Multi-Scale Scattering Transform in Music Similarity Measuring
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Large margin classification with indefinite similarities
Alabdulmohsin, Ibrahim
2016-01-07
Classification with indefinite similarities has attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Examples of such indefinite similarities in machine learning applications are ample including, for instance, the BLAST similarity score between protein sequences, human-judged similarities between concepts and words, and the tangent distance or the shape matching distance in computer vision. Nevertheless, previous works on classification with indefinite similarities are not fully satisfactory. They have either introduced sources of inconsistency in handling past and future examples using kernel approximation, settled for local-minimum solutions using non-convex optimization, or produced non-sparse solutions by learning in Krein spaces. Despite the large volume of research devoted to this subject lately, we demonstrate in this paper how an old idea, namely the 1-norm support vector machine (SVM) proposed more than 15 years ago, has several advantages over more recent work. In particular, the 1-norm SVM method is conceptually simpler, which makes it easier to implement and maintain. It is competitive, if not superior to, all other methods in terms of predictive accuracy. Moreover, it produces solutions that are often sparser than more recent methods by several orders of magnitude. In addition, we provide various theoretical justifications by relating 1-norm SVM to well-established learning algorithms such as neural networks, SVM, and nearest neighbor classifiers. Finally, we conduct a thorough experimental evaluation, which reveals that the evidence in favor of 1-norm SVM is statistically significant.
Large margin classification with indefinite similarities
Alabdulmohsin, Ibrahim; Cisse, Moustapha; Gao, Xin; Zhang, Xiangliang
2016-01-01
Classification with indefinite similarities has attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer
Measuring structural similarity in large online networks.
Shi, Yongren; Macy, Michael
2016-09-01
Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. Copyright © 2016 Elsevier Inc. All rights reserved.
Elastic electron scattering at large momentum transfer
International Nuclear Information System (INIS)
Arnold, R.G.
1979-05-01
A review is given of elastic electron scattering at large momentum transfer (Q 2 > 20 fm -2 ) from nuclei with A less than or equal to 4. Recent experimental results are reviewed and the current problems in interpretation of these results are pointed out. Some questions for future experiments are posed, and a preview of possible future measurements is presented. 28 references
Nonlinear behavior of stimulated scatter in large underdense plasmas
International Nuclear Information System (INIS)
Kruer, W.L.; Estabrook, K.G.
1979-01-01
Several nonlinear effects which limit Brillouin and Raman scatter of intense light in large underdense plasmas are examined. After briefly considering ion trapping and harmonic generation, we focus on the self-consistent ion heating which occurs as an integral part of the Brillouin scattering process. In the long-term nonlinear state, the ion wave amplitude is determined by damping on the heated ion tail which self-consistently forms. A simple model of the scatter is presented and compared with particle simulations. A similar model is also applied to Raman scatter and compared with simulations. Our calculations emphasize that modest tails on the electron distribution function can significantly limit instabilities involving electron plasma waves
Pythoscape: A framework for generation of large protein similarity networks
Babbitt, Patricia; Barber, AE; Babbitt, PC
2012-01-01
Pythoscape is a framework implemented in Python for processing large protein similarity networks for visualization in other software packages. Protein similarity networks are graphical representations of sequence, structural and other similarities among pr
Pythoscape: a framework for generation of large protein similarity networks.
Barber, Alan E; Babbitt, Patricia C
2012-11-01
Pythoscape is a framework implemented in Python for processing large protein similarity networks for visualization in other software packages. Protein similarity networks are graphical representations of sequence, structural and other similarities among proteins for which pairwise all-by-all similarity connections have been calculated. Mapping of biological and other information to network nodes or edges enables hypothesis creation about sequence-structure-function relationships across sets of related proteins. Pythoscape provides several options to calculate pairwise similarities for input sequences or structures, applies filters to network edges and defines sets of similar nodes and their associated data as single nodes (termed representative nodes) for compression of network information and output data or formatted files for visualization.
Asymptotic angular dependences of exclusive hadron large-angle scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1979-01-01
Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions
Impact parameter dynamics in quantum theory in large angle scattering
International Nuclear Information System (INIS)
Andriyanov, A.A.
1975-01-01
High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials
Exploiting Universality in Atoms with Large Scattering Lengths
International Nuclear Information System (INIS)
Braaten, Eric
2012-01-01
The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.
VLAD for epithermal neutron scattering experiments at large energy transfers
International Nuclear Information System (INIS)
Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M
2006-01-01
The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles
Large-t elastic scattering and diffraction dissocation
International Nuclear Information System (INIS)
Timmermans, J.
1985-01-01
Recent results, both from the ISR and the S anti p pS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (author)
Large-t elastic scattering and diffraction dissocation
International Nuclear Information System (INIS)
Timmermans, J.
1985-05-01
Recent results, both from the ISR and the SantippS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (orig.)
Optical scattering lengths in large liquid-scintillator neutrino detectors
Energy Technology Data Exchange (ETDEWEB)
Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)
2010-05-15
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Optical scattering lengths in large liquid-scintillator neutrino detectors.
Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J
2010-05-01
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Hard pair production in large-angle Bhabha scattering
International Nuclear Information System (INIS)
Arbuzov, A.B.; Trentadue, L.
1996-01-01
The cross section of hard pair production in large-angle Bhabha scattering calculated in the leading and next-to-leading logarithmic approximations. Eight regions of the collinear kinematics, when the final particles imitate a process of the 2 →2 type, and three semicollinear regions, when the final particles imitate a process of the 2→3 type, are considered. Analytical formulae for differential cross sections are presented. (orig.)
Large-angle Bhabha scattering at LEP 1
Beenakker, Wim; Passarino, Giampiero
1998-04-01
A critical assessment is given of the theoretical uncertainty in the predicted cross-sections for large-angle Bhabha scattering at LEP 1, with or without t-channel subtraction. To this end a detailed comparison is presented of the results obtained with the programs ALIBABA and TOPAZ0. Differences in the implementation of the radiative corrections and the effect of missing higher-order terms are critically discussed. © 1998
Large-angle hadron scattering at high energies
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1981-01-01
Basing on the quasipotential Logunov-Tavkhelidze approach, corrections to the amplitude of high-energy large-angle meson-nucleon scattering are estimated. The estimates are compared with the available experimental data on pp- and π +- p-scattering, so as to check the adequacy of the suggested scheme to account for the preasymptotic deffects. The compared results are presented in the form of tables and graphs. The following conclusions are drawn: 1. the account for corrections, due to the long-range interaction, to the amplituda gives a good aghreee main asymptotic termment between the theoretical and experimental data. 2. in the case of π +- p- scattering the corrections prove to be comparable with the main asymptotic term up to the values of transferred pulses psub(lambdac)=50 GeV/c, which results in a noticeable deviation form the quark counting rules at such energies. Nevertheless, the preasymptotic formulae do well, beginning with psub(lambdac) approximately 6 GeV/c. In case of pp-scattering the corrections are mutually compensated to a considerable degree, and the deviation from the quark counting rules is negligible
Large momentum transfer electron scattering from few-nucleon systems
International Nuclear Information System (INIS)
Arnold, R.G.
1979-08-01
A review is given of the experimental results from a series of measurements at SLAC of large momentum transfer (Q 2 > 20 fm -2 ) electron scattering at forward angles from nuclei with A less than or equal to 4. Theoretical interpretations of these data in terms of traditional nuclear physics models and in terms of quark constituent models are described. Some physics questions for future experiments are explored, and a preview of possible future measurements of magnetic structure functions of light nuclei at large Q 2 is given
Chaotic scattering: the supersymmetry method for large number of channels
International Nuclear Information System (INIS)
Lehmann, N.; Saher, D.; Sokolov, V.V.; Sommers, H.J.
1995-01-01
We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap Γ g which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))
Chaotic scattering: the supersymmetry method for large number of channels
Energy Technology Data Exchange (ETDEWEB)
Lehmann, N. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Saher, D. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sokolov, V.V. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sommers, H.J. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik)
1995-01-23
We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap [Gamma][sub g] which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))
A Prototype Large Area Detector Module for Muon Scattering Tomography
Energy Technology Data Exchange (ETDEWEB)
Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)
2015-07-01
Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang
2014-09-26
Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.
Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering
International Nuclear Information System (INIS)
Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.
1991-10-01
The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab
Universality in few-body systems with large scattering length
International Nuclear Information System (INIS)
Hammer, H.-W.
2005-01-01
Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed
Corrections to the large-angle scattering amplitude
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1979-01-01
High-energy behaviour of scattering amplitudes is considered within the frames of Logunov-Tavchelidze quasipotential approach. The representation of scattering amplitude of two scalar particles, convenient for the study of its asymptotic properties is given. Obtained are corrections of the main value of scattering amplitude of the first and the second orders in 1/p, where p is the pulse of colliding particles in the system of the inertia centre. An example of the obtained formulas use for a concrete quasipotential is given
Virtual Compton scattering off protons at moderately large momentum transfer
International Nuclear Information System (INIS)
Kroll, P.
1996-01-01
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang; Yucel, Abdulkadir; Bagcý , Hakan; Michielssen, Eric
2014-01-01
scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary
Inclusive production of large-p/sub T/ protons and quark-quark elastic scattering
International Nuclear Information System (INIS)
Chen, C.K.
1978-01-01
A proton-formation process in combination with hard quark-quark scattering is capable of explaining the observed large-p/sub T/ single-proton inclusive production data. This model implies that the inclusive production of two large-p/sub T/ protons at opposite directions is dominated by large-angle elastic scattering of two up quarks, and becomes an ideal place to study elastic quark-quark scattering. This two-proton inclusive production process is also ideal for the study of the spin structure of quark-quark elastic scattering, so the assumptions of pure vector-type quark-quark interaction and of colored quarks can be checked empirically. The consistency of applying the quark-elastic-scattering idea to large-angle elastic proton-proton scattering and to the inclusive production of large-p/sub T/ protons is also demonstrated
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
Virtual compton scattering off protons at moderately large momentum transfer
Energy Technology Data Exchange (ETDEWEB)
Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee
1995-06-28
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.
Virtual compton scattering off protons at moderately large momentum transfer
International Nuclear Information System (INIS)
Kroll, P.; Schuermann, M.; Guichon, P.A.M.
1995-01-01
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab
Experimental studies of the critical scattering of neutrons for large scattering vectors
International Nuclear Information System (INIS)
Ciszewski, R.
1972-01-01
The most recent results concerned with the critical scattering of neutrons are reviewed. The emphasis is on the so-called thermal shift, that is the shift of the main maximum in the intensity of critically scattered neutrons with temperature changes. Four theories of this phenomenon are described and their shortcomings are shown. It has been concluded that the situation is involved at present and needs further theoretical and experimental study. (S.B.)
Similarities and differences between antipp and pp scattering at TeV energies and beyond
International Nuclear Information System (INIS)
Gauron, P.; Nicolescu, B.
1986-12-01
The significant difference between the pp and antipp elastic dσ/dt discovered at the CERN ISR, and the behaviour of the antipp dσ/dt at the CERN collider, which have profound implications for the asymptotic behaviour of hadron scattering amplitudes, are explained in terms of a model theory based upon general S-matrix principles and a dynamical assumption of ''maximal strength'' for the strong interactions. Our model theory provides an excellent description of the pp and antipp data in the huge range 10 ≤ √s ≤ 630 GeV for /t/ ≤2.5 (GeV) 2 . Several striking consequences of the theory will be testable at Tevatron energies and beyond
On expansion of scattering amplitude at large momentum transfers
International Nuclear Information System (INIS)
Edneral, V.F.; Troshin, S.M.; Tyurin, N.E.
1979-01-01
The aim of the paper is to construct an iterative approximation for hadronic scattering amplitude and to search for the related small parameters. The expansion of the amplitude is obtained. A series is derived where the role of the small parameter is played by the quantity dependent on the momentum transfer. The appearance of the small parameter is directly related to the growth of total cross section. For the case g 2 not equal to 0 in the framework of the strong interaction theory model, based on the solution of three-domensional dynamical equation an expression is obtained for scattering amplitude in the form of a series over the quantity decreasing with the growth of momentum transfer
Design and development of the large helical device TV Thomson scattering
International Nuclear Information System (INIS)
Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.
2004-01-01
We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data
Energy Technology Data Exchange (ETDEWEB)
Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)
2016-12-15
For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.
Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering
International Nuclear Information System (INIS)
Mardor, I.; Aclander, J.; Alster, J.; Kosonovsky, E.; Mardor, Y.; Navon, I.; Piasetzky, E.; Durrant, S.; Barton, D.; Bunce, G.; Carroll, A.; Gushue, S.; Makdisi, Y.; Roser, T.; Tanaka, M.; Christensen, N.; Courant, H.; Marshak, M.; White, C.; Heppelmann, S.; Minor, E.D.; Wu, J.; Nicholson, H.; Sutton, C.S.; Russell, J.
1998-01-01
We measured simultaneously pp elastic and quasielastic (p,2p) scattering in hydrogen, deuterium, and carbon for momentum transfers of 4.8 to 6.2 (GeV/c) 2 at incoming momenta of 5.9 and 7.5 GeV/c and center-of-mass scattering angles in the range θ c.m. =83.7 degree - 90 degree . The nuclear transparency is defined as the ratio of the quasielastic cross section to the free pp cross section. At incoming momentum of 5.9 GeV/c , the transparency of carbon decreases by a factor of 2 from θ c.m. ≅85 degree to θ c.m. ≅89 degree . At the largest angle the transparency of carbon increases from 5.9 to 7.5 GeV/c by more than 50%. The transparency in deuterium does not depend on incoming momentum nor on θ c.m. . copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Roehr, H.; Steuer, K.H.; Hirsch, K.; Salzmann, H.
1982-09-01
In contrast to conventional ruby laser scattering devices allowing only singly pulse measurements, time evolution of Te and ne can be obtained with multipulse lasers. Within a short time interval ( proportional 1 ms) rapid variations can be investigated by employing a periodically Q-switched ruby laser. Several scattering systems under construction in different laboratories to register the time evolution of Tsub(e) and nsub(e) during the whole plasma discharge will be reported. The set-up operating successfully on the Garching tokamak ASDEX will be described in detail. This scattering system uses a Nd:YAG laser (1 J/pulse, up to 100 pps, pulse duration 30 ns, burst of max. 400 pulses) and silicon avalanche diodes as detectors. Time resolved nsub(e) and Tsub(e) measurements on different types of ASDEX discharges are shown, e.g. the electron density and electron heating during neutral beam injection in a divertor discharge. As an example of relatively fast changes of nsub(e) and Tsub(e), results on pellet injection are presented. Interferometric and ECE measurements are in good agreement with the Thomson results. Stationary ''long pulse discharges'' in ASDEX (10 s) at low densitites (10 12 cm -3 ) were diagnosed with reduced time resolution by averaging over several laser pulses. Measurements of the time evolution of electron temperature and -density profiles were done in a first step with a scanning mirror system. These results enables optimazing out 15 spatial-point Thomson scattering system on ASDEX. (orig./AH)
Mackey, Aaron J; Pearson, William R
2004-10-01
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.
Efficient Similarity Search Using the Earth Mover's Distance for Large Multimedia Databases
DEFF Research Database (Denmark)
Assent, Ira; Wichterich, Marc; Meisen, Tobias
2008-01-01
Multimedia similarity search in large databases requires efficient query processing. The Earth mover's distance, introduced in computer vision, is successfully used as a similarity model in a number of small-scale applications. Its computational complexity hindered its adoption in large multimedia...... databases. We enable directly indexing the Earth mover's distance in structures such as the R-tree and the VA-file by providing the accurate 'MinDist' function to any bounding rectangle in the index. We exploit the computational structure of the new MinDist to derive a new lower bound for the EMD Min...
Web service discovery among large service pools utilising semantic similarity and clustering
Chen, Fuzan; Li, Minqiang; Wu, Harris; Xie, Lingli
2017-03-01
With the rapid development of electronic business, Web services have attracted much attention in recent years. Enterprises can combine individual Web services to provide new value-added services. An emerging challenge is the timely discovery of close matches to service requests among large service pools. In this study, we first define a new semantic similarity measure combining functional similarity and process similarity. We then present a service discovery mechanism that utilises the new semantic similarity measure for service matching. All the published Web services are pre-grouped into functional clusters prior to the matching process. For a user's service request, the discovery mechanism first identifies matching services clusters and then identifies the best matching Web services within these matching clusters. Experimental results show that the proposed semantic discovery mechanism performs better than a conventional lexical similarity-based mechanism.
A vectorial description of electromagnetic scattering by large bodies of spherical shape
International Nuclear Information System (INIS)
Bourrely, C.; Lemaire, T.; Chiappetta, P.; Centre National de la Recherche Scientifique, 13 - Marseille
1989-10-01
We present a new method to obtain a vectorial solution of Helmholtz equation for large homogeneous scatterers having a cylindrical symmetry and a shape approximately spherical. Limitations of the method for arbitrarily shaped particles are discussed
Algorithms for Electromagnetic Scattering Analysis of Electrically Large Structures
DEFF Research Database (Denmark)
Borries, Oscar Peter
Accurate analysis of electrically large antennas is often done using either Physical Optics (PO) or Method of Moments (MoM), where the former typically requires fewer computational resources but has a limited application regime. This study has focused on fast variants of these two methods, with t...
Load reduction test method of similarity theory and BP neural networks of large cranes
Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening
2016-01-01
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
International Nuclear Information System (INIS)
Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T
2006-01-01
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware
On the scale similarity in large eddy simulation. A proposal of a new model
International Nuclear Information System (INIS)
Pasero, E.; Cannata, G.; Gallerano, F.
2004-01-01
Among the most common LES models present in literature there are the Eddy Viscosity-type models. In these models the subgrid scale (SGS) stress tensor is related to the resolved strain rate tensor through a scalar eddy viscosity coefficient. These models are affected by three fundamental drawbacks: they are purely dissipative, i.e. they cannot account for back scatter; they assume that the principal axes of the resolved strain rate tensor and SGS stress tensor are aligned; and that a local balance exists between the SGS turbulent kinetic energy production and its dissipation. Scale similarity models (SSM) were created to overcome the drawbacks of eddy viscosity-type models. The SSM models, such as that of Bardina et al. and that of Liu et al., assume that scales adjacent in wave number space present similar hydrodynamic features. This similarity makes it possible to effectively relate the unresolved scales, represented by the modified Cross tensor and the modified Reynolds tensor, to the smallest resolved scales represented by the modified Leonard tensor] or by a term obtained through multiple filtering operations at different scales. The models of Bardina et al. and Liu et al. are affected, however, by a fundamental drawback: they are not dissipative enough, i.e they are not able to ensure a sufficient energy drain from the resolved scales of motion to the unresolved ones. In this paper it is shown that such a drawback is due to the fact that such models do not take into account the smallest unresolved scales where the most dissipation of turbulent SGS energy takes place. A new scale similarity LES model that is able to grant an adequate drain of energy from the resolved scales to the unresolved ones is presented. The SGS stress tensor is aligned with the modified Leonard tensor. The coefficient of proportionality is expressed in terms of the trace of the modified Leonard tensor and in terms of the SGS kinetic energy (computed by solving its balance equation). The
Gluon bremstrahlung effects in large P/sub perpendicular/ hadron-hadron scattering
International Nuclear Information System (INIS)
Fox, G.C.; Kelly, R.L.
1982-02-01
We consider effects of parton (primarily gluon) bremstrahlung in the initial and final states of high transverse momentum hadron-hadron scattering. Monte Carlo calculations based on conventional QCD parton branching and scattering processes are presented. The calculations are carried only to the parton level in the final state. We apply the model to the Drell-Yan process and to high transverse momentum hadron-hadron scattering triggered with a large aperture calorimeter. We show that the latter triggers are biased in that they select events with unusually large bremstrahlung effects. We suggest that this trigger bias explains the large cross section and non-coplanar events observed in the NA5 experiment at the SPS
International Nuclear Information System (INIS)
Kehayias, J.J.
2001-01-01
Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a 'signature' of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min - compared to a few seconds for the detection of explosives - but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly
Similar range of motion and function after resurfacing large-head or standard total hip arthroplasty
DEFF Research Database (Denmark)
Penny, Jeannette Østergaard; Ovesen, Ole; Varmarken, Jens-Erik
2013-01-01
BACKGROUND AND PURPOSE: Large-size hip articulations may improve range of motion (ROM) and function compared to a 28-mm THA, and the low risk of dislocation allows the patients more activity postoperatively. On the other hand, the greater extent of surgery for resurfacing hip arthroplasty (RHA......° (35), 232° (36), and 225° (30) respectively, but the differences were not statistically significant. The 3 groups were similar regarding Harris hip score, UCLA activity score, step rate, and sick leave. INTERPRETATION: Head size had no influence on range of motion. The lack of restriction allowed...... for large articulations did not improve the clinical and patient-perceived outcomes. The more extensive surgical procedure of RHA did not impair the rehabilitation. This project is registered at ClinicalTrials.gov under # NCT01113762....
Lansberg, Jean-Philippe
2015-01-01
The recent observations of prompt J/psi-pair production by CMS at the LHC and by D0 at the Tevatron reveal the presence of different production mechanisms in different kinematical regions. We find out that next-to-leading-order single-parton-scattering contributions at alpha_s^5 dominate the yield at large transverse momenta of the pair. Our analysis further emphasises the importance of double-parton-scatterings --which are expected to dominate the yield at large rapidity differences-- at large invariant masses of the pair in the CMS acceptance. In addition, we provide the first exact --gauge-invariant and infrared-safe-- evaluation of a class of leading-P_T next-to-next-to-leading-order contributions, which are dominant in the region of large sub-leading transverse momenta, precisely where the colour-octet contributions can be non-negligible. Finally, we discuss the contribution from decays of excited charmonium states within both single- and double-parton scatterings and suggest measurements to distinguish ...
