WorldWideScience

Sample records for large scale monitoring

  1. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  2. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  3. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  4. Monitoring and Information Fusion for Search and Rescue Operations in Large-Scale Disasters

    National Research Council Canada - National Science Library

    Nardi, Daniele

    2002-01-01

    ... for information fusion with application to search-and-rescue and large scale disaster relief. The objective is to develop and to deploy tools to support the monitoring activities in an intervention caused by a large-scale disaster...

  5. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    Science.gov (United States)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  6. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    International Nuclear Information System (INIS)

    Babik, Marian; Hook, Nicholas; Lansdale, Thomas Hector; Lenkes, Daniel; Siket, Miroslav; Waldron, Denis; Fedorko, Ivan

    2011-01-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  7. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  8. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  9. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    Science.gov (United States)

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. © 2013 Society for Conservation Biology.

  10. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  11. DNSSM: A Large Scale Passive DNS Security Monitoring Framework

    OpenAIRE

    Marchal , Samuel; François , Jérôme; Wagner , Cynthia; State , Radu; Dulaunoy , Alexandre; Engel , Thomas; Festor , Olivier

    2012-01-01

    International audience; We present a monitoring approach and the supporting software architecture for passive DNS traffic. Monitoring DNS traffic can reveal essential network and system level activity profiles. Worm infected and botnet participating hosts can be identified and malicious backdoor communications can be detected. Any passive DNS monitoring solution needs to address several challenges that range from architectural approaches for dealing with large volumes of data up to specific D...

  12. Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales

    Directory of Open Access Journals (Sweden)

    Luke Parry

    2015-09-01

    Full Text Available Monitoring the distribution and abundance of hunted wildlife is critical to achieving sustainable resource use, yet adequate data are sparse for most tropical regions. Conventional methods for monitoring hunted forest-vertebrate species require intensive in situ survey effort, which severely constrains spatial and temporal replication. Integrating local ecological knowledge (LEK into monitoring and management is appealing because it can be cost-effective, enhance community participation, and provide novel insights into sustainable resource use. We develop a technique to monitor population depletion of hunted forest wildlife in the Brazilian Amazon, based on the local ecological knowledge of rural hunters. We performed rapid interview surveys to estimate the landscape-scale depletion of ten large-bodied vertebrate species around 161 Amazonian riverine settlements. We assessed the explanatory and predictive power of settlement and landscape characteristics and were able to develop robust estimates of local faunal depletion. By identifying species-specific drivers of depletion and using secondary data on human population density, land form, and physical accessibility, we then estimated landscape- and regional-scale depletion. White-lipped peccary (Tayassu pecari, for example, were estimated to be absent from 17% of their putative range in Brazil's largest state (Amazonas, despite 98% of the original forest cover remaining intact. We found evidence that bushmeat consumption in small urban centers has far-reaching impacts on some forest species, including severe depletion well over 100 km from urban centers. We conclude that LEK-based approaches require further field validation, but have significant potential for community-based participatory monitoring as well as cost-effective, large-scale monitoring of threatened forest species.

  13. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    Directory of Open Access Journals (Sweden)

    Steiakakis Chrysanthos

    2016-01-01

    Full Text Available The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions.

  14. A KPI-based process monitoring and fault detection framework for large-scale processes.

    Science.gov (United States)

    Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Yang, Xu; Ding, Steven X; Peng, Kaixiang

    2017-05-01

    Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Self managing monitoring for highly elastic large scale Cloud deployments

    OpenAIRE

    Ward, Jonathan Stuart; Barker, Adam David

    2014-01-01

    Infrastructure as a Service computing exhibits a number of properties, which are not found in conventional server deployments. Elasticity is among the most significant of these properties which has wide reaching implications for applications deployed in cloud hosted VMs. Among the applications affected by elasticity is monitoring. In this paper we investigate the challenges of monitoring large cloud deployments and how these challenges differ from previous monitoring problems. In order to mee...

  16. The integration of novel diagnostics techniques for multi-scale monitoring of large civil infrastructures

    Directory of Open Access Journals (Sweden)

    F. Soldovieri

    2008-11-01

    Full Text Available In the recent years, structural monitoring of large infrastructures (buildings, dams, bridges or more generally man-made structures has raised an increased attention due to the growing interest about safety and security issues and risk assessment through early detection. In this framework, aim of the paper is to introduce a new integrated approach which combines two sensing techniques acting on different spatial and temporal scales. The first one is a distributed optic fiber sensor based on the Brillouin scattering phenomenon, which allows a spatially and temporally continuous monitoring of the structure with a "low" spatial resolution (meter. The second technique is based on the use of Ground Penetrating Radar (GPR, which can provide detailed images of the inner status of the structure (with a spatial resolution less then tens centimetres, but does not allow a temporal continuous monitoring. The paper describes the features of these two techniques and provides experimental results concerning preliminary test cases.

  17. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  18. Configuration monitoring tool for large-scale distributed computing

    International Nuclear Information System (INIS)

    Wu, Y.; Graham, G.; Lu, X.; Afaq, A.; Kim, B.J.; Fisk, I.

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN will likely use a grid system to achieve much of its offline processing need. Given the heterogeneous and dynamic nature of grid systems, it is desirable to have in place a configuration monitor. The configuration monitoring tool is built using the Globus toolkit and web services. It consists of an information provider for the Globus MDS, a relational database for keeping track of the current and old configurations, and client interfaces to query and administer the configuration system. The Grid Security Infrastructure (GSI), together with EDG Java Security packages, are used for secure authentication and transparent access to the configuration information across the CMS grid. This work has been prototyped and tested using US-CMS grid resources

  19. Configuration monitoring tool for large-scale distributed computing

    CERN Document Server

    Wu, Y; Fisk, I; Graham, G; Kim, B J; Lü, X

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN will likely use a grid system to achieve much of its offline processing need. Given the heterogeneous and dynamic nature of grid systems, it is desirable to have in place a configuration monitor. The configuration monitoring tool is built using the Globus toolkit and web services. It consists of an information provider for the Globus MDS, a relational database for keeping track of the current and old configurations, and client interfaces to query and administer the configuration system. The Grid Security Infrastructure (GSI), together with EDG Java Security packages, are used for secure authentication and transparent access to the configuration information across the CMS grid. This work has been prototyped and tested using US-CMS grid resources.

  20. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  1. Dose monitoring in large-scale flowing aqueous media

    International Nuclear Information System (INIS)

    Kuruca, C.N.

    1995-01-01

    The Miami Electron Beam Research Facility (EBRF) has been in operation for six years. The EBRF houses a 1.5 MV, 75 KW DC scanned electron beam. Experiments have been conducted to evaluate the effectiveness of high-energy electron irradiation in the removal of toxic organic chemicals from contaminated water and the disinfection of various wastewater streams. The large-scale plant operates at approximately 450 L/min (120 gal/min). The radiation dose absorbed by the flowing aqueous streams is estimated by measuring the difference in water temperature before and after it passes in front of the beam. Temperature measurements are made using resistance temperature devices (RTDs) and recorded by computer along with other operating parameters. Estimated dose is obtained from the measured temperature differences using the specific heat of water. This presentation will discuss experience with this measurement system, its application to different water presentation devices, sources of error, and the advantages and disadvantages of its use in large-scale process applications

  2. Lichen elemental content bioindicators for air quality in upper Midwest, USA: A model for large-scale monitoring

    Science.gov (United States)

    Susan Will-Wolf; Sarah Jovan; Michael C. Amacher

    2017-01-01

    Our development of lichen elemental bioindicators for a United States of America (USA) national monitoring program is a useful model for other large-scale programs. Concentrations of 20 elements were measured, validated, and analyzed for 203 samples of five common lichen species. Collections were made by trained non-specialists near 75 permanent plots and an expert...

  3. Development of lichen response indexes using a regional gradient modeling approach for large-scale monitoring of forests

    Science.gov (United States)

    Susan Will-Wolf; Peter Neitlich

    2010-01-01

    Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...

  4. Can wide consultation help with setting priorities for large-scale biodiversity monitoring programs?

    Directory of Open Access Journals (Sweden)

    Frédéric Boivin

    Full Text Available Climate and other global change phenomena affecting biodiversity require monitoring to track ecosystem changes and guide policy and management actions. Designing a biodiversity monitoring program is a difficult task that requires making decisions that often lack consensus due to budgetary constrains. As monitoring programs require long-term investment, they also require strong and continuing support from all interested parties. As such, stakeholder consultation is key to identify priorities and make sound design decisions that have as much support as possible. Here, we present the results of a consultation conducted to serve as an aid for designing a large-scale biodiversity monitoring program for the province of Québec (Canada. The consultation took the form of a survey with 13 discrete choices involving tradeoffs in respect to design priorities and 10 demographic questions (e.g., age, profession. The survey was sent to thousands of individuals having expected interests and knowledge about biodiversity and was completed by 621 participants. Overall, consensuses were few and it appeared difficult to create a design fulfilling the priorities of the majority. Most participants wanted 1 a monitoring design covering the entire territory and focusing on natural habitats; 2 a focus on species related to ecosystem services, on threatened and on invasive species. The only demographic characteristic that was related to the type of prioritization was the declared level of knowledge in biodiversity (null to high, but even then the influence was quite small.

  5. Can wide consultation help with setting priorities for large-scale biodiversity monitoring programs?

    Science.gov (United States)

    Boivin, Frédéric; Simard, Anouk; Peres-Neto, Pedro

    2014-01-01

    Climate and other global change phenomena affecting biodiversity require monitoring to track ecosystem changes and guide policy and management actions. Designing a biodiversity monitoring program is a difficult task that requires making decisions that often lack consensus due to budgetary constrains. As monitoring programs require long-term investment, they also require strong and continuing support from all interested parties. As such, stakeholder consultation is key to identify priorities and make sound design decisions that have as much support as possible. Here, we present the results of a consultation conducted to serve as an aid for designing a large-scale biodiversity monitoring program for the province of Québec (Canada). The consultation took the form of a survey with 13 discrete choices involving tradeoffs in respect to design priorities and 10 demographic questions (e.g., age, profession). The survey was sent to thousands of individuals having expected interests and knowledge about biodiversity and was completed by 621 participants. Overall, consensuses were few and it appeared difficult to create a design fulfilling the priorities of the majority. Most participants wanted 1) a monitoring design covering the entire territory and focusing on natural habitats; 2) a focus on species related to ecosystem services, on threatened and on invasive species. The only demographic characteristic that was related to the type of prioritization was the declared level of knowledge in biodiversity (null to high), but even then the influence was quite small.

  6. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  7. Large-scale control site selection for population monitoring: an example assessing Sage-grouse trends

    Science.gov (United States)

    Fedy, Bradley C.; O'Donnell, Michael; Bowen, Zachary H.

    2015-01-01

    Human impacts on wildlife populations are widespread and prolific and understanding wildlife responses to human impacts is a fundamental component of wildlife management. The first step to understanding wildlife responses is the documentation of changes in wildlife population parameters, such as population size. Meaningful assessment of population changes in potentially impacted sites requires the establishment of monitoring at similar, nonimpacted, control sites. However, it is often difficult to identify appropriate control sites in wildlife populations. We demonstrated use of Geographic Information System (GIS) data across large spatial scales to select biologically relevant control sites for population monitoring. Greater sage-grouse (Centrocercus urophasianus; hearafter, sage-grouse) are negatively affected by energy development, and monitoring of sage-grouse population within energy development areas is necessary to detect population-level responses. Weused population data (1995–2012) from an energy development area in Wyoming, USA, the Atlantic Rim Project Area (ARPA), and GIS data to identify control sites that were not impacted by energy development for population monitoring. Control sites were surrounded by similar habitat and were within similar climate areas to the ARPA. We developed nonlinear trend models for both the ARPA and control sites and compared long-term trends from the 2 areas. We found little difference between the ARPA and control sites trends over time. This research demonstrated an approach for control site selection across large landscapes and can be used as a template for similar impact-monitoring studies. It is important to note that identification of changes in population parameters between control and treatment sites is only the first step in understanding the mechanisms that underlie those changes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness

    OpenAIRE

    Heimbach, Fred; Russ, Anja; Schimmer, Maren; Born, Katrin

    2016-01-01

    Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of ...

  9. Radiations: large scale monitoring in Japan

    International Nuclear Information System (INIS)

    Linton, M.; Khalatbari, A.

    2011-01-01

    As the consequences of radioactive leaks on their health are a matter of concern for Japanese people, a large scale epidemiological study has been launched by the Fukushima medical university. It concerns the two millions inhabitants of the Fukushima Prefecture. On the national level and with the support of public funds, medical care and follow-up, as well as systematic controls are foreseen, notably to check the thyroid of 360.000 young people less than 18 year old and of 20.000 pregnant women in the Fukushima Prefecture. Some measurements have already been performed on young children. Despite the sometimes rather low measures, and because they know that some parts of the area are at least as much contaminated as it was the case around Chernobyl, some people are reluctant to go back home

  10. Large scale photovoltaic field trials. Second technical report: monitoring phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This report provides an update on the Large-Scale Building Integrated Photovoltaic Field Trials (LS-BIPV FT) programme commissioned by the Department of Trade and Industry (Department for Business, Enterprise and Industry; BERR). It provides detailed profiles of the 12 projects making up this programme, which is part of the UK programme on photovoltaics and has run in parallel with the Domestic Field Trial. These field trials aim to record the experience and use the lessons learnt to raise awareness of, and confidence in, the technology and increase UK capabilities. The projects involved: the visitor centre at the Gaia Energy Centre in Cornwall; a community church hall in London; council offices in West Oxfordshire; a sports science centre at Gloucester University; the visitor centre at Cotswold Water Park; the headquarters of the Insolvency Service; a Welsh Development Agency building; an athletics centre in Birmingham; a research facility at the University of East Anglia; a primary school in Belfast; and Barnstable civic centre in Devon. The report describes the aims of the field trials, monitoring issues, performance, observations and trends, lessons learnt and the results of occupancy surveys.

  11. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    Science.gov (United States)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilles

    2016-01-01

    The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions. This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100-120 m were successfully mined with an average displacement rate of 10- 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.

  12. Cost-Effective Large-Scale Occupancy-Abundance Monitoring of Invasive Brushtail Possums (Trichosurus Vulpecula on New Zealand's Public Conservation Land.

    Directory of Open Access Journals (Sweden)

    Andrew M Gormley

    Full Text Available There is interest in large-scale and unbiased monitoring of biodiversity status and trend, but there are few published examples of such monitoring being implemented. The New Zealand Department of Conservation is implementing a monitoring program that involves sampling selected biota at the vertices of an 8-km grid superimposed over the 8.6 million hectares of public conservation land that it manages. The introduced brushtail possum (Trichosurus Vulpecula is a major threat to some biota and is one taxon that they wish to monitor and report on. A pilot study revealed that the traditional method of monitoring possums using leg-hold traps set for two nights, termed the Trap Catch Index, was a constraint on the cost and logistical feasibility of the monitoring program. A phased implementation of the monitoring program was therefore conducted to collect data for evaluating the trade-off between possum occupancy-abundance estimates and the costs of sampling for one night rather than two nights. Reducing trapping effort from two nights to one night along four trap-lines reduced the estimated costs of monitoring by 5.8% due to savings in labour, food and allowances; it had a negligible effect on estimated national possum occupancy but resulted in slightly higher and less precise estimates of relative possum abundance. Monitoring possums for one night rather than two nights would provide an annual saving of NZ$72,400, with 271 fewer field days required for sampling. Possums occupied 60% (95% credible interval; 53-68 of sampling locations on New Zealand's public conservation land, with a mean relative abundance (Trap Catch Index of 2.7% (2.0-3.5. Possum occupancy and abundance were higher in forest than in non-forest habitats. Our case study illustrates the need to evaluate relationships between sampling design, cost, and occupancy-abundance estimates when designing and implementing large-scale occupancy-abundance monitoring programs.

  13. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  14. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    OpenAIRE

    Hairui Wang; Junfu Yu

    2014-01-01

    In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless senso...

  15. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  16. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoheng Ding

    2018-05-01

    Full Text Available The triboelectric nanogenerator (TENG and its application as a sensor is a popular research subject. There is demand for self-powered, flexible sensors with high sensitivity and high power-output for the next generation of consumer electronics. In this study, a 300 mm × 300 mm carbon nanotube (CNT-doped porous PDMS film was successfully fabricated wherein the CNT influenced the micropore structure. A self-powered TENG tactile sensor was established according to triboelectric theory. The CNT-doped porous TENG showed a voltage output seven times higher than undoped porous TENG and 16 times higher than TENG with pure PDMS, respectively. The TENG successfully acquired human motion signals, breath signals, and heartbeat signals during a sleep monitoring experiment. The results presented here may provide an effective approach for fabricating large-scale and low-cost flexible TENG sensors.

  17. Monitoring great ape and elephant abundance at large spatial scales: measuring effectiveness of a conservation landscape.

    Directory of Open Access Journals (Sweden)

    Emma J Stokes

    Full Text Available Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats--irrespective of land-use type--harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads--even subject to anti-poaching controls--were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or

  18. Low-cost Photoacoustic-based Measurement System for Carbon Dioxide Fluxes with the Potential for large-scale Monitoring

    Science.gov (United States)

    Scholz, L. T.; Bierer, B.; Ortiz Perez, A.; Woellenstein, J.; Sachs, T.; Palzer, S.

