperating template classes developed in the Trilinos package Teuchos are used to encapsulate every use of raw C++ pointers in every use case where it appears in high-level code. Included in the set of memory management classes is the typical reference-counted smart pointer class similar to boost::shared ptr (and therefore C++0x std::shared ptr). However, what is missing in boost and the new standard library are non-reference counted classes for remaining use cases where raw C++ pointers would need to be used. These classes have a debug build mode where nearly all programmer errors are caught and gracefully reported at runtime. The default optimized build mode strips all runtime checks and allows the code to perform as efficiently as raw C++ pointers with reasonable usage. Also included is a novel approach for dealing with the circular references problem that imparts little extra overhead and is almost completely invisible to most of the code (unlike the boost and therefore C++0x approach). Rather than being a radical approach, encapsulating all raw C++ pointers is simply the logical progression of a trend in the C++ development and standards community that started with std::auto ptr and is continued (but not finished) with std::shared ptr in C++0x. Using the Teuchos reference-counted memory management classes allows one to remove unnecessary constraints in the use of objects by removing arbitrary lifetime ordering constraints which are a type of unnecessary coupling [23]. The code one writes with these classes will be more likely to be correct on first writing, will be less likely to contain silent (but deadly) memory

  16. Infectious Cognition: Risk Perception Affects Socially Shared Retrieval-Induced Forgetting of Medical Information.

    Science.gov (United States)

    Coman, Alin; Berry, Jessica N

    2015-12-01

    When speakers selectively retrieve previously learned information, listeners often concurrently, and covertly, retrieve their memories of that information. This concurrent retrieval typically enhances memory for mentioned information (the rehearsal effect) and impairs memory for unmentioned but related information (socially shared retrieval-induced forgetting, SSRIF), relative to memory for unmentioned and unrelated information. Building on research showing that anxiety leads to increased attention to threat-relevant information, we explored whether concurrent retrieval is facilitated in high-anxiety real-world contexts. Participants first learned category-exemplar facts about meningococcal disease. Following a manipulation of perceived risk of infection (low vs. high risk), they listened to a mock radio show in which some of the facts were selectively practiced. Final recall tests showed that the rehearsal effect was equivalent between the two risk conditions, but SSRIF was significantly larger in the high-risk than in the low-risk condition. Thus, the tendency to exaggerate consequences of news events was found to have deleterious consequences. © The Author(s) 2015.

  17. Control of Working Memory in Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Tu, Hsiao-Wei; Hampton, Robert R.

    2014-01-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  18. A Cognitive Assessment of Highly Superior Autobiographical Memory

    Science.gov (United States)

    LePort, Aurora K.R.; Stark, Shauna M.; McGaugh, James L.; Stark, Craig E.L.

    2017-01-01

    Highly Superior Autobiographical Memory (HSAM) is characterized as the ability to accurately recall an exceptional number of experiences and their associated dates from events occurring throughout much of one’s lifetime. The source of this ability has only begun to be explored. The present study explores whether other enhanced cognitive processes may be critical influences underlying HSAM abilities. We investigated whether enhanced abilities in the domains of verbal fluency, attention/inhibition, executive functioning, mnemonic discrimination, perception, visual working memory, or the processing of and memory for emotional details might contribute critically to HSAM. The results suggest that superior cognitive functioning is an unlikely basis of HSAM, as only modest advantages were found in only a few tests. In addition, we examined HSAM subjects’ memory of the testing episodes. Interestingly, HSAM participants recalled details of their own experiences far better than those experiences that the experimenter shared with them. These findings provide additional evidence that HSAM involves, relatively selectively, recollection of personal, autobiographical material. PMID:26982996

  19. A cognitive assessment of highly superior autobiographical memory.

    Science.gov (United States)

    LePort, Aurora K R; Stark, Shauna M; McGaugh, James L; Stark, Craig E L

    2017-02-01

    Highly Superior Autobiographical Memory (HSAM) is characterised as the ability to accurately recall an exceptional number of experiences and their associated dates from events occurring throughout much of one's lifetime. The source of this ability has only begun to be explored. The present study explores whether other enhanced cognitive processes may be critical influences underlying HSAM abilities. We investigated whether enhanced abilities in the domains of verbal fluency, attention/inhibition, executive functioning, mnemonic discrimination, perception, visual working memory, or the processing of and memory for emotional details might contribute critically to HSAM. The results suggest that superior cognitive functioning is an unlikely basis of HSAM, as only modest advantages were found in only a few tests. In addition, we examined HSAM subjects' memory of the testing episodes. Interestingly, HSAM participants recalled details of their own experiences far better than those experiences that the experimenter shared with them. These findings provide additional evidence that HSAM involves, relatively selectively, recollection of personal, autobiographical material.

  20. The Neuroscience of Memory: Implications for the Courtroom

    Science.gov (United States)

    2014-01-01

    Although memory can be hazy at times, it is often assumed that memories of violent or otherwise stressful events are so well-encoded that they are largely indelible and that confidently retrieved memories are likely to be accurate. However, findings from basic psychological research and neuroscience studies indicate that memory is a reconstructive process that is susceptible to distortion. In the courtroom, even minor memory distortions can have severe consequences that are in part driven by common misunderstandings about memory, e.g. expecting memory to be more veridical than it may actually be. PMID:23942467

  1. Sparse distributed memory overview

    Science.gov (United States)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  2. Entextualising mourning on Facebook: stories of grief as acts of sharing

    Science.gov (United States)

    Giaxoglou, Korina

    2015-04-01

    Web 2.0 mourning is said to afford increased opportunities for the deceased's and mourners' visibility as well as create in the bereaved an increased sense of social support through the participatory entextualisation of mourning. So far, however, there has been little systematic attention to the uses of narrative in social network sites. The present article addresses this gap by providing an analysis of entextualised moments of mourning as stories shared by a single author over a six-month period on a Facebook Rest in Peace memorial group. The article foregrounds heterogeneity in narrative activity across posts, linking diversity in ways of telling to different types of the online mourner's positioning at three interrelated levels of discourse construction: (1) the representation of the event of death, (2) the alignment (or disalignment) with the dead and the networked mourners and (3) the poster's self. It is argued that telling stories on Facebook memorial sites constitutes an act of sharing affording networked individuals resources for making meaning out of the meaninglessness of a loved one's death in ways that can help render the painful experience of loss tellable and also create a sense of ambient affiliation or affinity with networked mourners.

  3. Short-term plasticity as a neural mechanism supporting memory and attentional functions

    OpenAIRE

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki; Andermann, Mark L.; Belliveau, John W.; Raij, Tommi; Sams, Mikko

    2011-01-01

    Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory ...

  4. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    NARCIS (Netherlands)

    Voigt, B.; Mahy, C.E.V.; Ellis, J.; Schnitzspahn, K.M.; Krause, I.; Altgassen, A.M.; Kliegel, M.

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task

  5. Sex-dependent dissociation between emotional appraisal and memory: a large-scale behavioral and fMRI study

    OpenAIRE

    Spalek, Klara; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Coynel, David; Frey, Julia; Gschwind, Leo; Hartmann, Francina; van der Maarel, Nadine; Papassotiropoulos, Andreas; de Quervain, Dominique; Milnik, Annette

    2015-01-01

    Extensive evidence indicates that women outperform men in episodic memory tasks. Furthermore, women are known to evaluate emotional stimuli as more arousing than men. Because emotional arousal typically increases episodic memory formation, the females' memory advantage might be more pronounced for emotionally arousing information than for neutral information. Here, we report behavioral data from 3398 subjects, who performed picture rating and memory tasks, and corresponding fMRI data from up ...

  6. Modeling reconsolidation in kernel associative memory.

    Directory of Open Access Journals (Sweden)

    Dimitri Nowicki

    Full Text Available Memory reconsolidation is a central process enabling adaptive memory and the perception of a constantly changing reality. It causes memories to be strengthened, weakened or changed following their recall. A computational model of memory reconsolidation is presented. Unlike Hopfield-type memory models, our model introduces an unbounded number of attractors that are updatable and can process real-valued, large, realistic stimuli. Our model replicates three characteristic effects of the reconsolidation process on human memory: increased association, extinction of fear memories, and the ability to track and follow gradually changing objects. In addition to this behavioral validation, a continuous time version of the reconsolidation model is introduced. This version extends average rate dynamic models of brain circuits exhibiting persistent activity to include adaptivity and an unbounded number of attractors.

  7. Memories and development imaginaries of the children in recent chilean fiction

    OpenAIRE

    María Angélica Franken Osorio

    2017-01-01

    The following paper explores the recent Chilean narrative which recalls childhood during the dictatorship, the so-called “literatura de los hijos” (literature of sons and daughters), establishing an aesthetic and discoursive link between shared memory and the development imaginaries of those who were children during the dictatorial past and that are writers in the post-dictatorial present. The affective continuity of a conflict, between a present state of memory and a past of childhood learn...