Physical explanation of the SLIPI technique by the large scatterer approximation of the RTE
International Nuclear Information System (INIS)
Kristensson, Elias; Kristensson, Gerhard
2017-01-01
Visualizing the interior of a turbid scattering media by means light-based methods is not a straightforward task because of multiple light scattering, which generates image blur. To overcome this issue, a technique called Structured Laser Illumination Planar Imaging (SLIPI) was developed within the field of spray imaging. The method is based on a ‘light coding’ strategy to distinguish between directly and multiply scattered light, allowing the intensity from the latter to be suppressed by means of data post-processing. Recently, the performance of the SLIPI technique was investigated, during which deviations from theoretical predictions were discovered. In this paper, we aim to explain the origin of these deviations, and to achieve this end, we have performed several SLIPI measurements under well-controlled conditions. Our experimental results are compared with a theoretical model that is based on the large scatterer approximation of the Radiative Transfer Equation but modified according to certain constraints. Specifically, our model is designed to (1) ignore all off-axis intensity contributions, (2) to treat unperturbed- and forward-scattered light equally and (3) to accept light to scatter within a narrow forward-cone as we believe these are the rules governing the SLIPI technique. The comparison conclusively shows that optical measurements based on scattering and/or attenuation in turbid media can be subject to significant errors if not all aspects of light-matter interactions are considered. Our results indicate, as were expected, that forward-scattering can lead to deviations between experiments and theoretical predictions, especially when probing relatively large particles. Yet, the model also suggests that the spatial frequency of the superimposed ‘light code’ as well as the spreading of the light-probe are important factors one also needs to consider. The observed deviations from theoretical predictions could, however, potentially be exploited to
Observation of jet production in deep inelastic scattering with a large rapidity gap at HERA
International Nuclear Information System (INIS)
Doeker, T.
1994-01-01
Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥ 10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W > 140 GeV are consistent with a leading twist diffractive production mechanism. In the laboratory frame, with E jet t ≥ 4 GeV, 159% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy now is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * P centre-of-mass systems, demonstrating the presence of hard scattering in the virtual photon proton interactions that give rise to large rapidity gap events
Observation of jet production in deep inelastic scattering with a large rapidity gap a HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1994-04-01
Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W>140 GeV are consistent with a leading twist diffractive mechanism. In the laboratory frame, with E T jet ≥4 GeV, 15% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy flow is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * p centre-of-mass systems demonstrating the presence of hard scattering in the virtual photon interactions that give rise to large rapidity gap events. (orig.)
Liu, Yang
2015-12-17
A scalable parallel plane-wave time-domain (PWTD) algorithm for efficient and accurate analysis of transient scattering from electrically large objects is presented. The algorithm produces scalable communication patterns on very large numbers of processors by leveraging two mechanisms: (i) a hierarchical parallelization strategy to evenly distribute the computation and memory loads at all levels of the PWTD tree among processors, and (ii) a novel asynchronous communication scheme to reduce the cost and memory requirement of the communications between the processors. The efficiency and accuracy of the algorithm are demonstrated through its applications to the analysis of transient scattering from a perfect electrically conducting (PEC) sphere with a diameter of 70 wavelengths and a PEC square plate with a dimension of 160 wavelengths. Furthermore, the proposed algorithm is used to analyze transient fields scattered from realistic airplane and helicopter models under high frequency excitation.
Validation of large-angle scattering data via shadow-bar experiment
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, S., E-mail: ohnishi@nmri.go.jp [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan); Tamaki, S.; Murata, I. [Osaka University, 1-14-16-1, Yamadaoka, Suita-si, Osaka 565-0871 (Japan)
2016-11-15
Highlights: • An experiment to validate large-angle scattering cross section is conducted. • Pieces of Nb foil are set behind a shadow bar to obtain the {sup 92m}Nb production rates. • The results calculated using ENDF/B-VI library data exhibit a 57% overestimation. • The adjustment of cross section in large-angle region makes the C/E close to 1. - Abstract: An experiment emphasizing the influence of large-angle scattering on nuclear data was conducted, in which a Fe shadow bar and a Fe slab target were placed before a deuterium–tritium fusion (DT) neutron source. Two Nb foils were set on both sides of the shadow bar in order to monitor the neutron source intensity and to measure the neutrons scattered from the slab target. The {sup 93}Nb(n,2n){sup 92m}Nb reaction rate of the foil was measured following the DT neutron irradiation and calculated using the MCNP5 Monte Carlo radiation transportation code. The {sup 92m}Nb production rates calculated using data from the JEFF-3.1 and JENDL-4.0 libraries agreed with that measured in the experiment, while the result calculated using data from the ENDF/B-VI library exhibited a 57% overestimation. Because the sensitivity of the {sup 92m}Nb production rate to the scattering angular distribution was large in the angular region between scattering direction cosines of −0.9 and −0.4, the scattering angular distribution was adjusted in that region. This adjustment resulted in a calculation-to-experiment ratio close to 1, but had little influence on the existing integral benchmark experiment.
Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin
2017-10-24
The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.
Large-angle theory for pion-nucleus scattering at high energies
International Nuclear Information System (INIS)
Hoock, D.W. Jr.
1978-01-01
An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-01-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
Violation of the factorization theorem in large-angle radiative Bhabha scattering
International Nuclear Information System (INIS)
Arbuzov, A.B.; Kuraev, Eh.A.; Shajkhatdenov, B.G.
1998-01-01
The lowest order QED radiative corrections to the radiative large-angle Bhabha scattering process in the region where all the kinematical invariants are large compared to the electron mass are considered. We show that the leading logarithmic corrections do not factor before the Born cross section, contrary to the picture assumed in the renormalization group approach. Estimation of the leading and nonleading contributions for typical kinematics of the hard process for energy of Φ factory is done
Covariant meson-baryon scattering with chiral and large Nc constraints
International Nuclear Information System (INIS)
Lutz, M.F.M.; Kolomeitsev, E.E.
2001-05-01
We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/N c expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of p lab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. (orig.)
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres
Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli
2017-09-01
CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.
Observation of events with a large rapidity gap in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1993-07-01
In deep inelastic, neutral current scattering of electrons and protons at √s=296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q 2 of 100 GeV 2 . They account for about 5% of the events with Q 2 ≥10 GeV 2 . Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon. (orig.)
Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.
Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio
Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao
2016-11-01
In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.
Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 mm-1 at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime
Xie, S.; Archer, C. L.
2013-12-01
In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near
Electromagnetic scattering of large structures in layered earths using integral equations
Xiong, Zonghou; Tripp, Alan C.
1995-07-01
An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.
Resummations in QCD hard-scattering at large and small x
Kidonakis, Nikolaos; Stephens, Philip
2008-01-01
We discuss different resummations of large logarithms that arise in hard-scattering cross sections of quarks and gluons in regions of large and small x. The large-x logarithms are typically dominant near threshold for the production of a specified final state. These soft and collinear gluon corrections produce large enhancements of the cross section for many processes, notably top quark and Higgs production, and typically the higher-order corrections reduce the factorization and renormalization scale dependence of the cross section. The small-x logarithms are dominant in the regime where the momentum transfer of the hard sub-process is much smaller than the total collision energy. These logarithms are important to describe multijet final states in deep inelastic scattering and hadron colliders, and in the study of parton distribution functions. The resummations at small and large x are linked by the eikonal approximation and are dominated by soft gluon anomalous dimensions. We will review their role in both c...
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1994-11-01
Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton. (orig.)
An approach to large scale identification of non-obvious structural similarities between proteins
Cherkasov, Artem; Jones, Steven JM
2004-01-01
Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence. PMID:15147578
An approach to large scale identification of non-obvious structural similarities between proteins
Directory of Open Access Journals (Sweden)
Cherkasov Artem
2004-05-01
Full Text Available Abstract Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence.
Similarities between 2D and 3D convection for large Prandtl number
Indian Academy of Sciences (India)
2016-06-18
RBC), we perform a compara- tive study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close ...
Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths
International Nuclear Information System (INIS)
Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F.; Penttilä, A.; Muinonen, K.
2017-01-01
The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.
Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths
Energy Technology Data Exchange (ETDEWEB)
Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F. [Instituto de Astrofìsica de Andalucìa, CSIC, Glorieta de la Astronomìa s/n, E-18008 Granada (Spain); Penttilä, A.; Muinonen, K. [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)
2017-03-20
The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.
Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1994-07-01
Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 296 GeV for the range Q 2 ≥10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap events compared to the events without a large rapidity gap. (orig.)
Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums
International Nuclear Information System (INIS)
MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.
1996-10-01
We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)
Large variations in ocular dimensions in a multiethnic population with similar genetic background
Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei
2016-01-01
We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P?
Energy Technology Data Exchange (ETDEWEB)
Vakili, Masoud [Cincinnati U.
1997-01-01
Data from the CCFR E770 Neutrino Deep Inelastic Scatter- ing (DIS) experiment at Fermilab contain large Bjorken x, high $Q^2$ events. A comparison of the data with a model, based on no nuclear effects at large $x$, shows an excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the model's deficit. Adding higher momentum tail due to the formation of "quasi-deuterons" makes the agreement better. Certain models based on "multi- quark clusters" and "few-nucleon correlations" predict an exponentially falling behavior for $F_2$ as $F_2 \\sim e^{s(x -x_0)}$ at large $x$. We measure a $s$ = 8.3 $\\pm$ 0.8 for the best fit to our data. This corresponds to a value of $F_2$($x = 1, Q^2 > 50) \\approx 2$ x $10^{-3}$ in neutrino DIS. These values agree with results from theoretical models and the $SLAC$ $E133$ experiment but seem to be different from the result of the BCDMS experiment
Simultaneous identification of long similar substrings in large sets of sequences
Directory of Open Access Journals (Sweden)
Wittig Burghardt
2007-05-01
Full Text Available Abstract Background Sequence comparison faces new challenges today, with many complete genomes and large libraries of transcripts known. Gene annotation pipelines match these sequences in order to identify genes and their alternative splice forms. However, the software currently available cannot simultaneously compare sets of sequences as large as necessary especially if errors must be considered. Results We therefore present a new algorithm for the identification of almost perfectly matching substrings in very large sets of sequences. Its implementation, called ClustDB, is considerably faster and can handle 16 times more data than VMATCH, the most memory efficient exact program known today. ClustDB simultaneously generates large sets of exactly matching substrings of a given minimum length as seeds for a novel method of match extension with errors. It generates alignments of maximum length with a considered maximum number of errors within each overlapping window of a given size. Such alignments are not optimal in the usual sense but faster to calculate and often more appropriate than traditional alignments for genomic sequence comparisons, EST and full-length cDNA matching, and genomic sequence assembly. The method is used to check the overlaps and to reveal possible assembly errors for 1377 Medicago truncatula BAC-size sequences published at http://www.medicago.org/genome/assembly_table.php?chr=1. Conclusion The program ClustDB proves that window alignment is an efficient way to find long sequence sections of homogenous alignment quality, as expected in case of random errors, and to detect systematic errors resulting from sequence contaminations. Such inserts are systematically overlooked in long alignments controlled by only tuning penalties for mismatches and gaps. ClustDB is freely available for academic use.
Using Java to visualize and manipulate large arrays of neutron scattering data
International Nuclear Information System (INIS)
Mikkelson, D.; Worlton, T.; Chatterjee, A.; Hammonds, J.; Chen, D.
2000-01-01
The Intense Pulsed Neutron Source at Argonne National Laboratory is a world class pulsed neutron source with thirteen instruments designed to characterize materials using time-of-flight neutron scattering techniques. For each instrument, a collimated pulse of neutrons is directed to a material sample. The neutrons are scattered by the sample and detected by arrays of detectors. The type, number and arrangement of detectors vary widely from instrument to instrument, depending on which properties of materials are being studied. In all cases, the faster, higher energy neutrons reach the detectors sooner than the lower energy neutrons. This produces a time-of-flight spectrum at each detector element. The time-of-flight spectrum produced by each detector element records the scattering intensity at hundreds to thousands of discrete time intervals. Since there are typically between two hundred and ten thousand distinct detector elements, a single set of raw data can include millions of points. Often many such datasets are collected for a single sample to determine the effect of different conditions on the microscopic structure and dynamics of the sample. In this project, Java was used to construct a portable highly interactive system for viewing and operating on large collections of time-of-flight spectra. Java performed surprisingly well in handling large amounts of data quickly was fast enough even with standard PC hardware. Although Java may not be the choice at this time for applications where computational efficiency is the primary refinement, any disadvantages in this case were outweighed by the advantages of a clean object oriented language with a portable set of GUI components. The authors anticipate that Java will prove useful for scientific computing and data visualization in situations where portability, case of use and effective use of software development manpower are critical
Directory of Open Access Journals (Sweden)
Julie Hougaard Overgaard
2016-11-01
Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to
International Nuclear Information System (INIS)
Amado, R.D.; Sparrow, D.A.
1984-01-01
The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely
Large variations in ocular dimensions in a multiethnic population with similar genetic background.
Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei
2016-03-07
We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P variations in LTs. Diabetes was associated with shallower ACDs and this association was stronger in Bai Chinese compared with Yi or Han Chinese (P for interaction = 0.02). Thicker lenses were associated with younger age (P = 0.04), male gender (P variations in cultures and lifestyles.
S-matrix description of anomalous large-angle heavy-ion scattering
Energy Technology Data Exchange (ETDEWEB)
Frahn, W E; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica; Canto, L F; Donangelo, R [Rio de Janeiro Univ. (Brazil). Inst. de Fisica
1981-10-12
We present a quantitative description of the well-known anomalous features observed in the large-angle scattering of n..cap alpha.. type heavy ions, in particular of the pronounced structures in the backangle excitation function for /sup 16/O + /sup 28/Si. Our treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement.
S-matrix description of anomalus large-angle heavy-ion scattering
International Nuclear Information System (INIS)
Frahn, W.E.; Hussein, M.S.; Canto, L.F.; Donangelo, R.J.
1981-01-01
A quantitative description of the well-known anomalous features observed in the large-angle scattering of n.α type heavy ions, in particular of the pronounced structures in the backangle excitation function or 16 O + 28 Si is presented. This treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement. (Author) [pt
Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB
International Nuclear Information System (INIS)
Accardi, Alberto; Qiu, Jian-Wei
2008-01-01
http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.
Large revealing similarity in multihadron production in nuclear and particle collisions
International Nuclear Information System (INIS)
Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan, Edward K.G.; Sakharov, Alexander S.; )
2016-01-01
The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity as well as of charged particle total multiplicity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The model in which the multiparticle production is driven by the dissipating effective energy of participants is considered. The model extends the earlier proposed approach, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this model, the dependence of the charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables the effective energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range
Bettencourt, L. M. A.; Lobo, J.; West, G. B.
2008-06-01
Cities have existed since the beginning of civilization and have always been intimately connected with humanity's cultural and technological development. Much about the human and social dynamics that takes place is cities is intuitively recognizable across time, space and culture; yet we still do not have a clear cut answer as to why cities exist or to what factors are critical to make them thrive or collapse. Here, we construct an extensive quantitative characterization of the variation of many urban indicators with city size, using large data sets for American, European and Chinese cities. We show that social and economic quantities, characterizing the creation of wealth and new ideas, show increasing returns to population scale, which appear quantitatively as a power law of city size with an exponent β≃ 1.15 > 1. Concurrently, quantities characterizing material infrastructure typically show economies of scale, namely β≃ 0.8 exponential growth, which inexorably lead to crises of urban organization. To avoid them we show that growth may proceed in cycles, separated by major urban adaptations, with the unintended consequence that the duration of such cycles decreases with larger urban population size and is now estimated to be shorter than a human lifetime.
Very large solid angle spectrometer for single arm electron scattering experiments
International Nuclear Information System (INIS)
Leconte, P.
1981-01-01
Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of
Large area window on vacuum chamber surface for neutron scattering instruments
International Nuclear Information System (INIS)
Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao
2012-01-01
The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.
Deep inelastic scattering with leading protons or large rapidity gaps at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)
2008-12-15
The dissociation of virtual photons, {gamma}{sup *}p{yields} Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q{sup 2}> 2 GeV{sup 2} and {gamma}{sup *}p centre-of-mass energies 40
Deep inelastic scattering with leading protons or large rapidity gaps at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2008-12-01
The dissociation of virtual photons, γ * p→ Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q 2 > 2 GeV 2 and γ * p centre-of-mass energies 40 X > 2 GeV, where M X is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and Φ, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q 2 and x P , the fraction of the proton's momentum carried by the diffractive exchange, as well as β, the Bjorken variable defined with respect to the diffractive exchange. (orig.)
A model for pion-pion scattering in large-N QCD
Energy Technology Data Exchange (ETDEWEB)
Veneziano, G. [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Collège de France,11 place M. Berthelot, 75005 Paris (France); Yankielowicz, S. [Raymond and Beverly Sackler School of Physics Tel-Aviv University,Ramat-Aviv 69978 (Israel); Onofri, E. [I.N.F.N., Gruppo Collegato di Parma, c/o Department of Mathematical,Physical and Computer Sciences, Università di Parma,Parco Area delle Scienze 7/a, Parma, 43124 (Italy)
2017-04-26
Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in (’t Hooft’s) large-N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α{sub 0}<1, and an effective bending of the trajectories in the negative-t region producing a fixed branch point at J=0 for t
The shifting zoom: new possibilities for inverse scattering on electrically large domains
Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien
2017-04-01
Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C
International Nuclear Information System (INIS)
Raynal, J.
1990-01-01
Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements
Measurement of diffractive scattering of photons with large momentum transfer at HERA
International Nuclear Information System (INIS)
Aaron, F.D.; Andreev, V.
2008-09-01
The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp → γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q 2 2 . Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 2 . The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)
Measurement of diffractive scattering of photons with large momentum transfer at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)
2008-09-15
The first measurement of diffractive scattering of quasi-real photons with large momentum transfer {gamma}p {yields} {gamma}Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q{sup 2} < 0.01 GeV{sup 2}. Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4 < vertical stroke t vertical stroke < 36 GeV{sup 2}. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
1999-03-01
High-resolution differential scanning calorimetry (DSC) and small angle neutron scattering (SANS) experiments have been conducted on large unilamellar vesicles (LUV{close_quote}s) of the phospholipid dipalmitoylphosphatidylcholine (DPPC) in excess water. The DSC results indicate a phase transition at temperatures corresponding to the gel (L{sub {beta}{sup {prime}}}) to ripple (P{sub {beta}{sup {prime}}}) phase transition seen in multilamellar vesicles of DPPC while the SANS experiments provide direct evidence for the formation of the P{sub {beta}{sup {prime}}} phase in these systems. In addition, it is shown that SANS is an effective technique for extracting structural parameters such as vesicle radius and thickness in LUV model membrane systems. {copyright} {ital 1999} {ital The American Physical Society}
Measurement of Diffractive Scattering of Photons with Large Momentum Transfer at HERA
Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2009-01-01
The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.
Measurement of diffractive scattering of photons with large momentum transfer at HERA
H1 Collaboration; Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2009-02-01
The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp→γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q<0.01 GeV. Single differential cross sections are measured as a function of W, the incident photon-proton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175
Energy evolution of the large-t elastic scattering and its correlation with multiparticle production
International Nuclear Information System (INIS)
Troshin, S. M.
2013-01-01
It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.
Energy evolution of the large-t elastic scattering and its correlation with multiparticle production
Energy Technology Data Exchange (ETDEWEB)
Troshin, S. M. [Institute for High Energy Physics, Protvino, Moscow Region, 142281 (Russian Federation)
2013-04-15
It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.
International Nuclear Information System (INIS)
Marinyuk, V V; Sheberstov, S V
2017-01-01
We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)
Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering
International Nuclear Information System (INIS)
Lutz, M.F.M.; Kolomeitsev, E.E.
2001-05-01
The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)
Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.
Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth
2018-06-06
Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.
Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider
International Nuclear Information System (INIS)
Anger, Philipp
2014-01-01
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb -1 at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W ± W ± jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W ± W ± jj production with same electric charge of the W bosons, inseparably comprising W ± W ± →W ± W ± electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard Model electroweak gauge bosons: W
Liu, Yang
2013-07-01
The computational complexity and memory requirements of multilevel plane wave time domain (PWTD)-accelerated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(NtNs(log 2)Ns) and O(Ns 1.5); here N t and Ns denote numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from perfect electrically conducting as well as homogeneous penetrable targets involving up to Ns ≈ 0.5 × 106 and Nt ≈ 10 3. To solve larger problems, parallel PWTD-enhanced MOT solvers are called for. Even though a simple parallelization strategy was demonstrated in the context of electromagnetic compatibility analysis [M. Lu et al., in Proc. IEEE Int. Symp. AP-S, 4, 4212-4215, 2004], by and large, progress in this area has been slow. The lack of progress can be attributed wholesale to difficulties associated with the construction of a scalable PWTD kernel. © 2013 IEEE.
Sanz, Camila; Zamberlan, Federico; Erowid, Earth; Erowid, Fire; Tagliazucchi, Enzo
2018-01-01
Ever since the modern rediscovery of psychedelic substances by Western society, several authors have independently proposed that their effects bear a high resemblance to the dreams and dreamlike experiences occurring naturally during the sleep-wake cycle. Recent studies in humans have provided neurophysiological evidence supporting this hypothesis. However, a rigorous comparative analysis of the phenomenology (“what it feels like” to experience these states) is currently lacking. We investigated the semantic similarity between a large number of subjective reports of psychoactive substances and reports of high/low lucidity dreams, and found that the highest-ranking substance in terms of the similarity to high lucidity dreams was the serotonergic psychedelic lysergic acid diethylamide (LSD), whereas the highest-ranking in terms of the similarity to dreams of low lucidity were plants of the Datura genus, rich in deliriant tropane alkaloids. Conversely, sedatives, stimulants, antipsychotics, and antidepressants comprised most of the lowest-ranking substances. An analysis of the most frequent words in the subjective reports of dreams and hallucinogens revealed that terms associated with perception (“see,” “visual,” “face,” “reality,” “color”), emotion (“fear”), setting (“outside,” “inside,” “street,” “front,” “behind”) and relatives (“mom,” “dad,” “brother,” “parent,” “family”) were the most prevalent across both experiences. In summary, we applied novel quantitative analyses to a large volume of empirical data to confirm the hypothesis that, among all psychoactive substances, hallucinogen drugs elicit experiences with the highest semantic similarity to those of dreams. Our results and the associated methodological developments open the way to study the comparative phenomenology of different altered states of consciousness and its relationship with non-invasive measurements of brain physiology. PMID
Directory of Open Access Journals (Sweden)
Camila Sanz
2018-01-01
Full Text Available Ever since the modern rediscovery of psychedelic substances by Western society, several authors have independently proposed that their effects bear a high resemblance to the dreams and dreamlike experiences occurring naturally during the sleep-wake cycle. Recent studies in humans have provided neurophysiological evidence supporting this hypothesis. However, a rigorous comparative analysis of the phenomenology (“what it feels like” to experience these states is currently lacking. We investigated the semantic similarity between a large number of subjective reports of psychoactive substances and reports of high/low lucidity dreams, and found that the highest-ranking substance in terms of the similarity to high lucidity dreams was the serotonergic psychedelic lysergic acid diethylamide (LSD, whereas the highest-ranking in terms of the similarity to dreams of low lucidity were plants of the Datura genus, rich in deliriant tropane alkaloids. Conversely, sedatives, stimulants, antipsychotics, and antidepressants comprised most of the lowest-ranking substances. An analysis of the most frequent words in the subjective reports of dreams and hallucinogens revealed that terms associated with perception (“see,” “visual,” “face,” “reality,” “color”, emotion (“fear”, setting (“outside,” “inside,” “street,” “front,” “behind” and relatives (“mom,” “dad,” “brother,” “parent,” “family” were the most prevalent across both experiences. In summary, we applied novel quantitative analyses to a large volume of empirical data to confirm the hypothesis that, among all psychoactive substances, hallucinogen drugs elicit experiences with the highest semantic similarity to those of dreams. Our results and the associated methodological developments open the way to study the comparative phenomenology of different altered states of consciousness and its relationship with non-invasive measurements of brain
Zuffada, Cinzia; Crisp, David
1997-01-01
Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward
Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.