    2016-12-01

    The determination of carbon dioxide (CO2) fluxes between ecosystems and the atmosphere is crucial for understanding ecological processes on regional and global scales. High quality data sets with full uncertainty estimates are needed to evaluate model simulations. However, current flux monitoring techniques are unsuitable to provide reliable data of a large area at both a detailed level and an appropriate resolution, at best in combination with a high sampling rate. Currently used sensing technologies, such as non-dispersive infrared (NDIR) gas analyzers, cannot be deployed in large numbers to provide high spatial resolution due to their costs and complex maintenance requirements. Here, we propose a novel CO2 measurement system, whose gas sensing unit is made up of low-cost, low-power consuming components only, such as an IR-LED and a photoacoustic detector. The sensor offers a resolution of sensor response of just a few seconds. Since the sensor can be applied in-situ without special precautions, it allows for environmental monitoring in a non-invasive way. Its low energy consumption enables long-term measurements. The low overall costs favor the manufacturing in large quantities. This allows the operation of multiple sensors at a reasonable price and thus provides concentration measurements at any desired spatial coverage and at high temporal resolution. With appropriate 3D configuration of the units, vertical and horizontal fluxes can be determined. By applying a closely meshed wireless sensor network, inhomogeneities as well as CO2 sources and sinks in the lower atmosphere can be monitored. In combination with sensors for temperature, pressure and humidity, our sensor paves the way towards the reliable and extensive monitoring of ecosystem-atmosphere exchange rates. The technique can also be easily adapted to other relevant greenhouse gases.

  19. Comparative Analysis of Different Protocols to Manage Large Scale Networks

    OpenAIRE

    Anil Rao Pimplapure; Dr Jayant Dubey; Prashant Sen

    2013-01-01

    In recent year the numbers, complexity and size is increased in Large Scale Network. The best example of Large Scale Network is Internet, and recently once are Data-centers in Cloud Environment. In this process, involvement of several management tasks such as traffic monitoring, security and performance optimization is big task for Network Administrator. This research reports study the different protocols i.e. conventional protocols like Simple Network Management Protocol and newly Gossip bas...

  20. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    Directory of Open Access Journals (Sweden)

    Raja Jurdak

    2008-11-01

    Full Text Available Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  1. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    Science.gov (United States)

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  2. Research highlights from a large scale residential monitoring study in a hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States)

    2003-10-01

    A utility load research project has monitored a large number of residences in Central Florida, collecting detailed end-use data. The monitoring was performed to better estimate the impact of a load control program, as well as obtain improved appliance energy load profiles. The monitoring measured total as well as a number of electrical end-uses on a 15 min basis. The measured end-uses included space cooling, heating, water heating, range and cooking, clothes drying, and swimming pools electricity use and demand. The project identified a number of influences on electrical demand that are not commonly described. (Author)

  3. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    Science.gov (United States)

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  4. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  5. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    Science.gov (United States)

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is protected by copyright. All rights

  6. Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs

    Science.gov (United States)

    Perkins, Nicholas R.; Foster, Scott D.; Hill, Nicole A.; Barrett, Neville S.

    2016-07-01

    Benthic imagery is an effective tool for quantitative description of ecologically and economically important benthic habitats and biota. The recent development of autonomous underwater vehicles (AUVs) allows surveying of spatial scales that were previously unfeasible. However, an AUV collects a large number of images, the scoring of which is time and labour intensive. There is a need to optimise the way that subsamples of imagery are chosen and scored to gain meaningful inferences for ecological monitoring studies. We examine the trade-off between the number of images selected within transects and the number of random points scored within images on the percent cover of target biota, the typical output of such monitoring programs. We also investigate the efficacy of various image selection approaches, such as systematic or random, on the bias and precision of cover estimates. We use simulated biotas that have varying size, abundance and distributional patterns. We find that a relatively small sampling effort is required to minimise bias. An increased precision for groups that are likely to be the focus of monitoring programs is best gained through increasing the number of images sampled rather than the number of points scored within images. For rare species, sampling using point count approaches is unlikely to provide sufficient precision, and alternative sampling approaches may need to be employed. The approach by which images are selected (simple random sampling, regularly spaced etc.) had no discernible effect on mean and variance estimates, regardless of the distributional pattern of biota. Field validation of our findings is provided through Monte Carlo resampling analysis of a previously scored benthic survey from temperate waters. We show that point count sampling approaches are capable of providing relatively precise cover estimates for candidate groups that are not overly rare. The amount of sampling required, in terms of both the number of images and

  7. A cellphone based system for large-scale monitoring of black carbon

    Science.gov (United States)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in

  8. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hairui Wang

    2014-06-01

    Full Text Available In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless sensor network smart monitoring system and Wi-Fi network is integrated through a home gateway to increase the system flexibility. At the same time the home gateway cooperated with a pre- processing system provide a flexible user interface, and the security and safety of the smart monitoring system. To testify the efficiency of the proposed system, the temperature and humidity sensors and light sensors have developed and evaluated in the smart monitoring system.

  9. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    International Nuclear Information System (INIS)

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended

  10. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  11. Factors Influencing Uptake of a Large Scale Curriculum Innovation.

    Science.gov (United States)

    Adey, Philip S.

    Educational research has all too often failed to be implemented on a large-scale basis. This paper describes the multiplier effect of a professional development program for teachers and for trainers in the United Kingdom, and how that program was developed, monitored, and evaluated. Cognitive Acceleration through Science Education (CASE) is a…

  12. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia

    Science.gov (United States)

    Gershenzon, O.

    2011-12-01

    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  13. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    Science.gov (United States)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next

  14. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  15. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  16. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  17. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  18. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    Science.gov (United States)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  19. Large-scale CO2 injection demos for the development of monitoring and verification technology and guidelines (CO2ReMoVe)

    Energy Technology Data Exchange (ETDEWEB)

    Wildenborg, T.; David, P. [TNO Built Environment and Geosciences, Princetonlaan 6, 3584 CB Utrecht (Netherlands); Bentham, M.; Chadwick, A.; Kirk, K. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Dillen, M. [SINTEF Petroleum Research, Trondheim (Norway); Groenenberg, H. [Unit Policy Studies, Energy Research Centre of the Netherlands ECN, Amsterdam (Netherlands); Deflandre, J.P.; Le Gallo, J. [Institut Francais du Petrole, Rueil-Malmaison (France)

    2009-04-15

    The objectives of the EU project CO2ReMoVe are to undertake the research and development necessary to establish scientifically based standards for monitoring future CCS operations and to develop the performance assessment methodologies necessary to demonstrate the long-term reliability of geological storage of CO2. This could in turn lead to guidelines for the certification of sites suitable for CCS on a wide scale. Crucial to the project portfolio are the continuing large-scale CO2 injection operation at Sleipner, the injection operation at In Salah (Algeria) and the recently started injection project at Snoehvit (Norway). Two pilot sites are also currently in the project portfolio, Ketzin in Germany and K12-B in the offshore continental shelf of the Netherlands.

  20. Large-scale, long-term silvicultural experiments in the United States: historical overview and contemporary examples.

    Science.gov (United States)

    R. S. Seymour; J. Guldin; D. Marshall; B. Palik

    2006-01-01

    This paper provides a synopsis of large-scale, long-term silviculture experiments in the United States. Large-scale in a silvicultural context means that experimental treatment units encompass entire stands (5 to 30 ha); long-term means that results are intended to be monitored over many cutting cycles or an entire rotation, typically for many decades. Such studies...

  1. Power monitoring and control for large scale projects: SKA, a case study

    Science.gov (United States)

    Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis

    2016-07-01

    Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.

  2. Building capacity in biodiversity monitoring at the global scale

    Science.gov (United States)

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  3. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  4. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  5. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  6. Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris).

    Science.gov (United States)

    Sterk, Guido; Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado ® -dressed winter oilseed rape (OSR, 10 g clothianidin & 2 g beta-cyfluthrin/kg seed) on the development, reproduction and behaviour of large earth bumble bees (Bombus terrestris) as part of a large-scale monitoring field study in Northern Germany, where OSR is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km 2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and 10 bumble bee hives were placed at each location. At each site, three locations were directly adjacent to OSR fields and three locations were situated 400 m distant from the nearest OSR field. The development of colonies was monitored from the beginning of OSR flowering in April until June 2014. Pollen from returning foragers was analysed for its composition. An average of 44 % of OSR pollen was found in pollen loads of bumble bees indicating that OSR was a major resource for the colonies. At the end of OSR flowering, hives were transferred to a nature reserve until the end of the study. Colony development in terms of hive weight and the number of workers showed a typical course with no statistically significant differences between the sites. Reproductive output was comparatively high and not negatively affected by the exposure to treated OSR. In summary, Elado ® -dressed OSR did not cause any detrimental effects on the development or reproduction of bumble bee colonies.

  7. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  8. Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    Bauer, F.; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Richter, R; Zhuravlov, V

    2016-01-01

    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled.

  9. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    Science.gov (United States)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  10. Using Item Response Theory to Develop Measures of Acquisitive and Protective Self-Monitoring From the Original Self-Monitoring Scale.

    Science.gov (United States)

    Wilmot, Michael P; Kostal, Jack W; Stillwell, David; Kosinski, Michal

    2017-07-01

    For the past 40 years, the conventional univariate model of self-monitoring has reigned as the dominant interpretative paradigm in the literature. However, recent findings associated with an alternative bivariate model challenge the conventional paradigm. In this study, item response theory is used to develop measures of the bivariate model of acquisitive and protective self-monitoring using original Self-Monitoring Scale (SMS) items, and data from two large, nonstudent samples ( Ns = 13,563 and 709). Results indicate that the new acquisitive (six-item) and protective (seven-item) self-monitoring scales are reliable, unbiased in terms of gender and age, and demonstrate theoretically consistent relations to measures of personality traits and cognitive ability. Additionally, by virtue of using original SMS items, previously collected responses can be reanalyzed in accordance with the alternative bivariate model. Recommendations for the reanalysis of archival SMS data, as well as directions for future research, are provided.

  11. Analysis of environmental impact assessment for large-scale X-ray medical equipments

    International Nuclear Information System (INIS)

    Fu Jin; Pei Chengkai

    2011-01-01

    Based on an Environmental Impact Assessment (EIA) project, this paper elaborates the basic analysis essentials of EIA for the sales project of large-scale X-ray medical equipment, and provides the analysis procedure of environmental impact and dose estimation method under normal and accident conditions. The key points of EIA for the sales project of large-scale X-ray medical equipment include the determination of pollution factor and management limit value according to the project's actual situation, the utilization of various methods of assessment and prediction such as analogy, actual measurement and calculation to analyze, monitor, calculate and predict the pollution during normal and accident condition. (authors)

  12. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  13. ALOS PALSAR Winter Coherence and Summer Intensities for Large Scale Forest Monitoring in Siberia

    Science.gov (United States)

    Thiel, Christian; Thiel, Carolin; Santoro, Maurizio; Schmullius, Christiane

    2008-11-01

    In this paper summer intensity and winter coherence images are used for large scale forest monitoring. The intensities (FBD HH/HV) have been acquired during summer 2007 and feature the K&C intensity stripes [1]. The processing consisted of radiometric calibration, orthorectification, and topographic normalisation. The coherence has been estimated from interferometric pairs with 46-days repeat-pass intervals. The pairs have been acquired during the winters 2006/2007 and 2007/2008. During both winters suited weather conditions have been reported. Interferometric processing consisted of SLC co-registration at sub-pixel level, common-band filtering in range and azimuth and generation of a differential interferogram, which was used in the coherence estimation procedure based on adaptive estimation. All images were geocoded using SRTM data. The pixel size of the final SAR products is 50 m x 50 m. It could already be demonstrated, that by using PALSAR intensities and winter coherence forest and non-forest can be clearly separated [2]. By combining both data types hardly any overlap of the class signatures was detected, even though the analysis was conducted on pixel level and no speckle filter has been applied. Thus, the delineation of a forest cover mask could be executed operationally. The major hitch is the definition of a biomass threshold for regrowing forest to be distinguished as forest.

  14. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  15. Moisture monitoring in large diameter boreholes

    International Nuclear Information System (INIS)

    Tyler, S.

    1985-01-01

    The results of both laboratory and field experiments indicate that the neutron moisture gauge traditionally used in soil physics experiments can be extended for use in large diameter (up to 15 cm) steel-cased boreholes with excellent results. This application will permit existing saturated zone monitoring wells to be used for unsaturated zone monitoring of recharge, redistribution and leak detection from waste disposal facilities. Its applicability to large diameter cased wells also gives the soil physicist and ground-water hydrologist and new set of monitoring points in the unsaturated zone to study recharge and aquifer properties. 6 refs., 6 figs., 2 tabs

  16. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    Science.gov (United States)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  17. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  18. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  19. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness.

    Science.gov (United States)

    Heimbach, Fred; Russ, Anja; Schimmer, Maren; Born, Katrin

    2016-11-01

    Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of clothianidin seed-treated winter oilseed rape on three species of pollinating insects (Apis mellifera, Bombus terrestris and Osmia bicornis) and present how these requirements were implemented. Two circular study sites were delineated next to each other in northeast Germany and comprised almost 65 km 2 each. At the reference site, study fields were drilled with clothianidin-free OSR seeds while at the test site the oilseed rape seeds contained a coating with 10 g clothianidin and 2 g beta-cyfluthrin per kg seeds (Elado®). The comparison of environmental conditions at the study sites indicated that they are as similar as possible in terms of climate, soil, land use, history and current practice of agriculture as well as in availability of oilseed rape and non-crop bee forage. Accordingly, local environmental conditions were considered not to have had any confounding effect on the results of the monitoring of the bee species. Furthermore, the study area was found to be representative for other oilseed rape cultivation regions in Europe.

  20. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.

    Science.gov (United States)

    Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.

  1. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  2. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  3. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey

    OpenAIRE

    Rolke, Daniel; Persigehl, Markus; Peters, Britta; Sterk, Guido; Blenau, Wolfgang

    2016-01-01

    This study was part of a large-scale monitoring project to assess the possible effects of Elado® (10 g clothianidin & 2 g β-cyfluthrin/kg seed)-dressed oilseed rape seeds on different pollinators in Northern Germany. Firstly, residues of clothianidin and its active metabolites thiazolylnitroguanidine and thiazolylmethylurea were measured in nectar and pollen from Elado®-dressed (test site, T) and undressed (reference site, R) oilseed rape collected by honey bees confined within tunnel tents. ...

  4. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  5. Large-scale demonstration of waste solidification in saltstone

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Oblath, S.B.; Wilhite, E.L.

    1988-05-01

    The saltstone lysimeters are a large scale demonstration of a disposal concept for decontaminated salt solution resulting from in-tank processing of defense waste. The lysimeter experiment has provided data on the leaching behavior of large saltstone monoliths under realistic field conditions. The results also will be used to compare the effect of capping the wasteform on contaminant release. Biweekly monitoring of sump leachate from three lysimeters has continued on a routine basis for approximately 3 years. An uncapped lysimeter has shown the highest levels of nitrate and 99 Tc release. Gravel and clay capped lysimeters have shown levels equivalent to or slightly higher than background rainwater levels. Mathematical model predictions have been compared to lysimeter results. The models will be applied to predict the impact of saltstone disposal on groundwater quality. 9 refs., 5 figs., 3 tabs

  6. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  7. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  8. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  9. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  10. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  11. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  12. Monitoring of large-scale federated data storage: XRootD and beyond

    International Nuclear Information System (INIS)

    Andreeva, J; Beche, A; Arias, D Diguez; Giordano, D; Saiz, P; Tuckett, D; Belov, S; Oleynik, D; Petrosyan, A; Tadel, M; Vukotic, I

    2014-01-01

    The computing models of the LHC experiments are gradually moving from hierarchical data models with centrally managed data pre-placement towards federated storage which provides seamless access to data files independently of their location and dramatically improve recovery due to fail-over mechanisms. Construction of the data federations and understanding the impact of the new approach to data management on user analysis requires complete and detailed monitoring. Monitoring functionality should cover the status of all components of the federated storage, measuring data traffic and data access performance, as well as being able to detect any kind of inefficiencies and to provide hints for resource optimization and effective data distribution policy. Data mining of the collected monitoring data provides a deep insight into new usage patterns. In the WLCG context, there are several federations currently based on the XRootD technology. This paper will focus on monitoring for the ATLAS and CMS XRootD federations implemented in the Experiment Dashboard monitoring framework. Both federations consist of many dozens of sites accessed by many hundreds of clients and they continue to grow in size. Handling of the monitoring flow generated by these systems has to be well optimized in order to achieve the required performance. Furthermore, this paper demonstrates the XRootD monitoring architecture is sufficiently generic to be easily adapted for other technologies, such as HTTP/WebDAV dynamic federations.

  13. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  14. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  15. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  16. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  17. Large scale anisotropy studies with the Auger Observatory

    International Nuclear Information System (INIS)

    Santos, E.M.; Letessier-Selvon, A.