  8. Sex-dependent dissociation between emotional appraisal and memory: a large-scale behavioral and fMRI study.

    Science.gov (United States)

    Spalek, Klara; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Coynel, David; Frey, Julia; Gschwind, Leo; Hartmann, Francina; van der Maarel, Nadine; Papassotiropoulos, Andreas; de Quervain, Dominique; Milnik, Annette

    2015-01-21

    Extensive evidence indicates that women outperform men in episodic memory tasks. Furthermore, women are known to evaluate emotional stimuli as more arousing than men. Because emotional arousal typically increases episodic memory formation, the females' memory advantage might be more pronounced for emotionally arousing information than for neutral information. Here, we report behavioral data from 3398 subjects, who performed picture rating and memory tasks, and corresponding fMRI data from up to 696 subjects. We were interested in the interaction between sex and valence category on emotional appraisal, memory performances, and fMRI activity. The behavioral results showed that females evaluate in particular negative (p pictures, as emotionally more arousing (pinteraction recall females outperformed males not only in positive (p picture recall (p pictures (pinteraction memory advantage during free recall was absent in a recognition setting. We identified activation differences in fMRI, which corresponded to the females' stronger appraisal of especially negative pictures, but no activation differences that reflected the interaction effect in the free recall memory task. In conclusion, females' valence-category-specific memory advantage is only observed in a free recall, but not a recognition setting and does not depend on females' higher emotional appraisal. Copyright © 2015 the authors 0270-6474/15/350920-16$15.00/0.

  9. Working memory training mostly engages general-purpose large-scale networks for learning.

    Science.gov (United States)

    Salmi, Juha; Nyberg, Lars; Laine, Matti

    2018-03-21

    The present meta-analytic study examined brain activation changes following working memory (WM) training, a form of cognitive training that has attracted considerable interest. Comparisons with perceptual-motor (PM) learning revealed that WM training engages domain-general large-scale networks for learning encompassing the dorsal attention and salience networks, sensory areas, and striatum. Also the dynamics of the training-induced brain activation changes within these networks showed a high overlap between WM and PM training. The distinguishing feature for WM training was the consistent modulation of the dorso- and ventrolateral prefrontal cortex (DLPFC/VLPFC) activity. The strongest candidate for mediating transfer to similar untrained WM tasks was the frontostriatal system, showing higher striatal and VLPFC activations, and lower DLPFC activations after training. Modulation of transfer-related areas occurred mostly with longer training periods. Overall, our findings place WM training effects into a general perception-action cycle, where some modulations may depend on the specific cognitive demands of a training task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of memory load on hemispheric asymmetries of colour memory.

    Science.gov (United States)

    Clapp, Wes; Kirk, Ian J; Hausmann, Markus

    2007-03-01

    Hemispheric asymmetries in colour perception have been a matter of debate for some time. Recent evidence suggests that lateralisation of colour processing may be largely task specific. Here we investigated hemispheric asymmetries during different types and phases of a delayed colour-matching (recognition) memory task. A total of 11 male and 12 female right-handed participants performed colour-memory tasks. The task involved presentation of a set of colour stimuli (encoding), and subsequent indication (forced choice) of which colours in a larger set had previously appeared at the retrieval or recognition phase. The effect of memory load (set size), and the effect of lateralisation at the encoding or retrieval phases were investigated. Overall, the results indicate a right hemisphere advantage in colour processing, which was particularly pronounced in high memory load conditions, and was seen in males rather than female participants. The results suggest that verbal (mnemonic) strategies can significantly affect the magnitude of hemispheric asymmetries in a non-verbal task.

  11. Being Sticker Rich: Numerical Context Influences Children's Sharing Behavior.

    Directory of Open Access Journals (Sweden)

    Tasha Posid

    Full Text Available Young children spontaneously share resources with anonymous recipients, but little is known about the specific circumstances that promote or hinder these prosocial tendencies. Children (ages 3-11 received a small (12 or large (30 number of stickers, and were then given the opportunity to share their windfall with either one or multiple anonymous recipients (Dictator Game. Whether a child chose to share or not varied as a function of age, but was uninfluenced by numerical context. Moreover, children's giving was consistent with a proportion-based account, such that children typically donated a similar proportion (but different absolute number of the resources given to them, regardless of whether they originally received a small or large windfall. The proportion of resources donated, however, did vary based on the number of recipients with whom they were allowed to share, such that on average, children shared more when there were more recipients available, particularly when they had more resources, suggesting they take others into consideration when making prosocial decisions. Finally, results indicated that a child's gender also predicted sharing behavior, with males generally sharing more resources than females. Together, findings suggest that the numerical contexts under which children are asked to share, as well as the quantity of resources that they have to share, may interact to promote (or hinder altruistic behaviors throughout childhood.

  12. Architectures for a quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-01-01

    A random access memory, or RAM, is a device that, when interrogated, returns the content of a memory location in a memory array. A quantum RAM, or qRAM, allows one to access superpositions of memory sites, which may contain either quantum or classical information. RAMs and qRAMs with n-bit addresses can access 2^n memory sites. Any design for a RAM or qRAM then requires O(2^n) two-bit logic gates. At first sight this requirement might seem to make large scale quantum versions of such devices ...

  13. On the law relating processing to storage in working memory.

    Science.gov (United States)

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valérie

    2011-04-01

    Working memory is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of their interaction proposed by the most popular A. D. Baddeley and G. Hitch's (1974) multiple-component model is contradicted by facts, leaving unresolved one of the main issues of cognitive functioning. In this article, the author derive from the time-based resource-sharing model of working memory a mathematical function relating the cognitive load involved by concurrent processing to the amount of information that can be simultaneously maintained active in working memory. A meta-analysis from several experiments testing the effects of processing on storage corroborates the parameters of the predicted function, suggesting that it properly reflects the law relating the 2 functions of working memory. 2011 APA, all rights reserved

  14. The semantics of emotion in false memory.

    Science.gov (United States)

    Brainerd, C J; Bookbinder, S H

    2018-03-26

    The emotional valence of target information has been a centerpiece of recent false memory research, but in most experiments, it has been confounded with emotional arousal. We sought to clarify the results of such research by identifying a shared mathematical relation between valence and arousal ratings in commonly administered normed materials. That relation was then used to (a) decide whether arousal as well as valence influences false memory when they are confounded and to (b) determine whether semantic properties that are known to affect false memory covary with valence and arousal ratings. In Study 1, we identified a quadratic relation between valence and arousal ratings of words and pictures that has 2 key properties: Arousal increases more rapidly as function of negative valence than positive valence, and hence, a given level of negative valence is more arousing than the same level of positive valence. This quadratic function predicts that if arousal as well as valence affects false memory when they are confounded, false memory data must have certain fine-grained properties. In Study 2, those properties were absent from norming data for the Cornell-Cortland Emotional Word Lists, indicating that valence but not arousal affects false memory in those norms. In Study 3, we tested fuzzy-trace theory's explanation of that pattern: that valence ratings are positively related to semantic properties that are known to increase false memory, but arousal ratings are not. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. In Whom Do We Trust - Sharing Security Events

    NARCIS (Netherlands)

    Steinberger, Jessica; Kuhnert, Benjamin; Sperotto, Anna; Baier, Harald; Pras, Aiko

    2016-01-01

    Security event sharing is deemed of critical importance to counteract large-scale attacks at Internet service provider (ISP) networks as these attacks have become larger, more sophisticated and frequent. On the one hand, security event sharing is regarded to speed up organization's mitigation and

  16. Taxing working memory during retrieval of emotional memories does not reduce memory accessibility when cued with reminders

    Directory of Open Access Journals (Sweden)

    Kevin eVan Schie

    2015-02-01

    Full Text Available Earlier studies have shown that when individuals recall an emotional memory while simultaneously doing a demanding dual-task (e.g., playing Tetris, mental arithmetic, making eye movements, this reduces self-reported vividness and emotionality of the memory. These effects have been found up to one week later, but have largely been confined to self-report ratings. This study examined whether this dual-tasking intervention reduces memory performance (i.e., accessibility of emotional memories. Undergraduates (N = 60 studied word-image pairs and rated the retrieved image on vividness and emotionality when cued with the word. Then they viewed the cues and recalled the images with or without making eye movements. Finally, they re-rated the images on vividness and emotionality. Additionally, fragments from images from all conditions were presented and participants identified which fragment was paired earlier with which cue. Findings showed no effect of the dual-task manipulation on self-reported ratings and latency responses. Cued recall may not have been sufficient to elicit specific and continuous target retrieval for memory blurring to occur. The study demonstrates boundaries to the effects of the dual-tasking procedure.

  17. Data Provenance for Agent-Based Models in a Distributed Memory

    Directory of Open Access Journals (Sweden)

    Delmar B. Davis

    2018-04-01

    Full Text Available Agent-Based Models (ABMs assist with studying emergent collective behavior of individual entities in social, biological, economic, network, and physical systems. Data provenance can support ABM by explaining individual agent behavior. However, there is no provenance support for ABMs in a distributed setting. The Multi-Agent Spatial Simulation (MASS library provides a framework for simulating ABMs at fine granularity, where agents and spatial data are shared application resources in a distributed memory. We introduce a novel approach to capture ABM provenance in a distributed memory, called ProvMASS. We evaluate our technique with traditional data provenance queries and performance measures. Our results indicate that a configurable approach can capture provenance that explains coordination of distributed shared resources, simulation logic, and agent behavior while limiting performance overhead. We also show the ability to support practical analyses (e.g., agent tracking and storage requirements for different capture configurations.

  18. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity

    NARCIS (Netherlands)

    Berkers, R.M.W.J.; Klumpers, F.; Fernandez, G.S.E.

    2016-01-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to

  19. Medial prefrontal–hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity

    NARCIS (Netherlands)

    Berkers, R.M.W.J.; Klumpers, F.; Fernandez, G.S.E.