2013-01-01
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...
Liu, Yang; Bagci, Hakan; Michielssen, Eric
2013-01-01
numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from
Lattice models for large-scale simulations of coherent wave scattering
Wang, Shumin; Teixeira, Fernando L.
2004-01-01
Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually combated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced grid dispersion error for a given stencil (and hence at no additional computational cost). The present approach is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid dispersion error for wave propagation at all directions (minimax sense). The resulting coefficients are then expanded into a Taylor series in terms of the frequency variable and incorporated into time-domain (update) equations after an inverse Fourier transformation. Maximally flat (Butterworth) or Chebyshev filters are subsequently used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also allows for the adjustment of the grid dispersion characteristics so as to minimize not only the local dispersion error but also the accumulated phase error in a frequency range of interest.
Sorigue, Marc; Garcia, Olga; Baptista, Maria Joao; Sancho, Juan-Manuel; Tapia, Gustavo; Mate, José Luis; Feliu, Evarist; Navarro, José-Tomás; Ribera, Josep-Maria
2017-03-22
The prognosis of diffuse large B-cell lymphomas (DLBCL) transformed from indolent lymphoma (TL) has been considered poorer than that of de novo DLBCL. However, it seems to have improved since the introduction of rituximab. We compared the characteristics (including the cell-of-origin), and the prognosis of 29 patients with TL and 101 with de novo DLBCL treated with immunochemotherapy. Patients with TL and de novo DLBCL had similar characteristics. All TL cases evolving from follicular lymphoma were germinal-center B-cell-like, while those TL from marginal zone lymphoma or chronic lymphocytic leukemia were non-germinal-center B-cell-like. The complete response rate was similar in TL and de novo DLBCL (62 vs. 66%, P=.825). The 5-year overall and progression-free survival probabilities (95% CI) were 59% (40-78) and 41% (22-60) for TL and 63% (53-73) and 60% (50-70) for de novo DLBCL, respectively (P=.732 for overall survival and P=.169 for progression-free survival). In this study, the prognosis of TL and de novo DLBCL treated with immunochemotherapy was similar. The role of intensification with stem cell transplantation in the management of TL may be questionable in the rituximab era. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A
2015-01-26
Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.
Abdelaziz, Ibrahim; Fokoue, Achille; Hassanzadeh, Oktie; Zhang, Ping; Sadoghi, Mohammad
2017-01-01
Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
Abdelaziz, Ibrahim
2017-06-12
Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
Recent development of the Multi-Grid detector for large area neutron scattering instruments
International Nuclear Information System (INIS)
Guerard, Bruno
2015-01-01
Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of
Recent development of the Multi-Grid detector for large area neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)
2015-07-01
Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard
International Nuclear Information System (INIS)
Ginzinger, Simon W.; Coles, Murray
2009-01-01
We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods
Energy Technology Data Exchange (ETDEWEB)
Ginzinger, Simon W. [Center of Applied Molecular Engineering, University of Salzburg, Department of Molecular Biology, Division of Bioinformatics (Austria)], E-mail: simon@came.sbg.ac.at; Coles, Murray [Max-Planck-Institute for Developmental Biology, Department of Protein Evolution (Germany)], E-mail: Murray.Coles@tuebingen.mpg.de
2009-03-15
We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods.
Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research
International Nuclear Information System (INIS)
Miller, Stephen D.; Bilheux, Jean-Christophe; Gleason, Shaun Scott; Nichols, Trent L.; Bingham, Philip R.; Green, Mark L.
2011-01-01
measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for
Large-angle adjustable coherent atomic beam splitter by Bragg scattering
Koolen, A.E.A.; Jansen, G.T.; Domen, K.F.E.M.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.
2002-01-01
Using a "monochromatic" (single-axial-velocity) and slow (250 m/s) beam of metastable helium atoms, we realize up to eighth-order Bragg scattering and obtain a splitting angle of 6 mrad at low laser power (3 mW). This corresponds to a truly macroscopic separation of 12 mm on the detector. For
A Large-Acceptance Detector System for Electron Scattering from Polarized Internal targets.
Passchier, E.; Bouwhuis, M.; Choi, S.; Zhou, Z.L.; Alarcon, R.; Anghinolfi, M.; Botto, T.; van den Brand, J.F.J.; Bulten, H.J.; Dimitroyannis, D.; Doets, M.; Ent, R.; Ferro Luzzi, M.M.E.; Higinbotham, D.W.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Nikolenko, D.; Nooren, G.J.; Papadakis, N.; Passchier, I.; Popov, S.G.; Rachek, I.; Ripani, M.; Steijger, J.J.M.; Taiuti, M.; Vodinas, N.; de Vries, H.
1997-01-01
The design and the performance of a non-magnetic detector setup for internal target physics at the NIKHEF electron-scattering facility is described. The detector setup, used in the first internal-target experiment at the AmPS ring, measures the spin dependence in the elastic and break-up reaction
International Nuclear Information System (INIS)
Kuznichenko, A.V.; Onyshchenko, G.M.; Pilipenko, V.V.; Burtebaev, N.; Zhurunbayeva, G.S.
2002-01-01
Investigation of the refraction structures in cross sections of nuclear scattering is a well-known method of probing the interior parts of the interaction region of colliding nuclei and attracts much attention. During recent years essential success was achieved in the experimental studies of scattering of light and heavy ions in wide scattering angle range. The studies were carried out not only in the energy region with standard nuclear rainbow behavior but also at energies near and below the critical energy of nuclear rainbow E cr which revealed well pronounced refractive structures in the angular distributions of the processes studied including rainbow-like maximums and anomalous large angle scattering. To analyze evolution of the refraction effects with energy a new S-matrix model, which can supplement the results of the analyses on the basis of commonly used optical potential approach. The S-matrix model takes into account of some Regge poles near the real axis ('individualized' poles), which addresses the case of energies near and below E cr . Basing on developed model a number a scattering patterns for system α+A, 16 O+ 16 O and 16 O+ 12 C at different energy values have been analyzed. The comparison with results of optical model analyses have been made. The studies were complemented by the analysis on basis of the modified Fuller procedure of decomposition of cross sections into near and far components with removing unphysical contributions. The results of analysis performed suggest the conclusion that the observed refractive structures at large angles (both the rainbow-like ones and ALAS) at E≤E cr are strongly affected by the above mentioned individualized Regge poles. Strictly saying, the scattering in this energy region is not a pure rainbow one, but is of transition character. The arising Regge poles can be considered as a quantum analog for the transition to the orbiting regime in the case of classical scattering. The notch test of the sensitivity
Directory of Open Access Journals (Sweden)
Gaston K Mazandu
2014-08-01
Full Text Available With the advancement of new high throughput sequencing technologies, there has been an increase in the number of genome sequencing projects worldwide, which has yielded complete genome sequences of human, animals and plants. Subsequently, several labs have focused on genome annotation, consisting of assigning functions to gene products, mostly using Gene Ontology (GO terms. As a consequence, there is an increased heterogeneity in annotations across genomes due to different approaches used by different pipelines to infer these annotations and also due to the nature of the GO structure itself. This makes a curator's task difficult, even if they adhere to the established guidelines for assessing these protein annotations. Here we develop a genome-scale approach for integrating GO annotations from different pipelines using semantic similarity measures. We used this approach to identify inconsistencies and similarities in functional annotations between orthologs of human and Drosophila melanogaster, to assess the quality of GO annotations derived from InterPro2GO mappings compared to manually annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase dataset and human, and to filter GO annotation data for these proteomes. Results obtained indicate that an efficient integration of GO annotations eliminates redundancy up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation datasets, respectively. Furthermore, we identified lack of and missing annotations for some orthologs, and annotation mismatches between InterPro2GO and manual pipelines in these two proteomes, thus requiring further curation. This simplifies and facilitates tasks of curators in assessing protein annotations, reduces redundancy and eliminates inconsistencies in large annotation datasets for ease of comparative functional genomics.
Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
Andrei Afanasev; Mykola Merenkov
2004-06-01
We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.
Quasielastic neutron scattering study of large amplitude motions in molecular systems
International Nuclear Information System (INIS)
Bee, M.
1996-01-01
This lecture aims at giving some illustrations of the use of Incoherent Quasielastic Neutron Scattering in the investigation of motions of atoms or molecules in phases with dynamical disorder. The general incoherent scattering function is first recalled. Then the Elastic Incoherent Structure Factor is introduced. It is shown how its determination permits to deduce a particular dynamical model. Long-range translational diffusion is illustrated by some experiments carried out with liquids or with different chemical species intercalated in porous media. Examples of rotational motions are provided by solid phases where an orientational disorder of the molecules exists. The jump model is the most commonly used and yields simple scattering laws which can be easily handled. Highly disordered crystals require a description in terms of the isotropic rotational diffusion model. Many of the present studies are concerned with rather complicated systems. Considerable help is obtained either by using selectively deuterated samples or by carrying out measurements with semi-oriented samples. (author) 5 figs., 14 refs
A reciprocity formulation for the EM scattering by an obstacle within a large open cavity
Pathak, Prabhakar H.; Burkholder, Robert J.
1993-01-01
A formulation based on a generalized reciprocity theorem is developed for analyzing the external high frequency EM scattering by a complex obstacle inside a relatively arbitrary open-ended waveguide cavity when it is illuminated by an external source. This formulation is also extended to include EM fields whose time dependence may be nonperiodic. A significant advantage of this formulation is that it allows one to break up the analysis into two independent parts; one deals with the waveguide cavity shape alone and the other with the obstacle alone. The external scattered field produced by the obstacle (in the presence of the waveguide cavity structure) is given in terms of a generalized reciprocity integral over a surface S(T) corresponding to the interior waveguide cavity cross section located conveniently but sufficiently close to the obstacle. Furthermore, the fields coupled into the cavity from the source in the exterior region generally need to propagate only one-way via the open front end (which is directly illuminated) to the interior surface S(T) in this approach, and not back, in order to find the external field scattered by the obstacle.
International Nuclear Information System (INIS)
Gigante, G.E.; Sciuti, S.
1985-01-01
In this paper, experiments and related theoretical deductions on coherent/Compton scattering of 59.5-keV Am241 gamma line by bonelike materials are described. In particular, the authors demonstrate that a photon scattering mineralometer (PSM) can attain the best working conditions when it operates in a backscattering geometry mode. In fact, the large scattering angle they chose, theta = 135 degrees, allowed them to assemble a very compact source-detector device. Further, the relative sensitivity at 135 degrees turns out to be congruent to 1.7 and congruent to 6 times bigger than at 90 degrees and 45 degrees, respectively. The performances of the theta = 135 degrees PSM were experimentally investigated; i.e., in a measuring time of 10(3) s, a congruent to 5% statistical precision for bonelike materials, such as K 2 HPO 4 -water solutions, was obtained. The large-angle PSM device seems to be very promising for trabecular bone mineral density measurements in vivo in peripheral anatomic sites
Directory of Open Access Journals (Sweden)
Maren Zark
2017-09-01
Full Text Available Dissolved organic matter (DOM represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1 oligotrophic phase and (2 after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS. An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals
Romaguera, R; Moll, X; Morató, R; Roura, M; Palomo, M J; Catalá, M G; Jiménez-Macedo, A R; Hammami, S; Izquierdo, D; Mogas, T; Paramio, M T
2011-07-01
Developmental competence of oocytes from prepubertal females is lower than those from adult females. Oocyte development competence is positively related to follicular diameter. Most of the follicles of prepubertal goat ovaries are smaller than 3 mm. The aim of this study was to compare oocytes of two follicle sizes (goats with oocytes from adult goats in relation to their in vitro production and quality of blastocysts. Oocytes from prepubertal goats were obtained from slaughterhouse ovaries and selected according to the follicle diameter whereas oocytes from adult goats were recovered in vivo by LOPU technique without prior selection of follicle size. COCs were IVM for 27 h, IVF at the conventional conditions with fresh semen and presumptive zygotes were cultured in SOF medium for 8 days. Blastocysts obtained were vitrified and after warming their blastocoele re-expansion and the ploidy by FISH technique were assessed. We found significant differences between blastocysts yield of oocytes recovered from follicles smaller than 3 mm of prepubertal goats compared to those from adult goats (5.45% vs 20. 83%, respectively) however, these differences disappear if oocytes were recovered form large follicles (18.07%). A total of 28 blastocysts were analysed and 96.43% showed mixoploidy. Age did not affect the number of embryos with abnormal ploidy or blastocyst re-expansion after warming. Furthermore, the percentage of diploid blastomeres per embryo was similar in the 3 groups studied, adult, prepubertal from follicles ≥ 3 mm and goats 45 days old were not different to the blastocysts produced from adult goats, both in terms of quantity and quality. Copyright © 2011 Elsevier Inc. All rights reserved.
Non-factorizable contributions to deep inelastic scattering at large x
International Nuclear Information System (INIS)
Pecjak, Ben D.
2005-01-01
We use soft-collinear effective theory (SCET) to study the factorization properties of deep inelastic scattering in the region of phase space where (1-x) ∼ Λ QCD /Q. By applying a regions analysis to loop diagrams in the Breit frame, we show that the appropriate version of SCET includes anti-hard-collinear, collinear, and soft-collinear fields. We find that the effects of the soft-collinear fields spoil perturbative factorization even at leading order in the 1/Q expansion
Proposal for a new Thomson scattering technique for large fusion devices
International Nuclear Information System (INIS)
Salzmann, H.; Hirsch, K.
1982-11-01
The application of 180 0 scattering using ultrashort laser pulses is proposed. Spatial resolution along the laser beam is achieved by high-speed detection allowing time-of-flight measurements. This LIDAR technique uses a minimum number of window ports, reduces drastically the number of optical components in the vicinity of the discharge vessel and makes remote control unnecessary. As an example the performance of such a system is discussed on the basis of available laser and detection technology for the JET geometry. (orig.)
International Nuclear Information System (INIS)
David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao
2000-01-01
Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Energy Technology Data Exchange (ETDEWEB)
Socher, Felix
2016-07-15
high centre-of-mass energies and luminosities to study these processes successfully. The Large Hadron Collider (LHC) at CERN is a circular proton-proton collider equipped to supply a suitable environment for such studies with the colliding protons being the sources for the scattering of massive electroweak gauge bosons. The dataset collected in 2012 by the ATLAS detector at the LHC with a total luminosity of 20.3 fb{sup -1} and a centre-of-mass energy of 8 TeV is analysed in this work. The elastic scattering process WZ → WZ is studied due to its clean signal properties. It provides a complementary measurement to W{sup ±}W{sup ±}→W{sup ±}W{sup ±} which reported the first significant evidence for massive electroweak gauge boson scattering. Given the current data, WZ→WZ scattering is not observed with large significantly. A cross section upper limit of 2.5 fb at 95% confidence level is measured, compatible with the cross section of 0.54 fb predicted by the Standard Model. In addition, distributions for several observables sensitive to electroweak gauge boson scattering are unfolded, removing effects caused by the measuring process. Physics beyond the Standard Model is probed in the framework of the electroweak chiral Lagrangian which expresses the size of effects from new physics in terms of strength parameters. The two strength parameters influencing the quartic gauge couplings are constrained to -0.44<α{sub 4}<0.49 and -0.49<α{sub 5}<0.47 thus limiting the possible size of new physics contributions.
International Nuclear Information System (INIS)
Socher, Felix
2016-01-01
-of-mass energies and luminosities to study these processes successfully. The Large Hadron Collider (LHC) at CERN is a circular proton-proton collider equipped to supply a suitable environment for such studies with the colliding protons being the sources for the scattering of massive electroweak gauge bosons. The dataset collected in 2012 by the ATLAS detector at the LHC with a total luminosity of 20.3 fb"-"1 and a centre-of-mass energy of 8 TeV is analysed in this work. The elastic scattering process WZ → WZ is studied due to its clean signal properties. It provides a complementary measurement to W"±W"±→W"±W"± which reported the first significant evidence for massive electroweak gauge boson scattering. Given the current data, WZ→WZ scattering is not observed with large significantly. A cross section upper limit of 2.5 fb at 95% confidence level is measured, compatible with the cross section of 0.54 fb predicted by the Standard Model. In addition, distributions for several observables sensitive to electroweak gauge boson scattering are unfolded, removing effects caused by the measuring process. Physics beyond the Standard Model is probed in the framework of the electroweak chiral Lagrangian which expresses the size of effects from new physics in terms of strength parameters. The two strength parameters influencing the quartic gauge couplings are constrained to -0.44<α_4<0.49 and -0.49<α_5<0.47 thus limiting the possible size of new physics contributions.
Bytev, V V; Shaikhatdenov, B G
2002-01-01
We consider a process of quasielastic e\\mu large-angle scattering at high energies with radiative corrections up to a two-loop level. The lowest order radiative correction arising both from one-loop virtual photon emission and a real soft emission are presented to a power accuracy. Two-loop level corrections are supposed to be of three gauge-invariant classes. One of them, so-called vertex contribution, is given in logarithmic approximation. Relation with the renormalization group approach is discussed.
(Quasi)Elastic Electron-Muon Large-Angle Scattering to a Two-Loop Approximation Vertex Contributions
Bytev, V V; Shaikhatdenov, B G
2002-01-01
We consider a process of quasielastic e\\mu large-angle scattering at high energies with radiative corrections up to a two-loop level. The lowest order radiative correction arising both from one-loop virtual photon emission and a real soft emission are presented to a power accuracy. Two-loop level corrections are supposed to be of three gauge-invariant classes. One of them, so-called vertex contribution, is given in logarithmic approximation. Relation with the renormalization group approach is discussed.
Search for narrow baryons in pi /sup -/p elastic scattering at large angles
Baillon, Paul; Benayoun, M; Chauveau, J; Chew, D; Ferro-Luzzi, M; Kahane, J; Lellouch, D; Leruste, P; Liaud, P; Moreau, F; Perreau, J M; Séguinot, Jacques; Sené, R; Tocqueville, J; Urban, M
1980-01-01
Hoping to find resonant structures in the momentum dependence of pi /sup -/p elastic scattering the authors have measured the differential cross section for this reaction at c.m. angles near 90 degrees . An intense pion beam ( approximately=10/sup 7/ pi /s) has been used, together with a high incident momentum resolution (dP/P approximately =2*10/sup -4/), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than approximately=0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted. (4 refs) .
A time-focusing Fourier chopper time-of-flight diffractometer for large scattering angles
International Nuclear Information System (INIS)
Heinonen, R.; Hiismaeki, P.; Piirto, A.; Poeyry, H.; Tiitta, A.
1975-01-01
A high-resolution time-of-flight diffractometer utilizing time focusing principles in conjunction with a Fourier chopper is under construction at Otaniemi. The design is an improved version of a test facility which has been used for single-crystal and powder diffraction studies with promising results. A polychromatic neutron beam from a radial beam tube of the FiR 1 reactor, collimated to dia. 70 mm, is modulated by a Fourier chopper (dia. 400 mm) which is placed inside a massive boron-loaded particle board shielding of 900 mm wall thickness. A thin flat sample (5 mm x dia. 80 mm typically) is mounted on a turntable at a distance of 4 m from the chopper, and the diffracted neutrons are counted by a scintillation detector at 4 m distance from the sample. The scattering angle 2theta can be chosen between 90deg and 160deg to cover Bragg angles from 45deg up to 80deg. The angle between the chopper disc and the incident beam direction as well as the angle of the detector surface relative to the diffracted beam can be adjusted between 45deg and 90deg in order to accomplish time-focusing. In our set-up, with equal flight paths from chopper to sample and from sample to detector, the time-focusing conditions are fulfilled when the chopper and the detector are parallel to the sample-plane. The time-of-flight spectrum of the scattered neutrons is measured by the reverse time-of-flight method in which, instead of neutrons, one essentially records the modulation function of the chopper during constant periods preceding each detected neutron. With a Fourier chopper whose speed is varied in a suitable way, the method is equivalent to the conventional Fourier method but the spectrum is obtained directly without any off-line calculations. The new diffractometer is operated automatically by a Super Nova computer which not only accumulates the synthetized diffraction pattern but also controls the chopper speed according to the modulation frequency sweep chosen by the user to obtain a
International Nuclear Information System (INIS)
Aptowicz, Kevin B; Chang, Richard K
2005-01-01
Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90 deg. < θ < 165 deg. and 0 deg. < φ < 360 deg.) and with high angular resolution (1024 pixels in θ and 512 pixels in φ). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,φ), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method
Schedl, Markus
2012-01-01
Different term weighting techniques such as [Formula: see text] or BM25 have been used intensely for manifold text-based information retrieval tasks. Their use for modeling term profiles for named entities and subsequent calculation of similarities between these named entities have been studied to a much smaller extent. The recent trend of microblogging made available massive amounts of information about almost every topic around the world. Therefore, microblogs represent a valuable source for text-based named entity modeling. In this paper, we present a systematic and comprehensive evaluation of different term weighting measures , normalization techniques , query schemes , index term sets , and similarity functions for the task of inferring similarities between named entities, based on data extracted from microblog posts . We analyze several thousand combinations of choices for the above mentioned dimensions, which influence the similarity calculation process, and we investigate in which way they impact the quality of the similarity estimates. Evaluation is performed using three real-world data sets: two collections of microblogs related to music artists and one related to movies. For the music collections, we present results of genre classification experiments using as benchmark genre information from allmusic.com. For the movie collection, we present results of multi-class classification experiments using as benchmark categories from IMDb. We show that microblogs can indeed be exploited to model named entity similarity with remarkable accuracy, provided the correct settings for the analyzed aspects are used. We further compare the results to those obtained when using Web pages as data source.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
Klevjer, Thor Aleksander
2016-01-27
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
Comparison of hard scattering models for particle production at large transverse momentum. 2
International Nuclear Information System (INIS)
Schiller, A.; Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.; Ranft, G.; Ranft, J.