    2006-01-01

    With the increasing Auger surface array data sample of the highest energy cosmic rays, large scale anisotropy studies at this part of the spectrum become a promising path towards the understanding of the origin of ultra-high energy cosmic particles. We describe the methods underlying the search for distortions in the cosmic rays arrival directions over large angular scales, that is, bigger than those commonly employed in the search for correlations with point-like sources. The widely used tools, known as coverage maps, are described and some of the issues involved in their calculations are presented through Monte Carlo based studies. Coverage computation requires a deep knowledge on the local detection efficiency, including the influence of weather parameters like temperature and pressure. Particular attention is devoted to a new proposed method to extract the coverage, based upon the assumption of time factorization of an extensive air shower detector acceptance. We use Auger monitoring data to test the goodness of such a hypothesis. We finally show the necessity of using more than one coverage to extract any possible anisotropic pattern on the sky, by pointing to some of the biases present in commonly used methods based, for example, on the scrambling of the UTC arrival times for each event. (author)

  18. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  19. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    Science.gov (United States)

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  20. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    Science.gov (United States)

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  1. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Valerio Santangelo

    2018-02-01

    Full Text Available Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010 to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory in one spatial location. The analysis of the independent components (ICs revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC. The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among

  2. Self-* and Adaptive Mechanisms for Large Scale Distributed Systems

    Science.gov (United States)

    Fragopoulou, P.; Mastroianni, C.; Montero, R.; Andrjezak, A.; Kondo, D.

    Large-scale distributed computing systems and infrastructure, such as Grids, P2P systems and desktop Grid platforms, are decentralized, pervasive, and composed of a large number of autonomous entities. The complexity of these systems is such that human administration is nearly impossible and centralized or hierarchical control is highly inefficient. These systems need to run on highly dynamic environments, where content, network topologies and workloads are continuously changing. Moreover, they are characterized by the high degree of volatility of their components and the need to provide efficient service management and to handle efficiently large amounts of data. This paper describes some of the areas for which adaptation emerges as a key feature, namely, the management of computational Grids, the self-management of desktop Grid platforms and the monitoring and healing of complex applications. It also elaborates on the use of bio-inspired algorithms to achieve self-management. Related future trends and challenges are described.

  3. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  4. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  5. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    Science.gov (United States)

    Andreeva, J.; Dzhunov, I.; Karavakis, E.; Kokoszkiewicz, L.; Nowotka, M.; Saiz, P.; Tuckett, D.

    2012-12-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  6. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    International Nuclear Information System (INIS)

    Andreeva, J; Dzhunov, I; Karavakis, E; Kokoszkiewicz, L; Nowotka, M; Saiz, P; Tuckett, D

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  7. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  8. Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Kishimoto, Yasuaki; Sugahara, Akihiro; Li, J.Q.

    2008-01-01

    Large scale simulation using super-computer, which generally requires long CPU time and produces large amount of data, has been extensively studied as a third pillar in various advanced science fields in parallel to theory and experiment. Such a simulation is expected to lead new scientific discoveries through elucidation of various complex phenomena, which are hardly identified only by conventional theoretical and experimental approaches. In order to assist such large simulation studies for which many collaborators working at geographically different places participate and contribute, we have developed a unique remote collaboration system, referred to as SIMON (simulation monitoring system), which is based on client-server system control introducing an idea of up-date processing, contrary to that of widely used post-processing. As a key ingredient, we have developed a trigger method, which transmits various requests for the up-date processing from the simulation (client) running on a super-computer to a workstation (server). Namely, the simulation running on a super-computer actively controls the timing of up-date processing. The server that has received the requests from the ongoing simulation such as data transfer, data analyses, and visualizations, etc. starts operations according to the requests during the simulation. The server makes the latest results available to web browsers, so that the collaborators can monitor the results at any place and time in the world. By applying the system to a specific simulation project of laser-matter interaction, we have confirmed that the system works well and plays an important role as a collaboration platform on which many collaborators work with one another

  9. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  10. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  11. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  12. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  13. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  14. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  15. Large scale mass redistribution and surface displacement from GRACE and SLR

    Science.gov (United States)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  16. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    Directory of Open Access Journals (Sweden)

    Tyler Epp

    2018-03-01

    Full Text Available Structural Health Monitoring (SHM has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC structures.

  17. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  18. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  19. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  20. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele; Attili, Antonio; Bisetti, Fabrizio; Elsinga, Gerrit E.

    2015-01-01

    from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  1. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    Science.gov (United States)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and

  3. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  4. Government management and implementation of national real-time energy monitoring system for China large-scale public building

    International Nuclear Information System (INIS)

    Na Wei; Wu Yong; Song Yan; Dong Zhongcheng

    2009-01-01

    The supervision of energy efficiency in government office buildings and large-scale public buildings (GOBLPB) is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. It is significant for China government to achieve the target: reducing building energy consumption by 11 million ton standard coal before 2010. In the framework of a national demonstration project concerning the energy management system, Shenzhen Municipality has been selected for the implementation of the system. A data acquisition system and a methodology concerning the energy consumption of the GOBLPB have been developed. This paper summarizes the various features of the system incorporated into identifying the building consumes and energy saving potential. This paper also defines the methods to achieve the real-time monitoring and diagnosis: the meters installed at each building, the data transmitted through internet to a center server, the analysis and unification at the center server and the publication through web. Furthermore, this paper introduces the plans to implement the system and to extend countrywide. Finally, this paper presents some measurements to achieve a common benefit community in implementation of building energy efficiency supervisory system on GOBLPB in its construction, reconstruction or operation stages.

  5. Using Distributed Fiber Optic Sensing to Monitor Large Scale Permafrost Transitions: Preliminary Results from a Controlled Thaw Experiment

    Science.gov (United States)

    Ajo Franklin, J. B.; Wagner, A. M.; Lindsey, N.; Dou, S.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Ulrich, C.; Gelvin, A.; Morales, A.; James, S. R.; Saari, S.; Ekblaw, I.; Wood, T.; Robertson, M.; Martin, E. R.

    2016-12-01

    In a warming world, permafrost landscapes are being rapidly transformed by thaw, yielding surface subsidence and groundwater flow alteration. The same transformations pose a threat to arctic infrastructure and can induce catastrophic failure of the roads, runways, and pipelines on which human habitation depends. Scalable solutions to monitoring permafrost thaw dynamics are required to both quantitatively understand biogeochemical feedbacks as well as to protect built infrastructure from damage. Unfortunately, permafrost alteration happens over the time scale of climate change, years to decades, a decided challenge for testing new sensing technologies in a limited context. One solution is to engineer systems capable of rapidly thawing large permafrost units to allow short duration experiments targeting next-generation sensing approaches. We present preliminary results from a large-scale controlled permafrost thaw experiment designed to evaluate the utility of different geophysical approaches for tracking the cause, precursors, and early phases of thaw subsidence. We focus on the use of distributed fiber optic sensing for this challenge and deployed distributed temperature (DTS), strain (DSS), and acoustic (DAS) sensing systems in a 2D array to detect thaw signatures. A 10 x 15 x 1 m section of subsurface permafrost was heated using an array of 120 downhole heaters (60 w) at an experimental site near Fairbanks, AK. Ambient noise analysis of DAS datasets collected at the plot, coupled to shear wave inversion, was utilized to evaluate changes in shear wave velocity associated with heating and thaw. These measurements were confirmed by seismic surveys collected using a semi-permanent orbital seismic source activated on a daily basis. Fiber optic measurements were complemented by subsurface thermistor and thermocouple arrays, timelapse total station surveys, LIDAR, secondary seismic measurements (geophone and broadband recordings), timelapse ERT, borehole NMR, soil

  6. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  7. Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2015-11-01

    Full Text Available Fenwei basin, China, composed by several sub-basins, has been suffering severe geo-hazards in last 60 years, including large scale land subsidence and small scale ground fissure, which caused serious infrastructure damages and property losses. In this paper, we apply different InSAR techniques with different SAR data to monitor these hazards. Firstly, combined small baseline subset (SBAS InSAR method and persistent scatterers (PS InSAR method is used to multi-track Envisat ASAR data to retrieve the large scale land subsidence covering entire Fenwei basin, from which different land subsidence magnitudes are analyzed of different sub-basins. Secondly, PS-InSAR method is used to monitor the small scale ground fissure deformation in Yuncheng basin, where different spatial deformation gradient can be clearly discovered. Lastly, different track SAR data are contributed to retrieve two-dimensional deformation in both land subsidence and ground fissure region, Xi'an, China, which can be benefitial to explain the occurrence of ground fissure and the correlation between land subsidence and ground fissure.

  8. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  9. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  10. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  11. Efficient species-level monitoring at the landscape scale

    Science.gov (United States)

    Barry R. Noon; Larissa L. Bailey; Thomas D. Sisk; Kevin S. McKelvey

    2012-01-01

    Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection­nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make...

  12. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  13. Large scale and performance tests of the ATLAS online software

    International Nuclear Information System (INIS)

    Alexandrov; Kotov, V.; Mineev, M.; Roumiantsev, V.; Wolters, H.; Amorim, A.; Pedro, L.; Ribeiro, A.; Badescu, E.; Caprini, M.; Burckhart-Chromek, D.; Dobson, M.; Jones, R.; Kazarov, A.; Kolos, S.; Liko, D.; Lucio, L.; Mapelli, L.; Nassiakou, M.; Schweiger, D.; Soloviev, I.; Hart, R.; Ryabov, Y.; Moneta, L.

    2001-01-01

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Regular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system. Feedback is received and returned into the development process. Studies of the system behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size. Large scale and performance test of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software. Of particular interest were the run control state transitions in various configurations of the run control hierarchy. For the purpose of the tests, the software from other Trigger/DAQ sub-systems has been emulated. The author presents a brief overview of the online system structure, its components and the large scale integration tests and their results

  14. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  15. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  16. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  17. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  18. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  19. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  20. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  1. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  2. The Contribution of International Large-Scale Assessments to Educational Research: Combining Individual and Institutional Data Sources

    Science.gov (United States)

    Strietholt, Rolf; Scherer, Ronny

    2018-01-01

    The present paper aims to discuss how data from international large-scale assessments (ILSAs) can be utilized and combined, even with other existing data sources, in order to monitor educational outcomes and study the effectiveness of educational systems. We consider different purposes of linking data, namely, extending outcomes measures,…

  3. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  4. Large-scale geographical variation in eggshell heavy metal and calcium content in a passerine bird (Ficedula hypoleuca)

    NARCIS (Netherlands)

    Ruuskanen, S.; Morales, J.; Laaksonen, T.; Moreno, J.; Mateo, R.; Belskii, E.; Bushuev, A.; Jarvinen, A.; Kerimov, A.; Krams, I.; Morosinotto, C.; Mand, R.; Orell, M.; Qvarnstrom, A.; Slater, F.M.; Siitari, H.; Tilgar, V.; Visser, M.E.; Winkel, W.; Zang, H.; Eeva, T.

    2014-01-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in

  5. Analysis Methods for Extracting Knowledge from Large-Scale WiFi Monitoring to Inform Building Facility Planning

    DEFF Research Database (Denmark)

    Ruiz-Ruiz, Antonio; Blunck, Henrik; Prentow, Thor Siiger

    2014-01-01

    realistic data to inform facility planning. In this paper, we propose analysis methods to extract knowledge from large sets of network collected WiFi traces to better inform facility management and planning in large building complexes. The analysis methods, which build on a rich set of temporal and spatial......The optimization of logistics in large building com- plexes with many resources, such as hospitals, require realistic facility management and planning. Current planning practices rely foremost on manual observations or coarse unverified as- sumptions and therefore do not properly scale or provide....... Spatio-temporal visualization tools built on top of these methods enable planners to inspect and explore extracted information to inform facility-planning activities. To evaluate the methods, we present results for a large hospital complex covering more than 10 hectares. The evaluation is based on Wi...

  6. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  7. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  8. Implementation of Cyberinfrastructure and Data Management Workflow for a Large-Scale Sensor Network

    Science.gov (United States)

    Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Monitoring with in situ environmental sensors and other forms of field-based observation presents many challenges for data management, particularly for large-scale networks consisting of multiple sites, sensors, and personnel. The availability and utility of these data in addressing scientific questions relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into functional data products. It also depends on the ability of researchers to share and access the data in useable formats. In addition to addressing the challenges presented by the quantity of data, monitoring networks need practices to ensure high data quality, including procedures and tools for post processing. Data quality is further enhanced if practitioners are able to track equipment, deployments, calibrations, and other events related to site maintenance and associate these details with observational data. In this presentation we will describe the overall workflow that we have developed for research groups and sites conducting long term monitoring using in situ sensors. Features of the workflow include: software tools to automate the transfer of data from field sites to databases, a Python-based program for data quality control post-processing, a web-based application for online discovery and visualization of data, and a data model and web interface for managing physical infrastructure. By automating the data management workflow, the time from collection to analysis is reduced and sharing and publication is facilitated. The incorporation of metadata standards and descriptions and the use of open-source tools enhances the sustainability and reusability of the data. We will describe the workflow and tools that we have developed in the context of the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) monitoring network. The iUTAH network consists of aquatic and climate sensors deployed in three watersheds to monitor Gradients Along Mountain to Urban

  9. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  10. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  11. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  12. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  13. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  14. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  15. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...... sugarcane outgrower scheme on household income and asset stocks. Chapter 5 examines the wages and working conditions in ‘formal’ large-scale and ‘informal’ small-scale irrigated agriculture. The results in Chapter 2 show that moisture stress, the use of untested planting materials, and conflict over land...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  16. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  17. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  18. Monitor large-scale consumers market natural gas and electricity 2010; Monitor groothandelsmarkten gas en elektriciteit 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    The Office of Energy Regulation ('Energiekamer') carries out its legal task by means of a monitor, a practical tool to assess and analyze the wholesale market for electricity. Monitoring of the wholesale electricity market concerns continuous, accurate and structured following of developments in the market. The aim is to identify in time signals from the market that could lead to a decrease of competition and transparency. The starting point of the monitor for the wholesale electricity market is the selection of indicators which give insight in real competition, liquidity and transparency. [Dutch] De Energiekamer schrijft jaarlijks haar bevindingen over de mate van marktwerking in de groothandelsmarkten gas en elektriciteit in een rapport aan de Minister van Economische Zaken. Dit rapport is de monitor. Sinds 2007 zijn de bevindingen over de groothandelsmarkten voor gas en elektriciteit samengevoegd in een publicatie. Concreet verzamelt de Energiekamer marktinformatie zoals prijzen en hoeveelheden. Daarnaast bestudeert de Energiekamer of deze uitkomsten overeenkomen met wat beoogd was in de vrije energiemarkt. De Energiekamer onderzoekt of de voorwaarden (zoals bijvoorbeeld toetredingsbarrieres en transparantie) optimaal zijn voor doeltreffende concurrentie en geeft voorstellen van maatregelen om de marktwerking te verbeteren.

  19. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  20. A mixed-methods study of system-level sustainability of evidence-based practices in 12 large-scale implementation initiatives.

    Science.gov (United States)

    Scudder, Ashley T; Taber-Thomas, Sarah M; Schaffner, Kristen; Pemberton, Joy R; Hunter, Leah; Herschell, Amy D

    2017-12-07

    In recent decades, evidence-based practices (EBPs) have been broadly promoted in community behavioural health systems in the United States of America, yet reported EBP penetration rates remain low. Determining how to systematically sustain EBPs in complex, multi-level service systems has important implications for public health. This study examined factors impacting the sustainability of parent-child interaction therapy (PCIT) in large-scale initiatives in order to identify potential predictors of sustainment. A mixed-methods approach to data collection was used. Qualitative interviews and quantitative surveys examining sustainability processes and outcomes were completed by participants from 12 large-scale initiatives. Sustainment strategies fell into nine categories, including infrastructure, training, marketing, integration and building partnerships. Strategies involving integration of PCIT into existing practices and quality monitoring predicted sustainment, while financing also emerged as a key factor. The reported factors and strategies impacting sustainability varied across initiatives; however, integration into existing practices, monitoring quality and financing appear central to high levels of sustainability of PCIT in community-based systems. More detailed examination of the progression of specific activities related to these strategies may aide in identifying priorities to include in strategic planning of future large-scale initiatives. ClinicalTrials.gov ID NCT02543359 ; Protocol number PRO12060529.

  1. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  2. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    Science.gov (United States)

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  3. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  4. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  5. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  6. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  7. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed; Elsawy, Hesham; Gharbieh, Mohammad; Alouini, Mohamed-Slim; Adinoyi, Abdulkareem; Alshaalan, Furaih

    2017-01-01

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end

  8. Large scale oil lease automation and electronic custody transfer

    International Nuclear Information System (INIS)

    Price, C.R.; Elmer, D.C.

    1995-01-01

    Typically, oil field production operations have only been automated at fields with long term production profiles and enhanced recovery. The automation generally consists of monitoring and control at the wellhead and centralized facilities. However, Union Pacific Resources Co. (UPRC) has successfully implemented a large scale automation program for rapid-decline primary recovery Austin Chalk wells where purchasers buy and transport oil from each individual wellsite. This project has resulted in two significant benefits. First, operators are using the system to re-engineer their work processes. Second, an inter-company team created a new electronic custody transfer method. This paper will describe: the progression of the company's automation objectives in the area; the field operator's interaction with the system, and the related benefits; the research and development of the new electronic custody transfer method

  9. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Science.gov (United States)

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  10. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  11. Radiations: large scale monitoring in Japan; Radiations: suivi a grande echelle au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Linton, M.; Khalatbari, A.