    2016-01-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to

  20. Two Maintenance Mechanisms of Verbal Information in Working Memory

    Science.gov (United States)

    Camos, V.; Lagner, P.; Barrouillet, P.

    2009-01-01

    The present study evaluated the interplay between two mechanisms of maintenance of verbal information in working memory, namely articulatory rehearsal as described in Baddeley's model, and attentional refreshing as postulated in Barrouillet and Camos's Time-Based Resource-Sharing (TBRS) model. In four experiments using complex span paradigm, we…

  1. Visual working memory is disrupted by covert verbal retrieval

    NARCIS (Netherlands)

    Ricker, Timothy J.; Cowan, Nelson; Morey, Candice C.

    If working memory (WM) depends on a central resource as is posited in some theories, but not in others it should be possible to observe interference between tasks that share few features with each other. We investigated whether interference with WM for visual arrays would occur, even if the

  2. A revised limbic system model for memory, emotion and behaviour.

    Science.gov (United States)

    Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel

    2013-09-01

    Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  4. Knowledge Sharing is Knowledge Creation

    DEFF Research Database (Denmark)

    Greve, Linda

    2015-01-01

    Knowledge sharing and knowledge transfer are important to knowledge communication. However when groups of knowledge workers engage in knowledge communication activities, it easily turns into mere mechanical information processing despite other ambitions. This article relates literature of knowledge...... communication and knowledge creation to an intervention study in a large Danish food production company. For some time a specific group of employees uttered a wish for knowledge sharing, but it never really happened. The group was observed and submitted to metaphor analysis as well as analysis of co...

  5. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  6. Memory for media: investigation of false memories for negatively and positively charged public events.

    Science.gov (United States)

    Porter, Stephen; Taylor, Kristian; Ten Brinke, Leanne

    2008-01-01

    Despite a large body of false memory research, little has addressed the potential influence of an event's emotional content on susceptibility to false recollections. The Paradoxical Negative Emotion (PNE) hypothesis predicts that negative emotion generally facilitates memory but also heightens susceptibility to false memories. Participants were asked whether they could recall 20 "widely publicised" public events (half fictitious) ranging in emotional valence, with or without visual cues. Participants recalled a greater number of true negative events (M=3.31/5) than true positive (M=2.61/5) events. Nearly everyone (95%) came to recall at least one false event (M=2.15 false events recalled). Further, more than twice as many participants recalled any false negative (90%) compared to false positive (41.7%) events. Negative events, in general, were associated with more detailed memories and false negative event memories were more detailed than false positive event memories. Higher dissociation scores were associated with false recollections of negative events, specifically.

  7. Immune memory in invertebrates.

    Science.gov (United States)

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Memory phenomenon in a lanthanum based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Huang, Wei Min, E-mail: mwmhuang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Zhao, Yong [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Ding, Zhen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li, Yan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Tor, Shu Beng; Liu, Erjia [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2016-07-05

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  9. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  10. Cognitive control over memory - individual differences in memory performance for emotional and neutral material.

    Science.gov (United States)

    Wierzba, M; Riegel, M; Wypych, M; Jednoróg, K; Grabowska, A; Marchewka, A

    2018-02-28

    It is widely accepted that people differ in memory performance. The ability to control one's memory depends on multiple factors, including the emotional properties of the memorized material. While it was widely demonstrated that emotion can facilitate memory, it is unclear how emotion modifies our ability to suppress memory. One of the reasons for the lack of consensus among researchers is that individual differences in memory performance were largely neglected in previous studies. We used the directed forgetting paradigm in an fMRI study, in which subjects viewed neutral and emotional words, which they were instructed to remember or to forget. Subsequently, subjects' memory of these words was tested. Finally, they assessed the words on scales of valence, arousal, sadness and fear. We found that memory performance depended on instruction as reflected in the engagement of the lateral prefrontal cortex (lateral PFC), irrespective of emotional properties of words. While the lateral PFC engagement did not differ between neutral and emotional conditions, it correlated with behavioural performance when emotional - as opposed to neutral - words were presented. A deeper understanding of the underlying brain mechanisms is likely to require a study of individual differences in cognitive abilities to suppress memory.

  11. Long-Term Fault Memory: A New Time-Dependent Recurrence Model for Large Earthquake Clusters on Plate Boundaries

    Science.gov (United States)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.

    2017-12-01

    A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would

  12. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-05

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

  13. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    Science.gov (United States)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  14. Shared Processing of Language and Music.

    Science.gov (United States)

    Atherton, Ryan P; Chrobak, Quin M; Rauscher, Frances H; Karst, Aaron T; Hanson, Matt D; Steinert, Steven W; Bowe, Kyra L

    2018-01-01

    The present study sought to explore whether musical information is processed by the phonological loop component of the working memory model of immediate memory. Original instantiations of this model primarily focused on the processing of linguistic information. However, the model was less clear about how acoustic information lacking phonological qualities is actively processed. Although previous research has generally supported shared processing of phonological and musical information, these studies were limited as a result of a number of methodological concerns (e.g., the use of simple tones as musical stimuli). In order to further investigate this issue, an auditory interference task was employed. Specifically, participants heard an initial stimulus (musical or linguistic) followed by an intervening stimulus (musical, linguistic, or silence) and were then asked to indicate whether a final test stimulus was the same as or different from the initial stimulus. Results indicated that mismatched interference conditions (i.e., musical - linguistic; linguistic - musical) resulted in greater interference than silence conditions, with matched interference conditions producing the greatest interference. Overall, these results suggest that processing of linguistic and musical information draws on at least some of the same cognitive resources.

  15. Characterization of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Rakowski, Sonja K

    2007-11-01

    Despite music's prominence in Western society and its importance to individuals in their daily lives, very little is known about the memories and emotions that are often evoked when hearing a piece of music from one's past. We examined the content of music-evoked autobiographical memories (MEAMs) using a novel approach for selecting stimuli from a large corpus of popular music, in both laboratory and online settings. A set of questionnaires probed the cognitive and affective properties of the evoked memories. On average, 30% of the song presentations evoked autobiographical memories, and the majority of songs also evoked various emotions, primarily positive, that were felt strongly. The third most common emotion was nostalgia. Analyses of written memory reports found both general and specific levels of autobiographical knowledge to be represented, and several social and situational contexts for memory formation were common across many memories. The findings indicate that excerpts of popular music serve as potent stimuli for studying the structure of autobiographical memories.

  16. The gravitational-wave memory from eccentric binaries

    International Nuclear Information System (INIS)

    Favata, Marc

    2011-01-01

    The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.

  17. Solidarity through shared disadvantage: Highlighting shared experiences of discrimination improves relations between stigmatized groups.

    Science.gov (United States)

    Cortland, Clarissa I; Craig, Maureen A; Shapiro, Jenessa R; Richeson, Jennifer A; Neel, Rebecca; Goldstein, Noah J

    2017-10-01

    Intergroup relations research has largely focused on relations between members of dominant groups and members of disadvantaged groups. The small body of work examining intraminority intergroup relations, or relations between members of different disadvantaged groups, reveals that salient experiences of ingroup discrimination promote positive relations between groups that share a dimension of identity (e.g., 2 different racial minority groups) and negative relations between groups that do not share a dimension of identity (e.g., a racial minority group and a sexual minority group). In the present work, we propose that shared experiences of discrimination between groups that do not share an identity dimension can be used as a lever to facilitate positive intraminority intergroup relations. Five experiments examining relations among 4 different disadvantaged groups supported this hypothesis. Both blatant (Experiments 1 and 3) and subtle (Experiments 2, 3, and 4) connections to shared experiences of discrimination, or inducing a similarity-seeking mindset in the context of discrimination faced by one's ingroup (Experiment 5), increased support for policies benefiting the outgroup (Experiments 1, 2, and 4) and reduced intergroup bias (Experiments 3, 4, and 5). Taken together, these experiments provide converging evidence that highlighting shared experiences of discrimination can improve intergroup outcomes between stigmatized groups across dimensions of social identity. Implications of these findings for intraminority intergroup relations are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Multisites Coordination in Shared Multicast Trees

    National Research Council Canada - National Science Library

    Dommel, H-P; Garcia-Luna-Aceves, J. J

    1999-01-01

    .... The protocol supports Internet-wide coordination for large and highly interactive groupwork, relying on transmission of coordination directives between group members across a shared end-to-end multicast tree...

  19. Main-Memory Operation Buffering for Efficient R-Tree Update

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Saltenis, Simonas; Biveinis, Laurynas

    2007-01-01

    the buffering of update operations in main memory as well as the grouping of operations to reduce disk I/O. In particular, operations are performed in bulk so that multiple operations are able to share I/O. The paper presents an analytical cost model that is shown to be accurate by empirical studies...... the main memory that is indeed available, or do not support some of the standard index operations. Assuming a setting where the index updates need not be written to disk immediately, we propose an R-tree-based indexing technique that does not exhibit any of these drawbacks. This technique exploits...

  20. Sudden amnesia resulting in pain relief: the relationship between memory and pain.

    Science.gov (United States)

    Choi, Daniel S; Choi, Deborah Y; Whittington, Robert A; Nedeljković, Srdjan S

    2007-11-01

    Nociceptive pain and its emotional component can result in the development of a "chronic pain memory". This report describes two patients who had long histories of chronic pain and opioid dependence. Both patients experienced sudden memory loss that was followed by significant pain reduction and an eradication of their need for opioid management. Neural centers involved in sensory pain, its affective component, opioid dependence, and memory overlap in the brain and share common pathways. The anterior cingulate cortex, the insular cortex, and the amygdala are examples of regions implicated in both pain and memory. One of the patients in the report experienced multiple seizure episodes, which may have contributed to memory loss and pain relief. The role of electroconvulsive therapy as it relates to amnesia and pain is reviewed. Questions are raised regarding whether therapies that address the memory component of pain may have a role in the treatment of long-term chronic pain patients.