1977-01-01
Single particle distributions of π + and π - at large transverse momentum are analysed using various hard collision models: qq → qq, qantiq → MantiM, qM → qM. The transverse momentum dependence at thetasub(cm) = 90 0 is well described in all models except qantiq → MantiM. This model has problems with the ratios (pp → π + +X)/(π +- p → π 0 +X). Presently available data on rapidity distributions of pions in π - p and pantip collisions are at rather low transverse momentum (however large xsub(perpendicular) = 2psub(perpendicular)/√s) where it is not obvious that hard collision models should dominate. The data, in particular the π - /π + asymmetry are well described by all models except qM → Mq (CIM). At large values of transverse momentum significant differences between the models are predicted. (author)
International Nuclear Information System (INIS)
Hreus, Tomas
2008-09-01
In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep → eXp in the regime of high photon virtuality (Q 2 >few GeV 2 ), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb -1 was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F D(3) 2 at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x P is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, γp → γY, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p T > 2 GeV. Large p T imply the presence of the hard scale t (vertical stroke t vertical stroke ≅ p 2 T ) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb -1 of data collected in the 1999-2000 running period. Cross sections σ(W) as a function of the incident photon-proton centre of mass energy, W, and dσ/d vertical stroke t vertical stroke are measured in the range Q 2 2 , 175 2 and y P <0.05. The cross section measurements have been compared to predictions of LLA BFKL calculations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hreus, Tomas
2008-11-15
In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep {yields} eXp in the regime of high photon virtuality (Q{sup 2}>few GeV{sup 2}), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb{sup -1} was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F{sup D(3)}{sub 2} at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x{sub P} is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, {gamma}p {yields} {gamma}Y, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p{sub T} > 2 GeV. Large p{sub T} imply the presence of the hard scale t (vertical stroke t vertical stroke {approx_equal} p{sup 2}{sub T}) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb{sup -1} of data collected in the 1999-2000 running period. Cross sections {sigma}(W) as a function of the incident photon-proton centre of mass energy, W, and d{sigma}/d vertical stroke t vertical stroke are measured in the range Q{sup 2}<0.01 GeV{sup 2}, 175
International Nuclear Information System (INIS)
Hayden, C.C.; Chandler, D.W.
1995-01-01
Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics
Dufour, Nicholas; Redcay, Elizabeth; Young, Liane; Mavros, Penelope L; Moran, Joseph M; Triantafyllou, Christina; Gabrieli, John D E; Saxe, Rebecca
2013-01-01
Reading about another person's beliefs engages 'Theory of Mind' processes and elicits highly reliable brain activation across individuals and experimental paradigms. Using functional magnetic resonance imaging, we examined activation during a story task designed to elicit Theory of Mind processing in a very large sample of neurotypical (N = 462) individuals, and a group of high-functioning individuals with autism spectrum disorders (N = 31), using both region-of-interest and whole-brain analyses. This large sample allowed us to investigate group differences in brain activation to Theory of Mind tasks with unusually high sensitivity. There were no differences between neurotypical participants and those diagnosed with autism spectrum disorder. These results imply that the social cognitive impairments typical of autism spectrum disorder can occur without measurable changes in the size, location or response magnitude of activity during explicit Theory of Mind tasks administered to adults.
Directory of Open Access Journals (Sweden)
Nicholas Dufour
Full Text Available Reading about another person's beliefs engages 'Theory of Mind' processes and elicits highly reliable brain activation across individuals and experimental paradigms. Using functional magnetic resonance imaging, we examined activation during a story task designed to elicit Theory of Mind processing in a very large sample of neurotypical (N = 462 individuals, and a group of high-functioning individuals with autism spectrum disorders (N = 31, using both region-of-interest and whole-brain analyses. This large sample allowed us to investigate group differences in brain activation to Theory of Mind tasks with unusually high sensitivity. There were no differences between neurotypical participants and those diagnosed with autism spectrum disorder. These results imply that the social cognitive impairments typical of autism spectrum disorder can occur without measurable changes in the size, location or response magnitude of activity during explicit Theory of Mind tasks administered to adults.
He, Zi; Chen, Ru-Shan
2016-03-01
An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.
Rutigliano, Maria; Pirani, Fernando
2018-03-01
The inelastic scattering of D2 and HD molecules impinging on a graphite surface in well-defined initial roto-vibrational states has been studied by using the computational setup recently developed to characterize important selectivities in the molecular dynamics occurring at the gas-surface interface. In order to make an immediate comparison of determined elastic and inelastic scattering probabilities, we considered for D2 and HD molecules the same initial states, as well as the same collision energy range, previously selected for the investigation of H2 behaviour. The analysis of the back-scattered molecules shows that, while low-lying initial vibrational states are preserved, the medium-high initial ones give rise to final states covering the complete ladder of vibrational levels, although with different probability for the various cases investigated. Moreover, propensities in the formation of the final rotational states are found to depend strongly on the initial ones, on the collision energy, and on the isotopologue species.
Large On-Chip Amplification in Silicon via Forward Stimulated Brillouin Scattering
Energy Technology Data Exchange (ETDEWEB)
Kittlaus, Eric [Yale Univ., New Haven, CT (United States); Shin, Heedeuk [Yale Univ., New Haven, CT (United States); Rakich, Peter [Yale Univ., New Haven, CT (United States)
2015-10-15
Strong Brillouin coupling has only recently been realized in silicon using a new class of op- tomechanical waveguides that yield both optical and phononic con nement. Despite these major advances, appreciable Brillouin ampli cation has yet to be observed in silicon. Using new membrane- suspended silicon waveguide we report large Brillouin ampli cation for the rst time, reaching levels greater than 5 dB for modest pump powers, and demonstrate a record low (5 mW) threshold for net ampli cation. This work represents a crucial advance necessary to realize high-performance Brillouin lasers and ampli ers in silicon.
Vector mesons in meson-baryon scattering and large-N{sub c} quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, Hans-Friedrich
2016-02-11
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N{sub c} QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N{sub c} is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J{sup P}=(1)/(2){sup +})- and (J{sup P}=(3)/(2){sup +})-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N{sub c} QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N{sub c} the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N{sub c} was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non
Vector mesons in meson-baryon scattering and large-N_c quantum chromodynamics
International Nuclear Information System (INIS)
Fuhrmann, Hans-Friedrich
2016-01-01
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N_c QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N_c is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J"P=(1)/(2)"+)- and (J"P=(3)/(2)"+)-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N_c QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N_c the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N_c was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non-vanishing spin. In particular we considered the vector
FOKN: a relativistic Fokker-Planck code with large angle scattering and radiation losses
International Nuclear Information System (INIS)
Zimmerman, G.; Scharlemann, T.; Wood, L.; Weaver, T.; Chu, T.; Lee, G.
1976-07-01
FOKN is a computer code which employs a relativistic Fokker-Planck algorithm to evolve the distribution functions of the various mutually interacting components of a multi-species plasma forward in time, with the optional addition of high angle, large energy and momentum transfer interactions between the various charged species of the plasma. As a computational expediency, the latter processes are handled by transfer matrices which are generated separately by another code, RNUX, so that once specific transfer matrices are generated, they can be used over and over by FOKN provided the group structures are compatible
Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang
2017-12-01
Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.
Inelastic energy loss in large angle scattering of Ar9+ ions from Au(1 1 1) crystal
International Nuclear Information System (INIS)
Pesic, Z.D.; Anton, J.; Bremer, J.H.; Hoffmann, V.; Stolterfoht, N.; Vikor, Gy.; Schuch, R.
2003-01-01
The azimuthal angle dependence of the energy loss in large-angle scattering of slow (v∼0.06 a.u.) Ar 9+ ions from a Au(1 1 1) single crystal was investigated. Regarding the kinematics of quasi-single collisions, the smallest energy loss is expected for the azimuthal orientations which correspond to the closest packed atomic row of the crystal. This agrees with the prediction of a trajectory simulation (Marlowe code), but the experimental results don't show such dependence. Thus, we discuss possible inelastic processes as image charge energy gain, electronic energy loss in close collision and the electronic energy loss in the interaction with the electron gas. The observed azimuthal dependence is explained by the change of the electronic stopping power due to the variation of effective electron density sampled by the projectile
Extraction of α{sub s} from deep inelastic scattering at large x
Energy Technology Data Exchange (ETDEWEB)
Courtoy, A., E-mail: Aurore.Courtoy@ulg.ac.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Liuti, S., E-mail: sl4y@virginia.edu [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, VA 22904 (United States)
2013-10-07
We present an analysis of the role of the running coupling constant at the intersection of perturbative and non-perturbative QCD. Although the approaches that have been considered so far in these two regimes appear to be complementary to each other, a unified description might be derived through the definition of the effective coupling, as they both provide ways of analyzing its freezing at low values of the scale. We extract the effective coupling from all available experimental data on the unpolarized structure function of the proton, F{sub 2}{sup p}, at large values of Bjorken x, including the resonance region. We suggest that parton–hadron duality observed in this region can be explained if non-perturbative effects are included in the coupling constant. The outcome of our analysis is a smooth transition from perturbative to non-perturbative QCD physics, embodied in the running of the coupling constant at intermediate scales.
Savic, Ivana
2012-02-01
Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt
Falda, Marco; Toppo, Stefano; Pescarolo, Alessandro; Lavezzo, Enrico; Di Camillo, Barbara; Facchinetti, Andrea; Cilia, Elisa; Velasco, Riccardo; Fontana, Paolo
2012-03-28
Predicting protein function has become increasingly demanding in the era of next generation sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable. Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation classification with a structured vocabulary which can be easily exploited by computational methods. Argot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and computational efficiency, thus allowing for the annotation of complete genomes. The revised algorithm has been already employed and successfully tested during in-house genome projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.
Directory of Open Access Journals (Sweden)
Brenner Wolfram G
2012-07-01
the growth response of roots and shoots to the hormone, the vast majority of the cytokinin-regulated transcriptome showed similar response patterns in roots and shoots. Conclusions The shift of the root and shoot transcriptomes towards the respective other organ depending on the cytokinin status indicated that the hormone determines part of the organ-specific transcriptome pattern independent of morphological organ identity. Numerous novel cytokinin-regulated genes were discovered which had escaped earlier discovery, most probably due to unspecific sampling. These offer novel insights into the diverse activities of cytokinin, including crosstalk with other hormones and different environmental cues, identify the AP2/ERF class of transcriptions factors as particularly cytokinin sensitive, and also suggest translational control of cytokinin-induced changes.
Directory of Open Access Journals (Sweden)
J. Tanaka
2017-11-01
Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.
2002-01-01
This experiment will investigate various aspects of photon-parton scattering and will be performed in the H2 beam of the SPS North Area with high intensity hadron beams up to 350 GeV/c. \\\\\\\\ a) The directly produced photon yield in deep inelastic hadron-hadron collisions. Large p$_{t}$ direct photons from hadronic interactions are presumably a result of a simple annihilation process of quarks and antiquarks or of a QCD-Compton process. The relative contribution of the two processes can be studied by using various incident beam projectiles $\\pi^{+}, \\pi^{-}, p$ and in the future $\\bar{p}$. \\\\\\\\b) The correlations between directly produced photons and their accompanying hadronic jets. We will examine events with a large p$_{t}$ direct photon for away-side jets. If jets are recognised their properties will be investigated. Differences between a gluon and a quark jet may become observable by comparing reactions where valence quark annihilations (away-side jet originates from a gluon) dominate over the QDC-Compton...
pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums
Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter
2015-11-01
We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.
Directory of Open Access Journals (Sweden)
Xianglin Meng
2018-03-01
Full Text Available The normal vector estimation of the large-scale scattered point cloud (LSSPC plays an important role in point-based shape editing. However, the normal vector estimation for LSSPC cannot meet the great challenge of the sharp increase of the point cloud that is mainly attributed to its low computational efficiency. In this paper, a novel, fast method-based on bi-linear interpolation is reported on the normal vector estimation for LSSPC. We divide the point sets into many small cubes to speed up the local point search and construct interpolation nodes on the isosurface expressed by the point cloud. On the premise of calculating the normal vectors of these interpolated nodes, a normal vector bi-linear interpolation of the points in the cube is realized. The proposed approach has the merits of accurate, simple, and high efficiency, because the algorithm only needs to search neighbor and calculates normal vectors for interpolation nodes that are usually far less than the point cloud. The experimental results of several real and simulated point sets show that our method is over three times faster than the Elliptic Gabriel Graph-based method, and the average deviation is less than 0.01 mm.
Energy Technology Data Exchange (ETDEWEB)
Hussein, M S; Aleixo, A N; Canto, L F; Carrilho, P; Donangelo, R; Paula, L.S. de
1987-07-01
A closed expression is derived for the dynamic ..cap alpha..-transfer polarisation potential for heavy-ion elastic scattering. The back-angle angular distributions for the elastic scattering of /sup 16/O + /sup 28/Si obtained by adding this polarisation potential to the E-18 interaction are shown to be in good agreement with the data if an ..cap alpha..-transfer spectroscopic factor of 0.4 is used.
AUTHOR|(CDS)2080413; Kobel, Michael; Heinemann, Beate; Klein, Uta
Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two $W^{\\pm}$ bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, $20.3 \\, \\mathrm{fb}^{−1}$ of proton-proton collision data recorded by t...
Directory of Open Access Journals (Sweden)
Andreas van Hameren
2018-01-01
Full Text Available We discuss production of two μ+μ− pairs in ultraperipheral ultrarelativistic heavy ion collisions at the LHC. We take into account electromagnetic (two-photon double-scattering production and for a first time direct γγ production of four muons in one scattering. We study the unexplored process γγ→μ+μ−μ+μ−. We present predictions for total and differential cross sections. Measurable nuclear cross sections are obtained and corresponding differential distributions and counting rates are presented.
Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J
2001-01-01
During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).
DEFF Research Database (Denmark)
Nishiura, M.; Kubo, S.; Tanaka, K.
2012-01-01
We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...
Energy Technology Data Exchange (ETDEWEB)
Blümlein, Johannes, E-mail: Johannes.Bluemlein@desy.de [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Pfoh, Torsten [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2014-04-15
We calculate the O(α{sub s}{sup 2}) heavy flavor corrections to charged current deep-inelastic scattering at large scales Q{sup 2}≫m{sup 2}. The contributing Wilson coefficients are given as convolutions between massive operator matrix elements and massless Wilson coefficients. Foregoing results in the literature are extended and corrected. Numerical results are presented for the kinematic region of the HERA data.
Yachida, Shinichi; Vakiani, Efsevia; White, Catherine M; Zhong, Yi; Saunders, Tyler; Morgan, Richard; de Wilde, Roeland F; Maitra, Anirban; Hicks, Jessica; Demarzo, Angelo M; Shi, Chanjuan; Sharma, Rajni; Laheru, Daniel; Edil, Barish H; Wolfgang, Christopher L; Schulick, Richard D; Hruban, Ralph H; Tang, Laura H; Klimstra, David S; Iacobuzio-Donahue, Christine A
2012-02-01
Poorly differentiated neuroendocrine carcinomas (NECs) of the pancreas are rare malignant neoplasms with a poor prognosis. The aim of this study was to determine the clinicopathologic and genetic features of poorly differentiated NECs and compare them with other types of pancreatic neoplasms. We investigated alterations of KRAS, CDKN2A/p16, TP53, SMAD4/DPC4, DAXX, ATRX, PTEN, Bcl2, and RB1 by immunohistochemistry and/or targeted exomic sequencing in surgically resected specimens of 9 small cell NECs, 10 large cell NECs, and 11 well-differentiated neuroendocrine tumors (PanNETs) of the pancreas. Abnormal immunolabeling patterns of p53 and Rb were frequent (p53, 18 of 19, 95%; Rb, 14 of 19, 74%) in both small cell and large cell NECs, whereas Smad4/Dpc4, DAXX, and ATRX labeling was intact in virtually all of these same carcinomas. Abnormal immunolabeling of p53 and Rb proteins correlated with intragenic mutations in the TP53 and RB1 genes. In contrast, DAXX and ATRX labeling was lost in 45% of PanNETs, whereas p53 and Rb immunolabeling was intact in these same cases. Overexpression of Bcl-2 protein was observed in all 9 small cell NECs (100%) and in 5 of 10 (50%) large cell NECs compared with only 2 of 11 (18%) PanNETs. Bcl-2 overexpression was significantly correlated with higher mitotic rate and Ki67 labeling index in neoplasms in which it was present. Small cell NECs are genetically similar to large cell NECs, and these genetic changes are distinct from those reported in PanNETs. The finding of Bcl-2 overexpression in poorly differentiated NECs, particularly small cell NEC, suggests that Bcl-2 antagonists/inhibitors may be a viable treatment option for these patients.
Observation of structure in large-momentum-transfer π-p elastic scattering at 200 GeV/c
International Nuclear Information System (INIS)
Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; McHugh, S.F.; Kaplan, D.H.; Karchin, P.; Orear, J.
1981-01-01
Results are presented on the measurement of 200-GeV/c π - p elastic scattering from -t of 0.8 to 11 (GeV/c) 2 . As -t is increased, dsigma/dt falls by approx.6 decades to a prominent dip at 4 (GeV/c) 2 , followed by a second maximum and then a slow decrease with increasing -t
Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C
2010-02-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.
Large-angle quasi-free scattering in the 6Li(p,pd)4He at 670 MeV
International Nuclear Information System (INIS)
Albrecht, D.; Csatlos, M.
1979-01-01
The 6 Li(p,pd) 4 He reaction was investigated at 670 MeV by a coincidence experiment at large-angle scattering geometry. Energy distributions, cross sections and angular correlations of the reaction products have been measured. Momentum distribution of the recoil nucleus has been determined for transitions leading to residual nucleus in the ground and excited states. Results were analyzed in terms of the simplified distorted wave impulse approximation using the cluster model and three-body wave functions. The observed momentum distribution of the pn pair in the p shell of 6 Li is in agreement with three-body calculations. The spectroscopic factor is larger than predicted by theory. Transitions in the ground and excited states of the α-particle also have the characteristics of quasi-free scattering on deuteron clusters
Directory of Open Access Journals (Sweden)
Erin K Kuprewicz
Full Text Available Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although
Antille, J; Dick, Louis; Gonidec, A; Kuroda, K; Kyberd, P; Michalowicz, A; Perret-Gallix, D; Salmon, G L; Werlen, M
1981-01-01
A measurement of the polarization parameter P/sub 0/ in pp elastic scattering has been made 24 GeV/c over the range of momentum transfer squared 0.7< mod t mod <5.0 (GeV/c)/sup 2/. The structure of P/sub 0/ has changed compared to typical lower energy data. The second peak is suppressed and a dip has appeared at mod t mod =3.6 (GeV/c)/sup 2/. (31 refs).
Liu, Yang
2014-07-01
The computational complexity and memory requirements of classically formulated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(Nt Ns 2) and O(Ns 2), respectively; here Nt and Ns denote the number of temporal and spatial degrees of freedom of the current density. The multilevel plane wave time domain (PWTD) algorithm, viz., the time domain counterpart of the multilevel fast multipole method, reduces these costs to O(Nt Nslog2 Ns) and O(Ns 1.5) (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). Previously, PWTD-accelerated MOT-SIE solvers have been used to analyze transient scattering from perfect electrically conducting (PEC) and homogeneous dielectric objects discretized in terms of a million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). More recently, an efficient parallelized solver that employs an advanced hierarchical and provably scalable spatial, angular, and temporal load partitioning strategy has been developed to analyze transient scattering problems that involve ten million spatial unknowns (Liu et. al., in URSI Digest, 2013).
Energy Technology Data Exchange (ETDEWEB)
ZALIZNYAK,I.A.; LEE,S.H.
2004-07-30
Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern
International Nuclear Information System (INIS)
Chauveau, J.
1981-01-01
This work describes a search for narrow baryon resonances (of masses between 3.4 and 5 GeV) through a π - p large angle elastic scattering formation experiment. An optimization of the sensitivity of the experiment to detect resonances is obtained by the measurement of the central part of the angular distribution (/cos theta*/ -4 . The apparatus and data analysis are described in details. No narrow resonance has been found, the sensitivity of the experiment being characterized by a width GAMMA approximately equal to 1 MeV and an elasticity x approximately equal to 0.01. Finally, the differential cross section measurement is compared to some parton models [fr
The role of peripheral partial waves in the anomalous large angle scattering of n-α nuclei
International Nuclear Information System (INIS)
Aleixo, A.N.F.; Canto, L.F.; Carrilho, P.; Hussein, M.S.
1984-01-01
Properties of the elastic excitation function at 180 0 produced by deviations from the usual strong absorption S-matrix are studied. Deviations S approx. with the shape of windows in l-space, centered around a value l approx. corresponding to a peripheral collision are considered and the analysis is concentrated in the interference of the partial waves neighbouring l approx.. The conditions for constructive and destructive interference and the effect of odd-even staggering factors are investigated, in the presence and in the absence of Coulomb and nuclear refraction. The consequences of such interference on the anomalous behaviour of the 180 0 excitation function for the elastic scattering of some n-α nuclei are discussed, in connection with results of other works. (Author) [pt
Albers, Peter W.; Parker, Stewart F.
The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy
Energy Technology Data Exchange (ETDEWEB)
Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua
2015-05-15
Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.
Liu, Yang
2018-02-26
A wavelet-enhanced plane-wave time-domain (PWTD) algorithm for efficiently and accurately solving time-domain surface integral equations (TD-SIEs) on electrically large conducting objects is presented. The proposed scheme reduces the memory requirement and computational cost of the PWTD algorithm by representing the PWTD ray data using local cosine wavelet bases (LCBs) and performing PWTD operations in the wavelet domain. The memory requirement and computational cost of the LCB-enhanced PWTD-accelerated TD-SIE solver, when applied to the analysis of transient scattering from smooth quasi-planar objects with near-normal incident pulses, scale nearly as O(Ns log Ns) and O(Ns 1.5 ), respectively. Here, Ns denotes the number of spatial unknowns. The efficiency and accuracy of the proposed scheme are demonstrated through its applications to the analysis of transient scattering from a 185 wave-length-long NASA almond and a 123-wavelength long Air-bus-A320 model.