    2011-10-15

    As the consequences of radioactive leaks on their health are a matter of concern for Japanese people, a large scale epidemiological study has been launched by the Fukushima medical university. It concerns the two millions inhabitants of the Fukushima Prefecture. On the national level and with the support of public funds, medical care and follow-up, as well as systematic controls are foreseen, notably to check the thyroid of 360.000 young people less than 18 year old and of 20.000 pregnant women in the Fukushima Prefecture. Some measurements have already been performed on young children. Despite the sometimes rather low measures, and because they know that some parts of the area are at least as much contaminated as it was the case around Chernobyl, some people are reluctant to go back home

  12. Large scale distribution monitoring of FRP-OF based on BOTDR technique for infrastructures

    Science.gov (United States)

    Zhou, Zhi; He, Jianping; Yan, Kai; Ou, Jinping

    2007-04-01

    BOTDA(R) sensing technique is considered as one of the most practical solution for large-sized structures as the instrument. However, there is still a big obstacle to apply BOTDA(R) in large-scale area due to the high cost and the reliability problem of sensing head which is associated to the sensor installation and survival. In this paper, we report a novel low-cost and high reliable BOTDA(R) sensing head using FRP(Fiber Reinforced Polymer)-bare optical fiber rebar, named BOTDA(R)-FRP-OF. We investigated the surface bonding and its mechanical strength by SEM and intensity experiments. Considering the strain difference between OF and host matrix which may result in measurement error, the strain transfer from host to OF have been theoretically studied. Furthermore, GFRP-OFs sensing properties of strain and temperature at different gauge length were tested under different spatial and readout resolution using commercial BOTDA. Dual FRP-OFs temperature compensation method has also been proposed and analyzed. And finally, BOTDA(R)-OFs have been applied in Tiyu west road civil structure at Guangzhou and Daqing Highway. This novel FRP-OF rebar shows both high strengthen and good sensing properties, which can be used in long-term SHM for civil infrastructures.

  13. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  14. Vibration Monitoring of a Large Scale Heavy Haul Railway Viaduct

    Directory of Open Access Journals (Sweden)

    Busatta Fulvio

    2015-01-01

    Full Text Available In South Africa, heavy haul railway transport was introduced in the mid-1970s for the Iron Ore and the Coal Export lines. In recent decades, the expansion of existing mines, new markets and the competition of iron ore- and coal-exporting countries have led owners and operators to progressively increase the capacity of the export lines. On the one hand, operational efficiencies have been improved; on the other hand, a significant increase of the rail traffic has been experienced. Thus, bridges along the export lines are now crossed by heavier and longer trains with more frequent train passages than in the past. Increasing train loading might lead to significant consequences on structures such as dynamic amplifications and reduction of service life due to fatigue. Hence dynamic assessment and monitoring of the structural condition of bridges under actual train loading are becoming more relevant to support decision making processes. The paper presents the investigations carried out on the Olifants River Viaduct, a critical structure along the Iron Ore Export Line, in order to implement a state-of-the-art vibration monitoring system.

  15. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  16. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  17. Monitoring of full scale tensegrity skeletons under temperature change

    OpenAIRE

    KAWAGUCHI, Ken'ichi; OHYA, Shunji

    2009-01-01

    p. 224-231 Strain change in the members of full-scale tensegrity skeletons has been monitored for eight years. The one-day data of one of the tensegrity frame on the hottest and the coldest day in the record are reported and discussed. Kawaguchi, K.; Ohya, S. (2009). Monitoring of full scale tensegrity skeletons under temperature change. Symposium of the International Association for Shell and Spatial Structures. Editorial Universitat Politècnica de València. http://hdl.handle.net/10...

  18. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  19. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  20. Workflow management in large distributed systems

    International Nuclear Information System (INIS)

    Legrand, I; Newman, H; Voicu, R; Dobre, C; Grigoras, C

    2011-01-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  1. Workflow management in large distributed systems

    Science.gov (United States)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  2. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  3. Towards a Quantitative Use of Satellite Remote Sensing in Crop Growth Models for Large Scale Agricultural Production Estimate (Invited)

    Science.gov (United States)

    Defourny, P.

    2013-12-01

    The development of better agricultural monitoring capabilities is clearly considered as a critical step for strengthening food production information and market transparency thanks to timely information about crop status, crop area and yield forecasts. The documentation of global production will contribute to tackle price volatility by allowing local, national and international operators to make decisions and anticipate market trends with reduced uncertainty. Several operational agricultural monitoring systems are currently operating at national and international scales. Most are based on the methods derived from the pioneering experiences completed some decades ago, and use remote sensing to qualitatively compare one year to the others to estimate the risks of deviation from a normal year. The GEO Agricultural Monitoring Community of Practice described the current monitoring capabilities at the national and global levels. An overall diagram summarized the diverse relationships between satellite EO and agriculture information. There is now a large gap between the current operational large scale systems and the scientific state of the art in crop remote sensing, probably because the latter mainly focused on local studies. The poor availability of suitable in-situ and satellite data over extended areas hampers large scale demonstrations preventing the much needed up scaling research effort. For the cropland extent, this paper reports a recent research achievement using the full ENVISAT MERIS 300 m archive in the context of the ESA Climate Change Initiative. A flexible combination of classification methods depending to the region of the world allows mapping the land cover as well as the global croplands at 300 m for the period 2008 2012. This wall to wall product is then compared with regards to the FP 7-Geoland 2 results obtained using as Landsat-based sampling strategy over the IGADD countries. On the other hand, the vegetation indices and the biophysical variables

  4. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies.

    Science.gov (United States)

    Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi

    2013-08-01

    Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.

  5. Social Network Analysis and Mining to Monitor and Identify Problems with Large-Scale Information and Communication Technology Interventions.

    Science.gov (United States)

    da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Monteiro, Maurílio de Abreu; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa

    2016-01-01

    The published literature reveals several arguments concerning the strategic importance of information and communication technology (ICT) interventions for developing countries where the digital divide is a challenge. Large-scale ICT interventions can be an option for countries whose regions, both urban and rural, present a high number of digitally excluded people. Our goal was to monitor and identify problems in interventions aimed at certification for a large number of participants in different geographical regions. Our case study is the training at the Telecentros.BR, a program created in Brazil to install telecenters and certify individuals to use ICT resources. We propose an approach that applies social network analysis and mining techniques to data collected from Telecentros.BR dataset and from the socioeconomics and telecommunications infrastructure indicators of the participants' municipalities. We found that (i) the analysis of interactions in different time periods reflects the objectives of each phase of training, highlighting the increased density in the phase in which participants develop and disseminate their projects; (ii) analysis according to the roles of participants (i.e., tutors or community members) reveals that the interactions were influenced by the center (or region) to which the participant belongs (that is, a community contained mainly members of the same region and always with the presence of tutors, contradicting expectations of the training project, which aimed for intense collaboration of the participants, regardless of the geographic region); (iii) the social network of participants influences the success of the training: that is, given evidence that the degree of the community member is in the highest range, the probability of this individual concluding the training is 0.689; (iv) the North region presented the lowest probability of participant certification, whereas the Northeast, which served municipalities with similar

  6. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  7. Using social-ecological systems theory to evaluate large-scale comanagement efforts: a case study of the Inuvialuit Settlement Region

    Directory of Open Access Journals (Sweden)

    William Tyson

    2017-03-01

    Full Text Available Comanagement efforts are increasingly tasked with overseeing natural resource governance at a large scale. I examine comanagement of subsistence harvesting in the Inuvialuit Settlement Region (ISR of the western Canadian Arctic, using a social-ecological systems framework. In doing so, this study joins a growing list of research that reviews design principles commonly found in successful small-scale commons management and applies them to a large resource area. This research uses the management of beluga (Delphinapterus leucas and barren-ground caribou (Rangifer tarandus groenlandicus as case studies in understanding the management framework of the Inuvialuit Settlement Region, as each species is important in Inuvialuit culture and is actively managed and monitored. Comanagement bodies in the study area display many of the institutional design principles that are characteristic of successful social-ecological systems. Particularly mentionable are the presence of well-organized nested enterprises and a strong incorporation of local knowledge and monitoring. This supports the application of institutional design principles in large-scale analyses of resource management. However, due to the network of policy and management outside the ISR that influences each species, this research suggests that in cases of wide-ranging resource bases, these types of analyses may be better suited to evaluating broad management networks rather than discrete governing regions.

  8. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  9. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    International Nuclear Information System (INIS)

    Rao, Nageswara S; Carter, Steven M; Wu Qishi; Wing, William R; Zhu Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts

  10. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Carter, Steven M [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wu Qishi [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wing, William R [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu Mengxia [Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 (United States); Mezzacappa, Anthony [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Veeraraghavan, Malathi [Department of Computer Science, University of Virginia, Charlottesville, VA 22904 (United States); Blondin, John M [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  11. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  12. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  13. Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy.

    Science.gov (United States)

    Negrete, Alejandro; Esteban, Geoffrey; Kotin, Robert M

    2007-09-01

    A well-characterized manufacturing process for the large-scale production of recombinant adeno-associated vectors (rAAV) for gene therapy applications is required to meet current and future demands for pre-clinical and clinical studies and potential commercialization. Economic considerations argue in favor of suspension culture-based production. Currently, the only feasible method for large-scale rAAV production utilizes baculovirus expression vectors and insect cells in suspension cultures. To maximize yields and achieve reproducibility between batches, online monitoring of various metabolic and physical parameters is useful for characterizing early stages of baculovirus-infected insect cells. In this study, rAAVs were produced at 40-l scale yielding ~1 x 10(15) particles. During the process, dielectric spectroscopy was performed by real time scanning in radio frequencies between 300 kHz and 10 MHz. The corresponding permittivity values were correlated with the rAAV production. Both infected and uninfected reached a maximum value; however, only infected cell cultures permittivity profile reached a second maximum value. This effect was correlated with the optimal harvest time for rAAV production. Analysis of rAAV indicated the harvesting time around 48 h post-infection (hpi), and 72 hpi produced similar quantities of biologically active rAAV. Thus, if operated continuously, the 24-h reduction in the production process of rAAV gives sufficient time for additional 18 runs a year corresponding to an extra production of ~2 x 10(16) particles. As part of large-scale optimization studies, this new finding will facilitate the bioprocessing scale-up of rAAV and other bioproducts.

  14. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  15. Monitoring strategies and scale appropriate hydrologic and biogeochemical modelling for natural resource management

    DEFF Research Database (Denmark)

    Bende-Michl, Ulrike; Volk, Martin; Harmel, Daren

    2011-01-01

    This short communication paper presents recommendations for developing scale-appropriate monitoring and modelling strategies to assist decision making in natural resource management (NRM). These ideas presented here were discussed in the session (S5) ‘Monitoring strategies and scale...... and communication between researcher and model developer on the one side, and natural resource managers and the model users on the other side to increase knowledge in: 1) the limitations and uncertainties of current monitoring and modelling strategies, 2) scale-dependent linkages between monitoring and modelling...

  16. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  17. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  18. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  19. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  20. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  1. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  2. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  3. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  4. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  5. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  6. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.

    Science.gov (United States)

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance; Messina, Thomas; Fan, Hongtao; Jaeger, Edward; Stephens, Susan

    2013-06-27

    Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available

  7. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  8. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  9. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  10. SIMON: Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Sugawara, Akihiro; Kishimoto, Yasuaki

    2003-01-01

    Development of SIMON (SImulation MONitoring) system is described. SIMON aims to investigate many physical phenomena of tokamak type nuclear fusion plasma by simulation and to exchange information and to carry out joint researches with scientists in the world using internet. The characteristics of SIMON are followings; 1) decrease load of simulation by trigger sending method, 2) visualization of simulation results and hierarchical structure of analysis, 3) decrease of number of license by using command line when software is used, 4) improvement of support for using network of simulation data output by use of HTML (Hyper Text Markup Language), 5) avoidance of complex built-in work in client part and 6) small-sized and portable software. The visualization method of large scale simulation, remote collaboration system by HTML, trigger sending method, hierarchical analytical method, introduction into three-dimensional electromagnetic transportation code and technologies of SIMON system are explained. (S.Y.)

  11. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  12. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  13. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  14. Ecoregional-scale monitoring within conservation areas, in a rapidly changing climate

    Science.gov (United States)

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Long-term monitoring of ecological systems can prove invaluable for resource management and conservation. Such monitoring can: (1) detect instances of long-term trend (either improvement or deterioration) in monitored resources, thus providing an early-warning indication of system change to resource managers; (2) inform management decisions and help assess the effects of management actions, as well as anthropogenic and natural disturbances; and (3) provide the grist for supplemental research on mechanisms of system dynamics and cause-effect relationships (Fancy et al., 2009). Such monitoring additionally provides a snapshot of the status of monitored resources during each sampling cycle, and helps assess whether legal standards and regulations are being met. Until the last 1-2 decades, tracking and understanding changes in condition of natural resources across broad spatial extents have been infrequently attempted. Several factors, however, are facilitating the achievement of such broad-scale investigation and monitoring. These include increasing awareness of the importance of landscape context, greater prevalence of regional and global environmental stressors, and the rise of landscape-scale programs designed to manage and monitor biological systems. Such programs include the US Forest Service's Forest Inventory and Analysis (FIA) Program (Moser et al., 2008), Canada's National Forest Inventory, the 3Q Programme for monitoring agricultural landscapes of Norway (Dramstad et al., 2002), and the emerging (US) Landscape Conservation Cooperatives (USDOI Secretarial Order 3289, 2009; Anonymous, 2011). This Special Section explores the underlying design considerations, as well as many pragmatic aspects associated with program implementation and interpretation of results from broad-scale monitoring systems, particularly within the constraints of high-latitude contexts (e.g., low road density, short field season, dramatic fluctuations in temperature). Although Alaska is

  15. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis).

    Science.gov (United States)

    Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado® (10 g clothianidin & 2 g beta-cyfluthrin/kg seed)-dressed oilseed rape on the development and reproduction of mason bees (Osmia bicornis) as part of a large-scale monitoring field study in Northern Germany, where oilseed rape is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km 2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and three nesting shelters were placed at each location. Of these locations, three locations were directly adjacent to oilseed rape fields, while the other three locations were situated 100 m distant from the nearest oilseed rape field. At each location, 1500 cocoons of O. bicornis were placed into the central nesting shelter. During the exposure phase, nest building activities and foraging behaviour were assessed repeatedly. Cocoons were harvested in autumn to assess parasitization and reproduction including larval development. The following spring, the emergence of the next generation of adults from cocoons was monitored. High reproductive output and low parasitization rates indicated that Elado ® -dressed oilseed rape did not cause any detrimental effects on the development or reproduction of mason bees.

  16. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  17. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera).

    Science.gov (United States)

    Rolke, Daniel; Fuchs, Stefan; Grünewald, Bernd; Gao, Zhenglei; Blenau, Wolfgang

    2016-11-01

    Possible effects of clothianidin seed-treated oilseed rape on honey bee colonies were investigated in a large-scale monitoring project in Northern Germany, where oilseed rape usually comprises 25-33 % of the arable land. For both reference and test sites, six study locations were selected and eight honey bee hives were placed at each location. At each site, three locations were directly adjacent to oilseed rape fields and three locations were situated 400 m away from the nearest oilseed rape field. Thus, 96 hives were exposed to fully flowering oilseed rape crops. Colony sizes and weights, the amount of honey harvested, and infection with parasites and diseases were monitored between April and September 2014. The percentage of oilseed rape pollen was determined in pollen and honey samples. After oilseed rape flowering, the hives were transferred to an extensive isolated area for post-exposure monitoring. Total numbers of adult bees and brood cells showed seasonal fluctuations, and there were no significant differences between the sites. The honey, which was extracted at the end of the exposure phase, contained 62.0-83.5 % oilseed rape pollen. Varroa destructor infestation was low during most of the course of the study but increased at the end of the study due to flumethrin resistance in the mite populations. In summary, honey bee colonies foraging in clothianidin seed-treated oilseed rape did not show any detrimental symptoms as compared to colonies foraging in clothianidin-free oilseed rape. Development of colony strength, brood success as well as honey yield and pathogen infection were not significantly affected by clothianidin seed-treatment during this study.

  18. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  19. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  20. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  1. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  2. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  3. Large-scale Agricultural Land Acquisitions in West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine large-scale agricultural land acquisitions in nine West African countries -Burkina Faso, Guinea-Bissau, Guinea, Benin, Mali, Togo, Senegal, Niger, and Côte d'Ivoire. ... They will use the results to increase public awareness and knowledge about the consequences of large-scale land acquisitions.

  4. Optimizing liquid effluent monitoring at a large nuclear complex.

    Science.gov (United States)

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  5. Monitoring of large steam turbines, as seen by the constructor and the operator

    International Nuclear Information System (INIS)

    Blanchet, J.M.; Bourcier, P.B.; Malherbe, C.

    1986-01-01

    The electricity in France is produced by large steam turbines in the range of 125 000 kW to 1 300 000 kW in nuclear power plants. Some operation problems are encountered on these large machines. The aim of this study is to justify and to describe the monitoring process implemented on the large steam turbines. This short study is divided into three parts: the monitoring justification during the start-up period, one example of a monitoring system, the turbine monitoring during the operation period [fr

  6. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  7. Distributed Monitoring and Resource Management for Large Cloud Environments

    OpenAIRE

    Wuhib, Fetahi Zebenigus

    2010-01-01

    Over the last decade, the number, size and complexity of large-scale networked systems has been growing fast, and this trend is expected to accelerate. The best known example of a large-scale networked system is probably the Internet, while large datacenters for cloud services are the most recent ones. In such environments, a key challenge is to develop scalable and adaptive technologies for management functions. This thesis addresses the challenge by engineering several protocols  for distri...