  1. No Spearman’s Law of Diminishing Returns for the working memory and intelligence relationship

    Directory of Open Access Journals (Sweden)

    Kroczek Bartłomiej

    2016-04-01

    Full Text Available Spearman’s Law of Diminishing Returns (SLODR holds that correlation between general (g/fluid (Gf intelligence factor and other cognitive abilities weakens with increasing ability level. Thus, cognitive processing in low ability people is most strongly saturated by g/Gf, whereas processing in high ability people depends less on g/Gf. Numerous studies demonstrated that low g is more strongly correlated with crystallized intelligence/creativity/processing speed than is high g, however no study tested an analogous effect in the case of working memory (WM. Our aim was to investigate SLODR for the relationship between Gf and WM capacity, using a large data set from our own previous studies. We tested alternative regression models separately for three types of WM tasks that tapped short-term memory storage, attention control, and relational integration, respectively. No significant SLODR effect was found for any of these tasks. Each task shared with Gf virtually the same amount of variance in the case of low- and high-ability people. This result suggests that Gf and WM rely on one and the same (neurocognitive mechanism.

  2. Neurostimulation for Memory Enhancement in Epilepsy.

    Science.gov (United States)

    Meisenhelter, Stephen; Jobst, Barbara C

    2018-04-19

    Memory is one of the top concerns of epilepsy patients, but there are no known treatments to directly alleviate the memory deficits associated with epilepsy. Neurostimulation may provide new therapeutic tools to enhance memory in epilepsy patients. Here, we critically review recent investigations of memory enhancement using transcranial electrical stimulation (tES), transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), chronic intracranial stimulation, and acute intracranial stimulation. Existing literature suggests that transcranial direct current stimulation (tDCS) produces a small enhancement in memory in neuropsychological patients, but transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) have not been found to have an effect on memory. Most studies of transcranial magnetic stimulation (TMS) have found that TMS has no positive effect on memory. Vagus nerve stimulation can acutely enhance memory, while chronic therapy does not appear to alter memory performance. We found that there is the most evidence for significant memory enhancement using intracranial stimulation techniques, especially chronic stimulation of the fornix and task-responsive stimulation of the lateral temporal lobe. Presently, there are no existing therapeutic options for directly treating epilepy-related memory deficits. While neurostimulation technologies for memory enhancement are largely still in the experimental phase, neurostimulation appears promising as a future technique for treating epilepsy-related memory deficits.

  3. Self-defining memories, scripts, and the life story: narrative identity in personality and psychotherapy.

    Science.gov (United States)

    Singer, Jefferson A; Blagov, Pavel; Berry, Meredith; Oost, Kathryn M

    2013-12-01

    An integrative model of narrative identity builds on a dual memory system that draws on episodic memory and a long-term self to generate autobiographical memories. Autobiographical memories related to critical goals in a lifetime period lead to life-story memories, which in turn become self-defining memories when linked to an individual's enduring concerns. Self-defining memories that share repetitive emotion-outcome sequences yield narrative scripts, abstracted templates that filter cognitive-affective processing. The life story is the individual's overarching narrative that provides unity and purpose over the life course. Healthy narrative identity combines memory specificity with adaptive meaning-making to achieve insight and well-being, as demonstrated through a literature review of personality and clinical research, as well as new findings from our own research program. A clinical case study drawing on this narrative identity model is also presented with implications for treatment and research. © 2012 Wiley Periodicals, Inc.

  4. Memory consolidation

    NARCIS (Netherlands)

    Takashima, A.; Bakker, I.; Schmid, H.-J.

    2016-01-01

    In order to make use of novel experiences and knowledge to guide our future behavior, we must keep large amounts of information accessible for retrieval. The memory system that stores this information needs to be flexible in order to rapidly incorporate incoming information, but also requires that

  5. Intact implicit and reduced explicit memory for negative self-related information in repressive coping.

    Science.gov (United States)

    Fujiwara, Esther; Levine, Brian; Anderson, Adam K

    2008-09-01

    Voluntary emotional memory control has recently been shown to involve prefrontal down-regulation of medial temporal lobe activity during memory retrieval. However, little is known about instances of uninstructed, naturally occurring forgetting. In the present study, we examined whether memory suppression extends to involuntary, uninstructed down-regulation of memory in individuals thought to be experts in forgetting negative memories--those with a repressive coping style. We contrasted explicit and implicit memory for negative information in repressor and nonrepressor groups and examined whether self-relevance is a moderating variable. To delineate the specificity of repressors' selective memory reductions, we contrasted encoding and retrieval of emotional words as a function of self-reference, subjective self-relevance, and explicitness of the memory task in nonrepressors and repressors. Self-descriptiveness judgments, lexical decisions (implicit memory), and free recall (explicit memory) were investigated. Repressors had selectively lowered free recall only for negative, self-relevant information. Their implicit memory for the same information was unaffected. This pattern suggests that regulation of emotional memory in repressive individuals is a case of motivated forgetting, possibly sharing much of the neural underpinnings of voluntary memory suppression.

  6. Selective attention on representations in working memory: cognitive and neural mechanisms.

    Science.gov (United States)

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  7. A Large-Scale Initiative Inviting Patients to Share Personal Fitness Tracker Data with Their Providers: Initial Results.

    Directory of Open Access Journals (Sweden)

    Joshua M Pevnick

    Full Text Available Personal fitness trackers (PFT have substantial potential to improve healthcare.To quantify and characterize early adopters who shared their PFT data with providers.We used bivariate statistics and logistic regression to compare patients who shared any PFT data vs. patients who did not.A patient portal was used to invite 79,953 registered portal users to share their data. Of 66,105 users included in our analysis, 499 (0.8% uploaded data during an initial 37-day study period. Bivariate and regression analysis showed that early adopters were more likely than non-adopters to be younger, male, white, health system employees, and to have higher BMIs. Neither comorbidities nor utilization predicted adoption.Our results demonstrate that patients had little intrinsic desire to share PFT data with their providers, and suggest that patients most at risk for poor health outcomes are least likely to share PFT data. Marketing, incentives, and/or cultural change may be needed to induce such data-sharing.

  8. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  9. Distributed learning enhances relational memory consolidation.

    Science.gov (United States)

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  10. Correlated individual differences suggest a common mechanism underlying metacognition in visual perception and visual short-term memory.

    Science.gov (United States)

    Samaha, Jason; Postle, Bradley R

    2017-11-29

    Adaptive behaviour depends on the ability to introspect accurately about one's own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks is unclear. We investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM). Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgements, but not when the perceptual task was switched to require contrast judgements. In contrast with previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature. © 2017 The Author(s).

  11. Labor Share in National Income: Implications in the Baltic Countries

    Directory of Open Access Journals (Sweden)

    Razgūnė Aušra

    2017-06-01

    Full Text Available Despite the fact that stability of labor share in national income is a key foundation in macroeconomic models, scientists acknowledge, that in the last three decades it has been declining around the world. The Baltic countries are not an exception; they follow similar patters to large economies, thus the research aims at determining economic factors at play. With the help of error correction model and time series data covering the past twenty years, we determine factors which contribute to the decline of labor share in the Baltic countries. We find significant long-term relationships between labor share and government spending, trade openness, and emigration. Government spending exhibits the highest contribution to variance of labor share in Lithuania, which also explains a large part of Latvia’s labor share variations. We find many similarities between the analyzed countries, however some differences are also visible.

  12. ATLAS Global Shares Implementation in the PanDA Workload Management System

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2018-01-01

    PanDA (Production and Distributed Analysis) is the workload management system for ATLAS across the Worldwide LHC Computing Grid. While analysis tasks are submitted to PanDA by over a thousand users following personal schedules (e.g. PhD or conference deadlines), production campaigns are scheduled by a central Physics Coordination group based on the organization’s calendar. The Physics Coordination group needs to allocate the amount of Grid resources dedicated to each activity, in order to manage sharing of CPU resources among various parallel campaigns and to make sure that results can be achieved in time for important deadlines. While dynamic and static shares on batch systems have been around for a long time, we are trying to move away from local resource partitioning and manage shares at a global level in the PanDA system. The global solution is not straightforward, given different requirements of the activities (number of cores, memory, I/O and CPU intensity), the heterogeneity of Grid resources (site/H...