Benecke, Gunthard; Wagermaier, Wolfgang; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V; Fratzl, Peter
2014-10-01
X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design. This article presents an open-source software package developed to process large amounts of data from synchrotron scattering experiments. These data reduction processes involve calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of DPDAK and the possibilities and limitations are discussed.
Large-scale single-crystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments
Park, Garam; Oh, In-Hwan; Park, J. M. Sungil; Park, Seong-Hun; Hong, Chang Seop; Lee, Kwang-Sei
2016-05-01
Neutron scattering studies on low-dimensional quantum spin systems require large-size single-crystals. Single-crystals of (CH3)2NH2CuCl3 showing low-dimensional magnetic behaviors were grown by a slow solvent evaporation method in a two-solvent system at different temperature settings. The best results were obtained for the bilayer solution of methanol and isopropanol with a molar ratio of 2:1 at 35 °C. The quality of the obtained single-crystals was tested by powder and single-crystal X-ray diffraction and single-crystal neutron diffraction. In addition, to confirm structural phase transitions (SPTs), thermal analysis and single-crystal X-ray diffraction at 300 K and 175 K, respectively, were conducted, confirming the presence of a SPT at Tup=288 K on heating and Tdown=285 K on cooling.
FIR-laser scattering for JT-60
International Nuclear Information System (INIS)
Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo
1977-09-01
An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)
Dobi, Krisztina; Flachner, Beáta; Pukáncsik, Mária; Máthé, Enikő; Bognár, Melinda; Szaszkó, Mária; Magyar, Csaba; Hajdú, István; Lőrincz, Zsolt; Simon, István; Fülöp, Ferenc; Cseh, Sándor; Dormán, György
2015-10-01
Rapid in silico selection of target-focused libraries from commercial repositories is an attractive and cost-effective approach. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compound databases, but the generated library requires further focusing. We report here a combination of the 2D approach with pharmacophore matching which was used for selecting 5-HT6 antagonists. In the first screening round, 12 compounds showed >85% antagonist efficacy of the 91 screened. For the second-round (hit validation) screening phase, pharmacophore models were built, applied, and compared with the routine 2D similarity search. Three pharmacophore models were created based on the structure of the reference compounds and the first-round hit compounds. The pharmacophore search resulted in a high hit rate (40%) and led to novel chemotypes, while 2D similarity search had slightly better hit rate (51%), but lacking the novelty. To demonstrate the power of the virtual screening cascade, ligand efficiency indices were also calculated and their steady improvement was confirmed. © 2015 John Wiley & Sons A/S.
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Directory of Open Access Journals (Sweden)
C. Di Biagio
2016-08-01
Full Text Available Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ∼ 160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE, i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle and at the Top-Of-Atmosphere (−137/−92
Saroka, Kevin S; Vares, David E; Persinger, Michael A
2016-01-01
In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.
Directory of Open Access Journals (Sweden)
Kevin S Saroka
Full Text Available In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m and magnetic field (pT components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV obtained by whole brain quantitative electroencephalography (QEEG between rostral-caudal and left-right (hemispheric comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz, second (13-14 Hz and third (19-20 Hz harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.
Regge poles and alpha scattering
International Nuclear Information System (INIS)
Ceuleneer, R.
1974-01-01
The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)
Directory of Open Access Journals (Sweden)
Fleury EF
2017-03-01
Full Text Available Eduardo de Faria Castro Fleury,1 Milena Morais Rêgo,1 Luciana Costa Ramalho,1 Veronica Jorge Ayres,1 Rodrigo Oliveira Seleti,2 Carlos Alberto Pecci Ferreira,2 Decio Roveda Jr 2 1Radiology Department, IBCC – Instituto Brasileiro de Controle do Câncer, 2Irmandade Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil Abstract: Primary breast lymphoma is a rare disease and accounts for 0.5% of cases of breast cancer. Most primary breast lymphomas develop from B cells, and the involvement of T cells is rare. Anaplastic large cell lymphoma (ALCL is a recently discovered T-cell lymphoma associated with breast implants. Only a few cases have been reported to date. It is believed that the incidence of ALCL is increasing because of the increasing number of breast implants. The clinical presentation is variable and can manifest as a palpable mass in the breast or armpit, breast pain, or capsular contracture. Because of the rarity of the disease and the lack of knowledge to date, clinical diagnosis is often delayed, with consequent delays in treatment. The cause and pathogenesis have not been fully elucidated, and there are no evidence-based guidelines for diagnosis, treatment, or follow-up of this disease. We present a review of cases of patients with silicone breast implants, including ALCL, a rare type of breast cancer that is still under study, and silicone-induced granuloma of breast implant capsule and its differential diagnosis, and discuss if a silicone-induced granuloma of breast implant capsule could be the precursor of the disease. Keywords: lymphoma, granuloma, breast cancer, implant
Bomback, Andrew S; Santoriello, Dominick; Avasare, Rupali S; Regunathan-Shenk, Renu; Canetta, Pietro A; Ahn, Wooin; Radhakrishnan, Jai; Marasa, Maddalena; Rosenstiel, Paul E; Herlitz, Leal C; Markowitz, Glen S; D'Agati, Vivette D; Appel, Gerald B
2018-04-01
C3 glomerulonephritis (C3GN) and dense deposit disease comprise the two classes of C3 glomerulopathy. Studies from Europe and Asia have aided our understanding of this recently defined disorder, but whether these data apply to a diverse United States patient population remains unclear. We, therefore, reviewed clinical and histopathological data, including generation of a C3 Glomerulopathy Histologic Index to score biopsy activity and chronicity, to determine predictors of progression to end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) in 111 patients (approximately 35% non-white) with C3 glomerulopathy: 87 with C3GN and 24 with dense deposit disease. Complement-associated gene variants and autoantibodies were detected in 24% and 35% of screened patients, respectively. Our C3 Glomerulopathy Histologic Index denoted higher activity in patients with C3GN and higher chronicity in patients with dense deposit disease. Over an average of 72 months of follow-up, remission occurred in 38% of patients with C3GN and 25% of patients with dense deposit disease. Progression to late-stage CKD and ESRD was common, with no differences between C3GN (39%) and dense deposit disease (42%). In multivariable models, the strongest predictors for progression were estimated glomerular filtration rate at diagnosis (clinical variables model) and tubular atrophy/interstitial fibrosis (histopathology variables model). Using our C3 Glomerulopathy Histologic Index, both total activity and total chronicity scores emerged as the strongest predictors of progression. Thus, in a large, diverse American cohort of patients with C3 glomerulopathy, there is a high rate of progression to CKD and ESRD with no differences between C3GN and dense deposit disease. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Krein, Michael
After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the
International Nuclear Information System (INIS)
Al-Zoubidi, M.
1984-01-01
With a large acceptance magnet, both in momentum (300-700 MeV/c) and angle (10 0 ), backward energetic proton inclusive cross sections were measured for 200 MeV protons hitting 6 Li, 27 Al, 28 Si, 58 Ni and 197 Au targets. The data are analysed using the ''Quasi Two Body Scaling'' (QTBS) picture and also compared with the predictions at a standard cascade code. This QTBS approch assumes the dominance of the single scattering mechanism. It is shown that a scaling regime is reached for several data taken at incident energies at about 200 MeV/A. These data are remarkably well reproduced using a universal one nucleon momentum density distribution for A > approximately 20. A (p-γ) coincidence experiment was performed on 28 Si target, at 80 0 . Preliminary results indicates also single nucleon-nucleon collision, but the other low energy nucleon interacts with the residuel nucleus. Excitation energy transferred to the system is about 50 MeV [fr
Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi
2014-12-28
An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...
International Nuclear Information System (INIS)
Husin Wagiran; Wan Mohd Nasir Wan Kadir
1997-01-01
In neutron scattering processes, the effect of multiple scattering is to cause an effective increase in the measured cross-sections due to increase on the probability of neutron scattering interactions in the sample. Analysis of how the effective cross-section varies with thickness is very complicated due to complicated sample geometries and the variations of scattering cross-section with energy. Monte Carlo method is one of the possible method for treating the multiple scattering processes in the extended sample. In this method a lot of approximations have to be made and the accurate data of microscopic cross-sections are needed at various angles. In the present work, a Monte Carlo simulation programme suitable for a small computer was developed. The programme was capable to predict the number of neutrons scattered from various thickness of aluminium samples at all possible angles between 00 to 36011 with 100 increments. In order to make the the programme not too complicated and capable of being run on microcomputer with reasonable time, the calculations was done in two dimension coordinate system. The number of neutrons predicted from this model show in good agreement with previous experimental results
International Nuclear Information System (INIS)
Johnston, P.N.; Franich, R.D.
1999-01-01
Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering
Gravitational Bhabha scattering
International Nuclear Information System (INIS)
Santos, A F; Khanna, Faqir C
2017-01-01
Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)
International Nuclear Information System (INIS)
Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang
2013-01-01
As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD
International Nuclear Information System (INIS)
Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.
2004-01-01
The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)
Donne, A. J. H.
1994-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
International Nuclear Information System (INIS)
Allen, R.C.; Lu, X-Q.; Gollwitzer, K.
1988-04-01
A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin 2 θ/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs
Energy Technology Data Exchange (ETDEWEB)
Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.
1988-04-01
A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.
Gamma-ray scatter methods applied to industrial measurement systems
Energy Technology Data Exchange (ETDEWEB)
Holstad, Marie Bueie
2004-09-01
Throughout the work presented in this dissertation it has been confirmed that the use of scattered gamma-radiation is a complex but useful tool in industrial measurement science. Scattered radiation has shown to be useful both when traditional measurement principles cannot be used (Chapter 4) and when more information about a system is needed than what is obtained with transmission measurements (Chapter 6). All three main projects (Chapters 4, 5 and 6) confirm that the sensitivity and accuracy of systems based on scattered gamma-radiation depends strongly on the geometry of the setup and that that presence of multiple scattered radiation makes the problems complex. Chapter 4 shows that multiple scattered gamma-radiation can be used for detection of changes in density where the dimensions are too large to use transmitted radiation. There is, however, an upper limit on the thickness of the absorbing medium also when scattered radiation is utilized. As seen in Chapter 5, multiple scattered gamma-radiation can in principle also be used in level gauges with very compact measurement geometries. The main challenges are the sensitivity to interfaces between materials with similar densities and low count rate. These challenges could not be overcome for level measurements in gravitational separator tanks. The results presented in Chapter 6 show that it is feasible to combine transmission and scatter measurements to characterize produced water in the oil and gas industry. (Author)
International Nuclear Information System (INIS)
Lebedev, D. V.; Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.
2008-01-01
The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10 -1 to 10 -4 A -1 with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 μm and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm
van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel
2017-03-01
The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.
Directory of Open Access Journals (Sweden)
G. Aad
2016-05-01
Full Text Available The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb−1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-05-10
The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in $4.0$ pb$^{-1}$ of $\\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the long...
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Light Scattering at Various Angles
Latimer, Paul; Pyle, B. E.
1972-01-01
The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610
International Nuclear Information System (INIS)
Sitenko, A.
1991-01-01
This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text
Renormalized multiple-scattering theory of photoelectron diffraction
International Nuclear Information System (INIS)
Biagini, M.
1993-01-01
The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
Energy Technology Data Exchange (ETDEWEB)
Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)
2010-02-01
Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q^{2} and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized ^{3} He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. G^{n} _{E} was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q^{2} = 1.7 and 2.5 GeV^{2} , respectively.
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2016-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
International Nuclear Information System (INIS)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required
Energy Technology Data Exchange (ETDEWEB)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.
Electromagnetic scattering theory
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
A model of diffraction scattering with unitary corrections
International Nuclear Information System (INIS)
Etim, E.; Malecki, A.; Satta, L.
1989-01-01
The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips
Finite energy bounds for $\\piN$ scattering
Grassberger, P; Schwela, D
1974-01-01
Upper bounds on energy averaged pi N cross sections are given. Using low energy data and data from pi N backward scattering and NN to pi pi annihilation, it is found that sigma /sub tot/
International Nuclear Information System (INIS)
Slavicek, Petr; Jungwirth, Pavel; Lewerenz, Marius; Nahler, N. Hendrik; Farnik, Michal; Buck, Udo
2004-01-01
A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Ar n clusters, with an average size =139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2+1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Ar n surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
International Nuclear Information System (INIS)
1991-02-01
The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research
Zajdel, Michalina; Rymkiewicz, Grzegorz; Chechlinska, Magdalena; Blachnio, Katarzyna; Pienkowska-Grela, Barbara; Grygalewicz, Beata; Goryca, Krzysztof; Cieslikowska, Maria; Bystydzienski, Zbigniew; Swoboda, Pawel; Walewski, Jan; Siwicki, Jan Konrad
2015-07-01
Fast and reliable differential diagnosis of Burkitt lymphoma (BL) vs. diffuse large B cell lymphoma (DLBCL) is of major importance for therapeutic decisions and patient outcome. Aggressive B cell non-Hodgkin lymphomas (B-NHLs) that do not belong to the abovementioned entities were categorized by the current WHO lymphoma classification as "B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL" (DLBCL/BL). We have recently described a DLBCL/BL subgroup with recurrent chromosome 11q aberrations, resembling BL (B-NHLs[11q]). Here, we analyzed 102 prospectively collected fine needle aspirates from patients with aggressive B-NHLs in order to investigate the potential of microRNA (miR)-155, its precursor BIC, as well as miR-21 and miR-26a to differentiate BL from DLBCL, and from DLBCL/BL that include B-NHLs[11q]. Both BL and DLBCL/BL cases, including B-NHLs[11q], demonstrated significantly lower expression levels of miR-155/BIC, miR-21, and miR-26a compared to primary DLBCL. In conclusion, the miRs expression in B-NHLs[11q] provides a new suggestion, in addition to pathomorphological and clinical similarities between classical, i.e., MYC translocation-positive BL, and B-NHLs[11q], to recognize the B-NHLs[11q] subgroup of DLBCL/BL category as a MYC translocation-negative variant of BL in most cases, and points to the potential utility of miR-155/BIC/miR-21/miR-26a for the differential diagnosis of a heterogeneous category of DLBCL/BL.
DEFF Research Database (Denmark)
Yazdani, Hossein; Ortiz-Arroyo, Daniel; Kwasnicka, Halina
2016-01-01
spaces, in addition to their similarity in the vector space. Prioritized Weighted Feature Distance (PWFD) works similarly as WFD, but provides the ability to give priorities to desirable features. The accuracy of the proposed functions are compared with other similarity functions on several data sets....... Our results show that the proposed functions work better than other methods proposed in the literature....
Phoneme Similarity and Confusability
Bailey, T.M.; Hahn, U.
2005-01-01
Similarity between component speech sounds influences language processing in numerous ways. Explanation and detailed prediction of linguistic performance consequently requires an understanding of these basic similarities. The research reported in this paper contrasts two broad classes of approach to the issue of phoneme similarity-theoretically…
Study of scattering from turbulence structure generated by propeller with FLUENT
Luo, Gen
2017-07-01
In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.
Energy Technology Data Exchange (ETDEWEB)
Xu, Y.Y.; Yang, C. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, S.Z. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); State Key Lab of Crystal Materials Shandong University, Jinan 250100 (China); Man, B.Y., E-mail: byman@sdnu.edu.cn [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Liu, M.; Chen, C.S.; Zhang, C.; Sun, Z.C.; Qiu, H.W. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Li, H.S. [Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan 250117 (China); Feng, D.J. [College of Information Science and Engineering, Shandong University, Jinan 250100 (China); Zhang, J.X. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)
2015-12-01
Highlights: • Layer-controlled large-area and continuous MoS{sub 2} atomic layers were obtained on mica substrate by thermally decomposing ammonium thiomolybdate at relatively low temperature. • The as-grown MoS{sub 2}/mica substrate was demonstrated to be suitable as a substrate for enhancing Raman signals without any modification and we even collected Raman signals of R6G as low as 10{sup −7} M. • Using the Raman peak of R6G at 1361 cm{sup −1} as a signature, Raman intensity showed an approximately linear increase with the increasing of the logarithm of R6G concentrations. - Abstract: Molybdenum disulfide has recently raised more and more interest due to its layer-related properties and potential applications in optoelectronics and electronics. Here, layer-controlled large-area and continuous MoS{sub 2} atomic layers were obtained on mica substrate by thermally decomposing ammonium thiomolybdate. The obtained MoS{sub 2} film is three layers uniformly. Because of the small lattice mismatch between MoS{sub 2} and mica, the epitaxial MoS{sub 2} film is well grown on the substrate. The as-grown MoS{sub 2}/mica substrate is demonstrated to be suitable as a substrate for enhancing Raman signals of adsorbed molecules without any modification, which even can compare with graphene and will expand the application of MoS{sub 2} to microanalysis.
Analytic nuclear scattering theories
International Nuclear Information System (INIS)
Di Marzio, F.; University of Melbourne, Parkville, VIC
1999-01-01
A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed
Extreme scattering events towards two young pulsars
Kerr, M.; Coles, W. A.; Ward, C. A.; Johnston, S.; Tuntsov, A. V.; Shannon, R. M.
2018-03-01
We have measured the scintillation properties of 151 young, energetic pulsars with the Parkes radio telescope and have identified two extreme scattering events (ESEs). Towards PSR J1057-5226, we discovered a 3 yr span of strengthened scattering during which the variability in flux density and the scintillation bandwidth decreased markedly. The transverse size of the scattering region is ˜23 au, and strong flux density enhancement before and after the ESE may arise from refractive focusing. Long observations reveal scintillation arcs characteristic of interference between rays scattered at large angles, and the clearest arcs appear during the ESE. The arcs suggest scattering by a screen 100-200 pc from the Earth, perhaps ionized filamentary structure associated with the boundary of the local bubble(s). Towards PSR J1740-3015, we observed a `double dip' in the measured flux density similar to ESEs observed towards compact extragalactic radio sources. The observed shape is consistent with that produced by a many-au scale diverging plasma lens with electron density ˜500 cm-3. The continuing ESE is at least 1500 d long, making it the longest detected event to date. These detections, with materially different observational signatures, indicate that well-calibrated pulsar monitoring is a keen tool for ESE detection and interstellar medium (ISM) diagnostics. They illustrate the strong role au-scale non-Kolmogorov density fluctuations and the local ISM structure play in such events and are key to understanding both their intrinsic physics and their impact on other phenomena, particularly fast radio bursts.
De Wolf, E.A.
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.
International Nuclear Information System (INIS)
Wolf, E.A. de
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2016-07-01
This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Molecular similarity measures.
Maggiora, Gerald M; Shanmugasundaram, Veerabahu
2011-01-01
Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.
Directory of Open Access Journals (Sweden)
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
Processes of Similarity Judgment
Larkey, Levi B.; Markman, Arthur B.
2005-01-01
Similarity underlies fundamental cognitive capabilities such as memory, categorization, decision making, problem solving, and reasoning. Although recent approaches to similarity appreciate the structure of mental representations, they differ in the processes posited to operate over these representations. We present an experiment that…
Bijmolt, THA; Wedel, M; Pieters, RGM; DeSarbo, WS
This paper provides empirical insight into the way consumers make pairwise similarity judgments between brands, and how familiarity with the brands, serial position of the pair in a sequence, and the presentation format affect these judgments. Within the similarity judgment process both the
The semantic similarity ensemble
Directory of Open Access Journals (Sweden)
Andrea Ballatore
2013-12-01
Full Text Available Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgment of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on how closely it mimics human behavior. Thus selecting the most appropriate measure for a specific task is a significant challenge. To address this issue, we make an analogy between computational similarity measures and soliciting domain expert opinions, which incorporate a subjective set of beliefs, perceptions, hypotheses, and epistemic biases. Following this analogy, we define the semantic similarity ensemble (SSE as a composition of different similarity measures, acting as a panel of experts having to reach a decision on the semantic similarity of a set of geographic terms. The approach is evaluated in comparison to human judgments, and results indicate that an SSE performs better than the average of its parts. Although the best member tends to outperform the ensemble, all ensembles outperform the average performance of each ensemble's member. Hence, in contexts where the best measure is unknown, the ensemble provides a more cognitively plausible approach.
Pion nucleus scattering lengths
International Nuclear Information System (INIS)
Huang, W.T.; Levinson, C.A.; Banerjee, M.K.
1971-09-01
Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs
Gender similarities and differences.
Hyde, Janet Shibley
2014-01-01
Whether men and women are fundamentally different or similar has been debated for more than a century. This review summarizes major theories designed to explain gender differences: evolutionary theories, cognitive social learning theory, sociocultural theory, and expectancy-value theory. The gender similarities hypothesis raises the possibility of theorizing gender similarities. Statistical methods for the analysis of gender differences and similarities are reviewed, including effect sizes, meta-analysis, taxometric analysis, and equivalence testing. Then, relying mainly on evidence from meta-analyses, gender differences are reviewed in cognitive performance (e.g., math performance), personality and social behaviors (e.g., temperament, emotions, aggression, and leadership), and psychological well-being. The evidence on gender differences in variance is summarized. The final sections explore applications of intersectionality and directions for future research.
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
DEFF Research Database (Denmark)
Villadsen, Anders Ryom
2013-01-01
While the organizational structures and strategies of public organizations have attracted substantial research attention among public management scholars, little research has explored how these organizational core dimensions are interconnected and influenced by pressures for similarity....... In this paper I address this topic by exploring the relation between expenditure strategy isomorphism and structure isomorphism in Danish municipalities. Different literatures suggest that organizations exist in concurrent pressures for being similar to and different from other organizations in their field......-shaped relation exists between expenditure strategy isomorphism and structure isomorphism in a longitudinal quantitative study of Danish municipalities....
Comparing Harmonic Similarity Measures
de Haas, W.B.; Robine, M.; Hanna, P.; Veltkamp, R.C.; Wiering, F.
2010-01-01
We present an overview of the most recent developments in polyphonic music retrieval and an experiment in which we compare two harmonic similarity measures. In contrast to earlier work, in this paper we specifically focus on the symbolic chord description as the primary musical representation and
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Group theory approach to scattering
International Nuclear Information System (INIS)
Wu, J.