  8. Practical sublimation source for large-scale chromium gettering in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, J E; Gabbard, W A; Emerson, L C; Mioduszewski, P K [Oak Ridge National Lab., TN (USA)

    1984-05-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  9. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  10. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  11. The importance of geoprocessing tools in radiometric monitoring of large areas

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila Carrijo da Silva [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da; Alberti, Heber Luiz Caponi; Guerrero, Eder Tadeu Zenun, E-mail: ncsilva@cnen.gov.b, E-mail: heber@cnen.gov.b, E-mail: edertzg@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Throughout history, the natural tendency of men to physically characterize their different surroundings has played an important role on the evolution of societies. Today, that tendency combined to the development of computer technologies, has allowed the accelerated growth of the Geographical Information Systems, which permits the analysis and manipulation of spatial data from diverse sources, producing geo referenced databases. The gamma radiation, one of the main contributors of human exposure to natural radiation, is known for its high penetration energy. Today, the environmental gamma radiation is measured through radiometric tracking mobile units, allowing large scale samplings and precise assessments. As a geo processing case study, a radiometric monitoring work was conducted in the town of Aguas da Prata-SP using a tracking mobile system, composed by a scintillator detector, a GPS and a computer, all installed in a vehicle. The data made of collected points and their respective doses and geographical references were captured and stored in a computer software and then inserted and treated in a GIS environment. After a cartographic base was created using a digitalized map of Aguas da Prata, the sampled points were plotted and interpolated with the cartographic base, producing two maps that demonstrate the tracking route and the gamma radiation dose range throughout the monitored area. Geo processing tools have shown great efficiency in this study, allowing agile manipulation and management of a large quantity of data, thus promoting a spatial analysis of natural radiation levels in the studied region. (author)

  12. The importance of geoprocessing tools in radiometric monitoring of large areas

    International Nuclear Information System (INIS)

    Dias, Danila Carrijo da Silva; Comissao Nacional de Energia Nuclear; Silva, Nivaldo Carlos da; Alberti, Heber Luiz Caponi; Guerrero, Eder Tadeu Zenun

    2011-01-01

    Throughout history, the natural tendency of men to physically characterize their different surroundings has played an important role on the evolution of societies. Today, that tendency combined to the development of computer technologies, has allowed the accelerated growth of the Geographical Information Systems, which permits the analysis and manipulation of spatial data from diverse sources, producing geo referenced databases. The gamma radiation, one of the main contributors of human exposure to natural radiation, is known for its high penetration energy. Today, the environmental gamma radiation is measured through radiometric tracking mobile units, allowing large scale samplings and precise assessments. As a geo processing case study, a radiometric monitoring work was conducted in the town of Aguas da Prata-SP using a tracking mobile system, composed by a scintillator detector, a GPS and a computer, all installed in a vehicle. The data made of collected points and their respective doses and geographical references were captured and stored in a computer software and then inserted and treated in a GIS environment. After a cartographic base was created using a digitalized map of Aguas da Prata, the sampled points were plotted and interpolated with the cartographic base, producing two maps that demonstrate the tracking route and the gamma radiation dose range throughout the monitored area. Geo processing tools have shown great efficiency in this study, allowing agile manipulation and management of a large quantity of data, thus promoting a spatial analysis of natural radiation levels in the studied region. (author)

  13. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    CERN Document Server

    Andreeva, J; Karavakis, E; Kokoszkiewicz, L; Nowotka, M; Saiz, P; Tuckett, D

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Comp...

  14. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Co...

  15. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  16. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  17. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  18. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    Science.gov (United States)

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  19. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    Science.gov (United States)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the

  20. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  1. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  2. Vibration monitoring of large generator stator and-winding

    International Nuclear Information System (INIS)

    Duffeau, F.; Bernard, P.

    1999-01-01

    Large generators of French Nuclear Power plants are equipped with a standardised vibration monitoring system. The first aim of these new systems is to protect the machines by generating alarms in the control room when predefined vibration thresholds have been over-passed. Secondly, this specially designed instrumentation permits to create a National data base allowing to compare different generators of the same technology. Additionally, statistical methods have been developed in order to 'guess' vibration level at several locations of the stator end-windings, depending on the actual operating parameters of the generator, i.e. reactive and active power load. So this paper presents the general concept of the vibration monitoring of EDF large generator stators and deals with a new method to predict vibrations in different locations under control. (authors)

  3. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  4. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai

    2017-01-01

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  5. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  6. Cycle 24 COS FUV Internal/External Wavelength Scale Monitor

    Science.gov (United States)

    Fischer, William J.

    2018-02-01

    We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.

  7. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  8. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    OpenAIRE

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor...

  9. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  10. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  11. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  12. Large-scale road safety programmes in low- and middle-income countries: an opportunity to generate evidence.

    Science.gov (United States)

    Hyder, Adnan A; Allen, Katharine A; Peters, David H; Chandran, Aruna; Bishai, David

    2013-01-01

    The growing burden of road traffic injuries, which kill over 1.2 million people yearly, falls mostly on low- and middle-income countries (LMICs). Despite this, evidence generation on the effectiveness of road safety interventions in LMIC settings remains scarce. This paper explores a scientific approach for evaluating road safety programmes in LMICs and introduces such a road safety multi-country initiative, the Road Safety in 10 Countries Project (RS-10). By building on existing evaluation frameworks, we develop a scientific approach for evaluating large-scale road safety programmes in LMIC settings. This also draws on '13 lessons' of large-scale programme evaluation: defining the evaluation scope; selecting study sites; maintaining objectivity; developing an impact model; utilising multiple data sources; using multiple analytic techniques; maximising external validity; ensuring an appropriate time frame; the importance of flexibility and a stepwise approach; continuous monitoring; providing feedback to implementers, policy-makers; promoting the uptake of evaluation results; and understanding evaluation costs. The use of relatively new approaches for evaluation of real-world programmes allows for the production of relevant knowledge. The RS-10 project affords an important opportunity to scientifically test these approaches for a real-world, large-scale road safety evaluation and generate new knowledge for the field of road safety.

  13. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  14. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  15. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  16. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  17. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  19. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  20. Practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Emerson, L.C.; Mioduszewski, P.K.

    1983-01-01

    This paper describes the technique of chromium gettering with a large-scale sublimation source which resembles in its design the VARIAN Ti-Ball. It consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. While the fabrication of the source is described in a companion paper, we discuss here the gettering technique. The experimental arrangement consists of an UHV system instrumented for total- and partial-pressure measurements, a film-thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-Ball as function of input power. In addition, an example of the total pumping speed of a gettered surface is shown

  1. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  2. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  3. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    Science.gov (United States)

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  4. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  5. Creating Large Scale Database Servers

    International Nuclear Information System (INIS)

    Becla, Jacek

    2001-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region

  6. Creating Large Scale Database Servers

    Energy Technology Data Exchange (ETDEWEB)

    Becla, Jacek

    2001-12-14

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region.

  7. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  8. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  9. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  10. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  11. LongLine: Visual Analytics System for Large-scale Audit Logs

    Directory of Open Access Journals (Sweden)

    Seunghoon Yoo

    2018-03-01

    Full Text Available Audit logs are different from other software logs in that they record the most primitive events (i.e., system calls in modern operating systems. Audit logs contain a detailed trace of an operating system, and thus have received great attention from security experts and system administrators. However, the complexity and size of audit logs, which increase in real time, have hindered analysts from understanding and analyzing them. In this paper, we present a novel visual analytics system, LongLine, which enables interactive visual analyses of large-scale audit logs. LongLine lowers the interpretation barrier of audit logs by employing human-understandable representations (e.g., file paths and commands instead of abstract indicators of operating systems (e.g., file descriptors as well as revealing the temporal patterns of the logs in a multi-scale fashion with meaningful granularity of time in mind (e.g., hourly, daily, and weekly. LongLine also streamlines comparative analysis between interesting subsets of logs, which is essential in detecting anomalous behaviors of systems. In addition, LongLine allows analysts to monitor the system state in a streaming fashion, keeping the latency between log creation and visualization less than one minute. Finally, we evaluate our system through a case study and a scenario analysis with security experts.

  12. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  13. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  14. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  15. Understory fern community structure, growth and spore production responses to a large-scale hurricane experiment in a Puerto Rico rainforest

    Science.gov (United States)

    Joanne M. Sharpe; Aaron B. Shiels

    2014-01-01

    Ferns are abundant in most rainforest understories yet their responses to hurricanes have not been well studied. Fern community structure, growth and spore production were monitored for two years before and five years after a large-scale experiment that simulated two key components of severe hurricane disturbance: canopy openness and debris deposition. The canopy was...

  16. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  17. A practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Gabbard, W.A.; Emerson, L.C.; Mioduszewski, P.K.

    1984-01-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown. (orig.)

  18. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  19. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  20. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  1. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  2. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  3. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  4. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  5. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  6. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  7. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  8. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  9. Popularity framework for monitoring user workload

    International Nuclear Information System (INIS)

    Molfetas, Angelos; Dimitrov, Gancho; Lassnig, Mario; Garonne, Vincent; Stewart, Graeme; Barisits, Martin; Beermann, Thomas

    2012-01-01

    This paper describes a monitoring framework for large scale data management systems with frequent data access. This framework allows large data management systems to generate meaningful information from collected tracing data and to be queried on demand for specific user usage patterns in respect to source and destination locations, period intervals, and other searchable parameters. The feasibility of such a system at the petabyte scale is demonstrated by describing the implementation and operational experience of a real world management information system for the ATLAS experiment employing the proposed framework. Our observations suggest that the proposed user monitoring framework is capable of scaling to meet the needs of very large data management systems.

  10. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  11. Large scale intender test program to measure sub gouge displacements

    Energy Technology Data Exchange (ETDEWEB)

    Been, Ken; Lopez, Juan [Golder Associates Inc, Houston, TX (United States); Sancio, Rodolfo [MMI Engineering Inc., Houston, TX (United States)

    2011-07-01

    The production of submarine pipelines in an offshore environment covered with ice is very challenging. Several precautions must be taken such as burying the pipelines to protect them from ice movement caused by gouging. The estimation of the subgouge displacements is a key factor in pipeline design for ice gouged environments. This paper investigated a method to measure subgouge displacements. An experimental program was implemented in an open field to produce large scale idealized gouges on engineered soil beds (sand and clay). The horizontal force required to produce the gouge, the subgouge displacements in the soil and the strain imposed by these displacements were monitored on a buried model pipeline. The results showed that for a given keel, the gouge depth was inversely proportional to undrained shear strength in clay. The subgouge displacements measured did not show a relationship with the gouge depth, width or soil density in sand and clay tests.

  12. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model

  13. Large-sized seaweed monitoring based on MODIS

    Science.gov (United States)

    Ma, Long; Li, Ying; Lan, Guo-xin; Li, Chuan-long

    2009-10-01

    In recent years, large-sized seaweed, such as ulva lactuca, blooms frequently in coastal water in China, which threatens marine eco-environment. In order to take effective measures, it is important to make operational surveillance. A case of large-sized seaweed blooming (i.e. enteromorpha), occurred in June, 2008, in the sea near Qingdao city, is studied. Seaweed blooming is dynamically monitored using Moderate Resolution Imaging Spectroradiometer (MODIS). After analyzing imaging spectral characteristics of enteromorpha, MODIS band 1 and 2 are used to create a band ratio algorithm for detecting and mapping large-sized seaweed blooming. In addition, chlorophyll-α concentration is inversed based on an empirical model developed using MODIS. Chlorophyll-α concentration maps are derived using multitemporal MODIS data, and chlorophyll-α concentration change is analyzed. Results show that the presented methods are useful to get the dynamic distribution and the growth of large-sized seaweed, and can support contingency planning.

  14. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  15. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  16. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  17. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  18. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  19. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  20. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  1. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  2. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  3. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  4. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  5. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  6. Efficient network monitoring for large data acquisition systems

    International Nuclear Information System (INIS)

    Savu, D.O.; Martin, B.; Al-Shabibi, A.; Sjoen, R.; Batraneanu, S.M.; Stancu, S.N.

    2012-01-01

    Though constantly evolving and improving, the available network monitoring solutions have limitations when applied to the infrastructure of a high speed realtime data acquisition (DAQ) system. DAQ networks are particular computer networks where experts have to pay attention to both individual subsections as well as system wide traffic flows while monitoring the network. The ATLAS Network at the Large Hadron Collider (LHC) has more than 200 switches interconnecting 3500 hosts and totaling 8500 high speed links. The use of heterogeneous tools for monitoring various infrastructure parameters, in order to assure optimal DAQ system performance, proved to be a tedious and time consuming task for experts. To alleviate this problem we used our networking and DAQ expertise to build a flexible and scalable monitoring system providing an intuitive user interface with the same look and feel irrespective of the data provider that is used. Our system uses custom developed components for critical performance monitoring and seamlessly integrates complementary data from auxiliary tools, such as NAGIOS, information services or custom databases. A number of techniques (e.g. normalization, aggregation and data caching) were used in order to improve the user interface response time. The end result is a unified monitoring interface, for fast and uniform access to system statistics, which significantly reduced the time spent by experts for ad-hoc and post-mortem analysis. (authors)

  7. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  8. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  9. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys

    Science.gov (United States)

    Karanth, Kota Ullas; Gopalaswamy, Arjun M.; Kumar, Narayanarao Samba; Vaidyanathan, Srinivas; Nichols, James D.; MacKenzie, Darryl I.

    2011-01-01

    sampling using spatial replicates can be used to reliably and efficiently identify tiger population sources and help monitor metapopulations. Our results reinforce earlier findings that prey depletion and human disturbance are key drivers of local tiger extinctions and tigers can persist even in human-dominated landscapes through effective protection of source populations. Our approach facilitates efficient targeting of tiger conservation interventions and, more generally, provides a basis for the reliable integration of large carnivore monitoring data between local and landscape scales.

  10. A practical process for light-water detritiation at large scales

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Robinson, J., E-mail: jr@tyne-engineering.com [Tyne Engineering, Burlington, ON (Canada); Gnanapragasam, N.V.; Castillo, I.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    AECL and Tyne Engineering have recently completed a preliminary engineering design for a modest-scale tritium removal plant for light water, intended for installation at AECL's Chalk River Laboratories (CRL). This plant design was based on the Combined Electrolysis and Catalytic Exchange (CECE) technology developed at CRL over many years and demonstrated there and elsewhere. The general features and capabilities of this design have been reported as well as the versatility of the design for separating any pair of the three hydrogen isotopes. The same CECE technology could be applied directly to very large-scale wastewater detritiation, such as the case at Fukushima Daiichi Nuclear Power Station. However, since the CECE process scales linearly with throughput, the required capital and operating costs are substantial for such large-scale applications. This paper discusses some options for reducing the costs of very large-scale detritiation. Options include: Reducing tritium removal effectiveness; Energy recovery; Improving the tolerance of impurities; Use of less expensive or more efficient equipment. A brief comparison with alternative processes is also presented. (author)

  11. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  12. Low-Complexity Transmit Antenna Selection and Beamforming for Large-Scale MIMO Communications

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2014-01-01

    Full Text Available Transmit antenna selection plays an important role in large-scale multiple-input multiple-output (MIMO communications, but optimal large-scale MIMO antenna selection is a technical challenge. Exhaustive search is often employed in antenna selection, but it cannot be efficiently implemented in large-scale MIMO communication systems due to its prohibitive high computation complexity. This paper proposes a low-complexity interactive multiple-parameter optimization method for joint transmit antenna selection and beamforming in large-scale MIMO communication systems. The objective is to jointly maximize the channel outrage capacity and signal-to-noise (SNR performance and minimize the mean square error in transmit antenna selection and minimum variance distortionless response (MVDR beamforming without exhaustive search. The effectiveness of all the proposed methods is verified by extensive simulation results. It is shown that the required antenna selection processing time of the proposed method does not increase along with the increase of selected antennas, but the computation complexity of conventional exhaustive search method will significantly increase when large-scale antennas are employed in the system. This is particularly useful in antenna selection for large-scale MIMO communication systems.

  13. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Workpackage 6, Driver Behaviour Monitoring through Naturalistic Driving: Deliverable 6.3: Report on small scale naturalistic driving pilot.

    NARCIS (Netherlands)

    Pilgerstorfer, M. Runda, K. Brandstätter, C. Christoph, M. Hakkert, S. Ishaq, R. Toledo, T. & Gatscha, M.

    2012-01-01

    WP6 of DaCoTA, Driver Behaviour Monitoring through Naturalistic Driving, aims to develop an implementation plan for a large scale activity that uses Naturalistic Driving (ND) Observations to continuously monitor relevant road safety data within the framework of the European Road Safety Observatory.

  14. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  15. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  16. Temporal flexibility and careers: The role of large-scale organizations for physicians

    OpenAIRE

    Forrest Briscoe

    2006-01-01

    Temporal flexibility and careers: The role of large-scale organizations for physicians. Forrest Briscoe Briscoe This study investigates how employment in large-scale organizations affects the work lives of practicing physicians. Well-established theory associates larger organizations with bureaucratic constraint, loss of workplace control, and dissatisfaction, but this author finds that large scale is also associated with greater schedule and career flexibility. Ironically, the bureaucratic p...

  17. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  18. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  19. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  1. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  2. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  3. Generation of large-scale vortives in compressible helical turbulence

    International Nuclear Information System (INIS)

    Chkhetiani, O.G.; Gvaramadze, V.V.