  13. Natural Conversations as a Source of False Memories in Children: Implications for the Testimony of Young Witnesses

    Science.gov (United States)

    Principe, Gabrielle F.; Schindewolf, Erica

    2012-01-01

    Research on factors that can affect the accuracy of children’s autobiographical remembering has important implications for understanding the abilities of young witnesses to provide legal testimony. In this article, we review our own recent research on one factor that has much potential to induce errors in children’s event recall, namely natural memory sharing conversations with peers and parents. Our studies provide compelling evidence that not only can the content of conversations about the past intrude into later memory but that such exchanges can prompt the generation of entirely false narratives that are more detailed than true accounts of experienced events. Further, our work show that deeper and more creative participation in memory sharing dialogues can boost the damaging effects of conversationally conveyed misinformation. Implications of this collection of findings for children’s testimony are discussed. PMID:23129880

  14. In-Depth Analysis of Computer Memory Acquisition Software for Forensic Purposes.

    Science.gov (United States)

    McDown, Robert J; Varol, Cihan; Carvajal, Leonardo; Chen, Lei

    2016-01-01

    The comparison studies on random access memory (RAM) acquisition tools are either limited in metrics or the selected tools were designed to be executed in older operating systems. Therefore, this study evaluates widely used seven shareware or freeware/open source RAM acquisition forensic tools that are compatible to work with the latest 64-bit Windows operating systems. These tools' user interface capabilities, platform limitations, reporting capabilities, total execution time, shared and proprietary DLLs, modified registry keys, and invoked files during processing were compared. We observed that Windows Memory Reader and Belkasoft's Live Ram Capturer leaves the least fingerprints in memory when loaded. On the other hand, ProDiscover and FTK Imager perform poor in memory usage, processing time, DLL usage, and not-wanted artifacts introduced to the system. While Belkasoft's Live Ram Capturer is the fastest to obtain an image of the memory, Pro Discover takes the longest time to do the same job. © 2015 American Academy of Forensic Sciences.

  15. Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.

    2015-01-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497

  16. From the Proton Synchrotron to the Large Hadron Collider: 50 Years of Nobel Memories in High-Energy Physics

    CERN Multimedia

    Directorate Office

    As a new era in particle physics approaches with the start of the LHC, a symposium to commemorate many significant events that have marked high-energy physics in the past 50 years will be held at CERN on 3-4 December 2009. The list of confirmed distinguished speakers reads like the Who’s Who of particle physics of the second half of the 20th Century, including the Nobel Laureates James Cronin, Jerome Friedman, Sheldon Glashow, David Gross, Gerardus ‘t Hooft, Leon Lederman, Burton Richter, Carlo Rubbia, Jack Steinberger, Samuel Ting, Martinus Veltman, Stephen Weinberg and Frank Wilczek. They will share with us memories of several landmark events that, over the past 50 years, have shaped our field of science. These events include the discovery of the J/ψ particle by Richter and Ting in the 1970s; the work of Glashow, Salam and Weinberg on the theory of the unified weak and electromagnetic interactions; the discovery of fundamental asymmetries in the K-meson sector by Cronin and Fitch...

  17. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  18. About the distinction between working memory and short-term memory

    Directory of Open Access Journals (Sweden)

    Bart eAben

    2012-08-01

    Full Text Available The theoretical concepts short-term memory (STM and working memory (WM have been used to refer to the maintenance and the maintenance plus manipulation of memory, respectively. Although they are conceptually different, the use of the terms STM and WM in literature is not always strict. Short-term memory and WM are different theoretical concepts that are assumed to reflect different cognitive functions. However, correlational studies have not been able to separate both constructs consistently and there is evidence for a large or even complete overlap. The emerging view from neurobiological studies is partly different, although there are conceptual problems troubling the interpretation of findings. In this regard, there is a crucial role for the tasks that are used to measure STM or WM (simple and complex span tasks, respectively and for the cognitive load reflected by factors like attention and processing speed that may covary between and within these tasks. These conceptual issues are discussed based on several abstract models for the relation between STM and WM.

  19. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    Science.gov (United States)

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  20. Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers.

    Science.gov (United States)

    Maza, Francisco Javier; Sztarker, Julieta; Shkedy, Avishag; Peszano, Valeria Natacha; Locatelli, Fernando Federico; Delorenzi, Alejandro

    2016-12-06

    The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.

  1. When Reasoning Modifies Memory: Schematic Assimilation Triggered by Analogical Mapping

    Science.gov (United States)

    Vendetti, Michael S.; Wu, Aaron; Rowshanshad, Ebi; Knowlton, Barbara J.; Holyoak, Keith J.

    2014-01-01

    Analogical mapping highlights shared relations that link 2 situations, potentially at the expense of information that does not fit the dominant pattern of correspondences. To investigate whether analogical mapping can alter subsequent recognition memory for features of a source analog, we performed 2 experiments with 4-term proportional analogies…

  2. Artificial Association of Pre-stored Information to Generate a Qualitatively New Memory

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    2015-04-01

    Full Text Available Memory is thought to be stored in the brain as an ensemble of cells activated during learning. Although optical stimulation of a cell ensemble triggers the retrieval of the corresponding memory, it is unclear how the association of information occurs at the cell ensemble level. Using optogenetic stimulation without any sensory input in mice, we found that an artificial association between stored, non-related contextual, and fear information was generated through the synchronous activation of distinct cell ensembles corresponding to the stored information. This artificial association shared characteristics with physiologically associated memories, such as N-methyl-D-aspartate receptor activity and protein synthesis dependence. These findings suggest that the association of information is achieved through the synchronous activity of distinct cell ensembles. This mechanism may underlie memory updating by incorporating novel information into pre-existing networks to form qualitatively new memories.

  3. Context-dependent enhancement of declarative memory performance following acute psychosocial stress.

    Science.gov (United States)

    Smeets, T; Giesbrecht, T; Jelicic, M; Merckelbach, H

    2007-09-01

    Studies on how acute stress affects learning and memory have yielded inconsistent findings, with some studies reporting enhancing effects while others report impairing effects. Recently, Joëls et al. [Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J., 2006. Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158] argued that stress will enhance memory only when the memory acquisition phase and stressor share the same spatiotemporal context (i.e., context-congruency). The current study tested this hypothesis by looking at whether context-congruent stress enhances declarative memory performance. Undergraduates were assigned to a personality stress group (n=16), a memory stress group (n=18), or a no-stress control group (n=18). While being exposed to the acute stressor or a control task, participants encoded personality- and memory-related words and were tested for free recall 24h later. Relative to controls, stress significantly enhanced recall of context-congruent words, but only for personality words. This suggests that acute stress may strengthen the consolidation of memory material when the stressor matches the to-be-remembered information in place and time.

  4. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.

    Science.gov (United States)

    Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe

    2017-01-11

    It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas

  5. What are the memory sources of dreaming?

    Science.gov (United States)

    Nielsen, Tore A; Stenstrom, Philippe

    2005-10-27

    Investigators since Freud have appreciated that memories of the people, places, activities and emotions of daily life are reflected in dreams but are typically so fragmented that their predictability is nil. The mechanisms that translate such memories into dream images remain largely unknown. New research targeting relationships between dreaming, memory and the hippocampus is producing a new theory to explain how, why and when we dream of waking life events.

  6. Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting

    DEFF Research Database (Denmark)

    Kruse, Robinson; Leschinski, Christian; Will, Michael

    This paper extends the popular Diebold-Mariano test to situations when the forecast error loss differential exhibits long memory. It is shown that this situation can arise frequently, since long memory can be transmitted from forecasts and the forecast objective to forecast error loss differentials....... The nature of this transmission mainly depends on the (un)biasedness of the forecasts and whether the involved series share common long memory. Further results show that the conventional Diebold-Mariano test is invalidated under these circumstances. Robust statistics based on a memory and autocorrelation...... extensions of the heterogeneous autoregressive model. While we find that forecasts improve significantly if jumps in the log-price process are considered separately from continuous components, improvements achieved by the inclusion of implied volatility turn out to be insignificant in most situations....

  7. Forward Association, Backward Association, and the False-Memory Illusion

    Science.gov (United States)

    Brainerd, C. J.; Wright, Ron

    2005-01-01

    In the Deese-Roediger-McDermott false-memory illusion, forward associative strength (FAS) is unrelated to the strength of the illusion; this is puzzling, because high-FAS lists ought to share more semantic features with critical unpresented words than should low-FAS lists. The authors show that this null result is probably a truncated range…

  8. Plasma memories associated to a particle detector

    International Nuclear Information System (INIS)

    Comby, G.; Mangeot, Ph.

    1978-01-01

    The realization of a localized and persisting memory of a detected particle which can be easily read out offers new possibilities for the detection of events with high multiplicity. The association of the plasma memory to a spark chamber allows the test of the principles of memorization and read-out. By means of one gap of plasma memories, one can read out without ambiguity the coordinates of a large number of memories. This device can be adapted to other types of detectors and also to larger geometries. (Auth.)

  9. The organization of words and environmental sounds in memory.

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-03-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300-700ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300-400ms) and late (500-700ms) time windows, though a graded pattern similar to that of words was seen in the mid-latency time window (400-500ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. Published by Elsevier Ltd.

  10. Identity-related autobiographical memories and cultural life scripts in patients with Borderline Personality Disorder.

    Science.gov (United States)

    Jørgensen, Carsten René; Berntsen, Dorthe; Bech, Morten; Kjølbye, Morten; Bennedsen, Birgit E; Ramsgaard, Stine B

    2012-06-01

    Disturbed identity is one of the defining characteristics of Borderline Personality Disorder manifested in a broad spectrum of dysfunctions related to the self, including disturbances in meaning-generating self-narratives. Autobiographical memories are memories of personal events that provide crucial building-blocks in our construction of a life-story, self-concept, and a meaning-generating narrative identity. The cultural life script represents culturally shared expectations as to the order and timing of life events in a prototypical life course within a given culture. It is used to organize one's autobiographical memories. Here, 17 BPD-patients, 14 OCD-patients, and 23 non-clinical controls generated three important autobiographical memories and their conceptions of the cultural life script. BPD-patients reported substantially more negative memories, fewer of their memories were of prototypical life script events, their memory narratives were less coherent and more disoriented, and the overall typicality of their life scripts was lower as compared with the other two groups. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Women Saw Large Decrease In Out-Of-Pocket Spending For Contraceptives After ACA Mandate Removed Cost Sharing.

    Science.gov (United States)

    Becker, Nora V; Polsky, Daniel

    2015-07-01

    The Affordable Care Act mandates that private health insurance plans cover prescription contraceptives with no consumer cost sharing. The positive financial impact of this new provision on consumers who purchase contraceptives could be substantial, but it has not yet been estimated. Using a large administrative claims data set from a national insurer, we estimated out-of-pocket spending before and after the mandate. We found that mean and median per prescription out-of-pocket expenses have decreased for almost all reversible contraceptive methods on the market. The average percentages of out-of-pocket spending for oral contraceptive pill prescriptions and intrauterine device insertions by women using those methods both dropped by 20 percentage points after implementation of the ACA mandate. We estimated average out-of-pocket savings per contraceptive user to be $248 for the intrauterine device and $255 annually for the oral contraceptive pill. Our results suggest that the mandate has led to large reductions in total out-of-pocket spending on contraceptives and that these price changes are likely to be salient for women with private health insurance. Project HOPE—The People-to-People Health Foundation, Inc.

  12. Why autobiographical memories for traumatic and emotional events might differ: theoretical arguments and empirical evidence.

    Science.gov (United States)

    Sotgiu, Igor; Rusconi, Maria Luisa

    2014-01-01

    The authors review five arguments supporting the hypothesis that memories for traumatic and nontraumatic emotional events should be considered as qualitatively different recollections. The first argument considers the objective features of traumatic and emotional events and their possible influence on the formation of memories for these events. The second argument assumes that traumatic memories distinguish from emotional ones as trauma exposure is often associated with the development of psychological disorders involving memory disturbances. The third argument is that traumatic experiences are more likely than emotional experiences to be forgotten and recovered. The fourth argument concerns the possibility that emotional memories are socially shared more frequently than traumatic memories. A fifth argument suggests that trauma exposure may impair selected brain systems implicated in memory functions. Theoretical and empirical evidence supporting these claims is reviewed. In the conclusions, the authors illustrate future research directions and discuss some conceptual issues related to the definitions of traumatic event currently employed by memory researchers.

  13. Time and cognitive load in working memory.

    OpenAIRE

    Barrouillet , Pierre; Bernardin , Sophie; Portrat , Sophie; Vergauwe , Evie; Camos , Valérie

    2007-01-01

    International audience; According to the time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004), the cognitive load a given task involves is a function of the proportion of time during which it captures attention, thus impeding other attention-demanding processes. Accordingly, the present study demonstrates that the disruptive effect on concurrent maintenance of memory retrievals and response selections increases with their duration. Moreover, the effect on recall ...

  14. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  15. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    Science.gov (United States)

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  16. Cultural differences in rated typicality and perceived causes of memory changes in adulthood.

    Science.gov (United States)

    Bottiroli, Sara; Cavallini, Elena; Fastame, Maria Chiara; Hertzog, Christopher

    2013-01-01

    This study examined cultural differences in stereotypes and attributions regarding aging and memory. Two subcultures belonging to the same country, Italy, were compared on general beliefs about memory. Sardinians live longer than other areas of Italy, which is a publically shared fact that informs stereotypes about that subculture. An innovative instrument evaluating simultaneously aging stereotypes and attributions about memory and memory change in adulthood was administered to 52 Sardinian participants and 52 Milanese individuals divided into three age groups: young (20-30), young-old (60-70), and old-old (71-85) adults. Both Milanese and Sardinians reported that memory decline across the life span is more typical than a pattern of stability or improvement. However, Sardinians viewed stability and improvement in memory as more typical than did the Milanese. Interestingly, cultural differences emerged in attributions about memory improvement. Although all Sardinian age groups rated nutrition and heredity as relevant causes in determining the memory decline, Sardinians' rated typicality of life-span memory improvement correlated strongly with causal attributions to a wide number of factors, including nutrition and heredity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Kinetics and clonality of immunological memory in humans.

    Science.gov (United States)

    Beverley, Peter C L

    2004-10-01

    T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.

  18. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  19. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  20. A highly efficient multi-core algorithm for clustering extremely large datasets

    Directory of Open Access Journals (Sweden)

    Kraus Johann M

    2010-04-01

    Full Text Available Abstract Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

  1. Display Sharing: An Alternative Paradigm

    Science.gov (United States)

    Brown, Michael A.

    2010-01-01

    The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.

  2. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  3. Transfer after process-based object-location memory training in healthy older adults.

    Science.gov (United States)

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Context-dependent memory traces in the crab’s mushroom bodies: Functional support for a common origin of high-order memory centers

    Science.gov (United States)

    Maza, Francisco Javier; Sztarker, Julieta; Shkedy, Avishag; Peszano, Valeria Natacha; Locatelli, Fernando Federico; Delorenzi, Alejandro

    2016-01-01

    The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods’ higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods’ high-order memory centers. PMID:27856766

  5. Low-Power Architectures for Large Radio Astronomy Correlators

    Science.gov (United States)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  6. Anonymity versus privacy: Selective information sharing in online cancer communities

    NARCIS (Netherlands)

    Frost, J.H.; Vermeulen, I.E.; Beekers, N.

    2014-01-01

    Background: Active sharing in online cancer communities benefits patients. However, many patients refrain from sharing health information online due to privacy concerns. Existing research on privacy emphasizes data security and confidentiality, largely focusing on electronic medical records. Patient

  7. The Effects of Collaboration and Competition on Pro-Social Prospective Memory

    Directory of Open Access Journals (Sweden)

    Guido D’Angelo

    2012-09-01

    Full Text Available The social underpinnings of remembering to perform an action in the future (i.e., prospective memory, PM have been recently shown to be an important feature of prospective memory functioning (Brandimonte, Ferrante, Bianco, & Villani, 2010. One emergent, though neglected, issue refers to the way people remember to do things 'with others' and 'for others'. In two experiments, participants were requested to collaborate or compete during an event-based PM task. In Experiment 1, they could also gain money for donation, while in Experiment 2 they could get personal earnings. Participants completed a parity judgment ongoing task and a PM task. Results revealed that a decrease in PM performance occurred with collaboration, as a result of responsibility sharing. In contrast, the pro-social nature of the PM task improved participants' performance. Interestingly, pro-sociality prevented the detrimental effect of collaboration (experiments 1 and 2, while a personal gain did not contrast responsibility sharing (experiment 2. Surprisingly, competition did not significantly affect PM performance. Finally, an increase of the monitoring costs during the ongoing task was associated with pro-social goals. This pattern of result suggests that PM is influenced by social drives and points to a pivotal role of motivation in regulating conscious mechanisms underlying memory for intentions.

  8. Scaling Law of Urban Ride Sharing

    Science.gov (United States)

    Tachet, R.; Sagarra, O.; Santi, P.; Resta, G.; Szell, M.; Strogatz, S. H.; Ratti, C.

    2017-03-01

    Sharing rides could drastically improve the efficiency of car and taxi transportation. Unleashing such potential, however, requires understanding how urban parameters affect the fraction of individual trips that can be shared, a quantity that we call shareability. Using data on millions of taxi trips in New York City, San Francisco, Singapore, and Vienna, we compute the shareability curves for each city, and find that a natural rescaling collapses them onto a single, universal curve. We explain this scaling law theoretically with a simple model that predicts the potential for ride sharing in any city, using a few basic urban quantities and no adjustable parameters. Accurate extrapolations of this type will help planners, transportation companies, and society at large to shape a sustainable path for urban growth.

  9. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K

    2014-06-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Experiencing memory museums in Berlin. The Otto Weidt Workshop for the Blind Museum and the Jewish Museum Berlin

    OpenAIRE

    Ana Souto

    2018-01-01

    This article explores memory studies from the audience’s perspective, focusing on the perception of Holocaust narratives in two museums in Berlin. This research builds on and contributes to a number of emerging issues on memory studies, tourism perception and museum design: the debate on experiential authenticity, Dark Tourism, as well as the analysis of memory studies from the perspective of the user. The main data facilitating the analysis is based on responses shared on TripAdvisor; the ca...

  11. Memory scrutinized through electrical brain stimulation: A review of 80 years of experiential phenomena.

    Science.gov (United States)

    Curot, Jonathan; Busigny, Thomas; Valton, Luc; Denuelle, Marie; Vignal, Jean-Pierre; Maillard, Louis; Chauvel, Patrick; Pariente, Jérémie; Trebuchon, Agnès; Bartolomei, Fabrice; Barbeau, Emmanuel J

    2017-07-01

    Electrical brain stimulations (EBS) sometimes induce reminiscences, but it is largely unknown what type of memories they can trigger. We reviewed 80 years of literature on reminiscences induced by EBS and added our own database. We classified them according to modern conceptions of memory. We observed a surprisingly large variety of reminiscences covering all aspects of declarative memory. However, most were poorly detailed and only a few were episodic. This result does not support theories of a highly stable and detailed memory, as initially postulated, and still widely believed as true by the general public. Moreover, memory networks could only be activated by some of their nodes: 94.1% of EBS were temporal, although the parietal and frontal lobes, also involved in memory networks, were stimulated. The qualitative nature of memories largely depended on the site of stimulation: EBS to rhinal cortex mostly induced personal semantic reminiscences, while only hippocampal EBS induced episodic memories. This result supports the view that EBS can activate memory in predictable ways in humans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Effect of cognitive load on working memory forgetting in aging.

    Science.gov (United States)

    Baumans, Christine; Adam, Stephane; Seron, Xavier

    2012-01-01

    Functional approaches to working memory (WM) have been proposed recently to better investigate "maintenance" and "processing" mechanisms. The cognitive load (CL) hypothesis presented in the "Time-Based Resource-Sharing" model (Barrouillet & Camos, 2007) suggests that forgetting from WM (maintenance) can be investigated by varying the presentation rate and processing speed (processing). In this study, young and elderly participants were compared on WM tasks in which the difference in processing speed was controlled by CL manipulations. Two main results were found. First, when time constraints (CL) were matched for the two groups, no aging effect was observed. Second, whereas a large variation in CL affected WM performance, a small CL manipulation had no effect on the elderly. This suggests that WM forgetting cannot be completely accounted for by the CL hypothesis. Rather, it highlights the need to explore restoration times in particular, and the nature of the refreshment mechanisms within maintenance.

  13. Trends in the use of flow-through shares

    International Nuclear Information System (INIS)

    Jennings, R. G.

    1998-01-01

    Flow-through shares financing is considered the most cost effective equity-based financing option for non-tax-paying exploration companies, a form of financing that has helped a very large number of resource-based companies start, stay alive and grow in a very competitive financial marketplace. This paper provides a brief historical review of the flow-though shares concept, outlines developments in recent legislation, changes in the Income Tax Act, and trends in financial structures, and reviews flow-through shares from a tax perspective of the investor and the issuer

  14. Stochastic simulation of large grids using free and public domain software

    NARCIS (Netherlands)

    Bruin, de S.; Wit, de A.J.W.

    2005-01-01

    This paper proposes a tiled map procedure enabling sequential indicator simulation on grids consisting of several tens of millions of cells, without putting excessive memory requirements. Spatial continuity across map tiles is handled by conditioning adjacent tiles on their shared boundaries. Tiles

  15. Working memory and inattentional blindness.

    Science.gov (United States)

    Bredemeier, Keith; Simons, Daniel J

    2012-04-01

    Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.

  16. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice

    OpenAIRE

    Li, Ning; Liu, Cong; Jing, Shu; Wang, Mengyang; Wang, Han; Sun, Jinghui; Wang, Chunmei; Chen, Jianguang; Li, He

    2017-01-01

    Schisandra, Ginseng, Notoginseng, and Lycium barbarum are traditional Chinese medicinal plants sharing cognitive-enhancing properties. To design a functional food to improve memory, we prepared a compound Schisandra-Ginseng-Notoginseng-Lycium (CSGNL) extract and investigated its effect on scopolamine-induced learning and memory loss in mice. To optimize the dose ratios of the four herbal extracts in CSGNL, orthogonal experiments were performed. Mice were administered CSGNL by gavage once a da...

  17. A vertically integrated capacitorless memory cell

    International Nuclear Information System (INIS)

    Tong Xiaodong; Wu Hao; Zhao Lichuan; Wang Ming; Zhong Huicai

    2013-01-01

    A two-port capacitorless PNPN device with high density, high speed and low power memory fabricated using standard CMOS technology is presented. Experiments and calibrated simulations were conducted which prove that this new memory cell has a high operation speed (ns level), large read current margin (read current ratio of 10 4 ×), low process variation, good thermal reliability and available retention time (190 ms). Furthermore, the new memory cell is free of the cyclic endurance/reliability problems induced by hot-carrier injection due to the gateless structure. (semiconductor devices)

  18. Timely sleep facilitates declarative memory consolidation in infants

    OpenAIRE

    Seehagen, Sabine; Konrad, Carolin; Herbert, Jane S.; Schneider, Silvia

    2015-01-01

    The potential benefits of infant sleep for memory processing are largely unexplored. Here we show evidence that having an extended nap (≥30 min) within 4 h of learning helps 6- and 12-month-old infants to retain their memories for new behaviors across a 4- and 24-h delay. These results suggest that infants rely on frequent naps for the formation of long-term memories.

  19. Working Memory and Reasoning Benefit from Different Modes of Large-scale Brain Dynamics in Healthy Older Adults.

    Science.gov (United States)

    Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin

    2018-07-01

    Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.

  20. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd......Te pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry...

  1. Transparent meta-analysis of prospective memory and aging.

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available Prospective memory (ProM refers to our ability to become aware of a previously formed plan at the right time and place. After two decades of research on prospective memory and aging, narrative reviews and summaries have arrived at widely different conclusions. One view is that prospective memory shows large age declines, larger than age declines on retrospective memory (RetM. Another view is that prospective memory is an exception to age declines and remains invariant across the adult lifespan. The present meta-analysis of over twenty years of research settles this controversy. It shows that prospective memory declines with aging and that the magnitude of age decline varies by prospective memory subdomain (vigilance, prospective memory proper, habitual prospective memory as well as test setting (laboratory, natural. Moreover, this meta-analysis demonstrates that previous claims of no age declines in prospective memory are artifacts of methodological and conceptual issues afflicting prior research including widespread ceiling effects, low statistical power, age confounds, and failure to distinguish between various subdomains of prospective memory (e.g., vigilance and prospective memory proper.

  2. Cross-Organizational Knowledge Sharing: Information Reuse in Small Organizations

    Science.gov (United States)

    White, Kevin Forsyth

    2010-01-01

    Despite the potential value of leveraging organizational memory and expertise, small organizations have been unable to capitalize on its promised value. Existing solutions have largely side-stepped the unique needs of these organizations, which are relegated to systems designed to take advantage of large pools of experts or to use Internet sources…

  3. The essential nature of sharing in science.

    Science.gov (United States)

    Fischer, Beth A; Zigmond, Michael J

    2010-12-01

    Advances in science are the combined result of the efforts of a great many scientists, and in many cases, their willingness to share the products of their research. These products include data sets, both small and large, and unique research resources not commercially available, such as cell lines and software programs. The sharing of these resources enhances both the scope and the depth of research, while making more efficient use of time and money. However, sharing is not without costs, many of which are borne by the individual who develops the research resource. Sharing, for example, reduces the uniqueness of the resources available to a scientist, potentially influencing the originator's perceived productivity and ultimately his or her competitiveness for jobs, promotions, and grants. Nevertheless, for most researchers-particularly those using public funds-sharing is no longer optional but must be considered an obligation to science, the funding agency, and ultimately society at large. Most funding agencies, journals, and professional societies now require a researcher who has published work involving a unique resource to make that resource available to other investigators. Changes could be implemented to mitigate some of the costs. The creator of the resource could explore the possibility of collaborating with those who request it. In addition, institutions that employ and fund researchers could change their policies and practices to make sharing a more attractive and viable option. For example, when evaluating an individual's productivity, institutions could provide credit for the impact a researcher has had on their field through the provision of their unique resources to other investigators, regardless of whether that impact is reflected in the researcher's list of publications. In addition, increased funding for the development and maintenance of user-friendly public repositories for data and research resources would also help to reduce barriers to sharing

  4. A Survey of Phase Change Memory Systems

    Institute of Scientific and Technical Information of China (English)

    夏飞; 蒋德钧; 熊劲; 孙凝晖

    2015-01-01

    As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.

  5. Anonymity versus privacy: Selective information sharing in online cancer communities

    OpenAIRE

    Frost, J.H.; Vermeulen, I.E.; Beekers, N.

    2014-01-01

    Background Active sharing in online cancer communities benefits patients. However, many patients refrain from sharing health information online due to privacy concerns. Existing research on privacy emphasizes data security and confidentiality, largely focusing on electronic medical records. Patient preferences around information sharing in online communities remain poorly understood. Consistent with the privacy calculus perspective adopted from e-commerce research, we suggest that patients ap...

  6. The cortisol awakening response and memory performance in older men and women.

    Science.gov (United States)

    Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia

    2012-12-01

    The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Share your sweets: Chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) willingness to share highly attractive, monopolizable food sources.

    Science.gov (United States)

    Byrnit, Jill T; Høgh-Olesen, Henrik; Makransky, Guido

    2015-08-01

    All over the world, humans (Homo sapiens) display resource-sharing behavior, and common patterns of sharing seem to exist across cultures. Humans are not the only primates to share, and observations from the wild have long documented food sharing behavior in our closest phylogenetic relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, few controlled studies have been made in which groups of Pan are introduced to food items that may be shared or monopolized by a first food possessor, and very few studies have examined what happens to these sharing patterns if the food in question is a highly attractive, monopolizable food source. The one study to date to include food quality as the independent variable used different types of food as high- and low-value items, making differences in food divisibility and size potentially confounding factors. It was the aim of the present study to examine the sharing behavior of groups of captive chimpanzees and bonobos when introducing the same type of food (branches) manipulated to be of 2 different degrees of desirability (with or without syrup). Results showed that the large majority of food transfers in both species came about as sharing in which group members were allowed to cofeed or remove food from the stock of the food possessor, and the introduction of high-value food resulted in more sharing, not less. Food sharing behavior differed between species in that chimpanzees displayed significantly more begging behavior than bonobos. Bonobos, instead, engaged in sexual invitations, which the chimpanzees never did. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Central and Peripheral Components of Working Memory Storage

    Science.gov (United States)

    Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.

    2014-01-01

    This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488

  9. The exhibition Namibia-Germany: a shared/divided history. Resistance, violence, memory

    Directory of Open Access Journals (Sweden)

    Clara Himmelheber

    2014-10-01

    Full Text Available The year 2004 was the centenary of the outbreak of a colonial war in former German South West Africa in which thousands of Africans were killed by the colonial power. Although of crucial importance for Namibia, the war had not entered public memory in Germany. The exhibition aimed at presenting colonial history, as well as the contemporary relationships between the two countries, showing a ‘shared’ and a ‘divided’ history. The exhibition created a public debate, which certainly supported the initiative of the German Minister of Economic Co-operation and Development to deliver an apology at the commemoration in August 2004 in Namibia. The article is a post-reflection of one of the co-curators on the exhibition putting it into a larger context and reviewing it concurrently.

  10. C-RAM: breaking mobile device memory barriers using the cloud

    OpenAIRE

    Pamboris, A; Pietzuch, P

    2015-01-01

    ?Mobile applications are constrained by the available memory of mobile devices. We present C-RAM, a system that uses cloud-based memory to extend the memory of mobile devices. It splits application state and its associated computation between a mobile device and a cloud node to allow applications to consume more memory, while minimising the performance impact. C-RAM thus enables developers to realise new applications or port legacy desktop applications with a large memory footprint to mobile ...

  11. A novel two-level dynamic parallel data scheme for large 3-D SN calculations

    International Nuclear Information System (INIS)

    Sjoden, G.E.; Shedlock, D.; Haghighat, A.; Yi, C.

    2005-01-01

    We introduce a new dynamic parallel memory optimization scheme for executing large scale 3-D discrete ordinates (Sn) simulations on distributed memory parallel computers. In order for parallel transport codes to be truly scalable, they must use parallel data storage, where only the variables that are locally computed are locally stored. Even with parallel data storage for the angular variables, cumulative storage requirements for large discrete ordinates calculations can be prohibitive. To address this problem, Memory Tuning has been implemented into the PENTRAN 3-D parallel discrete ordinates code as an optimized, two-level ('large' array, 'small' array) parallel data storage scheme. Memory Tuning can be described as the process of parallel data memory optimization. Memory Tuning dynamically minimizes the amount of required parallel data in allocated memory on each processor using a statistical sampling algorithm. This algorithm is based on the integral average and standard deviation of the number of fine meshes contained in each coarse mesh in the global problem. Because PENTRAN only stores the locally computed problem phase space, optimal two-level memory assignments can be unique on each node, depending upon the parallel decomposition used (hybrid combinations of angular, energy, or spatial). As demonstrated in the two large discrete ordinates models presented (a storage cask and an OECD MOX Benchmark), Memory Tuning can save a substantial amount of memory per parallel processor, allowing one to accomplish very large scale Sn computations. (authors)

  12. Autobiographical Memory: A Clinical Perspective

    OpenAIRE

    Urbanowitsch, Nadja; Gorenc, Lina; Herold, Christina J.; Schröder, Johannes

    2013-01-01

    Autobiographical memory (ABM) comprises memories of one’s own past that are characterized by a sense of subjective time and autonoetic awareness. Although ABM deficits are among the primary symptoms of patients with major psychiatric conditions such as mild cognitive impairment (MCI) and Alzheimer Disease (AD) or chronic schizophrenia large clinical studies are scarce. We therefore summarize and discuss the results of our clinical studies on ABM deficits in the respective conditions. In these...

  13. Autobiographical Memory: a clinical perspective

    OpenAIRE

    Nadja eUrbanowitsch; Lina eGorenc; Christina J. Herold; Johannes eSchröder; Johannes eSchröder

    2013-01-01

    Autobiographical memory (ABM) comprises memories of one’s own past that are characterized by a sense of subjective time and autonoetic awareness. Although ABM deficits are among the primary symptoms of patients with major psychiatric conditions such as mild cognitive impairment (MCI) and Alzheimer Disease (AD) or chronic schizophrenia large clinical studies are scarce. We therefore summarize and discuss the results of our clinical studies on ABM deficits in the respective conditions. In these...

  14. What is specific and what is shared between numbers and words?

    Directory of Open Access Journals (Sweden)

    Júlia Beatriz Lopes-Silva

    2016-02-01

    Full Text Available Reading and spelling performance have a significant correlation with number transcoding, which is the ability to establish a relationship between the verbal and Arabic representations of numbers, when a conversion of numerical symbols from one notation to the other is necessary. The aim of the present study is to reveal shared and specific mechanisms involved in reading and writing words and Arabic numerals in Brazilian school-aged children. One hundred and seventy two children from 2nd to 4th grades were evaluated. All of them had normal intelligence. We conducted a series of hierarchical regression models using scores on word spelling and reading single words and Arabic numerals, as dependent variables. As predictor variables we investigated intelligence, the phonological and visuospatial components of working memory and phonemic awareness. All of the writing and reading tasks (single word spelling and reading as well as number reading and number writing were significantly correlated to each other. In the regressions models, phonological working memory was specifically associated to word reading. Phonemic awareness was the only cognitive variables that systematically predicted all of the school skills investigated, both numerical and word tasks. This suggests that phonemic awareness is a modular cognitive ability shared by several school tasks and might be an important factor associated to the comorbidity between dyslexia and dyscalculia.

  15. Memory Hierarchy Design for Next Generation Scalable Many-core Platforms

    OpenAIRE

    Azarkhish, Erfan

    2016-01-01

    Performance and energy consumption in modern computing platforms is largely dominated by the memory hierarchy. The increasing computational power in the multiprocessors and accelerators, and the emergence of the data-intensive workloads (e.g. large-scale graph traversal and scientific algorithms) requiring fast transfer of large volumes of data, are two main trends which intensify this problem by putting even higher pressure on the memory hierarchy. This increasing gap between computation spe...

  16. Combining sync&share functionality with filesystem-like access

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In our presentation we will analyse approaches to combine the sync & share functionality with file system-like access to data. While relatively small data volumes (GBs) can be distributed by sync&share application across user devices such as PCs, laptops and mobiles, interacting with really large data volumes (TBs, PBs) may require additional remote data access mechanism such as filesystem-like interface. We will discuss several ways for offering filesystem-like access in addition to sync & share functionality. Todays sync & share solutions may employ various data organisation in the back-end including local and distributed file systems and object stores. Therefore various approaches to providing the client with filesystem-like access are necessary in these systems. We will present possible options to integrate the filesystem-like access with sync&share functionality in the popular sync&share system. We will also show a NDS2 project solution where data backups and archives are kept sec...

  17. Library Information System Time-Sharing (LISTS) Project. Final Report.

    Science.gov (United States)

    Black, Donald V.

    The Library Information System Time-Sharing (LISTS) experiment was based on three innovations in data processing technology: (1) the advent of computer time-sharing on third-generation machines, (2) the development of general-purpose file-management software and (3) the introduction of large, library-oriented data bases. The main body of the…

  18. Linking unlearning with innovation through organizational memory and technology

    OpenAIRE

    Jiménez Jiménez, Daniel; Cepeda Carrión, Gabriel; Cegarra Navarro, Juan Gabriel

    2010-01-01

    While the information technologies provide organizational members with explicit concepts, such as writing instruction manuals, the ‘organizational memory’ provides individuals with tacit knowledge, such as systematic sets, routines and shared visions. This means that individuals within an organization learn by using both the organizational memory and the information technologies. They interact to reduce organizational information needs contributing to improve organizational innovativeness....

  19. Short-term plasticity as a neural mechanism supporting memory and attentional functions.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Andermann, Mark L; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2011-11-08

    Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory and surround-inhibitory modulations, constitutes a generic processing principle that supports sensory memory, short-term memory, involuntary attention, selective attention, and perceptual learning. In our model, the size and complexity of receptive fields/level of abstraction of neural representations, as well as the length of temporal receptive windows, increases as one steps up the cortical hierarchy. Consequently, the type of input (bottom-up vs. top down) and the level of cortical hierarchy that the inputs target, determine whether short-term plasticity supports purely sensory vs. semantic short-term memory or attentional functions. Furthermore, we suggest that rather than discrete memory systems, there are continuums of memory representations from short-lived sensory ones to more abstract longer-duration representations, such as those tapped by behavioral studies of short-term memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. [Nondeclarative memory--neuropsychological findings and neuroanatomic principles].

    Science.gov (United States)

    Daum, I; Ackermann, H

    1997-03-01

    The contents of long-term memory will influence behaviour, even if the acquired knowledge or the original learning episode are not remembered. These phenomena have been termed "non-declarative" or "implicit" memory, and they are contrasted with "declarative" or "explicit" memory which is characterised by conscious search and retrieval procedures. Non-declarative memory encompasses non-associative learning, simple conditioning, priming effects as well as motor, perceptual and cognitive skill acquisition. The dissociation of both forms of memory is documented by studies in health subjects which indicated that experimental manipulations or drugs may differentially affect declarative and non-declarative memory processes. Damage to the medial temporal or the medial thalamic regions is known to result in declarative memory deficits whereas non-declarative memory is largely unaffected by such lesions. Animal research and clinical findings indicate that several components of non-declarative memory such as motor and cognitive skill acquisition or certain types of classical conditioning are dependent upon the integrity of the basal ganglia or the cerebellum. These issues are therefore of increasing importance for the understanding of extrapyramidal and cerebellar diseases. This paper presents recent neuropsychological findings and neuroanatomical data relating to the issue of non-declarative memory.