1985-01-01
For certain physical systems, there exists a dynamical group which contains the operators connecting states with the same energy but belonging to potentials with different strengths. This group is called the potential group of that system. The SO(2,1) potential groups structure is introduced to describe physical systems with mixed spectra, such as Morse and Poeschl-teller potentials. The discrete spectrum describes bound states and the continuous spectrum describes bound states and the continuous spectrum describes scattering states. A solvable class of one-dimensional potentials given by Natanzon belongs to this structure with an SO(2,2) potential group. The potential group structure provides us with an algebraic procedure generating the recursion relations for the scattering matrix, which can be formulated in a purely algebraic fashion, divorced from any differential realization. This procedure, when applied to the three-dimensional scattering problem with SO(3,1) symmetry, generates the scattering matrix of the Coulomb problem. Preliminary phenomenological models for elastic scattering in a heavy-ion collision are constructed on the basis. The results obtained here can be regarded as an important extension of the group theory techniques to scattering problems similar to that developed for bound state problems
Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai
2018-03-15
Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PREFACE: Atom-surface scattering Atom-surface scattering
Miret-Artés, Salvador
2010-08-01
; all of them were ready for use! We cannot imagine him without his two old-fashioned Mercedes, also in his collection. He also has technical skills in construction and music and always has time for jogging. I would finally say that he is an even-tempered person. In brief, mens sana in corpore sano 1 . Dick is a theorist bound to experimental work, extremely intuitive and very dedicated. In his long stays outside Clemson, he always visited places where experiments were being carried out. He has been, and still is, of great help to experimental PhD students, postdocs or senior scientists in providing valuable advice and suggestions towards new measurements. Plausible interpretations of their results developing theoretical models or always searching for good agreement with experiment are two constants in his daily scientific work. Experimental work is present in most of his 150 papers. One of the main theoretical challenges in this field was to develop a formalism where the plethora of experimental results reported in the literature were accommodated. His transition matrix formalism was also seminal in the field of atom-surface scattering. Elastic and inelastic (single and double phonon) contributions were determined as well as the multiphonon background. This work was preceded by a theory for diffuse inelastic scattering and a posterior contribution for multiphonon scattering, both with V Celli. In a similar vein, a theory of molecule-surface scattering was also derived and, more recently, a theory for direct scattering, trapping and desorption. Very interesting extensions to scattering with molten metal and liquid surfaces have also been carried out. Along with collaborators he has studied energy accommodation and sticking coefficients, providing a better understanding of their meaning. G Armand and Dick proposed the well-known corrugated Morse potential as an interaction potential model providing reliable results of diffraction patterns and selective adsorption
Particle trapping in stimulated scattering processes
International Nuclear Information System (INIS)
Karttunen, S.J.; Heikkinen, J.A.
1981-01-01
Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)
Scatter radiation in digital tomosynthesis of the breast
International Nuclear Information System (INIS)
Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl J.; Karellas, Andrew
2007-01-01
Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Scattered radiation in fan beam imaging systems
International Nuclear Information System (INIS)
Johns, P.C.; Yaffe, M.
1982-01-01
Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter
Classical trajectory in non-relativistic scattering
International Nuclear Information System (INIS)
Williams, A.C.
1978-01-01
With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory
Scattering from correlations in colloidal systems
International Nuclear Information System (INIS)
Hayter, J.B.
1984-01-01
Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10 4 A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10 -8 -10 -3 sec) than those found in simple atomic or small molecular systems (10 -13 -10 -10 sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Personality similarity and life satisfaction in couples
Furler Katrin; Gomez Veronica; Grob Alexander
2013-01-01
The present study examined the association between personality similarity and life satisfaction in a large nationally representative sample of 1608 romantic couples. Similarity effects were computed for the Big Five personality traits as well as for personality profiles with global and differentiated indices of similarity. Results showed substantial actor and partner effects indicating that both partners' personality traits were related to both partners' life satisfaction. Personality similar...
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.
Directory of Open Access Journals (Sweden)
A. Donnachie
1984-01-01
Full Text Available We present an analysis of pp and ̄pp elastic scattering in terms of various exchanges. Three-gluon exchange dominates at large t, and single-pomeron exchange at small t. The dip seen in high-energy pp scattering is provided by the interference of both of these with double-pomeron exchange. We predict that this dip will not be found in high-energy ̄pp scattering. The dip that is seen in low-energy ̄pp scattering is the result of the additional presence of reggeon-pomeron exchange.
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
2009-01-01
For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....
DEFF Research Database (Denmark)
Cornér, Solveig; Pyhältö, Kirsi; Peltonen, Jouni
2018-01-01
Previous research has identified researcher community and supervisory support as key determinants of the doctoral journey contributing to students’ persistence and robustness. However, we still know little about cross-cultural variation in the researcher community and supervisory support experien...... counter partners, whereas the Finnish students perceived lower levels of instrumental support than the Danish students. The findings imply that seemingly similar contexts hold valid differences in experienced social support and educational strategies at the PhD level....... experienced by PhD students within the same discipline. This study explores the support experiences of 381 PhD students within the humanities and social sciences from three research-intensive universities in Denmark (n=145) and Finland (n=236). The mixed methods design was utilized. The data were collected...... counter partners. The results also indicated that the only form of support in which the students expressed more matched support than mismatched support was informational support. Further investigation showed that the Danish students reported a high level of mismatch in emotional support than their Finnish...
Cooperative scattering of scalar waves by optimized configurations of point scatterers
Schäfer, Frank; Eckert, Felix; Wellens, Thomas
2017-12-01
We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.
Large transverse momentum behavior of gauge theories
International Nuclear Information System (INIS)
Coquereaux, Robert; De Rafael, Eduardo.
1977-05-01
The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given
International Nuclear Information System (INIS)
Fayer, Michael J.; Gee, Glendon W.
2005-01-01
The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe
Scattering and multiple scattering in disordered materials
International Nuclear Information System (INIS)
Weaver, R.L.; Butler, W.H.
1992-01-01
The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena
Practical model for the calculation of multiply scattered lidar returns
International Nuclear Information System (INIS)
Eloranta, E.W.
1998-01-01
An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
Scatter from optical components
International Nuclear Information System (INIS)
Stover, J.C.
1989-01-01
This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control
Surface enhanced Raman scattering
Furtak, Thomas
1982-01-01
In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...
Electron scattering from tetrahydrofuran
International Nuclear Information System (INIS)
Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P
2012-01-01
Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.
International Nuclear Information System (INIS)
Doll, P.
1990-02-01
Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de
Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data
International Nuclear Information System (INIS)
Lovesey, S.W.
1987-05-01
The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)
Roessli, B.; Böni, P.
2000-01-01
The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.
Pion deuteron scattering at intermediate energies
International Nuclear Information System (INIS)
Ferreira, E.M.
1978-09-01
A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt
Spin dependence in superelastic electron scattering from Na(3P)
International Nuclear Information System (INIS)
McClelland, J.J.; Kelley, M.H.; Celotta, R.J.
1985-01-01
Measurements are presented of spin asymmetries for superelastic scattering of 10-eV spin polarized electrons from the excited Na(3P/sub 3/2/) state created by linearly polarized laser optical pumping. Asymmetries as large as 16% are observed in scattering from a state which is not spin-polarized. Results are shown both as a function of scattering angle with fixed laser polarization direction, and as a function of the laser polarization direction at a fixed scattering angle
Entrainment and scattering in microswimmer-colloid interactions
Shum, Henry; Yeomans, Julia M.
2017-11-01
We use boundary element simulations to study the interaction of model microswimmers with a neutrally buoyant spherical particle. The ratio of the size of the particle to that of the swimmer is varied from RP/RS≪1 , corresponding to swimmer-tracer scattering, to RP/RS≫1 , approximately equivalent to the swimmer interacting with a fixed, flat surface. We find that details of the swimmer and particle trajectories vary for different swimmers. However, the overall characteristics of the scattering event fall into two regimes, depending on the relative magnitudes of the impact parameter, ρ , and the collision radius, Rcoll=RP+RS . The range of particle motion, defined as the maximum distance between two points on the trajectory, has only a weak dependence on the impact parameter when ρ Rcoll the range decreases as a power law in ρ and is insensitive to the size of the particle. We also demonstrate that large particles can cause swimmers to be deflected through large angles. In some instances, this swimmer deflection can lead to larger net displacements of the particle. Based on these results, we estimate the effective diffusivity of a particle in a dilute bath of swimmers and show that there is a nonmonotonic dependence on particle radius. Similarly, we show that the effective diffusivity of a swimmer scattering in a suspension of particles varies nonmonotonically with particle radius.
Raman scattering of light off a superconductor
International Nuclear Information System (INIS)
Cuden, C.B.
1976-01-01
Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
the supported samples yield consistently lower values of κ and that the phonon-boundary scattering remains dominant at large lengths, with L = 0.4 μm structures exhibiting a third of the periodic result. We finally characterize the effect of shape in CNTs and fullerenes on κ, showing the angular components of conductivity in CNTs and icosahedral fullerenes are similar for a given circumference.
Q-space analysis of scattering by particles: A review
International Nuclear Information System (INIS)
Sorensen, Christopher M.
2013-01-01
This review describes and demonstrates the Q-space analysis of light scattering by particles. This analysis involves plotting the scattered intensity versus the scattering wave vector q=(4π/λ)sin(θ/2) on a double log plot. The analysis uncovers power law descriptions of the scattering with length scale dependent crossovers between the power laws. It also systematically describes the magnitude of the scattering and the interference ripple structure that often underlies the power laws. It applies to scattering from dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggregates and irregularly shaped particles such as dusts. The benefits of Q-space analysis are that it provides a simple and comprehensive description of scattering in terms of power laws with quantifiable exponents; it can be used to differentiate scattering by particles of different shapes, and it yields a physical understanding of scattering based on diffraction. -- Highlights: ► Angular scattering functions for spheres show power laws versus the wave vector q. ► The power laws uncover patterns involving length scales and functionalities. ► Similar power laws appear in scattering from aggregates and irregular particles. ► Power laws provide a comprehensive and quantitative description of scattering
Magnetic X-Ray Scattering with Synchrotron Radiation
DEFF Research Database (Denmark)
Moncton, D. E.; Gibbs, D.; Bohr, Jakob
1986-01-01
With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Electromagnetic and gravitational scattering at Planckian energies
International Nuclear Information System (INIS)
Das, S.; Majumdar, P.
1994-11-01
The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude. (author). 20 refs
Roles of scattered radiation in SRIXE
International Nuclear Information System (INIS)
Hanson, A.L.
1988-01-01
The scattering of x-rays is the major source of background and hence is a limiting factor in the minimum detectable limits available with SRIXE measurements. The scattering can be utilized for normalizing the net peak areas to fluctuations in sample thickness or mass on a relative basis or on a comparative basis. Even then measurement of the scattered x-rays should be made at backward angles. Measurement at forward angles should be avoided because of diffraction problems. The uncertainties in the measurement of an absolute intensity of the x-rays can be extremely large
Scattering with polarized neutrons
International Nuclear Information System (INIS)
Schweizer, J.
2007-01-01
In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...
International Nuclear Information System (INIS)
Wendin, G.
1979-01-01
The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references
Brillouin scatter in laser-produced plasmas
International Nuclear Information System (INIS)
Phillion, D.W.; Kruer, W.L.; Rupert, V.C.
1977-01-01
The absorption of intense laser light is found to be reduced when targets are irradiated by 1.06 μm light with long pulse widths (150-400 psec) and large focal spots (100-250 μm). Estimates of Brillouin scatter which account for the finite heat capacity of the underdense plasma predict this reduction. Spectra of the back reflected light show red shifts indicative of Brillouin scattering
Magnetic diffuse scattering: a theorist's perspective
International Nuclear Information System (INIS)
Long, M.W.
1996-01-01
We attempt to show that magnetic diffuse scattering is the natural probe for frustrated antiferromagnetism. Comparison between nuclear and magnetic diffuse scattering compares the range of atomic clustering with the range of the magnetic impurity. At low temperature frustration is expected to lead to large differences which are a natural signature for the relevance of such frustration effects. We provide some elementary examples in first-row transition metals which display fairly dramatic effects. (author) 11 figs., tabs., 8 refs
Deep Inelastic Scattering at the Amplitude Level
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2005-01-01
The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances
Neutron scattering and magnetism
International Nuclear Information System (INIS)
Mackintosh, A.R.
1983-01-01
Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)
Stationary theory of scattering
International Nuclear Information System (INIS)
Kato, T.
1977-01-01
A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
International Nuclear Information System (INIS)
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
Wu Ta You
1962-01-01
This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati
Cross plane scattering correction
International Nuclear Information System (INIS)
Shao, L.; Karp, J.S.
1990-01-01
Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution
Neutron scattering and physisorption
International Nuclear Information System (INIS)
Marlow, I.; Thomas, R.K.; Trewern, T.D.
1977-01-01
Neutron scattering experiments on methane and ammonia adsorbed on a graphitized carbon black are described. Diffraction from adsorbed deuterated methane shows that, at a coverage of 0.7, it forms an epitaxial layer with a √3x√3 structure. Between 50 and 60 K it undergoes a phase transition from two-dimensional solid to liquid (bulk melting point=89.7 K). Similar results are obtained for deuterated methane on a sample of graphon intercalated with potassium. From the effect of adsorbed methane on the intensities of 001 peaks of both substrates the carbon atom of the methane is estimated to be 3.3+-0.2 A from the surface. Ammonia-d 3 on graphon behaves quite differently from methane. It follows a type III isotherm and at low temperatures desorbs from the surface to form bulk ammonia. This has anomalous melting properties which are shown to be related to adsorption isobars for the system. The detailed interpretation of the results emphasizes the close link between adsorption and heterogeneous nucleation. Quasielastic experiments on the ammonia-graphon system show that the adsorbed ammonia is undergoing translational diffusion on the surface which is much faster than in the bulk. This is attributed to the breaking up of the hydrogen bonded network normally present in t
The Fate of Exomoons when Planets Scatter
Kohler, Susanna
2018-03-01
Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Jets in deep inelastic scattering
International Nuclear Information System (INIS)
Joensson, L.
1995-01-01
Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)
Notions of similarity for systems biology models.
Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knüpfer, Christian; Liebermeister, Wolfram; Waltemath, Dagmar
2018-01-01
Systems biology models are rapidly increasing in complexity, size and numbers. When building large models, researchers rely on software tools for the retrieval, comparison, combination and merging of models, as well as for version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of 'similarity' may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here we survey existing methods for the comparison of models, introduce quantitative measures for model similarity, and discuss potential applications of combined similarity measures. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on a combination of different model aspects. The six aspects that we define as potentially relevant for similarity are underlying encoding, references to biological entities, quantitative behaviour, qualitative behaviour, mathematical equations and parameters and network structure. We argue that future similarity measures will benefit from combining these model aspects in flexible, problem-specific ways to mimic users' intuition about model similarity, and to support complex model searches in databases. © The Author 2016. Published by Oxford University Press.
Turbulence Scattering of High Harmonic Fast Waves
International Nuclear Information System (INIS)
M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau
2001-01-01
Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)
Protons scattering on Li isotopes at intermediate energies
International Nuclear Information System (INIS)
Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.
2003-01-01
The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form
International Nuclear Information System (INIS)
Kuehnelt, H.
1975-01-01
We discuss a few properties of scattering amplitudes proved within the framework of the field theory and their significance in the derivation of quantitative statements. The state of the boundaries for the scattering lengths is to be especially discussed as well as the question as to how far it is possible to exclude various solutions from phase displacement analyses. (orig./LH) [de
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....
Donne, A. J. H.
1996-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
Concentric layered Hermite scatterers
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
Raman scattering study of filled skutterudite compounds
International Nuclear Information System (INIS)
Ogita, N; Kojima, R; Hasegawa, T; Takasu, Y; Udagawa, M; Kondo, T; Takeda, N; Ikeno, T; Ishikawa, K; Sugawara, H; Kikuchi, D; Sato, H; Sekine, C; Shirotani, I
2007-01-01
Raman scattering of skutterudite compounds RT 4 X 12 (R=La, Ce, Pr, Nd, Sm and Yb, T=Fe, Ru and Os, X=P and Sb) have been measured. All first-order Raman active phonons are observed and are assigned as the pnicogen vibrations. At the low energy region, the second-order phonons, due to the vibration of the rare earth ions with a flat phonon dispersion, are observed in the spectra of RRu 4 P 12 (R=La and Sm) and ROs 4 Sb 12 (R=La, Ce, Pr, Nd, and Sm). The appearance of the second-order phonons in the spectra is caused by an anharmonic vibrations of rare earth ions in large cage space and a large density of state due to the flat phonon dispersion. However, in spite of the similar cage space, the 2nd-order phonons are hardly observed for RFe 4 Sb 12 and RRu 4 Sb 12 . Thus, these results suggest that the dynamics of the rare earth ion is closely related to not only the cage size but also the electronic state due to the transition metals. Raman spectra of PrRu 4 P 12 show the drastic spectral change due to the metal-insulator transition. The phonon spectra and crystal field excitations due to the structural change have been assigned above and below the transition temperature
Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.
2003-01-01
The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.
Introductory theory of neutron scattering
International Nuclear Information System (INIS)
Gunn, J.M.F.
1986-12-01
The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
Similar or different?: the importance of similarities and differences for support between siblings
Voorpostel, M.; van der Lippe, T.; Dykstra, P.A.; Flap, H.
2007-01-01
Using a large-scale Dutch national sample (N = 7,126), the authors examine the importance of similarities and differences in the sibling dyad for the provision of support. Similarities are assumed to enhance attraction and empathy; differences are assumed to be related to different possibilities for
Similar or Different? The Importance of Similarities and Differences for Support Between Siblings
Voorpostel, Marieke; Lippe, Tanja van der; Dykstra, Pearl A.; Flap, Henk
2007-01-01
Using a large-scale Dutch national sample (N = 7,126), the authors examine the importance of similarities and differences in the sibling dyad for the provision of support. Similarities are assumed to enhance attraction and empathy; differences are assumed to be related to different possibilities for
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
A COMPARISON OF SEMANTIC SIMILARITY MODELS IN EVALUATING CONCEPT SIMILARITY
Directory of Open Access Journals (Sweden)
Q. X. Xu
2012-08-01
Full Text Available The semantic similarities are important in concept definition, recognition, categorization, interpretation, and integration. Many semantic similarity models have been established to evaluate semantic similarities of objects or/and concepts. To find out the suitability and performance of different models in evaluating concept similarities, we make a comparison of four main types of models in this paper: the geometric model, the feature model, the network model, and the transformational model. Fundamental principles and main characteristics of these models are introduced and compared firstly. Land use and land cover concepts of NLCD92 are employed as examples in the case study. The results demonstrate that correlations between these models are very high for a possible reason that all these models are designed to simulate the similarity judgement of human mind.
Renewing the Respect for Similarity
Directory of Open Access Journals (Sweden)
Shimon eEdelman
2012-07-01
Full Text Available In psychology, the concept of similarity has traditionally evoked a mixture of respect, stemmingfrom its ubiquity and intuitive appeal, and concern, due to its dependence on the framing of the problemat hand and on its context. We argue for a renewed focus on similarity as an explanatory concept, bysurveying established results and new developments in the theory and methods of similarity-preservingassociative lookup and dimensionality reduction — critical components of many cognitive functions, aswell as of intelligent data management in computer vision. We focus in particular on the growing familyof algorithms that support associative memory by performing hashing that respects local similarity, andon the uses of similarity in representing structured objects and scenes. Insofar as these similarity-basedideas and methods are useful in cognitive modeling and in AI applications, they should be included inthe core conceptual toolkit of computational neuroscience.
Factorization and non-factorization in diffractive hard scattering
International Nuclear Information System (INIS)
Berera, Arjun
1997-01-01
Factorization, in the sense defined for inclusive hard scattering, is discussed for diffractive hard scattering. A factorization theorem similar to its inclusive counterpart is presented for diffractive DIS. For hadron-hadron diffractive hard scattering, in contrast to its inclusive counterpart, the expected breakdown of factorization is discussed. Cross section estimates are given from a simple field theory model for non-factorizing double-pomeron-exchange (DPE) dijet production with and without account for Sudakov suppression
Conformal bootstrap, universality and gravitational scattering
Directory of Open Access Journals (Sweden)
Steven Jackson
2015-12-01
Full Text Available We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles between two heavy states (BTZ black holes. We find that the operator algebra in this regime is (i universal and identical to that of Liouville CFT, and (ii takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.
On Born approximation in black hole scattering
Batic, D.; Kelkar, N. G.; Nowakowski, M.
2011-12-01
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.
Light scattering studies at UNICAMP
International Nuclear Information System (INIS)
Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.
1975-01-01
Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses
Self-similar cosmological models
Energy Technology Data Exchange (ETDEWEB)
Chao, W Z [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1981-07-01
The kinematics and dynamics of self-similar cosmological models are discussed. The degrees of freedom of the solutions of Einstein's equations for different types of models are listed. The relation between kinematic quantities and the classifications of the self-similarity group is examined. All dust local rotational symmetry models have been found.
Self-similar factor approximants
International Nuclear Information System (INIS)
Gluzman, S.; Yukalov, V.I.; Sornette, D.
2003-01-01
The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties
Dynamic similarity in erosional processes
Scheidegger, A.E.
1963-01-01
A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.
Personalized recommendation with corrected similarity
International Nuclear Information System (INIS)
Zhu, Xuzhen; Tian, Hui; Cai, Shimin
2014-01-01
Personalized recommendation has attracted a surge of interdisciplinary research. Especially, similarity-based methods in applications of real recommendation systems have achieved great success. However, the computations of similarities are overestimated or underestimated, in particular because of the defective strategy of unidirectional similarity estimation. In this paper, we solve this drawback by leveraging mutual correction of forward and backward similarity estimations, and propose a new personalized recommendation index, i.e., corrected similarity based inference (CSI). Through extensive experiments on four benchmark datasets, the results show a greater improvement of CSI in comparison with these mainstream baselines. And a detailed analysis is presented to unveil and understand the origin of such difference between CSI and mainstream indices. (paper)
Scattering on magnetic monopoles
International Nuclear Information System (INIS)
Petry, H.R.
1980-01-01
The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)
Deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-03-01
The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)
Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics
Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert
2014-01-01
The rapid adoption of electronic health records (EHR) provides a comprehensive source for exploratory and predictive analytic to support clinical decision-making. In this paper, we investigate how to utilize EHR to tailor treatments to individual patients based on their likelihood to respond to a therapy. We construct a heterogeneous graph which includes two domains (patients and drugs) and encodes three relationships (patient similarity, drug similarity, and patient-drug prior associations). We describe a novel approach for performing a label propagation procedure to spread the label information representing the effectiveness of different drugs for different patients over this heterogeneous graph. The proposed method has been applied on a real-world EHR dataset to help identify personalized treatments for hypercholesterolemia. The experimental results demonstrate the effectiveness of the approach and suggest that the combination of appropriate patient similarity and drug similarity analytics could lead to actionable insights for personalized medicine. Particularly, by leveraging drug similarity in combination with patient similarity, our method could perform well even on new or rarely used drugs for which there are few records of known past performance. PMID:25717413
Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence
Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian
2018-01-01
We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the
Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir
2018-01-01
Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.