    1989-01-01

    We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs

  4. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    Science.gov (United States)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  5. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  6. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    Science.gov (United States)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  7. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  8. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  9. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  10. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  11. Pro website development and operations streamlining DevOps for large-scale websites

    CERN Document Server

    Sacks, Matthew

    2012-01-01

    Pro Website Development and Operations gives you the experience you need to create and operate a large-scale production website. Large-scale websites have their own unique set of problems regarding their design-problems that can get worse when agile methodologies are adopted for rapid results. Managing large-scale websites, deploying applications, and ensuring they are performing well often requires a full scale team involving the development and operations sides of the company-two departments that don't always see eye to eye. When departments struggle with each other, it adds unnecessary comp

  12. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  13. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  14. Evaluation of Large-scale Public Sector Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Hanne Foss

    2017-01-01

    and more delimited policy areas take place. In our analysis we apply four governance perspectives (rational-instrumental, rational-interest based, institutional-cultural and a chaos perspective) in a comparative analysis of the evaluations of two large-scale public sector reforms in Denmark and Norway. We...

  15. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  16. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  17. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  18. Large-eddy simulation with accurate implicit subgrid-scale diffusion

    NARCIS (Netherlands)

    B. Koren (Barry); C. Beets

    1996-01-01

    textabstractA method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion term. Subgrid-scale effects are modelled implicitly through an appropriate monotone (in the sense of Spekreijse 1987) discretization method for the advective terms. Special attention is

  19. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  20. Macroecological factors explain large-scale spatial population patterns of ancient agriculturalists

    NARCIS (Netherlands)

    Xu, C.; Chen, B.; Abades, S.; Reino, L.; Teng, S.; Ljungqvist, F.C.; Huang, Z.Y.X.; Liu, X.

    2015-01-01

    Aim: It has been well demonstrated that the large-scale distribution patterns of numerous species are driven by similar macroecological factors. However, understanding of this topic remains limited when applied to our own species. Here we take a large-scale look at ancient agriculturalist

  1. Large Scale Investments in Infrastructure : Competing Policy regimes to Control Connections

    NARCIS (Netherlands)

    Otsuki, K.; Read, M.L.; Zoomers, E.B.

    2016-01-01

    This paper proposes to analyse implications of large-scale investments in physical infrastructure for social and environmental justice. While case studies on the global land rush and climate change have advanced our understanding of how large-scale investments in land, forests and water affect

  2. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  3. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  4. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  5. Large-Scale and Global Hydrology. Chapter 92

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; Koster, Randal; Peters-Lidard, Christa D.; Famiglietti, James S.; Lakshmi, Venkat

    2016-01-01

    Powered by the sun, water moves continuously between and through Earths oceanic, atmospheric, and terrestrial reservoirs. It enables life, shapes Earths surface, and responds to and influences climate change. Scientists measure various features of the water cycle using a combination of ground, airborne, and space-based observations, and seek to characterize it at multiple scales with the aid of numerical models. Over time our understanding of the water cycle and ability to quantify it have improved, owing to advances in observational capabilities, the extension of the data record, and increases in computing power and storage. Here we present some of the most recent estimates of global and continental ocean basin scale water cycle stocks and fluxes and provide examples of modern numerical modeling systems and reanalyses.Further, we discuss prospects for predicting water cycle variability at seasonal and longer scales, which is complicated by a changing climate and direct human impacts related to water management and agriculture. Changes to the water cycle will be among the most obvious and important facets of climate change, thus it is crucial that we continue to invest in our ability to monitor it.

  6. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  7. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  8. Toward Instructional Leadership: Principals' Perceptions of Large-Scale Assessment in Schools

    Science.gov (United States)

    Prytula, Michelle; Noonan, Brian; Hellsten, Laurie

    2013-01-01

    This paper describes a study of the perceptions that Saskatchewan school principals have regarding large-scale assessment reform and their perceptions of how assessment reform has affected their roles as principals. The findings revealed that large-scale assessments, especially provincial assessments, have affected the principal in Saskatchewan…

  9. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  10. Large-scale derived flood frequency analysis based on continuous simulation

    Science.gov (United States)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  11. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Branchini, Enzo [Department of Physics, Universita Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States)

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  12. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  13. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  14. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  15. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    OpenAIRE

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...

  16. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  17. A new system of labour management in African large-scale agriculture?

    DEFF Research Database (Denmark)

    Gibbon, Peter; Riisgaard, Lone

    2014-01-01

    This paper applies a convention theory (CT) approach to the analysis of labour management systems in African large-scale farming. The reconstruction of previous analyses of high-value crop production on large-scale farms in Africa in terms of CT suggests that, since 1980–95, labour management has...

  18. Pseudoscalar-photon mixing and the large scale alignment of QsO ...

    Indian Academy of Sciences (India)

    physics pp. 679-682. Pseudoscalar-photon mixing and the large scale alignment of QsO optical polarizations. PANKAJ JAIN, sUKANTA PANDA and s sARALA. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We review the observation of large scale alignment of QSO optical polariza-.

  19. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  20. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  1. Large-Scale Transit Signal Priority Implementation

    OpenAIRE

    Lee, Kevin S.; Lozner, Bailey

    2018-01-01

    In 2016, the District Department of Transportation (DDOT) deployed Transit Signal Priority (TSP) at 195 intersections in highly urbanized areas of Washington, DC. In collaboration with a broader regional implementation, and in partnership with the Washington Metropolitan Area Transit Authority (WMATA), DDOT set out to apply a systems engineering–driven process to identify, design, test, and accept a large-scale TSP system. This presentation will highlight project successes and lessons learned.

  2. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    This thesis exposes my contribution to the measurement of homogeneity scale using galaxies, with the cosmological interpretation of results. In physics, any model is characterized by a set of principles. Most models in cosmology are based on the Cosmological Principle, which states that the universe is statistically homogeneous and isotropic on a large scales. Today, this principle is considered to be true since it is respected by those cosmological models that accurately describe the observations. However, while the isotropy of the universe is now confirmed by many experiments, it is not the case for the homogeneity. To study cosmic homogeneity, we propose to not only test a model but to test directly one of the postulates of modern cosmology. Since 1998 the measurements of cosmic distances using type Ia supernovae, we know that the universe is now in a phase of accelerated expansion. This phenomenon can be explained by the addition of an unknown energy component, which is called dark energy. Since dark energy is responsible for the expansion of the universe, we can study this mysterious fluid by measuring the rate of expansion of the universe. The universe has imprinted in its matter distribution a standard ruler, the Baryon Acoustic Oscillation (BAO) scale. By measuring this scale at different times during the evolution of our universe, it is then possible to measure the rate of expansion of the universe and thus characterize this dark energy. Alternatively, we can use the homogeneity scale to study this dark energy. Studying the homogeneity and the BAO scale requires the statistical study of the matter distribution of the universe at large scales, superior to tens of Mega-parsecs. Galaxies and quasars are formed in the vast over densities of matter and they are very luminous: these sources trace the distribution of matter. By measuring the emission spectra of these sources using large spectroscopic surveys, such as BOSS and eBOSS, we can measure their positions

  3. Radiation monitoring around accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)

    2000-07-01

    The present status of a network of radiation monitors (NORM) working at KEK is described in detail. NORM consists of there parts; stand-alone radiation monitors (SARM), local-monitoring stations (STATION) and a central data-handling system (CENTER). NORM has developed to a large-scaled monitoring system in which more than 250 SARMs are under operation for monitoring the radiation fields and radioactivities around accelerators in KEK. (author)

  4. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  5. Response of deep and shallow tropical maritime cumuli to large-scale processes

    Science.gov (United States)

    Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.

    1976-01-01

    The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.

  6. Accuracy assessment of planimetric large-scale map data for decision-making

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-06-01

    Full Text Available This paper presents decision-making risk estimation based on planimetric large-scale map data, which are data sets or databases which are useful for creating planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four data sets of large-scale map data. Errors of map data were used for a risk assessment of decision-making about the localization of objects, e.g. for land-use planning in realization of investments. An analysis was performed for a large statistical sample set of shift vectors of control points, which were identified with the position errors of these points (errors of map data.

  7. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  8. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  9. Monitoring of the energy scale in the KATRIN neutrino experiment

    CERN Document Server

    AUTHOR|(CDS)2083282

    The question of the absolute mass scale of neutrinos is of particular interest for particle physics, astrophysics, and cosmology. The KATRIN experiment (KArlsruhe TRItium Neutrino experiment) aims to address the effective electron antineutrino mass from the shape of the tritium $\\beta$-spectrum with an unprecedented sensitivity of 0.2 eV/c$^2$. One of the major systematic effects concerns the experimental energy scale, which has to be stable at the level of only a few parts in a million. For its calibration and monitoring the monoenergetic electrons emitted in the internal conversion of $\\gamma$-transition of the metastable isotope $^{83\\mathrm{m}}$Kr will be extensively applied. The aim of this thesis is to address the problem of KATRIN energy scale distortions and its monitoring in detail. The source of electrons based on $^{83\\mathrm{m}}$Kr embedded in a solid as well as the source based on gaseous $^{83\\mathrm{m}}$Kr are studied. Based on the experimental results an approach for the continuous stability m...

  10. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  11. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  12. Facile Large-scale synthesis of stable CuO nanoparticles

    Science.gov (United States)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  13. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    Science.gov (United States)

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape

  14. Large-Scale Cooperative Task Distribution on Peer-to-Peer Networks

    Science.gov (United States)

    2012-01-01

    SUBTITLE Large-scale cooperative task distribution on peer-to-peer networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...disadvantages of ML- Chord are its fixed size (two layers), and limited scala - bility for large-scale systems. RC-Chord extends ML- D. Karrels et al...configurable before runtime. This can be improved by incorporating a distributed learning algorithm to tune the number and range of the DLoE tracking

  15. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  16. An advanced open path atmospheric pollution monitor for large areas

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.; Suhre, D.; Mani, S. [and others

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  17. Quality assurance and quality improvement using supportive supervision in a large-scale STI intervention with sex workers, men who have sex with men/transgenders and injecting-drug users in India

    NARCIS (Netherlands)

    Mogasale, V.; Wi, T.C.; Das, A.; Kane, S.; Singh, A.K.; George, B.; Steen, R.

    2010-01-01

    Background Documentation of the long-term impact of supportive supervision using a monitoring tool in STI intervention with sex workers, men who have sex with men and injection-drug users is limited. The authors report methods and results of continued quality monitoring in a large-scale STI services

  18. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  19. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  20. Large scale cross hole testing

    International Nuclear Information System (INIS)

    Ball, J.K.; Black, J.H.; Doe, T.

    1991-05-01

    As part of the Site Characterisation and Validation programme the results of the large scale cross hole testing have been used to document hydraulic connections across the SCV block, to test conceptual models of fracture zones and obtain hydrogeological properties of the major hydrogeological features. The SCV block is highly heterogeneous. This heterogeneity is not smoothed out even over scales of hundreds of meters. Results of the interpretation validate the hypothesis of the major fracture zones, A, B and H; not much evidence of minor fracture zones is found. The uncertainty in the flow path, through the fractured rock, causes sever problems in interpretation. Derived values of hydraulic conductivity were found to be in a narrow range of two to three orders of magnitude. Test design did not allow fracture zones to be tested individually. This could be improved by testing the high hydraulic conductivity regions specifically. The Piezomac and single hole equipment worked well. Few, if any, of the tests ran long enough to approach equilibrium. Many observation boreholes showed no response. This could either be because there is no hydraulic connection, or there is a connection but a response is not seen within the time scale of the pumping test. The fractional dimension analysis yielded credible results, and the sinusoidal testing procedure provided an effective means of identifying the dominant hydraulic connections. (10 refs.) (au)

  1. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  2. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  3. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    Science.gov (United States)

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Methods for Large-Scale Nonlinear Optimization.

    Science.gov (United States)

    1980-05-01

    STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

  5. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Phanor Hernando Montoya Maya

    2016-11-01

    Full Text Available The aim of ecological restoration is to establish self-sustaining and resilient systems. In coral reef restoration, transplantation of nursery-grown corals is seen as a potential method to mitigate reef degradation and enhance recovery. The transplanted reef should be capable of recruiting new juvenile corals to ensure long-term resilience. Here, we quantified how coral transplantation influenced natural coral recruitment at a large-scale coral reef restoration site in Seychelles, Indian Ocean. Between November 2011 and June 2014 a total of 24,431 nursery-grown coral colonies from 10 different coral species were transplanted in 5,225 m2 (0.52 ha of degraded reef at the no-take marine reserve of Cousin Island Special Reserve in an attempt to assist in natural reef recovery. We present the results of research and monitoring conducted before and after coral transplantation to evaluate the positive effect that the project had on coral recruitment and reef recovery at the restored site. We quantified the density of coral recruits (spat <1 cm and juveniles (colonies 1-5 cm at the transplanted site, a degraded control site and a healthy control site at the marine reserve. We used ceramic tiles to estimate coral settlement and visual surveys with 1 m2 quadrats to estimate coral recruitment. Six months after tile deployment, total spat density at the transplanted site (123.4 ± 13.3 spat m-2 was 1.8 times higher than at healthy site (68.4 ± 7.8 spat m-2 and 1.6 times higher than at degraded site (78.2 ± 7.17 spat m-2. Two years after first transplantation, the total recruit density was highest at healthy site (4.8 ± 0.4 recruits m-2, intermediate at transplanted site (2.7 ± 0.4 recruits m-2, and lowest at degraded site (1.7 ± 0.3 recruits m-2. The results suggest that large-scale coral restoration may have a positive influence on coral recruitment and juveniles. The effect of key project techniques on the results are discussed. This study supports

  6. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  7. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  8. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  9. Large Scale GW Calculations on the Cori System

    Science.gov (United States)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  10. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  11. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  12. Electron drift in a large scale solid xenon

    International Nuclear Information System (INIS)

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon

  13. Wind and Photovoltaic Large-Scale Regional Models for hourly production evaluation

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Maule, Petr; Hahmann, Andrea N.

    2015-01-01

    This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesosca...... of the transmission system, especially regarding the cross-border power flows. The tuning of these regional models is done using historical meteorological data acquired on a per-country basis and using publicly available data of installed capacity.......This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesoscale...

  14. Pipeline monitoring using acoustic principal component analysis recognition with the Mel scale

    International Nuclear Information System (INIS)

    Wan, Chunfeng; Mita, Akira

    2009-01-01

    In modern cities, many important pipelines are laid underground. In order to prevent these lifeline infrastructures from accidental damage, monitoring systems are becoming indispensable. Third party activities were shown by recent reports to be a major cause of pipeline damage. Potential damage threat to the pipeline can be identified by detecting dangerous construction equipment nearby by studying the surrounding noise. Sound recognition technologies are used to identify them by their sounds, which can easily be captured by small sensors deployed along the pipelines. Pattern classification methods based on principal component analysis (PCA) were used to recognize the sounds from road cutters. In this paper, a Mel residual, i.e. the PCA residual in the Mel scale, is proposed to be the recognition feature. Determining if a captured sound belongs to a road cutter only requires checking how large its Mel residual is. Experiments were conducted and results showed that the proposed Mel-residual-based PCA recognition worked very well. The proposed Mel PCA residual recognition method will be very useful for pipeline monitoring systems to prevent accidental breakage and to ensure the safety of underground lifeline infrastructures

  15. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  16. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  17. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  18. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  19. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  20. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  1. Bottom-Up Accountability Initiatives and Large-Scale Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Security can help increase accountability for large-scale land acquisitions in ... to build decent economic livelihoods and participate meaningfully in decisions ... its 2017 call for proposals to establish Cyber Policy Centres in the Global South.

  2. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  3. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  4. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  5. How the Internet Will Help Large-Scale Assessment Reinvent Itself

    Directory of Open Access Journals (Sweden)

    Randy Elliot Bennett

    2001-02-01

    Full Text Available Large-scale assessment in the United States is undergoing enormous pressure to change. That pressure stems from many causes. Depending upon the type of test, the issues precipitating change include an outmoded cognitive-scientific basis for test design; a mismatch with curriculum; the differential performance of population groups; a lack of information to help individuals improve; and inefficiency. These issues provide a strong motivation to reconceptualize both the substance and the business of large-scale assessment. At the same time, advances in technology, measurement, and cognitive science are providing the means to make that reconceptualization a reality. The thesis of this paper is that the largest facilitating factor will be technological, in particular the Internet. In the same way that it is already helping to revolutionize commerce, education, and even social interaction, the Internet will help revolutionize the business and substance of large-scale assessment.

  6. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  7. Bottom-Up Accountability Initiatives and Large-Scale Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    fuel/energy, climate, and finance has occurred and one of the most ... this wave of large-scale land acquisitions. In fact, esti- ... Environmental Rights Action/Friends of the Earth,. Nigeria ... map the differentiated impacts (gender, ethnicity,.

  8. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  9. Using large-scale data analysis to assess life history and behavioural traits: the case of the reintroduced White stork Ciconia ciconia population in the Netherlands

    NARCIS (Netherlands)

    Doligez, B.; Thomson, D.L.; Van Noordwijk, A.J.

    2004-01-01

    The White stork Ciconia ciconia has been the object of several successful reintroduction programmes in the last decades. As a consequence, populations have been monitored over large spatial scales. Despite these intense efforts, very few reliable estimates of life history traits are available for

  10. Testing on a Large Scale Running the ATLAS Data Acquisition and High Level Trigger Software on 700 PC Nodes

    CERN Document Server

    Burckhart-Chromek, Doris; Adragna, P; Alexandrov, L; Amorim, A; Armstrong, S; Badescu, E; Baines, J T M; Barros, N; Beck, H P; Bee, C; Blair, R; Bogaerts, J A C; Bold, T; Bosman, M; Caprini, M; Caramarcu, C; Ciobotaru, M; Comune, G; Corso-Radu, A; Cranfield, R; Crone, G; Dawson, J; Della Pietra, M; Di Mattia, A; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Dotti, A; Drake, G; Ellis, Nick; Ermoline, Y; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Garitaonandia, H; Gaudio, G; George, S; Gesualdi-Mello, A; Gorini, B; Green, B; Haas, S; Haberichter, W N; Hadavand, H; Haeberli, C; Haller, J; Hansen, J; Hauser, R; Hillier, S J; Höcker, A; Hughes-Jones, R E; Joos, M; Kazarov, A; Kieft, G; Klous, S; Kohno, T; Kolos, S; Korcyl, K; Kordas, K; Kotov, V; Kugel, A; Landon, M; Lankford, A; Leahu, L; Leahu, M; Lehmann-Miotto, G; Le Vine, M J; Liu, W; Maeno, T; Männer, R; Mapelli, L; Martin, B; Masik, J; McLaren, R; Meessen, C; Meirosu, C; Mineev, M; Misiejuk, A; Morettini, P; Mornacchi, G; Müller, M; Garcia-Murillo, R; Nagasaka, Y; Negri, A; Padilla, C; Pasqualucci, E; Pauly, T; Perera, V; Petersen, J; Pope, B; Albuquerque-Portes, M; Pretzl, K; Prigent, D; Roda, C; Ryabov, Yu; Salvatore, D; Schiavi, C; Schlereth, J L; Scholtes, I; Sole-Segura, E; Seixas, M; Sloper, J; Soloviev, I; Spiwoks, R; Stamen, R; Stancu, S; Strong, S; Sushkov, S; Szymocha, T; Tapprogge, S; Teixeira-Dias, P; Torres, R; Touchard, F; Tremblet, L; Ünel, G; Van Wasen, J; Vandelli, W; Vaz-Gil-Lopes, L; Vermeulen, J C; von der Schmitt, H; Wengler, T; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wiesmann, M; Wu, X; Yasu, Y; Yu, M; Zema, F; Zobernig, H; Computing In High Energy and Nuclear Physics

    2006-01-01

    The ATLAS Data Acquisition (DAQ) and High Level Trigger (HLT) software system will be comprised initially of 2000 PC nodes which take part in the control, event readout, second level trigger and event filter operations. This high number of PCs will only be purchased before data taking in 2007. The large CERN IT LXBATCH facility provided the opportunity to run in July 2005 online functionality tests over a period of 5 weeks on a stepwise increasing farm size from 100 up to 700 PC dual nodes. The interplay between the control and monitoring software with the event readout, event building and the trigger software has been exercised the first time as an integrated system on this large scale. New was also to run algorithms in the online environment for the trigger selection and in the event filter processing tasks on a larger scale. A mechanism has been developed to package the offline software together with the DAQ/HLT software and to distribute it via peer-to-peer software efficiently to this large pc cluster. T...

  11. Testing on a Large Scale running the ATLAS Data Acquisition and High Level Trigger Software on 700 PC Nodes

    CERN Document Server

    Burckhart-Chromek, Doris; Adragna, P; Albuquerque-Portes, M; Alexandrov, L; Amorim, A; Armstrong, S; Badescu, E; Baines, J T M; Barros, N; Beck, H P; Bee, C; Blair, R; Bogaerts, J A C; Bold, T; Bosman, M; Caprini, M; Caramarcu, C; Ciobotaru, M; Comune, G; Corso-Radu, A; Cranfield, R; Crone, G; Dawson, J; Della Pietra, M; Di Mattia, A; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Dotti, A; Drake, G; Ellis, Nick; Ermoline, Y; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Garcia-Murillo, R; Garitaonandia, H; Gaudio, G; George, S; Gesualdi-Mello, A; Gorini, B; Green, B; Haas, S; Haberichter, W N; Hadavand, H; Haeberli, C; Haller, J; Hansen, J; Hauser, R; Hillier, S J; Hughes-Jones, R E; Höcker, A; Joos, M; Kazarov, A; Kieft, G; Klous, S; Kohno, T; Kolos, S; Korcyl, K; Kordas, K; Kotov, V; Kugel, A; Landon, M; Lankford, A; Le Vine, M J; Leahu, L; Leahu, M; Lehmann-Miotto, G; Liu, W; Maeno, T; Mapelli, L; Martin, B; Masik, J; McLaren, R; Meessen, C; Meirosu, C; Mineev, M; Misiejuk, A; Morettini, P; Mornacchi, G; Männer, R; Müller, M; Nagasaka, Y; Negri, A; Padilla, C; Pasqualucci, E; Pauly, T; Perera, V; Petersen, J; Pope, B; Pretzl, K; Prigent, D; Roda, C; Ryabov, Yu; Salvatore, D; Schiavi, C; Schlereth, J L; Scholtes, I; Seixas, M; Sloper, J; Sole-Segura, E; Soloviev, I; Spiwoks, R; Stamen, R; Stancu, S; Strong, S; Sushkov, S; Szymocha, T; Tapprogge, S; Teixeira-Dias, P; Torres, R; Touchard, F; Tremblet, L; Van Wasen, J; Vandelli, W; Vaz-Gil-Lopes, L; Vermeulen, J C; Wengler, T; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wiesmann, M; Wu, X; Yasu, Y; Yu, M; Zema, F; Zobernig, H; von der Schmitt, H; Ünel, G; Computing In High Energy and Nuclear Physics

    2006-01-01

    The ATLAS Data Acquisition (DAQ) and High Level Trigger (HLT) software system will be comprised initially of 2000 PC nodes which take part in the control, event readout, second level trigger and event filter operations. This high number of PCs will only be purchased before data taking in 2007. The large CERN IT LXBATCH facility provided the opportunity to run in July 2005 online functionality tests over a period of 5 weeks on a stepwise increasing farm size from 100 up to 700 PC dual nodes. The interplay between the control and monitoring software with the event readout, event building and the trigger software has been exercised the first time as an integrated system on this large scale. New was also to run algorithms in the online environment for the trigger selection and in the event filter processing tasks on a larger scale. A mechanism has been developed to package the offline software together with the DAQ/HLT software and to distribute it via peer-to-peer software efficiently to this large pc cluster. T...

  12. Origin of the large scale structures of the universe

    International Nuclear Information System (INIS)

    Oaknin, David H.

    2004-01-01

    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength

  13. Technologies and challenges in large-scale phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin Røssel

    2013-01-01

    become the main technique for discovery and characterization of phosphoproteins in a nonhypothesis driven fashion. In this review, we describe methods for state-of-the-art MS-based analysis of protein phosphorylation as well as the strategies employed in large-scale phosphoproteomic experiments...... with focus on the various challenges and limitations this field currently faces....

  14. Some ecological guidelines for large-scale biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, W.; Cook, J.H.; Beyea, J. [National Audubon Society, Tavernier, FL (United States)

    1993-12-31

    The National Audubon Society sees biomass as an appropriate and necessary source of energy to help replace fossil fuels in the near future, but is concerned that large-scale biomass plantations could displace significant natural vegetation and wildlife habitat, and reduce national and global biodiversity. We support the development of an industry large enough to provide significant portions of our energy budget, but we see a critical need to ensure that plantations are designed and sited in ways that minimize ecological disruption, or even provide environmental benefits. We have been studying the habitat value of intensively managed short-rotation tree plantations. Our results show that these plantations support large populations of some birds, but not all of the species using the surrounding landscape, and indicate that their value as habitat can be increased greatly by including small areas of mature trees within them. We believe short-rotation plantations can benefit regional biodiversity if they can be deployed as buffers for natural forests, or as corridors connecting forest tracts. To realize these benefits, and to avoid habitat degradation, regional biomass plantation complexes (e.g., the plantations supplying all the fuel for a powerplant) need to be planned, sited, and developed as large-scale units in the context of the regional landscape mosaic.

  15. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply

  16. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  17. Worldwide large-scale fluctuations of sardine and anchovy ...

    African Journals Online (AJOL)

    Worldwide large-scale fluctuations of sardine and anchovy populations. ... African Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced ... Fullscreen Fullscreen Off. http://dx.doi.org/10.2989/AJMS.2008.30.1.13.463.

  18. Large-scale linear programs in planning and prediction.

    Science.gov (United States)

    2017-06-01

    Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

  19. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  20. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  1. Large Scale Visual Recommendations From Street Fashion Images

    OpenAIRE

    Jagadeesh, Vignesh; Piramuthu, Robinson; Bhardwaj, Anurag; Di, Wei; Sundaresan, Neel

    2014-01-01

    We describe a completely automated large scale visual recommendation system for fashion. Our focus is to efficiently harness the availability of large quantities of online fashion images and their rich meta-data. Specifically, we propose four data driven models in the form of Complementary Nearest Neighbor Consensus, Gaussian Mixture Models, Texture Agnostic Retrieval and Markov Chain LDA for solving this problem. We analyze relative merits and pitfalls of these algorithms through extensive e...

  2. ``Large''- vs Small-scale friction control in turbulent channel flow

    Science.gov (United States)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  3. Power suppression at large scales in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, Bologna, 40126 (Italy); Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States)

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  4. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Science.gov (United States)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  5. Optimization of large-scale heterogeneous system-of-systems models.

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  6. Mining Together : Large-Scale Mining Meets Artisanal Mining, A Guide for Action

    OpenAIRE

    World Bank

    2009-01-01

    The present guide mining together-when large-scale mining meets artisanal mining is an important step to better understanding the conflict dynamics and underlying issues between large-scale and small-scale mining. This guide for action not only points to some of the challenges that both parties need to deal with in order to build a more constructive relationship, but most importantly it sh...

  7. Large transverse momenta in inclusive hadronic reactions and asymptotic scale invariance

    International Nuclear Information System (INIS)

    Miralles, F.; Sala, C.

    1976-01-01

    The inclusive reaction among scalar particles in considered, assuming that in the large-transverse momentum limit, scale invariance becomes important. Predictions are made of the asymptotic scale invariance for large four transverse momentum in hadron-hadron interactions, and they are compared with previous predictions. Photoproduction is also studied and the predictions that follow from different assumptions about the compositeness of hadrons are compared

  8. Chirping for large-scale maritime archaeological survey

    DEFF Research Database (Denmark)

    Grøn, Ole; Boldreel, Lars Ole

    2014-01-01

    Archaeological wrecks exposed on the sea floor are mapped using side-scan and multibeam techniques, whereas the detection of submerged archaeological sites, such as Stone Age settlements, and wrecks, partially or wholly embedded in sea-floor sediments, requires the application of high-resolution ...... the present state of this technology, it appears well suited to large-scale maritime archaeological mapping....

  9. LARGE-SCALE COMMERCIAL INVESTMENTS IN LAND: SEEKING ...

    African Journals Online (AJOL)

    extent of large-scale investment in land or to assess its impact on the people in recipient countries. .... favorable lease terms, apparently based on a belief that this is necessary to .... Harm to the rights of local occupiers of land can result from a dearth. 24. ..... applies to a self-identified group based on the group's traditions.

  10. Active power reserves evaluation in large scale PVPPs

    DEFF Research Database (Denmark)

    Crăciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    The present trend on investing in renewable ways of producing electricity in the detriment of conventional fossil fuel-based plants will lead to a certain point where these plants have to provide ancillary services and contribute to overall grid stability. Photovoltaic (PV) power has the fastest...... growth among all renewable energies and managed to reach high penetration levels creating instabilities which at the moment are corrected by the conventional generation. This paradigm will change in the future scenarios where most of the power is supplied by large scale renewable plants and parts...... of the ancillary services have to be shared by the renewable plants. The main focus of the proposed paper is to technically and economically analyze the possibility of having active power reserves in large scale PV power plants (PVPPs) without any auxiliary storage equipment. The provided reserves should...

  11. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  12. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Science.gov (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  13. Novel algorithm of large-scale simultaneous linear equations

    International Nuclear Information System (INIS)

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  14. Worldwide large-scale fluctuations of sardine and anchovy ...

    African Journals Online (AJOL)

    Worldwide large-scale fluctuations of sardine and anchovy populations. ... African Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced ... http://dx.doi.org/10.2989/AJMS.2008.30.1.13.463 · AJOL African Journals ...

  15. Large-Scale Systems Control Design via LMI Optimization

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2015-01-01

    Roč. 44, č. 3 (2015), s. 247-253 ISSN 1392-124X Institutional support: RVO:67985556 Keywords : Combinatorial linear matrix inequalities * large-scale system * decentralized control Subject RIV: BC - Control Systems Theory Impact factor: 0.633, year: 2015

  16. Unraveling The Connectome: Visualizing and Abstracting Large-Scale Connectomics Data

    KAUST Repository

    Al-Awami, Ali K.

    2017-01-01

    -user system seamlessly integrates a diverse set of tools. Our system provides support for the management, provenance, accountability, and auditing of large-scale segmentations. Finally, we present a novel architecture to render very large volumes interactively

  17. Performance Evaluation of CRW Reef-Scale and Broad-Scale SST-Based Coral Monitoring Products in Fringing Reef Systems of Tobago

    Directory of Open Access Journals (Sweden)

    Shaazia S. Mohammed

    2015-12-01

    Full Text Available Satellite-derived sea surface temperature (SST is used to monitor coral bleaching through the National Oceanic and Atmospheric Administration’s Coral Reef Watch (CRW Decision Support System (DSS. Since 2000, a broad-scale 50 km SST was used to monitor thermal stress for coral reefs globally. However, some discrepancies were noted when applied to small-scale fringing coral reefs. To address this, CRW created a new DSS, specifically targeted at or near reef scales. Here, we evaluated the new reef-scale (5 km resolution products using in situ temperature data and coral bleaching surveys which were also compared with the heritage broad-scale (50 km for three reefs (Buccoo Reef, Culloden and Speyside of the southern Caribbean island of Tobago. Seasonal and annual biases indicated the new 5 km SST generally represents the conditions at these reefs more accurately and more consistently than the 50 km SST. Consistency between satellite and in situ temperature data influences the performance of anomaly-based predictions of bleaching: the 5 km DHW product showed better consistency with bleaching observations than the 50 km product. These results are the first to demonstrate the improvement of the 5 km products over the 50 km predecessors and support their use in monitoring thermal stress of reefs in the southern Caribbean.

  18. Report on a workshop on the application of thermoluminescence dosimetry to large scale individual monitoring, Ispra, 11-13 September 1985

    International Nuclear Information System (INIS)

    Barthe, J.R.; Christensen, P.; Driscoll, C.M.H.; Marshall, T.O.; Harvey, J.R.; Julius, H.W.; Marshall, M.; Oberhoffer, M.

    1987-01-01

    The workshop was held for the benefit of those actually involved in the operation of large scale automatic thermoluminescence dosimetry systems. It was organised around three overall themes subdivided into 13 subject headings: External constraints: User requirements, Quantities and Units, Legal requirements, Testing, Intercomparisons; Dosimetry systems: Materials, Dosemeter design, Reading systems, Annealing procedures, Rogue readings; Management: Distribution and organisation, Reporting and record keeping, Financial aspects. (author)

  19. Report of the Workshop on Petascale Systems Integration for LargeScale Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Walter, Howard; New, Gary; Engle, Tom; Pennington, Rob; Comes, Brad; Bland, Buddy; Tomlison, Bob; Kasdorf, Jim; Skinner, David; Regimbal, Kevin

    2007-10-01

    There are significant issues regarding Large Scale System integration that are not being addressed in other forums such as current research portfolios or vendor user groups. Unfortunately, the issues in the area of large-scale system integration often fall into a netherworld; not research, not facilities, not procurement, not operations, not user services. Taken together, these issues along with the impact of sub-optimal integration technology means the time required to deploy, integrate and stabilize large scale system may consume up to 20 percent of the useful life of such systems. Improving the state of the art for large scale systems integration has potential to increase the scientific productivity of these systems. Sites have significant expertise, but there are no easy ways to leverage this expertise among them . Many issues inhibit the sharing of information, including available time and effort, as well as issues with sharing proprietary information. Vendors also benefit in the long run from the solutions to issues detected during site testing and integration. There is a great deal of enthusiasm for making large scale system integration a full-fledged partner along with the other major thrusts supported by funding agencies in the definition, design, and use of a petascale systems. Integration technology and issues should have a full 'seat at the table' as petascale and exascale initiatives and programs are planned. The workshop attendees identified a wide range of issues and suggested paths forward. Pursuing these with funding opportunities and innovation offers the opportunity to dramatically improve the state of large scale system integration.

  20. Nuclear-pumped lasers for large-scale applications

    International Nuclear Information System (INIS)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs

  1. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  2. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena

  3. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-01-01

    structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination

  4. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    Science.gov (United States)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  5. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  6. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B K; Angelidaki, I [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  7. Solving large scale structure in ten easy steps with COLA

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  8. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  9. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    Science.gov (United States)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4Destiny will be used in its third year as a high resolution, wide-field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  10. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  11. Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2014-01-01

    The investment of large scale offshore wind farms is high in which the electrical system has a significant contribution to the total cost. As one of the key components, the cost of the connection cables affects the initial investment a lot. The development of cable manufacturing provides a vast...... and systematical way for the optimal selection of cables in large scale offshore wind farms....

  12. Keeping the ‘Great’ in the Great Barrier Reef: large-scale governance of the Great Barrier Reef Marine Park

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2014-08-01

    Full Text Available As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP in Australia. We focus on eight design principles from common-pool resource (CPR theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management through time. Our analysis showed that commercial fisheries management and the re-zoning of the GBRMP in 2004 led to improvements in ecological condition of the reef, particularly fisheries. These boundary and rights changes were supported by effective monitoring, sanctioning and conflict resolution. Moderate biophysical connectivity was also important for improved outcomes. However, our analysis also highlighted that continued challenges to improved ecological health in terms of coral cover and biodiversity can be explained by fuzzy boundaries between land and sea, and the significance of external drivers to even large-scale social-ecological systems (SES. While ecological and institutional fit in the marine SES was high, this was not the case when considering the coastal SES. Nested governance arrangements become even more important at this larger scale. To our knowledge, our paper provides the first analysis linking the re-zoning of the GBRMP to CPR and SES theory. We discuss important challenges to coding large-scale systems for meta-analysis.