Forward gluon production in hadron-hadron scattering with Pomeron loops
International Nuclear Information System (INIS)
Iancu, E.
2006-01-01
We discuss new physical phenomena expected in particle production in hadron-hadron collisions at high energy, as a consequence of Pomerons loop effects in the evolution equations for the Color Glass Condensate. We focus on gluon production in asymmetric, 'dilute-dense', collisions: a dilute projectile scatters off a dense hadronic target, whose gluon distribution is highly evolved. This situation is representative for particle production in proton-proton collisions at forward rapidities (say, at LHC) and admits a dipole factorization similar to that of deep inelastic scattering (DIS). We show that at sufficiently large forward rapidities, where the Pomerons loop effects become important in the evolution of the target wavefunction, gluon production is dominated by 'black spots' (saturated gluon configurations) up to very large values of the transverse momentum, well above the average saturation momentum in the target. In this regime, the produced gluon spectrum exhibits diffusive scaling, so like DIS at sufficiently high energy. (authors)
Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept
Directory of Open Access Journals (Sweden)
M. Y. Barabanenkov
2012-07-01
Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.
Reconstruction of Kinematic Surfaces from Scattered Data
DEFF Research Database (Denmark)
Randrup, Thomas; Pottmann, Helmut; Lee, I.-K.
1998-01-01
Given a surface in 3-space or scattered points from a surface, we present algorithms for fitting the data by a surface which can be generated by a one--parameter subgroup of the group of similarities. These surfaces are general cones and cylinders, surfaces of revolution, helical surfaces and spi...
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Connection of Scattering Principles: A Visual and Mathematical Tour
Broggini, Filippo; Snieder, Roel
2012-01-01
Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…
Collective Excitations in Liquid Hydrogen Observed by Coherent Neutron Scattering
DEFF Research Database (Denmark)
da Costa Carneiro, Kim; Nielsen, M.; McTague, J. P.
1973-01-01
Coherent scattering of neutrons by liquid parahydrogen shows the existence of well-defined collective excitations in this liquid. Qualitative similarity with the scattering from liquid helium is found. Furthermore, in the range of observed wave vectors, 0.7 Å-1 ≤κ≤3.1 Å-1, extending from the firs...
Modeling of light scattering by icy bodies
Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.
2014-07-01
As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM
Measure of Node Similarity in Multilayer Networks.
Directory of Open Access Journals (Sweden)
Anders Mollgaard
Full Text Available The weight of links in a network is often related to the similarity of the nodes. Here, we introduce a simple tunable measure for analysing the similarity of nodes across different link weights. In particular, we use the measure to analyze homophily in a group of 659 freshman students at a large university. Our analysis is based on data obtained using smartphones equipped with custom data collection software, complemented by questionnaire-based data. The network of social contacts is represented as a weighted multilayer network constructed from different channels of telecommunication as well as data on face-to-face contacts. We find that even strongly connected individuals are not more similar with respect to basic personality traits than randomly chosen pairs of individuals. In contrast, several socio-demographics variables have a significant degree of similarity. We further observe that similarity might be present in one layer of the multilayer network and simultaneously be absent in the other layers. For a variable such as gender, our measure reveals a transition from similarity between nodes connected with links of relatively low weight to dis-similarity for the nodes connected by the strongest links. We finally analyze the overlap between layers in the network for different levels of acquaintanceships.
Notions of similarity for computational biology models
Waltemath, Dagmar
2016-03-21
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.
Trajectory similarity join in spatial networks
Shang, Shuo
2017-09-07
The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider the case of trajectory similarity join (TS-Join), where the objects are trajectories of vehicles moving in road networks. Thus, given two sets of trajectories and a threshold θ, the TS-Join returns all pairs of trajectories from the two sets with similarity above θ. This join targets applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm\\'s per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.
Notions of similarity for computational biology models
Waltemath, Dagmar; Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram
2016-01-01
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users' intuition about model similarity, and to support complex model searches in databases.
Phonon scattering in metallic glasses
International Nuclear Information System (INIS)
Black, J.L.
1979-01-01
The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses
Electron scattering from pyrimidine
International Nuclear Information System (INIS)
Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo
2014-01-01
Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
International Nuclear Information System (INIS)
1991-07-01
This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs
International Nuclear Information System (INIS)
Peterson, G.A.
1989-01-01
We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs
Deep inelastic lepton scattering
International Nuclear Information System (INIS)
Nachtmann, O.
1977-01-01
Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de
Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei
International Nuclear Information System (INIS)
Antonov, A.; Ivanov, M.; Gaidarov, M.; Caballero, J.A.; Barbaro, M.; Moya de Guerra, E.
2009-01-01
In this paper the following items have been presented: 1) Nucleon momentum distribution from the superscaling analyses of the QE scattering of electrons; 2) CDFM scaling functions in the QE- and _-regions; 3) Charge-changing neutrino scattering from nuclei in the QE- and –region and 4) Neutral current neutrino scattering from nuclei in the QE-region. At the end the following conclusions have been made: 1) 1 It is pointed out that f (ψ') for ψ' < -1 depends on the particular form of the power-law asymptotics of n(k) at large k and thus, is informative for the in-medium NN forces around the core. 2) The total f(ψ), the longitudinal f_L(ψ) and the transverse f_T(ψ) scaling functions are calculated within a new, more general approach within the Coherent Density Fluctuation Model (CDFM_I_I) by taking as starting point the hadronic tensor and the L- and T- response functions in the RFG model. 3) The approach leads to a slight violation of the zero-kind scaling [f_L(ψ)≠f_T(ψ)] in contrast with the situation in the RFG and CDFM_I models. It is found that the ratio f_L(ψ)/f_T(ψ) in the CDFM_I_I has similarities with that from the RPWIA approach (with Lorentz gauge) for positive ψ. 4) At q≳0:7 GeV/c the CDFM_I_I scaling function exhibits scaling of first kind and has a saturation of its asymptotic behavior. 5) The CDFM scaling functions are applied to calculate cross sections of inclusive electron scattering in the quasielastic and Δ-regions for nuclei with 12≤A≤208 at different energies and angles. The results are in agreement with available experimental data, especially in the QE region. 6) The CDFM scaling functions are applied to calculate charge-changing neutrino (antineutrino) scattering and also QE scattering via the weak neutral current on "1"2C at 1÷2 GeV incident energy.
A simple method for finding the scattering coefficients of quantum graphs
International Nuclear Information System (INIS)
Cottrell, Seth S.
2015-01-01
Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial of the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected
Small angle neutron scattering
International Nuclear Information System (INIS)
Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.
1976-09-01
A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope
International Nuclear Information System (INIS)
Aprile-Giboni, E.; Cantale, G.; Hausammann, R.
1983-01-01
Using the PM1 polarized proton beam at SIN and a polarized target, the elastic pp scattering as well as the inelastic channel pp → π + d have been studied between 400 and 600 MeV. For the elastic reaction, a sufficient number of spin dependent parameters has been measured in order to do a direct reconstruction of the scattering matrix between 38 0 /sub cm/ and 90 0 /sub cm/. 10 references, 6 figures
International Nuclear Information System (INIS)
Gunnellini, Paolo
2015-03-01
Measurements of the differential cross sections for multijet scenarios in proton-proton collisions are presented as a function of the transverse momentum p T and pseudorapidity, together with the correlations in azimuthal angle and the p T balance among the jets. Two different scenarios are separately studied; in the first one an exclusive four-jet final state is selected in vertical stroke η vertical stroke <4.7, by requiring two hard jets with p T >50 GeV each, together with two jets of p T >20 GeV each. No other jets with p T >20 GeV are allowed in the selected events. In the second one at least four jets with p T >20 GeV are required: two of the four selected jets are asked to be originated by a b-quark in vertical stroke η vertical stroke <2.4, while no requests on the flavour of the other two jets, which are selected within vertical stroke η vertical stroke <4.7 are applied. The data sample was collected in 2010 at a center-of-mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminosity of 36 pb -1 . The total cross section is measured to be σ(pp→ 4j+X)=330±5 (stat.)±4(syst.) and σ(pp→2b+2j+X)=67.2±2.2(stat.)±22.5 (syst.) for, respectively, the two selected multijet scenarios. It is found that fixed-order matrix element calculations including parton showers describe the measured differential cross sections in some regions of phase space only, and that adding contributions from double parton scattering brings the Monte Carlo predictions closer to the data. A new method of extraction of double parton scattering contributions from an experimental measurement is introduced for the first time: it is applied to W+dijet measurements and to both multijet channels. Values of σ eff are measured to be 19.0 +4.6 -3.0 mb and 23.2 +3.3 -2.5 mb for the two examined selections. These values are consistent between each other and compatible with measurements based on different physics channels at 7 TeV.
Study of multiple scattering effects in heavy ion RBS
Energy Technology Data Exchange (ETDEWEB)
Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics
1997-12-31
Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.
Study of multiple scattering effects in heavy ion RBS
Energy Technology Data Exchange (ETDEWEB)
Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics
1996-12-31
Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.
DEFF Research Database (Denmark)
Khan, Sanaullah; Birch, Johnny; Van Calsteren, Marie-Rose
2018-01-01
Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray scattering, dynamic light scattering and analytical ultracentrifugation (AUC) were used...
Modal Ring Method for the Scattering of Electromagnetic Waves
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING
Energy Technology Data Exchange (ETDEWEB)
Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Hidekazu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Okuzumi, Satoshi; Nomura, Hideko [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kataoka, Akimasa, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
Domain similarity based orthology detection.
Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich
2015-05-13
Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .
Scattering and absorption of particles emitted by a point source in a cluster of point scatterers
International Nuclear Information System (INIS)
Liljequist, D.
2012-01-01
A theory for the scattering and absorption of particles isotropically emitted by a point source in a cluster of point scatterers is described and related to the theory for the scattering of an incident particle beam. The quantum mechanical probability of escape from the cluster in different directions is calculated, as well as the spatial distribution of absorption events within the cluster. A source strength renormalization procedure is required. The average quantum scattering in clusters with randomly shifting scatterer positions is compared to trajectory simulation with the aim of studying the validity of the trajectory method. Differences between the results of the quantum and trajectory methods are found primarily for wavelengths larger than the average distance between nearest neighbour scatterers. The average quantum results include, for example, a local minimum in the number of absorption events at the location of the point source and interference patterns in the angle-dependent escape probability as well as in the distribution of absorption events. The relative error of the trajectory method is in general, though not generally, of similar magnitude as that obtained for beam scattering.
Using Compton scattering for random coincidence rejection
International Nuclear Information System (INIS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.
Neutron scattering from quantum liquids
International Nuclear Information System (INIS)
Cowley, R.A.
1976-01-01
Recent neutron scattering measurements on the quantum liquids 4 He and 3 He are described. In the Bose superfluid there is a well-defined excitation for wave vectors less than 3.6 A -1 . In the Fermi liquid measurements are much more difficult because of the large absorption cross section, but measurements at the Institute Laue-Langevin have shown that there are no well-defined excitations at 0.63 0 K for wave vectors between 1.0 and 2.6 A -1 . The difference between these results is due to the existence of particle-hole excitations in the Fermi liquid into which collective excitations can decay. Because of the simplicity of the excitations in 4 He, it has become a testing ground for the effects of the interactions between the excitations. Measurements are described which show that while roton-roton interactions are attractive at small wave vectors they are repulsive at larger wave vectors. The scattering at large momentum transfer in 4 He has been measured, but its interpretation is still open to question
Similarity measures for face recognition
Vezzetti, Enrico
2015-01-01
Face recognition has several applications, including security, such as (authentication and identification of device users and criminal suspects), and in medicine (corrective surgery and diagnosis). Facial recognition programs rely on algorithms that can compare and compute the similarity between two sets of images. This eBook explains some of the similarity measures used in facial recognition systems in a single volume. Readers will learn about various measures including Minkowski distances, Mahalanobis distances, Hansdorff distances, cosine-based distances, among other methods. The book also summarizes errors that may occur in face recognition methods. Computer scientists "facing face" and looking to select and test different methods of computing similarities will benefit from this book. The book is also useful tool for students undertaking computer vision courses.
Neutrino oscillations and neutrino-electron scattering
International Nuclear Information System (INIS)
Kayser, B.; Rosen, S.P.
1980-10-01
Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments
Density-dependent electron scattering in photoexcited GaAs
DEFF Research Database (Denmark)
Mics, Zoltán; D'Angio, Andrea; Jensen, Søren A.
2013-01-01
—In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...
Measure of Node Similarity in Multilayer Networks
DEFF Research Database (Denmark)
Møllgaard, Anders; Zettler, Ingo; Dammeyer, Jesper
2016-01-01
The weight of links in a network is often related to the similarity of thenodes. Here, we introduce a simple tunable measure for analysing the similarityof nodes across different link weights. In particular, we use the measure toanalyze homophily in a group of 659 freshman students at a large...... university.Our analysis is based on data obtained using smartphones equipped with customdata collection software, complemented by questionnaire-based data. The networkof social contacts is represented as a weighted multilayer network constructedfrom different channels of telecommunication as well as data...... might bepresent in one layer of the multilayer network and simultaneously be absent inthe other layers. For a variable such as gender, our measure reveals atransition from similarity between nodes connected with links of relatively lowweight to dis-similarity for the nodes connected by the strongest...
Trajectory similarity join in spatial networks
Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos
2017-01-01
With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm's per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.
Protein structural similarity search by Ramachandran codes
Directory of Open Access Journals (Sweden)
Chang Chih-Hung
2007-08-01
Full Text Available Abstract Background Protein structural data has increased exponentially, such that fast and accurate tools are necessary to access structure similarity search. To improve the search speed, several methods have been designed to reduce three-dimensional protein structures to one-dimensional text strings that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed to improve the linear encoding methodology and develop efficient search tools that can rapidly retrieve structural homologs from large protein databases. Results We propose a new linear encoding method, SARST (Structural similarity search Aided by Ramachandran Sequential Transformation. SARST transforms protein structures into text strings through a Ramachandran map organized by nearest-neighbor clustering and uses a regenerative approach to produce substitution matrices. Then, classical sequence similarity search methods can be applied to the structural similarity search. Its accuracy is similar to Combinatorial Extension (CE and works over 243,000 times faster, searching 34,000 proteins in 0.34 sec with a 3.2-GHz CPU. SARST provides statistically meaningful expectation values to assess the retrieved information. It has been implemented into a web service and a stand-alone Java program that is able to run on many different platforms. Conclusion As a database search method, SARST can rapidly distinguish high from low similarities and efficiently retrieve homologous structures. It demonstrates that the easily accessible linear encoding methodology has the potential to serve as a foundation for efficient protein structural similarity search tools. These search tools are supposed applicable to automated and high-throughput functional annotations or predictions for the ever increasing number of published protein structures in this post-genomic era.
Parallel trajectory similarity joins in spatial networks
Shang, Shuo
2018-04-04
The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.
Parallel trajectory similarity joins in spatial networks
Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos
2018-01-01
The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.
Revisiting Inter-Genre Similarity
DEFF Research Database (Denmark)
Sturm, Bob L.; Gouyon, Fabien
2013-01-01
We revisit the idea of ``inter-genre similarity'' (IGS) for machine learning in general, and music genre recognition in particular. We show analytically that the probability of error for IGS is higher than naive Bayes classification with zero-one loss (NB). We show empirically that IGS does...... not perform well, even for data that satisfies all its assumptions....
Fast business process similarity search
Yan, Z.; Dijkman, R.M.; Grefen, P.W.P.J.
2012-01-01
Nowadays, it is common for organizations to maintain collections of hundreds or even thousands of business processes. Techniques exist to search through such a collection, for business process models that are similar to a given query model. However, those techniques compare the query model to each
Glove boxes and similar containments
International Nuclear Information System (INIS)
Anon.
1975-01-01
According to the present invention a glove box or similar containment is provided with an exhaust system including a vortex amplifier venting into the system, the vortex amplifier also having its main inlet in fluid flow connection with the containment and a control inlet in fluid flow connection with the atmosphere outside the containment. (U.S.)
Light scattering by nonspherical particles theory, measurements, and applications
Mishchenko, Michael I; Travis, Larry D
1999-01-01
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part
International Nuclear Information System (INIS)
Cheng, J-C; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna
2007-01-01
We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies
Lorentz violation, gravitoelectromagnetic field and Bhabha scattering
Santos, A. F.; Khanna, Faqir C.
2018-01-01
Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.
Electron scattering off nuclei
International Nuclear Information System (INIS)
Gattone, A.O.
1989-01-01
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es
Cold moderator scattering kernels
International Nuclear Information System (INIS)
MacFarlane, R.E.
1989-01-01
New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
The theory of deeply inelastic scattering
International Nuclear Information System (INIS)
Bluemlein, J.
2012-01-01
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant α s (M Z 2 ) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
The theory of deeply inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.
2012-08-31
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
Resonant neutrino scattering: An impossible experiment?
International Nuclear Information System (INIS)
Suzuki, D.; Sumikama, T.; Ogura, M.; Mittig, W.; Shiraki, A.; Ichikawa, Y.; Kimura, H.; Otsu, H.; Sakurai, H.; Nakai, Y.; Hussein, M.S.
2010-01-01
The experimental feasibility was investigated for the resonant scattering of monoenergetic neutrinos emitted in the two-body β decay. A simple general formula shows that the resonance cross section can be as large as of the order of 10 -17 cm 2 . The Moessbauer setup using a solid crystal was examined with a focus on the electronic structure of the emitter and the absorber. Based on realistic calculations, we show that interactions of valence electrons in the solid lead to a level broadening of the atomic ground state, which considerably suppresses the resonant scattering of neutrinos.
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
Christillin, P.
1986-01-01
The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)
Diffraction in nuclear scattering
International Nuclear Information System (INIS)
Wojciechowski, H.
1986-01-01
The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)
Proton nuclear scattering radiography
International Nuclear Information System (INIS)
Saudinos, J.
1982-04-01
Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed
Slow neutron scattering experiments
International Nuclear Information System (INIS)
Moon, R.M.
1985-01-01
Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2014-01-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
McCarthy, I.E.
1991-07-01
The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Measurement of Z dependence of elastic scattering cross-sections of 0. 145 MeV gamma rays
Energy Technology Data Exchange (ETDEWEB)
Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics
1981-11-01
The Z dependence of elastic scattering cross-sections of 0.145 MeV gamma rays is investigated at large scattering angles. Measurements are made with scatterers of Pb, W, Sn, Ag, Mo, Zn, Cu, Fe and Al at scattering angles from 75 deg to 150 deg. The experimental results are compared with the available theoretical and experimental data.
Raman scattering tensors of tyrosine.
Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T
1998-01-01
Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).
An Alfven eigenmode similarity experiment
International Nuclear Information System (INIS)
Heidbrink, W W; Fredrickson, E; Gorelenkov, N N; Hyatt, A W; Kramer, G; Luo, Y
2003-01-01
The major radius dependence of Alfven mode stability is studied by creating plasmas with similar minor radius, shape, magnetic field (0.5 T), density (n e ≅3x10 19 m -3 ), electron temperature (1.0 keV) and beam ion population (near-tangential 80 keV deuterium injection) on both NSTX and DIII-D. The major radius of NSTX is half the major radius of DIII-D. The super-Alfvenic beam ions that drive the modes have overlapping values of v f /v A in the two devices. Observed beam-driven instabilities include toroidicity-induced Alfven eigenmodes (TAE). The stability threshold for the TAE is similar in the two devices. As expected theoretically, the most unstable toroidal mode number n is larger in DIII-D
Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering
International Nuclear Information System (INIS)
Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.
2011-01-01
We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.
Semantic similarity between ontologies at different scales
Energy Technology Data Exchange (ETDEWEB)
Zhang, Qingpeng; Haglin, David J.
2016-04-01
In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea via studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.
Compressional Alfven Eigenmode Similarity Study
Heidbrink, W. W.; Fredrickson, E. D.; Gorelenkov, N. N.; Rhodes, T. L.
2004-11-01
NSTX and DIII-D are nearly ideal for Alfven eigenmode (AE) similarity experiments, having similar neutral beams, fast-ion to Alfven speed v_f/v_A, fast-ion pressure, and shape of the plasma, but with a factor of 2 difference in the major radius. Toroidicity-induced AE with ˜100 kHz frequencies were compared in an earlier study [1]; this paper focuses on higher frequency AE with f ˜ 1 MHz. Compressional AE (CAE) on NSTX have a polarization, dependence on the fast-ion distribution function, frequency scaling, and low-frequency limit that are qualitatively consistent with CAE theory [2]. Global AE (GAE) are also observed. On DIII-D, coherent modes in this frequency range are observed during low-field (0.6 T) similarity experiments. Experiments will compare the CAE stability limits on DIII-D with the NSTX stability limits, with the aim of determining if CAE will be excited by alphas in a reactor. Predicted differences in the frequency splitting Δ f between excited modes will also be used. \\vspace0.25em [1] W.W. Heidbrink, et al., Plasmas Phys. Control. Fusion 45, 983 (2003). [2] E.D. Fredrickson, et al., Princeton Plasma Physics Laboratory Report PPPL-3955 (2004).
Measuring spatially- and directionally-varying light scattering from biological material.
Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve
2013-05-20
Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple
Project study of a small-angle neutron scattering apparatus
International Nuclear Information System (INIS)
Schedler, E.; Pollet, J.L.
1979-03-01
This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de
Scattering of lower-hybrid waves by density fluctuations
International Nuclear Information System (INIS)
Andrews, P.L.; Perkins, F.W.
1981-07-01
The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra
Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules
Goltcman, Leonid; Hadad, Yakir
2018-01-01
Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We explore the linearized electromechanical scattering process and demonstrate that by exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors, superresolution imaging, compact nonreciprocal antennas, and more.
Comparison of deep inelastic scattering with photoproduction interactions at HERA
International Nuclear Information System (INIS)
Aid, S.; Andrieu, B.
1995-08-01
Photon-proton (γp) interactions with Q 2 -2 GeV 2 and deep-inelastic scattering (γ * p) interactions with photon virtualities Q 2 > 5 GeV 2 are studied at the high energy electron-proton collider HERA. The transverse energy flow and relative rates of large rapidity gap events are compared in the two event samples. The observed similarity between γp and γ * p interactions can be understood in a picture where the photon develops as a hadronic object. The transverse energy density measured in the central region of the collision, at η * = 0 in the γ * p centre of mass frame, is compared with data from hadron-hadron interactions as function of the CMS energy of the collision. (orig.)
Expansions for model-independent analyses of inelastic electron scattering
International Nuclear Information System (INIS)
Jackson, D.F.; Hilton, J.M.; Roberts, A.C.M.
1977-01-01
It is noted that the commonly-used Fourier-Bessel expansion for the transition density for inelastic electron scattering depends sensitively on an arbitrary parameter and is not realistic at large distances. Alternative expansions are suggested. (author)
Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)
International Nuclear Information System (INIS)
Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.
2006-01-01
A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result
Light-like scattering in quantum gravity
International Nuclear Information System (INIS)
Bjerrum-Bohr, N.E.J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2016-01-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Light-like scattering in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Donoghue, John F. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Holstein, Barry R. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA, 93016 (United States); Planté, Ludovic; Vanhove, Pierre [CEA, DSM, Institut de Physique Théorique, IPhT, CNRS MPPU, URA2306,Saclay, Gif-sur-Yvette, F-91191 (France)
2016-11-21
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Angular momentum alignment in molecular beam scattering
International Nuclear Information System (INIS)
Treffers, M.A.
1985-01-01
It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)
The basic physics of neutron scattering experiments
International Nuclear Information System (INIS)
Mezei, F.
1999-01-01
The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)
International Nuclear Information System (INIS)
Wagner, P.
1976-04-01
Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism
International Nuclear Information System (INIS)
Johnson, R.C.
1980-01-01
High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)
Critical scattering by bubbles
International Nuclear Information System (INIS)
Fiedler-Ferrari, N.; Nussenzveig, H.M.
1986-11-01
We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt
Radiation scattering techniques
International Nuclear Information System (INIS)
Edmonds, E.A.
1986-01-01
Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)
International Nuclear Information System (INIS)
Windmolders, R.
1989-01-01
In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)
Deeply Virtual Neutrino Scattering
International Nuclear Information System (INIS)
Ales Psaker
2007-01-01
We investigate the extension of the deeply virtual Compton scattering process into the weak interaction sector. Standard electromagnetic Compton scattering provides a unique tool for studying hadrons, which is one of the most fascinating frontiers of modern science. In this process the relevant Compton scattering amplitude probes the hadron structure by means of two quark electromagnetic currents. We argue that replacing one of the currents with the weak interaction current can promise a new insight. The paper is organized as follows. In Sec. II we briefly discuss the features of the handbag factorization scheme. We introduce a new set of phenomenological functions, known as generalized parton distributions (GPDs) [1-6], and discuss some of their basic properties in Sec. III. An application of the GPD formalism to the neutrino-induced deeply virtual Compton scattering in the kinematics relevant to future high-intensity neutrino experiments is given in Sec. IV. The cross section results are presented in Sec. V. Finally, in Sec. VI we draw some conclusions and discuss future prospects. Some of the formal results in this paper have appeared in preliminary reports in Refs. [7] and [8], whereas a comprehensive analysis of the weak neutral and weak charged current DVCS reactions in collaboration with W. Melnitchouk and A. Radyushkin has been presented in Ref. [9
Symposium on neutron scattering
International Nuclear Information System (INIS)
Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.
1984-01-01
Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
International Nuclear Information System (INIS)
Santoso, B.
1976-01-01
Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)
Electron Scattering on deuterium
International Nuclear Information System (INIS)
Platchkov, S.
1987-01-01
Selected electron scattering experiments on the deuteron system are discussed. The main advantages of the electromagnetic probe are recalled. The deuteron A(q 2 ) structure function is analyzed and found to be very sensitive to the neutron electric form factor. Electrodisintegration of the deuteron near threshold is presented as evidence for the importance of meson exchange currents in nuclei [fr
Parity violating electron scattering
International Nuclear Information System (INIS)
McKeown, R.D.
1990-01-01
Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed
International Nuclear Information System (INIS)
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Multienergy anomalous diffuse scattering
Czech Academy of Sciences Publication Activity Database
Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.
2008-01-01
Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
Correlation in atomic scattering
International Nuclear Information System (INIS)
McGuire, J.H.
1987-01-01
Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed
Superradiative scattering magnons
International Nuclear Information System (INIS)
Shrivastava, K.N.
1980-01-01
A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Similarity analysis between quantum images
Zhou, Ri-Gui; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou
2018-06-01
Similarity analyses between quantum images are so essential in quantum image processing that it provides fundamental research for the other fields, such as quantum image matching, quantum pattern recognition. In this paper, a quantum scheme based on a novel quantum image representation and quantum amplitude amplification algorithm is proposed. At the end of the paper, three examples and simulation experiments show that the measurement result must be 0 when two images are same, and the measurement result has high probability of being 1 when two images are different.
Similarity flows in relativistic hydrodynamics
International Nuclear Information System (INIS)
Blaizot, J.P.; Ollitrault, J.Y.
1986-01-01
In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Energy Technology Data Exchange (ETDEWEB)
Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-12-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Electron scattering from the ground state of mercury
International Nuclear Information System (INIS)
Fursa, D.; Bray, I.
2000-01-01
Full text: Close-coupling calculations have been performed for electron scattering from the ground state of mercury. We have used non-relativistic convergent close-coupling computer code with only minor modifications in order to account for the most prominent relativistic effects. These are the relativistic shift effect and singlet-triplet mixing. Very good agreement with measurements of differential cross sections for elastic scattering and excitation of 6s6p 1 P state at all energies is obtained. It is well recognised that a consistent approach to electron scattering from heavy atoms (like mercury, with nuclear charge Z=80) must be based on a fully relativistic Dirac equations based technique. While development of such technique is under progress in our group, the complexity of the problem ensures that results will not be available in the near future. On other hand, there is considerable interest in reliable theoretical results for electron scattering from heavy atoms from both applications and the need to interpret existing experimental data. This is particularly the case for mercury, which is the major component in fluorescent lighting devices and has been the subject of intense experimental study since nineteen thirties. Similarly to our approach for alkaline-earth atoms we use a model of two valence electrons above an inert Hartree-Fock core to describe the mercury atom. Note that this model does not account for any core excited states which are present in the mercury discrete spectrum. The major effect of missing core-excited states is substantial underestimation of the static dipole polarizability of the mercury ground state (34 a.u.) and consequent underestimation of the forward scattering elastic cross sections. We correct for this by adding in the scattering calculations a phenomenological polarization potential. In order to obtain correct ground state ionization energy for mercury one has to account for the relativistic shift effect. We model this
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Neutron scattering study of dilute supercritical solutions
International Nuclear Information System (INIS)
Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.
1994-01-01
Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast
Progress report on neutron scattering at JAERI
Energy Technology Data Exchange (ETDEWEB)
Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-10-01
In the first half of fiscal year 1997, JRR-3M was operated for 97 days followed by a long term shut down for its annual maintenance. Three days were lost out of 100 scheduled operation days, due to a trouble in irradiation facility. Neutron scattering research activities at the JRR-3M have been extended from that of fiscal year 1996. In the Research Group for Quantum Condensed Matter System, experimental study under high pressures, low temperatures and high fields as well as coupling of these conditions were planned to find new quantum condensed matter systems. And, obtained experimental results were immediately provided to theorists for their investigations. In cooperation with new group, Research Group for Neutron Scattering of Strongly Correlated Electron Systems and Research Group for Neutron Scattering at Ultralow Temperatures were carrying neutron scattering experiments at JRR-3M. Research Group for Neutron Crystallography in Biology had opened a way for investigating biomatter neutron diffraction research with high experimental accuracy by growing a millimeter-class large single crystal. In fiscal year 1997, 39 research projects were conducted by these four groups and other staffs in JAERI, 27 projects collaborated with university researchers and 3 projects collaborated with private enterprises were also conducted as complementary researches. 2117 days of machine times were requested to use 8 neutron scattering instruments this year, which corresponded to 1.51 times larger than those planned at its beginning. (G.K.)
German neutron scattering conference. Programme and abstracts
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas (ed.)
2012-07-01
The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.
German neutron scattering conference. Programme and abstracts
International Nuclear Information System (INIS)
Brueckel, Thomas
2012-01-01
The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.
Self-similar gravitational clustering
International Nuclear Information System (INIS)
Efstathiou, G.; Fall, S.M.; Hogan, C.
1979-01-01
The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)
Heavy ion elastic and quasi-elastic scattering above E/A = 30 MeV
International Nuclear Information System (INIS)
Barrette, J.
1986-05-01
At high energy, heavy-ion elastic scattering probes the ion-ion potential in a large domain much inside the strong absorption radius. This results in a more precise determination of the real part of the nuclear potential and a consistent picture of its evolution with energy begins to emerge. It is relatively similar to that observed in light ion scattering. Even if the inelastic angular distributions seem to contain less refractive or interior contribution, coupled channel effects from these states are still important at least up to 20 MeV/n. Heavy-ion induced transfer reactions to discrete states have small cross sections but present a very strong selectivity for states with the highest available spin and could thus provide new and interesting spectroscopic information
Resonance scattering of Rayleigh waves by a mass defect
International Nuclear Information System (INIS)
Croitoru, M.; Grecu, D.
1978-06-01
The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)
Thermal-neutron multiple scattering: critical double scattering
International Nuclear Information System (INIS)
Holm, W.A.
1976-01-01
A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer
FDTD scattered field formulation for scatterers in stratified dispersive media.
Olkkonen, Juuso
2010-03-01
We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.
Evaluating gender similarities and differences using metasynthesis.
Zell, Ethan; Krizan, Zlatan; Teeter, Sabrina R
2015-01-01
Despite the common lay assumption that males and females are profoundly different, Hyde (2005) used data from 46 meta-analyses to demonstrate that males and females are highly similar. Nonetheless, the gender similarities hypothesis has remained controversial. Since Hyde's provocative report, there has been an explosion of meta-analytic interest in psychological gender differences. We utilized this enormous collection of 106 meta-analyses and 386 individual meta-analytic effects to reevaluate the gender similarities hypothesis. Furthermore, we employed a novel data-analytic approach called metasynthesis (Zell & Krizan, 2014) to estimate the average difference between males and females and to explore moderators of gender differences. The average, absolute difference between males and females across domains was relatively small (d = 0.21, SD = 0.14), with the majority of effects being either small (46%) or very small (39%). Magnitude of differences fluctuated somewhat as a function of the psychological domain (e.g., cognitive variables, social and personality variables, well-being), but remained largely constant across age, culture, and generations. These findings provide compelling support for the gender similarities hypothesis, but also underscore conditions under which gender differences are most pronounced. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Scattering phase functions of horizontally oriented hexagonal ice crystals
International Nuclear Information System (INIS)
Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.
2006-01-01
Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns
Popularity versus similarity in growing networks
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian
2012-02-01
Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.
Scattering of 20Ne atoms from the (001) face of LiF
International Nuclear Information System (INIS)
Semerad, E.; Hoerl, E.M.
1983-01-01
An apparatus for measurements of inelastic scattering processes of gas atoms from crystal surfaces is described. Scattering experiments with Neon atoms of thermal energy on the (001) LiF surface in the azimuth are discussed. Inelastic scattering shows large contributions of single phonon interactions as well as of modes originating from the bulk bands. (Author)
Bethmann, F.
2011-03-22
Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.
Seniority bosons from similarity transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1986-01-01
The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method
Electroweak physics and electron scattering
International Nuclear Information System (INIS)
Henley, E.M.; Hwang, W.Y.P.
1988-01-01
The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs
Electromagnetic scattering from random media
Field, Timothy R
2009-01-01
- ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework
Fast-neutron elastic scattering from elemental vanadium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Lawson, R.D.
1988-03-01
Differential neutron elastic- and inelastic-scattering cross sections of vanadium were measured from 4.5 to 10 MeV. These results were combined with previous 1.5 to 4.0 MeV data from this laboratory, the 11.1 MeV elastic-scattering results obtained at Ohio University, and the reported neutron total cross sections to energies of ∼20.0 MeV, to form a data base which was interpreted in terms of the spherical optical-statistical model. A fit to the data was achieved by making both the strengths and geometries of the optical-model potential energy dependent. This energy dependence was large below ∼6.0 MeV. Above ∼6.0 MeV the energy dependencies are smaller, and similar to those characteristic of global models. Using the dispersion relationship and the method of moments, the optical-model potential energy deduced from 0.0 to 11.1 MeV neutron-scattering data was extrapolated to higher energies and to the bound-state regime. This extrapolation leads to predicted neutron total cross sections that are within 3% of the experimental values throughout the energy range 0.0 to 20.0 MeV. Furthermore, the values of the volume-integral-per-nucleon of the real potential are in excellent agreement with those needed to reproduce the observed binding energies of particle- and hole-states. The latter gives clear evidence of the Fermi surface anomaly. Using only the 0.0 to 11.1 MeV data, the predicted E < O behavior of the strength and radius of the real shell-model Woods-Saxon potential are somewhat different from those obtained by Mahaux and Sartor in their analysis of nuclei near closed shells. 61 refs., 9 figs., 2 tabs
Polymer research by neutron scattering
International Nuclear Information System (INIS)
Richter, D.
1993-01-01
Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)
Spherically symmetric self-similar universe
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C [Toronto Univ., Ontario (Canada)
1979-10-01
A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.
CONFERENCE: Elastic and diffractive scattering
Energy Technology Data Exchange (ETDEWEB)
White, Alan
1989-09-15
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.
Second sound scattering in superfluid helium
International Nuclear Information System (INIS)
Rosgen, T.
1985-01-01
Focusing cavities are used to study the scattering of second sound in liquid helium II. The special geometries reduce wall interference effects and allow measurements in very small test volumes. In a first experiment, a double elliptical cavity is used to focus a second sound wave onto a small wire target. A thin film bolometer measures the side scattered wave component. The agreement with a theoretical estimate is reasonable, although some problems arise from the small measurement volume and associated alignment requirements. A second cavity is based on confocal parabolas, thus enabling the use of large planar sensors. A cylindrical heater produces again a focused second sound wave. Three sensors monitor the transmitted wave component as well as the side scatter in two different directions. The side looking sensors have very high sensitivities due to their large size and resistance. Specially developed cryogenic amplifers are used to match them to the signal cables. In one case, a second auxiliary heater is used to set up a strong counterflow in the focal region. The second sound wave then scatters from the induced fluid disturbances
Dark-field hyperlens: Super-resolution imaging of weakly scattering objects
DEFF Research Database (Denmark)
Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei
2015-01-01
: We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...
Electron scattering on molecular hydrogen
International Nuclear Information System (INIS)
Wingerden, B. van.
1980-01-01
The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)
Scattering Of Nonplanar Acoustic Waves
Gillman, Judith M.; Farassat, F.; Myers, M. K.
1995-01-01
Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
2014-11-04
Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...
Scattering theory and chemical reactions
International Nuclear Information System (INIS)
Kuppermann, A.
1988-01-01
In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt
Thermoelectric band engineering: The role of carrier scattering
Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse
2017-11-01
Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.
Q-space analysis of light scattering by ice crystals
Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.
2016-12-01
Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.
Neural network scatter correction technique for digital radiography
International Nuclear Information System (INIS)
Boone, J.M.
1990-01-01
This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique
International Nuclear Information System (INIS)
Zakharov, V.I.
1977-01-01
The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model
Semiclassical scattering theory
International Nuclear Information System (INIS)
Di Salvo, A.
1985-01-01
It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined
International Nuclear Information System (INIS)
Combes, J.M.
1980-10-01
A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories
International Nuclear Information System (INIS)
Cable, J.W.
1987-01-01
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs
An l-window formalism for elastic heavy-ion scattering
International Nuclear Information System (INIS)
Rowley, N.
1980-01-01
It is shown that the heavy-ion elastic scattering amplitude may be written as an exact summation over sharp cut-off Coulomb amplitudes with coefficients which are simply the differences of successive nuclear S-matrix elements. Thus in the case of strong absorption the coefficients are non-zero only over a small range of angular momenta, formally making the elastic amplitude similar to those for inelastic scattering and transfer reactions in that it possesses an 'l window'. Some good approximations to the sharp cut-off Coulomb amplitudes are given enabling the results obtained by the usual integral techniques for dealing with smooth S matrices to be rederived simply. A simple means of studying cases where the transition from no absorption to total absorption takes place over a very small range of angular momenta is also provided. The case of identical spin-zero ions, in particular the system 16 0 + 16 0, is discussed and a qualitative understanding of many of the experimental results and of previous fits to the data obtained. Large-angle scattering of non-identical ions is also mentioned and the l-window formalism suggests that the angular distributions for the elastic and other channels should be very similar in this region. (author)
Application of hot neutron scattering to the problem of 3d metallic paramagnetism
International Nuclear Information System (INIS)
Brown, P.J.; Capellmann, H.; Deportes, J.; Givord, D.; Johnson, S.M.; Ziebeck, K.R.A.
1984-01-01
The authors report in this paper on experiments performed in Fe and Ni in their paramagnetic state. Scattering of polarized neutrons with polarization analysis has been used to separate out the magnetic scattering from other sources of scattering. Large quasi-elastic scattering is observed which characterizes ferromagnetic correlations over several inter-atomic distances. The large-Q component of the scattering is fairly small as expected for itinerant electrons in which the energy of magnetic excitations may be of the order of the bandwidth. These should help discriminate between the itinerant and localized models
Scattering of charged particles
International Nuclear Information System (INIS)
Barrachina, R.O.; Macek, J.H.
1989-01-01
Different methods of avoiding the known difficulties of the Coulomb potential scattering theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] ''distorted'' free waves and van Haeringen's [J. Math. Phys. 17, 995 (1976)] Coulomb asymptotic states are considered. The equivalence of both approaches on the energy shell is shown. Actually the possibility of deriving the first method within van Haeringen's formalism by means of a distorted wave procedure is demonstrated
International Nuclear Information System (INIS)
Vernon, M.F.
1983-07-01
The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included
Polarimetric neutron scattering
International Nuclear Information System (INIS)
Tasset, F.
2001-01-01
Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)
Czech Academy of Sciences Publication Activity Database
Banakh, T.; Bonnet, R.; Kubiś, Wieslaw
2014-01-01
Roč. 2, č. 1 (2014), s. 5-10 ISSN 2299-3231 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : scattered compact space * mean operation Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/taa.2014.2.issue-1/taa-2014-0002/taa-2014-0002.xml
Alaska, Gulf spills share similarities
International Nuclear Information System (INIS)
Usher, D.
1991-01-01
The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide
Neutron scattering in Australia
International Nuclear Information System (INIS)
Knott, R.B.
1994-01-01
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains
Neutron scattering in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)
1994-12-31
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.
International Nuclear Information System (INIS)
Queen, N.M.
1978-01-01
This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
International Nuclear Information System (INIS)
Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor
2014-01-01
Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)
Scattering of intermediate energy protons
International Nuclear Information System (INIS)
Chaumeaux, Alain.
1980-06-01
The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr
Perspectives of lepton-nucleon scattering
International Nuclear Information System (INIS)
Eisele, F.
1987-01-01
Present day lepton-nucleon scattering experiments will find a continuation at the HERA e-p collider in the near future. HERA experiments will be complementary and in concurrence to other colliders (e/sup +/e/sup -/, p-barp) which will work in a similar energy range at a similar time. HERA has a rewarding unique program of ''standard'' physics. If new physics should show up in the new energy domain, HERA will be an excellent machine to help reveiling its structure. Depending on luck and time scale, HERA offers also the chance of original discoveries in fields where it is unique
Low-energy electron scattering from pyrimidine: Similarities and differences with benzene
Jones, D. B.; Bellm, S. M.; Limão-Vieira, P.; Brunger, M. J.
2012-05-01
Differential cross sections for low-energy electron-impact excitation of the unresolved combinations of 23B2 + 21A1 and 31A1 + 21B2 electronic states of pyrimidine are reported. Comparisons are made with recent differential cross section measurements for the electron-impact excitation of the 1E1u and unresolved 1B1u + 3E2g electronic states of benzene [H. Kato, M. Hoshino, H. Tanaka, P. Limão-Vieira, O. Ingolfsson, L. Campbell, M.J. Brunger, J. Chem. Phys. 134 (2011) 134308.], in order to evaluate the nature of electron impact π-π∗ transitions in aromatic species.
Energy Technology Data Exchange (ETDEWEB)
Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)
2010-02-15
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low
International Nuclear Information System (INIS)
Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.
2010-01-01
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be
Inclusion of Scatter in HADES: Final Report
International Nuclear Information System (INIS)
Aufderheide, M.B.
2010-01-01
Covert nuclear attack is one of the foremost threats facing the United States and is a primary focus of the War on Terror. The Domestic Nuclear Detection Office (DNDO), within the Department of Homeland Security (DHS), is chartered to develop, and improve domestic systems to detect and interdict smuggling for the illicit use of a nuclear explosive device, fissile material or radiologica1 material. The CAARS (Cargo Advanced Automated Radiography System) program is a major part of the DHS effort to enhance US security by harnessing cutting-edge technologies to detect radiological and nuclear threats at points of entry to the United States. DNDO has selected vendors to develop complete radiographic systems. It is crucial that the initial design and testing concepts for the systems be validated and compared prior to the substantial efforts to build and deploy prototypes and subsequent large-scale production. An important aspect of these systems is the scatter which interferes with imaging. Monte Carlo codes, such as MCNP (X-5 Monte Carlo Team, 2005 Revision) allow scatter to be calculatied, but these calculations are very time consuming. It would be useful to have a fast scatter estimation algorithm in a fast ray tracing code. We have been extending the HADES ray-tracing radiographic simulation code to model vendor systems in a flexible and quick fashion and to use this tool to study a variety of questions involving system performance and the comparative value of surrogates. To enable this work, HADES has been linked to the BRL-CAD library (BRL-CAD Open Source Project, 2010), in order to enable the inclusion of complex CAD geometries in simulations, scanner geometries have been implemented in HADES, and the novel detector responses have been included in HADES. A major extension of HADES which has been required by this effort is the inclusion of scatter in these radiographic simulations. Ray tracing codes generally do not easily allow the inclusion of scatter, because
Multiple scattering effects in depth resolution of elastic recoil detection
International Nuclear Information System (INIS)
Wielunski, L.S.; Harding, G.L.
1998-01-01
Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)
Multiple scattering effects in depth resolution of elastic recoil detection
Energy Technology Data Exchange (ETDEWEB)
Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)
1998-06-01
Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.