  13. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  14. Frequent VLBI Monitoring on Parsec-Scales of 450+ Extragalactic FERMI Sources at 8 and 32 GHz

    Science.gov (United States)

    Jacobs, Christopher S.; Majid, W. A.; Romero-Wolf, A.; García-Mirí, C.; Horiuchi, S.; Snedeker, L. G.; Sotuela, I.

    2012-10-01

    Executive Summary: An existing Ka-band (32 GHz, 9mm) catalog of 450+ sources is being monitored every 6-10 weeks on Giga-lambda baselines. These observations are sensitive to parsec scale activity in the AGN cores providing unique tests of gamma ray emission models. Abstract: The Fermi Large Area Telescope (LAT) has now released the 2nd catalog of high-energy gamma-ray sources (2FGL) derived from the first 24 months of mission science data with 1873 sources detected and characterized in the 100 MeV to 100 GeV range. 1017 of 1873 sources at high Galactic latitude (abs(b) > 10 degrees) are associated statistically with active galactic nuclei (AGNs). Parsec-scale VLBI measurements play an important role in characterizing the nature of the candidate AGNs by providing crucial extra information to improve the probability of correct identification - VLBI filters out objects which do not host strong compact jets at parsec scale. We are carrying out regular VLBI monitoring of 450+ compact extragalactic sources using Deep Space Network (DSN) 34-meter antennas over intercontinental baselines simultaneously at 8 and 32 GHz. In addition to precision astrometric measurements of AGN compact cores used to maintain the JPL extragalactic reference frame, this program has the potential to provide regular simultaneous flux density measurements at 8 and 32 GHz with precision level of ~20%. By providing measurements on both East-West and North-South baselines with large antennas and Gbit/s recording capability, our program can probe sources down to a flux limit of 30 mJy (10-sigma), potentially increasing the sample to a fainter population of sources. In these regards, our program complements well existing northern and southern hemisphere VLBI monitoring programs, by providing flux measurements at 32 GHz, covering a fainter population sample, and by filling the gap for sources in the -20 to -45 degree declination range. Further, our program also provides additional flexibility for

  15. The Large-scale Effect of Environment on Galactic Conformity

    Science.gov (United States)

    Sun, Shuangpeng; Guo, Qi; Wang, Lan; Wang, Jie; Gao, Liang; Lacey, Cedric G.; Pan, Jun

    2018-04-01

    We use a volume-limited galaxy sample from the SDSS Data Release 7 to explore the dependence of galactic conformity on the large-scale environment, measured on ˜ 4 Mpc scales. We find that the star formation activity of neighbour galaxies depends more strongly on the environment than on the activity of their primary galaxies. In under-dense regions most neighbour galaxies tend to be active, while in over-dense regions neighbour galaxies are mostly passive, regardless of the activity of their primary galaxies. At a given stellar mass, passive primary galaxies reside in higher density regions than active primary galaxies, leading to the apparently strong conformity signal. The dependence of the activity of neighbour galaxies on environment can be explained by the corresponding dependence of the fraction of satellite galaxies. Similar results are found for galaxies in a semi-analytical model, suggesting that no new physics is required to explain the observed large-scale conformity.

  16. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  17. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  18. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  19. Constructing sites on a large scale

    DEFF Research Database (Denmark)

    Braae, Ellen Marie; Tietjen, Anne

    2011-01-01

    Since the 1990s, the regional scale has regained importance in urban and landscape design. In parallel, the focus in design tasks has shifted from master plans for urban extension to strategic urban transformation projects. A prominent example of a contemporary spatial development approach...... for setting the design brief in a large scale urban landscape in Norway, the Jaeren region around the city of Stavanger. In this paper, we first outline the methodological challenges and then present and discuss the proposed method based on our teaching experiences. On this basis, we discuss aspects...... is the IBA Emscher Park in the Ruhr area in Germany. Over a 10 years period (1988-1998), more than a 100 local transformation projects contributed to the transformation from an industrial to a post-industrial region. The current paradigm of planning by projects reinforces the role of the design disciplines...

  20. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    1992-01-01

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  1. Eight attention points when evaluating large-scale public sector reforms

    DEFF Research Database (Denmark)

    Hansen, Morten Balle; Breidahl, Karen Nielsen; Furubo, Jan-Eric

    2017-01-01

    This chapter analyses the challenges related to evaluations of large-scale public sector reforms. It is based on a meta-evaluation of the evaluation of the reform of the Norwegian Labour Market and Welfare Administration (the NAV-reform) in Norway, which entailed both a significant reorganization...... sector reforms. Based on the analysis, eight crucial points of attention when evaluating large-scale public sector reforms are elaborated. We discuss their reasons and argue that other countries will face the same challenges and thus can learn from the experiences of Norway....

  2. Large-scale melting and impact mixing on early-formed asteroids

    DEFF Research Database (Denmark)

    Greenwood, Richard; Barrat, J.-A.; Scott, Edward Robert Dalton

    Large-scale melting of asteroids and planetesimals is now known to have taken place ex-tremely early in solar system history [1]. The first-generation bodies produced by this process would have been subject to rapid collisional reprocessing, leading in most cases to fragmentation and/or accretion...... the relationship between the different groups of achondrites [3, 4]. Here we present new oxygen isotope evidence con-cerning the role of large-scale melting and subsequent impact mixing in the evolution of three important achondrite groups: the main-group pallasites, meso-siderites and HEDs....

  3. Updating Geospatial Data from Large Scale Data Sources

    Science.gov (United States)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  4. Distributed intelligent urban environment monitoring system

    Science.gov (United States)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  5. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  6. Large Deviations for Two-Time-Scale Diffusions, with Delays

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2010-01-01

    We consider the problem of large deviations for a two-time-scale reflected diffusion process, possibly with delays in the dynamical terms. The Dupuis-Ellis weak convergence approach is used. It is perhaps the most intuitive and simplest for the problems of concern. The results have applications to the problem of approximating optimal controls for two-time-scale systems via use of the averaged equation.

  7. Large scale study of tooth enamel

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.; Martin, M.T.

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. On hundred eighty samples of teeth were first analyzed using PIXE, backscattering and nuclear reaction techniques. The results were analyzed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population. (author)

  8. The (in)effectiveness of Global Land Policies on Large-Scale Land Acquisition

    NARCIS (Netherlands)

    Verhoog, S.M.

    2014-01-01

    Due to current crises, large-scale land acquisition (LSLA) is becoming a topic of growing concern. Public data from the ‘Land Matrix Global Observatory’ project (Land Matrix 2014a) demonstrates that since 2000, 1,664 large-scale land transactions in low- and middle-income countries were reported,

  9. Large Scale Landslide Database System Established for the Reservoirs in Southern Taiwan

    Science.gov (United States)

    Tsai, Tsai-Tsung; Tsai, Kuang-Jung; Shieh, Chjeng-Lun

    2017-04-01

    Typhoon Morakot seriously attack southern Taiwan awaken the public awareness of large scale landslide disasters. Large scale landslide disasters produce large quantity of sediment due to negative effects on the operating functions of reservoirs. In order to reduce the risk of these disasters within the study area, the establishment of a database for hazard mitigation / disaster prevention is necessary. Real time data and numerous archives of engineering data, environment information, photo, and video, will not only help people make appropriate decisions, but also bring the biggest concern for people to process and value added. The study tried to define some basic data formats / standards from collected various types of data about these reservoirs and then provide a management platform based on these formats / standards. Meanwhile, in order to satisfy the practicality and convenience, the large scale landslide disasters database system is built both provide and receive information abilities, which user can use this large scale landslide disasters database system on different type of devices. IT technology progressed extreme quick, the most modern system might be out of date anytime. In order to provide long term service, the system reserved the possibility of user define data format /standard and user define system structure. The system established by this study was based on HTML5 standard language, and use the responsive web design technology. This will make user can easily handle and develop this large scale landslide disasters database system.

  10. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Fisch, M.N.; Guigas, M.; Dalenback, J.O.

    1998-01-01

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO 2 -emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m 2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m 2 . Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  11. The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.

    Science.gov (United States)

    Yuan, Gonglin; Sheng, Zhou; Liu, Wenjie

    2016-01-01

    In this paper, the Hager and Zhang (HZ) conjugate gradient (CG) method and the modified HZ (MHZ) CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables).

  12. The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.

    Directory of Open Access Journals (Sweden)

    Gonglin Yuan

    Full Text Available In this paper, the Hager and Zhang (HZ conjugate gradient (CG method and the modified HZ (MHZ CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables.

  13. Validating Bayesian truth serum in large-scale online human experiments.

    Science.gov (United States)

    Frank, Morgan R; Cebrian, Manuel; Pickard, Galen; Rahwan, Iyad

    2017-01-01

    Bayesian truth serum (BTS) is an exciting new method for improving honesty and information quality in multiple-choice survey, but, despite the method's mathematical reliance on large sample sizes, existing literature about BTS only focuses on small experiments. Combined with the prevalence of online survey platforms, such as Amazon's Mechanical Turk, which facilitate surveys with hundreds or thousands of participants, BTS must be effective in large-scale experiments for BTS to become a readily accepted tool in real-world applications. We demonstrate that BTS quantifiably improves honesty in large-scale online surveys where the "honest" distribution of answers is known in expectation on aggregate. Furthermore, we explore a marketing application where "honest" answers cannot be known, but find that BTS treatment impacts the resulting distributions of answers.

  14. Large scale modulation of high frequency acoustic waves in periodic porous media.

    Science.gov (United States)

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  15. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  16. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  17. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  18. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  19. An advanced open-path atmospheric pollution monitor for large areas

    International Nuclear Information System (INIS)

    Taylor, L.

    1995-01-01

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This project is to design, develop, and test an atmospheric pollution monitor which can measure concentrations of DOE-specified and EPA-specified hazardous gases over ranges as long as 4km. A CO 2 laser to measure absorption spectra and to determine the distance over which the measurements are made, is combined with an acousto-optic tunable filter (AOTF) to measure thermal emission spectra

  20. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  1. A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.

    Science.gov (United States)

    Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu

    2017-10-01

    The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.

  2. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  3. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  4. The relationship between large-scale and convective states in the tropics - Towards an improved representation of convection in large-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, Christian [Monash Univ., Melbourne, VIC (Australia)

    2015-02-26

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveries about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.

  5. Large scale inhomogeneities and the cosmological principle

    International Nuclear Information System (INIS)

    Lukacs, B.; Meszaros, A.

    1984-12-01

    The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)

  6. Validation of a large-scale audit technique for CT dose optimisation

    International Nuclear Information System (INIS)

    Wood, T. J.; Davis, A. W.; Moore, C. S.; Beavis, A. W.; Saunderson, J. R.

    2008-01-01

    The expansion and increasing availability of computed tomography (CT) imaging means that there is a greater need for the development of efficient optimisation strategies that are able to inform clinical practice, without placing a significant burden on limited departmental resources. One of the most fundamental aspects to any optimisation programme is the collection of patient dose information, which can be compared with appropriate diagnostic reference levels. This study has investigated the implementation of a large-scale audit technique, which utilises data that already exist in the radiology information system, to determine typical doses for a range of examinations on four CT scanners. This method has been validated against what is considered the 'gold standard' technique for patient dose audits, and it has been demonstrated that results equivalent to the 'standard-sized patient' can be inferred from this much larger data set. This is particularly valuable where CT optimisation is concerned as it is considered a 'high dose' technique, and hence close monitoring of patient dose is particularly important. (authors)

  7. Incorporating Direct Rapid Immunohistochemical Testing into Large-Scale Wildlife Rabies Surveillance

    Directory of Open Access Journals (Sweden)

    Kevin Middel

    2017-06-01

    Full Text Available Following an incursion of the mid-Atlantic raccoon variant of the rabies virus into southern Ontario, Canada, in late 2015, the direct rapid immunohistochemical test for rabies (dRIT was employed on a large scale to establish the outbreak perimeter and to diagnose specific cases to inform rabies control management actions. In a 17-month period, 5800 wildlife carcasses were tested using the dRIT, of which 307 were identified as rabid. When compared with the gold standard fluorescent antibody test (FAT, the dRIT was found to have a sensitivity of 100% and a specificity of 98.2%. Positive and negative test agreement was shown to be 98.3% and 99.1%, respectively, with an overall test agreement of 98.8%. The average cost to test a sample was $3.13 CAD for materials, and hands-on technical time to complete the test is estimated at 0.55 h. The dRIT procedure was found to be accurate, fast, inexpensive, easy to learn and perform, and an excellent tool for monitoring the progression of a wildlife rabies incursion.

  8. Large-scale circulation departures related to wet episodes in northeast Brazil

    Science.gov (United States)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  9. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  10. Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.

    Science.gov (United States)

    Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah

    2016-12-01

    Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this

  11. Exploiting Data Sparsity for Large-Scale Matrix Computations

    KAUST Repository

    Akbudak, Kadir

    2018-02-24

    Exploiting data sparsity in dense matrices is an algorithmic bridge between architectures that are increasingly memory-austere on a per-core basis and extreme-scale applications. The Hierarchical matrix Computations on Manycore Architectures (HiCMA) library tackles this challenging problem by achieving significant reductions in time to solution and memory footprint, while preserving a specified accuracy requirement of the application. HiCMA provides a high-performance implementation on distributed-memory systems of one of the most widely used matrix factorization in large-scale scientific applications, i.e., the Cholesky factorization. It employs the tile low-rank data format to compress the dense data-sparse off-diagonal tiles of the matrix. It then decomposes the matrix computations into interdependent tasks and relies on the dynamic runtime system StarPU for asynchronous out-of-order scheduling, while allowing high user-productivity. Performance comparisons and memory footprint on matrix dimensions up to eleven million show a performance gain and memory saving of more than an order of magnitude for both metrics on thousands of cores, against state-of-the-art open-source and vendor optimized numerical libraries. This represents an important milestone in enabling large-scale matrix computations toward solving big data problems in geospatial statistics for climate/weather forecasting applications.

  12. Exploiting Data Sparsity for Large-Scale Matrix Computations

    KAUST Repository

    Akbudak, Kadir; Ltaief, Hatem; Mikhalev, Aleksandr; Charara, Ali; Keyes, David E.

    2018-01-01

    Exploiting data sparsity in dense matrices is an algorithmic bridge between architectures that are increasingly memory-austere on a per-core basis and extreme-scale applications. The Hierarchical matrix Computations on Manycore Architectures (HiCMA) library tackles this challenging problem by achieving significant reductions in time to solution and memory footprint, while preserving a specified accuracy requirement of the application. HiCMA provides a high-performance implementation on distributed-memory systems of one of the most widely used matrix factorization in large-scale scientific applications, i.e., the Cholesky factorization. It employs the tile low-rank data format to compress the dense data-sparse off-diagonal tiles of the matrix. It then decomposes the matrix computations into interdependent tasks and relies on the dynamic runtime system StarPU for asynchronous out-of-order scheduling, while allowing high user-productivity. Performance comparisons and memory footprint on matrix dimensions up to eleven million show a performance gain and memory saving of more than an order of magnitude for both metrics on thousands of cores, against state-of-the-art open-source and vendor optimized numerical libraries. This represents an important milestone in enabling large-scale matrix computations toward solving big data problems in geospatial statistics for climate/weather forecasting applications.

  13. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  14. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R [Texaco Technology Ghent (Belgium)

    1998-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  15. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  16. Disinformative data in large-scale hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Kauffeldt

    2013-07-01

    Full Text Available Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i basin areas for different hydrographic datasets, and (ii between climate data (precipitation and potential evaporation and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent

  17. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Science.gov (United States)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    Extremely heavy rainfall with accumulated rainfall amount more than 2900mm within continuous 3 day event occurred at southern Taiwan has been recognized as a serious natural hazard caused by Morakot typhoon in august, 2009. Very destructive large scale landslides and debris flows were induced by this heavy rainfall event. According to the satellite image processing and monitoring project was conducted by Soil & Water Conservation Bureau after Morakot typhoon. More than 10904 sites of landslide with total sliding area of 18113 ha were significantly found by this project. Also, the field investigation on all landslide areas were executed by this research on the basis of disaster type, scale and location related to the topographic condition, colluvium soil characteristics, bedrock formation and geological structure after Morakot hazard. The mechanism, characteristics and behavior of this large scale landslide combined with debris flow disasters are analyzed and Investigated to rule out the interaction of factors concerned above and identify the disaster extent of rainfall induced landslide during the period of this study. In order to reduce the disaster risk of large scale landslide and debris flow, the adaption strategy of hazard mitigation system should be set up as soon as possible and taken into consideration of slope land conservation, landslide control countermeasure planning, disaster database establishment, environment impact analysis and disaster risk assessment respectively. As a result, this 3-year research has been focused on the field investigation by using GPS/GIS/RS integration, mechanism and behavior study regarding to the rainfall induced landslide occurrence, disaster database and hazard mitigation system establishment. In fact, this project has become an important issue which was seriously concerned by the government and people live in Taiwan. Hopefully, all results come from this research can be used as a guidance for the disaster prevention and

  18. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  19. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  20. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution