WorldWideScience

Sample records for large radioactive sources

  1. USA perspectives. Safety and security of radioactive sources

    International Nuclear Information System (INIS)

    Dicus, G.J.

    1999-01-01

    In contrast to the 103 licensed nuclear power plants in the United States, there are about 157,000 licenses that authorize the use of radioactive materials subject to US Atomic Energy Act. as amended. Each year the NRC receives about 200 reports of lost, stolen or abandoned radioactive sources and devices. The NRC has established a programme to review and analyze reports and other information on losses, thefts, abandonments, and discoveries of radioactive sources that helped to identify and characterize the problem with safety and security of radioactive sources in devices used under the general license programme. In summary, a large number of radioactive sources in use in the USA have a very good safety record. When used properly by trained personnel with effective regulatory oversight, the many uses of radioactive sources are safe and provide a net benefit to society. If problems occur such as overexposures or contamination of property, it is essential that hey are promptly reported to the regulatory authority. If necessary appropriate emergency response measures can be taken, and the problems analysed. In that way, effective risk-informed regulatory measures can be activated to assure the continued safety and security of radioactive sources

  2. Radioactive source

    International Nuclear Information System (INIS)

    Drabkina, L.E.; Mazurek, V.; Myascedov, D.N.; Prokhorov, P.; Kachalov, V.A.; Ziv, D.M.

    1976-01-01

    A radioactive layer in a radioactive source is sealed by the application of a sealing layer on the radioactive layer. The sealing layer can consist of a film of oxide of titanium, tin, zirconium, aluminum, or chromium. Preferably, the sealing layer is pure titanium dioxide. The radioactive layer is embedded in a finish enamel which, in turn, is on a priming enamel which surrounds a substrate

  3. EPA's Radioactive Source Program

    International Nuclear Information System (INIS)

    Kopsick, D.

    2004-01-01

    The US EPA is the lead Federal agency for emergency responses to unknown radiological materials, not licensed, owned or operated by a Federal agency or an Agreement state (Federal Radiological Emergency Response Plan, 1996). The purpose of EPA's clean materials programme is to keep unwanted and unregulated radioactive material out of the public domain. This is achieved by finding and securing lost sources, maintaining control of existing sources and preventing future losses. The focus is on both, domestic and international fronts. The domestic program concentrates on securing lost sources, preventing future losses, alternative technologies like tagging of radioactive sources in commerce, pilot radioactive source roundup, training programs, scrap metal and metal processing facilities, the demolition industry, product stewardship and alternatives to radioactive devices (fewer radioactive source devices means fewer orphan sources). The international program consists of securing lost sources, preventing future losses, radiation monitoring of scrap metal at ports and the international scrap metal monitoring protocol

  4. Characterization and packaging of disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Aguilar, S.L.

    2013-01-01

    In Bolivia are generated disused sealed sources and radioactive waste resulting from the use of radioactive materials in industrial, research and medicine. The last includes the diagnosis and treatment. Whereas exposure to ionizing radiation is a potential hazard to personnel who applies it, to those who benefit from its use or for the community at large, it is necessary to control the activities in this field. The Instituto Boliviano de Ciencia y Tecnologia Nuclear - IBTEN is working on a regional project from International Atomic Energy Agency - IAEA, RLA/09/062 Project - TSA 4, Strengthening the National Infrastructure and Regulatory Framework for the Safe Management of Radioactive waste in Latin America. This Project has strengthened the regulatory framework regarding the safe management of radioactive waste. The aim of this work was focused primarily on the security aspects in the safe management of disused sealed sources. The tasks are listed below: 1. Characterization of disused sealed sources 2. Preparation for transport to temporary storage 3. Control of all disused radioactive sources. (author)

  5. Security of radioactive sources. The evolving new international dimensions

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    2001-01-01

    Security of radioactive sources has become an issue of serious public concern after the devastating terrorist attacks of 11 September 2001. Yet it is worth asking how serious the the problem actually is, given the fact that hundreds of dangerous chemicals and biological agents pose perhaps greater terrorist threats that need to be urgently reduced. Radioactive sources do not contain the type of nuclear materials that would allow someone to build a nuclear bomb and trigger a major catastrophe. Though radioactive sources can be potentially dangerous for anyone coming into close contact with them, they are safely used in everyday life for medical care and treatment, among other applications in fields of industry, agriculture, and science. However, there is increasing apprehension that radioactive sources could be turned into a terrorist tool what the media call a 'dirty bomb'. To increase the protection of radiation sources, the IAEA proposes a number of measures to strengthen regulatory control and to update its standards and expanding programmes in respect to terrorism threats. The proposals include: introducing a peer review service to appraise State regulatory infrastructures for the security of radioactive sources, including protection during transport; examining the feasibility of helping States to locate large orphan sources to bring them under regulatory control; reviewing and eventually revising the Code of Conduct on the Safety and Security of Radioactive Sources to make it more comprehensive in relation to security and to determine how compliance might be monitored; reviewing the requirements on the security of radioactive sources contained in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radioactive Sources on and updating other relevant documents; exploring the practicability of an international marking system for large significant sources and of establishing a norm for a more secure physical form

  6. Sealed radioactive source management

    International Nuclear Information System (INIS)

    2005-01-01

    Sealed radioactive sources have been used in a wide range of application in medicine, agriculture, geology, industry and other fields. Since its utilization many sources have become out of use and became waste but no proper management. This has lead to many accidents causing deaths and serious radiation injuries worldwide. Spent sources application is expanding but their management has seen little improvements. Sealed radioactive sources have become a security risk calling for prompt action. Source management helps to maintain sources in a good physical status and provide means of source tracking and control. It also provides a well documented process of the sources making any future management options safe, secure and cost effective. Last but not least good source management substantially reduces the risk of accidents and eliminates the risk of malicious use. The International Atomic Energy Agency assists Member States to build the infrastructure to properly manage sealed radioactive sources. The assistance includes training of national experts to handle, condition and properly store the sources. For Member States that do not have proper facilities, we provide the technical assistance to design a proper facility to properly manage the radioactive sources and provide for their proper storage. For Member States that need to condition their sources properly but don't have the required infrastructure we provide direct assistance to physically help them with source recovery and provide an international expert team to properly condition their sources and render them safe and secure. We offer software (Radioactive Waste Management Registry) to properly keep a complete record on the sources and provide for efficient tracking. This also helps with proper planning and decision making for long term management

  7. Import/Export Service of Radioactive Material and Radioactive Sources Service

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export Service of radioactive material (http://cern.ch/service-rp-shipping/ - e-mail : service-rp-shipping@cern.ch) and the Radioactive Sources Service (http://cern.ch/service-radioactive-sources - e-mail : service-radioactive-sources@cern.ch) at bldg. 24/E-024 will be closed on FRIDAY 10 SEPTEMBER 2004. Tel. 73171

  8. Reducing the risk from radioactive sources

    International Nuclear Information System (INIS)

    MacKenzie, C.

    2006-01-01

    Each year the IAEA receives reports of serious injuries or deaths due to misuse or accidents involving sealed radioactive sources. Sealed radioactive sources are used widely in medicine, industry, and agriculture - by doctors to treat cancer, by radiographers to check welds in pipelines, or by specialists to irradiate food to prevent it from spoiling, for example. If these sources are lost or improperly discarded, a serious accident may result. In addition, the security of sealed sources has become a growing concern, particularly the potential that such a source could be used as a radioactive dispersal device or 'dirty bomb'. Preventing the loss or theft of sealed radioactive sources reduces both the risk of accidents and the risk that such sources could become an instrument of misuse. In most countries, radioactive materials and activities that produce radiation are regulated. Those working with sealed radioactive sources are required not just to have proper credentials, but also the needed training and support to deal with unexpected circumstances that may arise when a source is used. Despite these measures, accidents involving sealed sources continue to be reported to the IAEA. Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents since the 1980s and publishing the findings so that others can learn from them. This information needs to be in the hands of those whose actions and decisions can reduce accidents by preventing a lost source from making it's way into scrap metal. The IAEA has also developed an international catalogue of sealed radioactive sources, and provides assistance to countries to safely contain sources no longer in use. To raise awareness, a Sealed Radioactive Sources Toolkit was issued that focuses on the long-term issues in safely and securely managing radioactive sealed sources. The target audiences are government agencies, radioactive sealed source

  9. Housing for a radioactive source

    International Nuclear Information System (INIS)

    Domnanovich, J. R.; Erwin, W. D.

    1985-01-01

    The radioactive structure comprises a radioactive source surrounded by a housing. The housing contains a first and second shielding body and a connecting device. The first shielding body has a protrusion which contains a first recess for receiving the radioactive source. The second shielding body has a second recess in one face end which accommodates the protrusion and a conical aperture communicating with the second recess in another face end. The connecting device connects the first shielding body to the second shielding body. When the radioactive source is inserted into the first recess and when the protrusion is located in the second recess, the radioactive source emits radiation primarily through the conical aperture into the environment. The source preferably contains americium which emits gamma radiation. The structure may be used as a motion correction sensor or as a marker in a nuclear diagnostic imaging

  10. Handling of radioactive sources in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    2000-01-01

    This document describes the following aspects: sealed and unsealed radioactive sources, radiation detectors, personnel and area monitoring, surface pollution, radioactive wastes control and radioactive sources transferring. (The author)

  11. Sources of Radioactive Isotopes for Dirty Bombs

    Science.gov (United States)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  12. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  13. Procurement and use of radioactive sources

    International Nuclear Information System (INIS)

    Prasad, S.S.; Sumathi, E.

    2017-01-01

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education. It has been recognized that unsecured radioactive sources can cause serious radiological accidents involving radiation injuries and fatalities. Radioactive source after its useful life, although considered waste, can still pose a security threat if not managed properly. Today, there is a growing concern that terrorist or criminal groups could gain access to disused high activity radioactive sources and use it with harmful intent. Consequently, there has been a global trend towards increased control, accounting, and security measures to prevent such incidents. Particular concern is expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). The International Basic Safety Standards published by International Atomic Energy Agency (IAEA) provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation

  14. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  15. Radioactive source manipulator and stowage device

    International Nuclear Information System (INIS)

    Burton, C.

    1980-01-01

    A description is given of a radioactive source manipulator and stowage device comprising: a cylindrical body; a transversely disposed socket formed near one end of said cylindrical body for receiving a radioactive source; a cylindrical sleeve rotatably mounted on said cylindrical body; and an aperture formed in the wall of said sleeve whereby rotation of said sleeve to axially align said aperture with said socket will permit a radioactive source to be inserted into and removed from said socket and rotation of said sleeve to move said aperture out of alignment with said socket when the socket contains a radioactive source readies the device for manipulation and stowage

  16. Safety and security of radioactive sources in Taiwan

    International Nuclear Information System (INIS)

    Tsay Yeousong; Guan Channan; Cheng Yungfu

    2008-01-01

    In Taiwan, the safety and security of radioactive sources is a high priority issue. Ionizing Radiation Protection Act (IRPA) and correlating regulations had been in place for effective control of the safety and security of radioactive sources since 2003. For increased control of sealed radioactive sources, Atomic Energy Council (AEC) established in March 2004 an online reporting system through the Internet, assisting source owners in reporting their sources every month. To conform to the Code of Conduct on the Safety and Security of Radioactive Sources and the Categorization of radioactive sources, published by the International Atomic Energy Agency (IAEA), AEC has taken the following actions: 1. Established an inventory of Categories 1 and 2 radioactive sources, and implemented the Import/Export Provisions of the Code. 2. Required that each licensee shall control access to Categories 1 and 2 radioactive sources, and AEC will conduct project inspection on Categories 1 and 2 radioactive sources. 3. Using a new radiation warning symbol by ISO for Categories 1 and 2 radioactive sources. The reinforcement of orphaned source control was implemented as early as 1995. All steel mills have installed radiation detectors to scan incoming metal scrap to prevent accidental smelting of radioactive sources. The results of this effort will be discussed in the paper. The above measures are examples for demonstrating AEC's commitment to reinforced control of radioactive sources. AEC will continue to protect public safety and security, ensuring that Taiwan's regulatory system in radiation protection conforms to international standards. (author)

  17. Radioactive sources in chemical laboratories

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2007-01-01

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96/29/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware of radiation characteristics of sources. The material inventories of chemical laboratories are typical and most frequent example where radioactive sources could be found. Five different types of sources could be identified. The most frequent type are chemicals, namely thorium and uranium compounds. They are used not due to their radioactivity but due to their chemical properties. As for all other sources a stringent control is necessary in order to assure their safe use. Around hundred of stored radioactive chemical items were found during inspections of such laboratories performed by the Slovenian Nuclear Safety Administration or qualified experts in a period December 2006 - July 2007. Users of such chemicals are usually not aware that thorium and uranium chemicals are radioactive and, as unsealed sources, they could be easily spilled out and produce contamination of persons, surfaces, equipment etc. The external exposure as well as the internal exposure including exposure due to inhalation could be present. No knowledge about special precautions is usually present in laboratories and leads to underestimating of a potential risk and unintentional exposure of the laboratory personnel, students etc. Due to the long decay times in decay series of Th -232, U-238 and U- 235 the materials are also radioactive today. Even more, in case of thorium chemicals the radioactivity increased substantially from the time of their production. The implementation of safety measures has been under way and includes a survey of the qualified experts, establishment of organizational structure in a

  18. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  19. Radioactive source management in Daya Bay NPP

    International Nuclear Information System (INIS)

    Mao Chun Yang

    2000-01-01

    'Small sources causes big accidents' had occurred worldwide many times. Radioactive source management in Nuclear Power Plant in very important for its safety record. This paper introduces the way and experience of radioactive source management in Daya Bay NPP from aspects of clarifying the responsibilities, centralizing the management of high radioactivity sources, work process management and experience feedback etc. (author)

  20. Radioactive Sources Service

    CERN Document Server

    2007-01-01

    Please note that the radioactive sources service will be open by appointment only every Monday, Wednesday and Friday during CERN working hours (instead of alternate weeks). In addition, please note that our 2007 schedule is available on our web site: http://cern.ch/service-rp-sources

  1. Radioactive sources astray; Radioaktive kilder på avveier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-01

    In Norway, every year 2-3 incidents where radioactive sources are going astray happens. This can lead to serious consequences with the risk to both humans and the environment. Radioactive sources out of control are often ancient sources no longer in use and will be sent back to the dealer or an approved waste disposal facility.Radiation safety regulations has provisions for the acquisition, management and disposal of radioactive sources to assure proper use and handling of radioactive sources in the community. It is given here information about how businesses should deal with radioactive sources which have been taken out of use, and what should be done by discovery or suspected discovery of radioactivity in return metal industry.(eb)

  2. International directory of certified radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, G; Bambynek, W

    1983-01-01

    This directory lists the products of 16 suppliers of certified reference materials (CRM) of radioactivity as given in their catalogues. Included are only products for which certificates are delivered and whose uncertainties are given according to the rules defined in ICRU Report No. 12, ''Certification of Standardized Radioactive Sources'' (International Commission on Radiation and Measurements, Washington, 1968). Only those products are included of which the standard uncertainties according to the above rules are less than 10%. Prices of the products are not mentioned since they frequently change. The products are divided into four groups: Radioactive Solutions, Radioactive Gases, Solid Sources and Sources for Liquid Scintillation Counting).

  3. International directory of certified radioactive sources

    International Nuclear Information System (INIS)

    Grosse, G.; Bambynek, W.

    1983-01-01

    This directory lists the products of 16 suppliers of certified reference materials (CRM) of radioactivity as given in their catalogues. Included are only products for which certificates are delivered and whose uncertainties are given according to the rules defined in ICRU Report No. 12, ''Certification of Standardized Radioactive Sources'' (International Commission on Radiation and Measurements, Washington, 1968). Only those products are included of which the standard uncertainties according to the above rules are less than 10%. Prices of the products are not mentioned since they frequently change. The products are divided into four groups: Radioactive Solutions, Radioactive Gases, Solid Sources and Sources for Liquid Scintillation Counting). (orig./WL)

  4. Continuous Tracking of RFID Tagged Radioactive Sources

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Gabay, Y.; Miron, E.; Seif, R.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.

    2008-01-01

    The prevention of radiation hazards due to radioisotopes is one of the concerns of the Atomic Energy Agency (IAEA). In a series of international conferences held in the last five years) this issue was discussed thoroughly. One of the conclusions was that strict management of radioactive sources is essential. The management of radioactive sources would help to prevent transference of radioactive materials to unauthorized personal. For this purpose, states should make a concerted effort to follow the principles of the Code of Conduct on the Security of Radioactive Sources(2). In this context, the identification of roles and responsibilities of governments, licensees and international organizations is vital(3). The referred activities are primarily related to control over radioactive sources and enhance the tracking ability of radiation sources . In this paper, a proposed Radioactive Sources Tracking System is presented. This system facilitates real time monitoring capability of fixed and mobile radiation sources. The system provides the location of the source and indication whether the source is inside or outside the shielding container. The information about the sources location and condition can be used to coordinate a fast response in case of any attempt to steal or tamper with a source. These goals are achieved by using GPS (Global Positioning System), RFID (Radio Frequency Identification) and control and management software

  5. Organisation of the disposal of radioactive sources from Scottish hospitals

    International Nuclear Information System (INIS)

    Corrigall, R S; Martin, C J; Watson, I

    2004-01-01

    An amnesty for disposal of sealed radioactive sources from Scottish hospitals has been funded by the Scottish Executive to address problems arising from accumulation of sources. The contract was awarded to a company involved in radioactive source recycling. Coordination of uplifts from several hospitals allowed considerable financial savings to be made, so source amnesties could offer monetary advantages to Health and Education Departments elsewhere in the UK, as well as alleviating the problem from security and storage of sources that are no longer required. The sources originated in 14 hospitals, but were uplifted from five pick-up points. There were a total of 246 sources with 167 of these being caesium-137. The total activity was 16.2 TBq with one large 16.1 TBq blood irradiator source and the activities of all the other sources adding up to 167 GBq. This paper describes organisation of the collection. Options for achieving compliance with the Radioactive Substances Act 1993 are discussed, although in the event, special authorisations were obtained for each hospital. Arrangements for transport of the sources and source security were drawn up including emergency procedures for dealing with foreseeable incidents. The police provided secure overnight storage for the loaded truck and assistance in directing and monitoring progress of the load

  6. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums

    International Nuclear Information System (INIS)

    Boshkova, T.; Mitev, K.

    2016-01-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume "1"5"2Eu source (drum about 200 L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. - Highlights: • Large (200 L) volume drum source designed, produced and certified as CRM in 2007. • Source contains 448 identical sealed radioactive "1"5"2Eu sources (modules). • Two metrological inspections in 2011 and 2014. • No statistically significant changes of the certified characteristics over time. • Stable calibration source for HPGe-gamma radioactive waste assay systems.

  7. Safe management of smoke detectors containing radioactive sources

    International Nuclear Information System (INIS)

    Salgado, M.; Benitez, J.C.; Castillo, R.A.; Berdellans, A.; Hernandez, J.M.; Pirez, C.J.; Soto, P.G.

    2013-01-01

    Ionic smoke detectors contain radioactive sources that could be Am-241, Pu-238, Pu-239, Kr-85, etc. According to Cuban regulations (Resolution 96 /2003 of the Minister of Science Technology and Environment), smoke detectors, once become disused, should be managed as radioactive waste. For this reason, disused smoke detectors should be transferred to the Centre for Radiation Protection and Hygiene, the organization responsible for radioactive waste management in the country. More than 20 000 smoke detectors have been collected by the CPHR and stored at the Centralized Waste Management Facility. There are 28 different models of smoke detectors of different origin. They contain between 18 - 37 kBq of Am-241 or between 0.37 - 37 MBq of Plutonium or around 37 MBq of Kr-85. The safe management of ionic smoke detectors consists in dismantling the devices, recovering the radioactive sources and conditioning them for long term storage and disposal. The rest of non-radioactive materials should be segregated (plastic, metal and electronic components) for recycling. A technical manual was developed with specific instructions for dismantling each model of smoke detector and recovering the radioactive sources. Instructions for segregation of non-radioactive components are also included in the manual. Most of smoke detectors contain long lived radioactive sources (Am-241, Pu-238, Pu-239), so especial attention was given to the management of these sources. A methodology was developed for conditioning of radioactive sources, consisting in encapsulating them for long term storage. The retrievability of the sources (sealed capsules with radioactive sources) for future disposal was also considered. A documented procedure was elaborated for these operations. (author)

  8. Environmental Radioactive Pollution Sources and Effects on Man

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1999-01-01

    The sources of environmental radioactivity are essentially the naturally occurring radionuclides in the earth,s crust and the cosmogenic radionuclides reaching the environmental ecosystems. The other sources of environmental radioactivity are the man made sources which result from the radioactive materials in human life. The naturally occurring environmental radioactivity is an integral component of the terrestrial and extraterrestrial creation, and therefore it is not considered a source of radioactive pollution to the environment. The radioactive waste from human activities is released into the environment, and its radionuclide content becomes incorporated into the different ecosystems. This results in a situation of environmental radioactive pollution. This review presents the main features of environmental radioactive pollution, the radionuclide behaviour in the ecosystems, pathway models of radionuclides in the body and the probability of associated health hazards. The dose effect relationship of internal radiation exposure and its quantitative aspects are considered because of their relevance to this subject

  9. Security of radioactive sources and materials

    International Nuclear Information System (INIS)

    Rodriguez, C.; D'Amato, E.; Fernandez Moreno, S.

    1998-01-01

    The activities involving the use of radiation sources and radioactive materials are subject to the control of the national bodies dedicated to the nuclear regulation. The main objective of this control is to assure an appropriate level of radiological protection and nuclear safety. In Argentina, this function is carried out by the 'Nuclear Regulatory Authority' (ARN) whose regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection scheme. The system is designed to keep track of such materials and to allow taking immediate corrective actions in case some incident occurs. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials, the specialized national and international community has begun to evaluate the adoption of supplementary measures to those of 'safety' guided to its prevention and detection (i.e. 'security measures'). This paper presents a view on when the adoption of complementary 'security' measures to those of 'safety' would be advisable and which they would be. This will be done through the analysis of two hypothesis of illicit traffic, the first one with sources and radioactive materials considered as 'registered' and the second, with the same materials designated as 'not registered'. It will also describe succinctly the measures adopted by the ARN or under its analysis regarding the 'security' measures to sources and radioactive materials. (author)

  10. Safety and security of radioactive sources - international provisions

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weiss, W.

    2005-01-01

    For more than 50 years radioactive sources are used beneficially world-wide in medicine, industry, research and teaching. In the early 50ies mainly Ra-226 sources were used especially for medical applications. In the mean time a great number of radionuclides with more or less risk to individuals, society and environment are used. The number of these sources is increasing. The available experience with the application of sealed sources in industry, medicine, research and teaching shows that despite the widespread use of such sources a high level of safety can be achieved. One precondition is that the regulatory control of a radioactive source has to be carried out consistently during the life cycle of the sources - 'from cradle to grave'. Particular attention has to be given to the so-called orphan sources which are not subject to regulatory control, either because they have never been under control, or because they have been lost, misplaced, abandoned, stolen or transferred without proper authorisation. The concern about orphan sources arising from poor safety and security standards of radioactive material around the world resulted in intensive global actions especially in the light of the security situation after the 11 th September 2001. The improvement of regulatory control is one of the key elements in preventing people, goods and environment from being exposed exceptionally by the misuse of radioactive sources. Important steps toward the improvement of the safety and security of high radioactive sources are the IAEA Code of Conduct on the Safety and Security of Radioactive Sources and the European Directive on the Control of High Activity Sealed Radioactive Sources and Orphan Sources. (orig.)

  11. The preparation of radioactive sources with radioactivities of less than 110 kilobecquerels

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1989-03-01

    A description is given of the various radioactive sources prepared in the ANSTO Radioisotope Standards Laboratory and the procedures associated with their preparation. ANSTO is authorised by CSIRO to maintain the Commonwealth standard of activity of radionuclides. Counting sources are required for the standardisation of solutions of radionuclides. Calibration sources are required for equipment used to detect radioactivity, such as gamma-ray spectrometers, and can be supplied to clients in other organisations. The maximum radioactivity supplied is 110 kBq. 7 refs., 65 figs

  12. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  13. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  14. Inadequate control of world's radioactive sources

    International Nuclear Information System (INIS)

    2002-01-01

    The radioactive materials needed to build a 'dirty bomb' can be found in almost any country in the world, and more than 100 countries may have inadequate control and monitoring programs necessary to prevent or even detect the theft of these materials. The IAEA points out that while radioactive sources number in the millions, only a small percentage have enough strength to cause serious radiological harm. It is these powerful sources that need to be focused on as a priority. In a significant recent development, the IAEA, working in collaboration with the United States Department of Energy (DOE) and the Russian Federation's Ministry for Atomic Energy (MINATOM), have established a tripartite working group on 'Securing and Managing Radioactive Sources'. Through its program to help countries improve their national infrastructures for radiation safety and security, the IAEA has found that more than 100 countries may have no minimum infrastructure in place to properly control radiation sources. However, many IAEA Member States - in Africa, Asia, Latin America, and Europe - are making progress through an IAEA project to strengthen their capabilities to control and regulate radioactive sources. The IAEA is also concerned about the over 50 countries that are not IAEA Member States (there are 134), as they do not benefit from IAEA assistance and are likely to have no regulatory infrastructure. The IAEA has been active in lending its expertise to search out and secure orphaned sources in several countries. More than 70 States have joined with the IAEA to collect and share information on trafficking incidents and other unauthorized movements of radioactive sources and other radioactive materials. The IAEA and its Member States are working hard to raise levels of radiation safety and security, especially focusing on countries known to have urgent needs. The IAEA has taken the leading role in the United Nations system in establishing standards of safety, the most significant of

  15. Radioactive waste management in sealed sources laboratory production

    International Nuclear Information System (INIS)

    Carvalho, Gilberto

    2001-01-01

    The laboratory of sealed sources production, of Instituto de Pesquisas Energeticas e Nucleares, was created in 1983 and since then, has produced radioactive sources for industry and engineering in general, having specialization in assembly of radiation sources for non destructive testings, by gammagraphy, with Iridium-192, that represents 98% of the production of laboratory and 2% with the Cobalt-60, used in nuclear gages. The aim of this work, is to quantify and qualify the radioactive wastes generated annually, taking into account, the average of radioactive sources produced, that are approximately 220 sources per year

  16. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  17. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    International Nuclear Information System (INIS)

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities

  18. Radioactive source security: the cultural challenges

    International Nuclear Information System (INIS)

    Englefield, Chris

    2015-01-01

    Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. (authors)

  19. Radioactive source monitoring system based on RFID and GPRS

    International Nuclear Information System (INIS)

    He Haiyang; Zhou Hongliang; Zhang Hongjian; Zhang Sheng; Zhou Junru; Weng Guojie

    2011-01-01

    Nuclear radiation produced by radioactive source is harmful to the health of human body, and the lost and theft of radioactive source will cause environmental pollution and social panic. In order to solve the abnormal leaks, accidental loss, theft and other problems of the radioactive source, a radioactive source monitoring system based on RFID, GPS, GPRS and GSM technology is put forward. Radiation dose detector and GPS wireless location module are used to obtain the information of radiation dose and location respectively, RFID reader reads the status of a tag fixed on the bottom of the radioactive source. All information is transmitted to the remote monitoring center via GPRS wireless transmission. There will be an audible and visual alarm when radiation dose is out of limits or the state of radioactive source is abnormal, and the monitoring center will send alarming text messages to the managers through GSM Modem at the same time. Thus, the functions of monitoring and alarming are achieved. The system has already been put into operation and is being kept in functional order. It can provide stable statistics as well as accurate alarm, improving the supervision of radioactive source effectively. (authors)

  20. Guidance on the import and export of radioactive sources

    International Nuclear Information System (INIS)

    2005-03-01

    The IAEA Code of Conduct on the Safety and Security of Radioactive Sources, published in January 2004 with the symbol IAEA/CODEOC/2004, provides guidance on how States can safely and securely manage radioactive sources that may pose a significant risk. The concept of such an international undertaking on the safety and security of radioactive sources was highlighted in the major findings of the International Conference on the Safety of Radiation Sources and Security of Radioactive Materials held in Dijon, France, in September 1998. Following that conference, the IAEA Board of Governors requested the Director General to initiate exploratory discussions relating to an international undertaking in the areas of the safety and security of radiation sources. This request was reflected in an Action Plan on the Safety of Radiation Sources and Security of Radioactive Materials, with the Secretariat organizing a series of open-ended meetings of technical and legal experts nominated by Member States to further explore the concept of such an undertaking. Noting comments made in the Board of Governors, the experts agreed that any international undertaking should, for the present, be in the form of a 'code of conduct'. The text of a Code of Conduct on the Safety and Security of Radioactive Sources was accordingly developed. Steps to strengthen the provisions of the Code were subsequently initiated following the International Conference of National Regulatory Authorities with Competence in the Safety of Radiation Sources and the Security of Radioactive Material held in Buenos Aires in December 2000. Moreover, growing international concern about the security of radioactive sources after the events of 11 September 2001 led to a number of issues being considered further by technical and legal experts. Furthermore, the International Conference on Security of Radioactive Sources held in Vienna in March 2003 made recommendations regarding additional actions that might be needed. In June

  1. Radioactive sources in trade and industry

    International Nuclear Information System (INIS)

    Vroom, H.; Bolt, R.; Lange, H. de.

    1989-04-01

    An inventory has been drawn up of the most important applications of radioactive sources in the Netherlands, with emphasis on nuclear measuring instruments for industrial use. This inventory has been supplemented with a brief survey of the most important legal demand (among which, the 'decree radiation protection') with regard to the use of such instruments and some data about the construction of the radioactive source present in the instrument. Also the processing of exhausted sources is discussed briefly. (author). 14 refs.; 3 figs.; 6 tabs

  2. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    Directory of Open Access Journals (Sweden)

    T. Marpaung

    2012-08-01

    Full Text Available In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS, due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle

  3. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    International Nuclear Information System (INIS)

    Marpaung, T.

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle (author)

  4. Radioactive Sources in Medicine: Impact of Additional Security Measures

    International Nuclear Information System (INIS)

    Classic, K. L.; Vetter, R. J.; Nelson, K. L.

    2004-01-01

    For many years, medical centers and hospitals have utilized appropriate security measures to prevent theft or unauthorized use of radioactive materials. Recent anxiety about orphan sources and terrorism has heightened concern about diversion of radioactive sources for purposes of constructing a radiological dispersion device. Some medical centers and hospitals may have responded by conducting threat assessments and incorporating additional measures into their security plans, but uniform recommendations or regulations have not been promulgated by regulatory agencies. The International Atomic Energy Agency drafted interim guidance for the purpose of assisting member states in deciding what security measures should be taken for various radioactive sources. The recommendations are aimed at regulators, but suppliers and users also may find the recommendations to be helpful. The purpose of this paper is to describe threat assessments and additional security actions that were taken by one large and one medium-sized medical center and the impact these measures had on operations. Both medical centers possess blood bank irradiators, low-dose-rate therapy sources, and Mo-99/Tc-99m generators that are common to many health care organizations. Other medical devices that were evaluated include high-dose-rate after loaders, intravascular brachytherapy sources, a Co-60 stereotactic surgery unit, and self-shielded irradiators used in biomedical research. This paper will discuss the impact additional security has had on practices that utilize these sources, cost of various security alternatives, and the importance of a security culture in assuring the integrity of security measures without negatively impacting beneficial use of these sources. (Author) 10 refs

  5. Radioactive source security: the cultural challenges.

    Science.gov (United States)

    Englefield, Chris

    2015-04-01

    Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Aspects related to the testing of sealed radioactive sources

    International Nuclear Information System (INIS)

    Olteanu, C. M.; Nistor, V.; Valeca, S. C.

    2016-01-01

    Sealed radioactive sources are commonly used in a wide range of applications, such as: medical, industrial, agricultural and scientific research. The radioactive material is contained within the sealed source and the device allows the radiation to be used in a controlled way. Accidents can result if the control over a small fraction of those sources is lost. Sealed nuclear sources fall under the category of special form radioactive material, therefore they must meet safety requirements during transport according to regulations. Testing sealed radioactive sources is an important step in the conformity assessment process in order to obtain the design approval. In ICN Pitesti, the Reliability and Testing Laboratory is notified by CNCAN to perform tests on sealed radioactive sources. This paper wants to present aspects of the verifying tests on sealed capsules for Iridium-192 sources in order to demonstrate the compliance with the regulatory requirements and the program of quality assurance of the tests performed. (authors)

  7. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  8. Miniature radioactive light source

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Dooley, H.H.

    1980-01-01

    A miniature radioactive light source for illuminating digital watches is described consisting of a glass tube with improved laser sealing and strength containing tritium gas and a transducer responsive to the gas. (U.K.)

  9. Electrodeless light source provided with radioactive material

    International Nuclear Information System (INIS)

    1979-01-01

    Radioactive materials are used to assist in starting a discharge in an electrodeless light source. The radioactive emissions predispose on the inner surface of the lamp envelope loosely bound charges which thereafter assist in initiating discharge. The radioactive material can be enclosed within the lamp envelope in gaseous or non-gaseous form. Preferred materials are krypton 85 and americium 241. In addition, the radioactive material can be dispersed in the lamp envelope material or can be a pellet imbedded in the envelope material. Finally, the radioactive material can be located in the termination fixture. Sources of alpha particles, beta particles, or gamma rays are suitable. Because charges accumulate with time on the inner surface of the lamp envelope, activity levels as low as 10 -8 curie are effective as starting aids. (Auth.)

  10. Managing the security of radioactive sources

    International Nuclear Information System (INIS)

    Cameron, R.

    2003-01-01

    The issue of security of radioactive sources had arisen as a result of incidents where people were unintentionally exposed in various parts of the world. However after 11 September 2001, the focus on security was intensified by concerns over those who might wish to use radioactive sources for malevolent purposes. This paper will discuss the questions of the type and nature of these concerns and outline a process for assessing the threat and then assigning security measures for sources. The paper is based on work done by the author while at the IAEA and published as part of IAEATecdoc-1355

  11. Development of radioactive source scanner based on PLC

    International Nuclear Information System (INIS)

    Yang Guogui; Gao Xiang; Guo Hongli

    2013-01-01

    The radioactive radial uniformity of 68 Ge line radioactive sources is a critical quality parameter. The radioactive source scanner with linear scanning function is developed by making use of high-speed pulse counters, high-speed pulse output ports, and the powerful instruction system of Siemens S7-200 series programmable logic controller (PLC). A computer used as a host computer of the instrument communicate with. the PLC by point to point interface (PPI) protocol, The instrument with functions of data collection, transmission, displaying, saving, motion control and instrument parameter settings, can be used to measure the radioactive radial uniformity and total activity of line radioactive source. The advantages of Using the PLC to develop nuclear instrumentation are development speed, strong anti-interference ability, and low-cost. This paper mainly describes the control system implementation and feature of the instrument. (authors)

  12. Licenses for possessing and applying radioactive sources, materials, etc

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Commercial and governmental institutions have been licensed by Dutch authorities to possess and apply radioactive sources, materials, etc. A summary is given and the list is subdivided into a number of sections such as radioactive sources, radioactive materials, X-ray equipment and technetium-generators

  13. The regulatory control of radioactive sources in Argentina

    International Nuclear Information System (INIS)

    Rojkind, Roberto Hector

    1997-01-01

    Argentina has been conducting nuclear activities for more than forty years, and as early as in 1956 established a Regulatory Authority. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations had been set in Argentina, before the accident in Goiania. The conclusions drawn from that accident encouraged in Argentina the improvement of some regulatory procedures and helped to enhance the quality of the regulatory process. Therefore, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain improved. Some lessons learned in Argentina from the accident in Goiania and the main characteristics of an effective enforcement program helpful to prevent radiological accidents in industrial, medical, research and teaching uses of radioactive sources are presented. (author)

  14. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    OpenAIRE

    Marpaung, T

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed ...

  15. Identification of radioactive sources and devices. Reference manual

    International Nuclear Information System (INIS)

    2007-01-01

    This publication is intended to be a basic guide and not a comprehensive tool kit to identify and provide detailed emergency handling instructions for radioactive sources, devices and transport containers. In addition, this publication helps to identify sources and highlight the risks they present, and provides information on appropriate action. It is a small but significant step in the international community's continuing efforts to strengthen control of radioactive sources and nuclear material, increase safety and security, and thereby make the benefits of radioactive sources ever more broadly accessible. This publication was partly funded through the Nuclear Security Fund established under the Nuclear Security Plan

  16. Effective Regulatory Control of Radioactive Sources in Taiwan

    International Nuclear Information System (INIS)

    Liu, W.; Yuan, C.; Fan, S.; Su, S.

    2004-01-01

    Since the incident of radioactively contaminated buildings first surfaced in Taiwan in 1992, efforts have been made by AEC (Atomic Energy Council) of Taiwan to prevent recurrence of similar incidents involving radioactive materials and to achieve effective regulatory control over radioactive sources. The most important milestone is when AEC began to enforce IRPA he Ionizing Radiation Protection Act with the promulgation of 18 relevant regulations on Feb. 1, 2003. In order to enhance accountability of radioactive material and equipment capable of producing ionizing radiation, AEC develops and begins implementing a RPCS Radiation Protection Control System which is a powerful tool in controlling radiation safety and security. In addition, AEC develops a monthly registration program via internet, an o n-line reporting system f or owners/operators of radioactive sources, to improve monitoring of sealed sources (in-use and not-in-use). The registration requirement applies to 469 licensees possessing about 3,000 sealed sources in Taiwan. Because of the threat of orphan sources, AEC has made great efforts in preventing their contamination of construction steel material by establishing and enforcing the RPMMPIRCB Regulation for Preventive Measures and Management Plans for Incident of Radioactively Contaminated Buildings. To comply with this regulation, all 19 of Taiwan's steel factories with melting furnace have installed portal-type radiation detection system to monitor incoming scrap metal. (Author)

  17. Orphan sources and the challenges: requirement for the prevention of malevolent use of radioactive sources and preparedness for radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.

    2006-01-01

    Challenges from smuggled or illegally transported radioactive sources with intention of causing threats to the society are similar to the radiological emergencies possible from misplaced/lost radioactive sources. While large number of radioactive sources are transported and are in use world over, the emergency preparedness and response system is not adequately developed compared to that for nuclear facilities. After the terrorist attack on W.T.C., there is concern world over about the malicious use of radioactive material calling for improving the emergency response system and international cooperation for preventing illicit trafficking of radioactive sources/material. Extremely sensitive state-of-the art monitoring systems installed at appropriate locations and periodic mobile radiation monitoring around suspected areas can be deterrent and can prevent the illicit trafficking of radioactive sources. Unless every nation ensures strict administrative control over the sources and implement usage of state-of-the art systems and methodology for early detection/prevention of illegal movement of sources within the territory and across its boundaries, the challenges from the orphan sources will remain for ever. The issues and challenges of man made radiological emergencies, remedial measures and the methodology for prevention and management of such emergencies are discussed here. The threat from an orphan source depends on many parameters. The type and quantity of the radionuclide, physical and chemical form influencing dispersion in air, deposition, solubility, migration in soil etc., can vary the radiological consequences when the source gets crushed accidentally along with scrap or is used for malevolent purposes. Depending on the level of environmental contamination, long term effects of the radiological emergency can significantly vary. Development of capability for quick detection, assessment and response are essential if prevention of theft/misuse of such sources

  18. Incineration of urban solid waste containing radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, G.P., E-mail: giulio.ronchin@mail.polimi.i [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Campi, F.; Porta, A.A. [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2011-01-15

    Incineration of urban solid waste accidentally contaminated by orphan sources or radioactive material is a potential risk for environment and public health. Moreover, production and emission of radioactive fumes can cause a heavy contamination of the plant, leading to important economic detriment. In order to prevent such a hazard, in February 2004 a radiometric portal for detection of radioactive material in incoming waste has been installed at AMSA (Azienda Milanese per i Servizi Ambientali) 'Silla 2' urban solid waste incineration plant of Milan. Radioactive detections performed from installation time up to December 2006 consist entirely of low-activity material contaminated from radiopharmaceuticals (mainly {sup 131}I). In this work an estimate of the dose that would have been committed to population, due to incineration of the radioactive material detected by the radiometric portal, has been evaluated. Furthermore, public health and environmental effects due to incineration of a high-activity source have been estimated. Incineration of the contaminated material detected appears to have negligible effects at all; the evaluated annual collective dose, almost entirely conferred by {sup 131}I, is indeed 0.1 man mSv. Otherwise, incineration of a 3.7 x 10{sup 10} Bq (1 Ci) source of {sup 137}Cs, assumed as reference accident, could result in a light environmental contamination involving a large area. Although the maximum total dose, owing to inhalation and submersion, committed to a single individual appears to be negligible (less than 10{sup -8} Sv), the environmental contamination leads to a potential important exposure due to ingestion of contaminated foods. With respect to 'Silla 2' plant and to the worst meteorological conditions, the evaluated collective dose results in 0.34 man Sv. Performed analyses have confirmed that radiometric portals, which are today mainly used in foundries, represent a valid public health and environmental

  19. Strengthening of safety and security of radioactive sources: new regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    El Messaoudi, M.; Essadki M Lferde, H.; Moutia, Z. [Faculte des Sciences, Dept. de Physique, Rabat (Morocco)

    2006-07-01

    The answer to these new regulatory challenges was given by implementation of divers measures aimed at strengthening of safety and security of radioactive sources and to prevent the malevolent use of radioactive sources. The international basic safety standards for protection against ionizing radiation and for the safety of radiation sources (B.S.S.) require the establishment and implementation of security measures of radioactive sources to ensure that protection and safety requirements are met. The IAEA has engaged in an extensive effort to establish and/or strengthen national radiation protection and radiological safety infrastructure, including legislation and regulation, a regulatory authority empowered to authorize and inspect regulated activities, an adequate number of trained personnel and technical services that are beyond the capabilities required of the authorized legal persons. The Moroccan authority makes steady efforts to strengthen national radiation safety infrastructure by participating in IAEA model project for upgrading radiation protection infrastructure, to implement the revised version of code of conduct on the safety and security of radioactive sources. Indeed, Morocco expressed its adhesion with the technical assistance project of the IAEA in 2001, carrying on the reinforcement of the national infrastructure of regulation and control of the radioactive materials. The control over radioactive sources is an essential element for maintaining high level of security and safety of radioactive sources. The IAEA T.E.C.-D.O.C.-1388 serves as reference document to implement the control culture. The security problems with which the world is confronted showed that the uses of radioactive sources should subject reinforcements of safety, of control and of security of the radioactive sources. For this purpose, the IAEA launched an action plan for the safety and security of radioactive sources. The IAEA guide Security of radioactive sources will help the

  20. Strengthening of safety and security of radioactive sources: new regulatory challenges

    International Nuclear Information System (INIS)

    El Messaoudi, M.; Essadki M Lferde, H.; Moutia, Z.

    2006-01-01

    The answer to these new regulatory challenges was given by implementation of divers measures aimed at strengthening of safety and security of radioactive sources and to prevent the malevolent use of radioactive sources. The international basic safety standards for protection against ionizing radiation and for the safety of radiation sources (B.S.S.) require the establishment and implementation of security measures of radioactive sources to ensure that protection and safety requirements are met. The IAEA has engaged in an extensive effort to establish and/or strengthen national radiation protection and radiological safety infrastructure, including legislation and regulation, a regulatory authority empowered to authorize and inspect regulated activities, an adequate number of trained personnel and technical services that are beyond the capabilities required of the authorized legal persons. The Moroccan authority makes steady efforts to strengthen national radiation safety infrastructure by participating in IAEA model project for upgrading radiation protection infrastructure, to implement the revised version of code of conduct on the safety and security of radioactive sources. Indeed, Morocco expressed its adhesion with the technical assistance project of the IAEA in 2001, carrying on the reinforcement of the national infrastructure of regulation and control of the radioactive materials. The control over radioactive sources is an essential element for maintaining high level of security and safety of radioactive sources. The IAEA T.E.C.-D.O.C.-1388 serves as reference document to implement the control culture. The security problems with which the world is confronted showed that the uses of radioactive sources should subject reinforcements of safety, of control and of security of the radioactive sources. For this purpose, the IAEA launched an action plan for the safety and security of radioactive sources. The IAEA guide Security of radioactive sources will help the

  1. Categorization of In-use Radioactive Sealed Sources in Egypt

    International Nuclear Information System (INIS)

    Hasan, M.A.; Mohamed, Y.T.; El Haleim, K.A.

    2006-01-01

    Radioactive sealed sources have widespread applications in industry, medicine, research and education. While most sources are of relatively low activity, there are many of medium or very high activity. The mismanagement of high activity sources is responsible for most of the radiological accidents that result in loss of life or disabling injuries. Because of the variety of applications and activities of radioactive sources, a categorization system is necessary so that the controls that are applied to the sources are adequate with its radiological risk. The aim of this work is to use the international Atomic Energy Agency (IAEA) categorization system to provide a simple, logical system for grading radioactive sealed sources in Egypt. The categorizations of radioactive sealed sources are based on their potential to cause harm to human health. This study revealed that total of 1916 sources have been used in Egypt in the different applications with a total activity of 89400 Ci according to available data in October 2005. (authors)

  2. National policy for control of radioactive sources and radioactive waste from non-power applications in Lithuania

    International Nuclear Information System (INIS)

    Klevinskas, G.; Mastauskas, A.

    2001-01-01

    According to the Law on Radiation Protection of the Republic of Lithuania (passed in 1999), the Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for the radiation protection of public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources from the beginning of their 'life cycle', when they are imported in, used, transported and placed as spent into the radioactive waste storage facilities. For the effective control of sources there is national authorization system (notification- registration-licensing) based on the international requirements and recommendations introduced, which also includes keeping and maintaining the Register of Sources, controlling and investigating events while illegally carrying on or in possession of radioactive material, decision making and performing the state radiation protection supervision and control of users of radioactive sources, controlling, within the limits of competence, the radioactive waste management activities in nuclear and non-nuclear power applications. According to the requirements set out in the Law on Radiation Protection and the Government Resolution 'On Establishment of the State Register of the Sources of Ionizing Radiation and Exposure of Workers' (1999) and supplementary legal acts, all licence-holders conducting their activities with sources of ionizing radiation have to present all necessary data to the State Register after annual inventory of sources, after installation of new sources, after decommissioning of sources, after disposal of spent sources, after finishing the activities with the generators of ionizing radiation. The information to the Radiation Protection Centre has to be presented every week from the Customs Department of the Ministry of Finance about all sources of ionizing radiation imported to or exported from Lithuania and the information about the companies performed these

  3. The regulatory control of radioactive sources in Argentina

    International Nuclear Information System (INIS)

    Rojkind, R.H.

    1998-01-01

    Argentina has been conducting nuclear activities for more than forty years, and had established a Regulatory Authority as early as in 1956. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations were in force in Argentina before the accident in Goiania. The conclusions drawn from the Goiania accident encouraged the Argentine authorities to improve some regulatory procedures and helped to enhance the quality of the regulatory process. As a result, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain have improved. Lessons learned in Argentina from the accident in Goiania are presented as well as the main characteristics of an effective enforcement programme to prevent radiological accidents when radioactive sources are used for industrial, medical, research and teaching purposes. (author)

  4. Radiological Threat Reduction (RTR) program: implementing physical security to protect large radioactive sources worldwide

    International Nuclear Information System (INIS)

    Lowe, Daniel L.

    2004-01-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory and knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security

  5. International Catalogue of Sealed Radioactive Sources and Devices

    International Nuclear Information System (INIS)

    2010-01-01

    The international catalogue of sealed radioactive sources and devices have two major objectives. The first objective is to provide vital information for a wide range of individuals and organizations on industrially manufactured radioactive sources and devices. The second objective is to facilitate identification of design specifications based on limited information from orphan sources and devices to allow safe handling of these items.

  6. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    Science.gov (United States)

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of just-in-time manufacturing techniques in radioactive source in well logging industry

    Directory of Open Access Journals (Sweden)

    Atma Yudha Prawira

    2017-03-01

    Full Text Available Nuclear logging is one of major areas of logging development. This paper presents an empirical investigation to bring the drilling and completion of wells from an ill-defined art to a refined sci-ence by using radioactive source to “look and measure” such as formation type, formation dip, porosity, fluid type and numerous other important factors. The initial nuclear logging tools rec-ords the radiation emitted by formation as they were crossed by boreholes. Gamma radiation is used in well logging as it is powerful enough to penetrate the formation and steel casing. The ra-dioactive source is reusable so that after engineer finished the job the radioactive source is sent back to bunker. In this case inventory level of radioactive source is relatively high compared with monthly movement and the company must spend large amount of cost just for inventory. After calculating and averaging the monthly movement in 2014 and 2015, we detected a big pos-sibility to cut the inventory level to reduce the inventory cost.

  8. Radioactive sources service

    CERN Multimedia

    2006-01-01

    Please note that, as of 1st May, the Radioactive Sources Service will be open full-time, i.e. from 8.00 a.m. to 5.00 p.m., on alternate weeks (rather than part-time, from 8.00 a.m. to 11.00 a.m., every day, as at present). The weeks in which the Service will be open during the coming month are listed below: week No. 18: from 01/05 to 05/05 week No. 20: from 15/05 to 19/05 week No. 22: from 29/05 to 02/06 http://cern.ch/service-rp-sources

  9. The regulatory control of radioactive sources in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Rojkind, Roberto Hector [Autoridade Regulatoria Nuclear, Buenos Aires (Argentina)

    1997-12-31

    Argentina has been conducting nuclear activities for more than forty years, and as early as in 1956 established a Regulatory Authority. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations had been set in Argentina, before the accident in Goiania. The conclusions drawn from that accident encouraged in Argentina the improvement of some regulatory procedures and helped to enhance the quality of the regulatory process. Therefore, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain improved. Some lessons learned in Argentina from the accident in Goiania and the main characteristics of an effective enforcement program helpful to prevent radiological accidents in industrial, medical, research and teaching uses of radioactive sources are presented. (author) 9 refs; e-mail: rrojkind at sede.arn.gov.br

  10. Safety assessment of borehole disposal of unwanted radioactive sealed sources in Egypt using Goldsim

    International Nuclear Information System (INIS)

    Cochran, John Russell; Mattie, Patrick D.

    2004-01-01

    A radioactive sealed source is any radioactive material that is encased in a capsule designed to prevent leakage or escape of the radioactive material. Radioactive sealed sources are used for a wide variety of applications at hospitals, in manufacturing and research. Typical uses are in portable gauges to measure soil compaction and moisture or to determine physical properties of rocks units in boreholes (well logging). Hospitals and clinics use radioactive sealed sources for teletherapy and brachytherapy. Oil exploration and medicine are the largest users. Accidental mismanagement of radioactive sealed sources each year results in a large number of people receiving very high or even fatal does of ionizing radiation. Deliberate mismanagement is a growing international concern. Sealed sources must be managed and disposed effectively in order to protect human health and the environment. Effective national safety and management infrastructures are prerequisites for efficient and safe transportation, treatment, storage, and disposal. The Integrated Management Program for Radioactive Sealed Sources in Egypt (IMPRSS) is a cooperative development agreement between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), the University of New Mexico (UNM), and Agriculture Cooperative Development International (ACDI/VOCA). The EAEA, teaming with SNL, is conducting a Preliminary Safety Assessment (PSA) of an intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S. Greater Confinement Disposal (GCD). Goldsim has been selected for the preliminary disposal system assessment for the Egyptian GCD Study. The results of the PSA will then be used to decide if Egypt desires to implement such a disposal system

  11. Securing radioactive sources through a proper management

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    2009-01-01

    The safety and security of radioactive sources have become a hot issue for the nuclear community in the last two decades. The Goiania accident in Brazil and the September 11th attack alerted governments and nuclear agencies around the world to the vulnerability of the thousands of disused radioactive sources ill-stored or misplaced in a myriad of ways, especially in countries with less developed infra-structure. Once the threat of environmental contamination or malevolent use of these sources became clear, the International Atomic Energy Agency and the American Government spawned initiatives to reduce this risk, basically stimulating the proper conditioning of the sources and, whenever possible, seeking their repatriation to the countries of origin. Since 1996 Brazil has been participating actively in this effort, having carried out hands-on operations to condition old radium sources in Latin American and Caribbean countries and also repatriated its own neutron sources to the United States. A new operation is presently being organized: the reconditioning of the high activity sources contained in teletherapy units stored in the country using a mobile hot cell developed in South Africa. Also an agreement is being negotiated between the US National Nuclear Security Agency and the Brazilian CNEN to repatriate hundreds of radioactive gauges presently stored at CNEN's source storage buildings. (author)

  12. Keeping Sealed Radioactive Sources Safe and Secure

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Radioactive sources are used in a wide variety of devices in medical, industrial, agricultural and research facilities worldwide. These sources, such as cobalt-60 and caesium-137, emit high levels of ionizing radiation, which can treat cancer, measure materials used in industry and sterilize food and medical appliances. Problems may arise when these sources are no longer needed, or if they are damaged or decayed. If these sources are not properly stored they can be a threat to human health and the environment and pose a security risk. Procedures to secure these spent or 'disused' sources are often highly expensive and need specialized assistance. The IAEA helps its States find long term solutions for the safe and secure storage of disused sealed radioactive sources (DSRSs)

  13. Security of radioactive sources. Interim guidance for comment

    International Nuclear Information System (INIS)

    2003-06-01

    In previous IAEA publications, there have been only rather general security requirements for non-nuclear radioactive material. These requirements were primarily directed to such issues as unintentional exposure to radiation, negligence and inadvertent loss. However, it is clear that more guidance is needed to not only try and prevent further events involving orphan sources, but also to prevent the deliberate attempt to acquire radioactive sources for malevolent purposes. Member States have requested guidance on the type and nature of security measures that might be put in place and on the methodology to be used in choosing such measures. These requests were also endorsed in the findings of the international conference on 'Security of Radioactive Sources' held in March 2003. Practical advice on assessing and implementing security measures complements the general commitments in the proposed Revised Code of Conduct on Safety and Security of radioactive Sources. A Safety Guide entitled 'Safety and Security of Radiation Sources' that, amongst other things, discusses these issues is being drafted. However, it is recognized that guidance material is required before this document will be finalized in order to allow Member States opportunity to put in place appropriate actions and planning to address current issues. Hence the purpose of the current document is to provide advice on security approaches and to allow comment on detailed recommendations for levels of security on radioactive sources that may be incorporated within the Safety Guide. This report is primarily addressed to Regulatory Authorities but it is also intended to provide guidance to manufacturers, suppliers and users of sources. Its objective is to assist Member States in deciding which security measures are needed to ensure consistency with the International Basic Safety Standards and the Revised Code of Conduct for the Safety and Security of Radioactive Sources. It is recognized that there must be a

  14. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  15. Environmental Assessment Radioactive Source Recovery Program

    International Nuclear Information System (INIS)

    1995-01-01

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE's and the U.S. Nuclear Regulatory Commission's (NRC's) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ( 238 Pu-Be) and americium-beryllium ( 241 Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ( 238 PuO 2 or 241 AmO 2 ). The proposed action would include placing the 238 PuO 2 or 241 AmO 2 in interim storage in a special nuclear material vault at the LANL Plutonium Facility

  16. Source of radioactivity in the ocean environment

    International Nuclear Information System (INIS)

    Solomon, K.A.

    1988-01-01

    This paper summarizes both natural and man-made radioactivity in the marine environment. Radioactivity occurs naturally in both the sea water and in the ocean sediment. Radioactivity in the sea water is fairly uniform geographically and is dominated by the naturally occurring isotope 40/K (potassium-40). Unlike sea water, sediment radiation levels vary with sediment type and location. The primary source of natural radiation in the sediment results from deposition of insoluble thorium isotopes formed by the decay of water-soluble uranium. Man-made sources of radioactivity arise from, in descending order of importance: - sinking of two U.S. and two Soviet nuclear submarines; fallout from nuclear weapons testing; dumping of primarily British and Americal low-level nuclear waste; and dumping of reprocessing plant radiated effluents from the British Windscale facility and other European and Indian reprocessing facilities. 1 table

  17. Device for closing the radioactive sources shutters

    International Nuclear Information System (INIS)

    Teixeira, Everaldo; Santos, Enderson Silvino; Vieira, Carlaine M.; Torquato, Nivaldo Reis; Santos, Evando Ramalho; Castro, Luciano Sampaio

    2002-01-01

    A device for nuclear measurement used at the industrial installation is composed of a radioactive source (Cs 137), the ionization or scintillation chamber and the circuitry parts. The ionization and scintillation chambers are mounted at the industrial piping and monitoring the density of the material inside the piping, based on radiation quantity which comes to receiving chamber. This information is sending to the electronic unity which is responsible for the calculations and remote and local indications of the measured density. Based on the recommendation of the radioactive sources must have the shutters closed when they are inactive, an automatic device composed by solenoid valve, a support and a mechanical shaft which when connected to the supervisory system (CLP's) cause the automatic closing of the shutter of the radioactive sources during the shutting down of the process

  18. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  19. Code of conduct on the safety and security of radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The objectives of the Code of Conduct are, through the development, harmonization and implementation of national policies, laws and regulations, and through the fostering of international co-operation, to: (i) achieve and maintain a high level of safety and security of radioactive sources; (ii) prevent unauthorized access or damage to, and loss, theft or unauthorized transfer of, radioactive sources, so as to reduce the likelihood of accidental harmful exposure to such sources or the malicious use of such sources to cause harm to individuals, society or the environment; and (iii) mitigate or minimize the radiological consequences of any accident or malicious act involving a radioactive source. These objectives should be achieved through the establishment of an adequate system of regulatory control of radioactive sources, applicable from the stage of initial production to their final disposal, and a system for the restoration of such control if it has been lost. This Code relies on existing international standards relating to nuclear, radiation, radioactive waste and transport safety and to the control of radioactive sources. It is intended to complement existing international standards in these areas. The Code of Conduct serves as guidance in general issues, legislation and regulations, regulatory bodies as well as import and export of radioactive sources. A list of radioactive sources covered by the code is provided which includes activities corresponding to thresholds of categories.

  20. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    2004-01-01

    The objectives of the Code of Conduct are, through the development, harmonization and implementation of national policies, laws and regulations, and through the fostering of international co-operation, to: (i) achieve and maintain a high level of safety and security of radioactive sources; (ii) prevent unauthorized access or damage to, and loss, theft or unauthorized transfer of, radioactive sources, so as to reduce the likelihood of accidental harmful exposure to such sources or the malicious use of such sources to cause harm to individuals, society or the environment; and (iii) mitigate or minimize the radiological consequences of any accident or malicious act involving a radioactive source. These objectives should be achieved through the establishment of an adequate system of regulatory control of radioactive sources, applicable from the stage of initial production to their final disposal, and a system for the restoration of such control if it has been lost. This Code relies on existing international standards relating to nuclear, radiation, radioactive waste and transport safety and to the control of radioactive sources. It is intended to complement existing international standards in these areas. The Code of Conduct serves as guidance in general issues, legislation and regulations, regulatory bodies as well as import and export of radioactive sources. A list of radioactive sources covered by the code is provided which includes activities corresponding to thresholds of categories

  1. Radioactive sealed sources inventory and management

    International Nuclear Information System (INIS)

    Rodriguez C, G.; Mallaupoma G, M.; Cruz C, W.

    1996-01-01

    This report is related to the management of radioactive wastes, that is to say, related to the sealed sources utilized in industry, medicine and research jobs, that can not be used anymore, because of their life time termination or their activity decay to useless limits. Owing to this fact, it is necessary to take them to the Management Plant of Radioactive waste in the 'RACSO' Nuclear Center, as it is specified by the National Authority Technical Office (OTAN) regulations in Peru. The experience gained by IPEN in the sealed source management is shown in the table which informs about the radionuclide types, activity and volume amount for years. In the 'RACSO' Nuclear Center, 63 sealed sources are stored and right measures are being adopted in order to be conditioned by cementation in 200 lt steel reinforced cylinders, which are proper to their transportation and storage. A flow-chart shows the steps that the national users should follow in order to manage radioactive sealed sources and so that minimize the risks. Resulting from the agreement between the users and managers, a systematic coordination is developed, verifying the information related to the source characterization, the way of transportation and the future conditioning. It also involves the cost aspects, which in some cases, represent a big problem in the management. (authors). 3 refs., 3 figs., 1 tab

  2. Dismantling, conditioning and repatriation of disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Aguilar, S.L.; Miranda, C.A.; Saire, A.E.; Ontiveros, G.P.

    2015-01-01

    In Bolivia sealed radioactive sources for medical, industrial and research applications are used; radioactive sources containing a wide range of radionuclides and have different levels of activity and half-lives, they generated a problem when they stop being used. At the end of its useful life these sources are considered obsolete. However, residual levels of radioactivity, which have these sources can be high constituting a potential hazard to personnel and applies to those who benefit from its use and the general public. The aim of this work has been focused mainly on safety issues in the safe handling and management of disused sealed sources. Assignments listed below: 1. Dismantling; 2. Packaging; 3. Return of disused sealed radioactive sources. The actions taken were carried out by the technical teams of the Bolivian Institute of Nuclear Science and Technology (IBTEN) and Los Alamos National Laboratory (LANS) which supports the program 'Global Threat Reduction Initiative's' (GTRI) in the implementation of 'Off -site Source Recovery Program' (OSRP). [es

  3. Transfer of technology: Management of disused radioactive sources

    International Nuclear Information System (INIS)

    Friedrich, V.

    2001-01-01

    The number of sealed radioactive sources worldwide is estimated to be in the millions, although the existing registries indicate a much smaller number. If a source is no longer needed or has become unfit for the intended application, it is classified as spent or disused source. The activity of a disused source may still be in the order of GBq or TBq. Recognizing the risk associated with disused radioactive sources and the number of incidents and accidents with a wide range of consequences including widespread contamination and deterministic health effects, the IAEA has embarked on various activities dealing with the safe management of disused radioactive sources. These activities include publication of up-to-date technical information and guidance, development and distribution of management tools, transfer of technology and know-how through training and technical co-operation projects and direct assistance to solve specific safety and technical problems. This paper briefly describes these activities with reference to publications and projects carried out in various Member States. (author)

  4. Review of Safety and Security of Radioactive Sources in Africa

    International Nuclear Information System (INIS)

    Kiti, Shadrack Anthony; Choi, Kwang Sik

    2011-01-01

    Radioactive materials are used worldwide for peaceful applications in medicine, industry, agriculture, environmental science, education and research and military applications. Most of these radioactive sources used are imported therefore trans-boundary movement is a significant factor in consideration of safety and security measures during movement of these sources. It is estimated that 20 million packages of radioactive materials are transported annually worldwide and this number of shipments is expected to increase due to the renaissance of nuclear power generation. The African continent has shown considerable leadership in its advocacy for the safety and security of radioactive sources. The First Africa Workshop on the Establishment of a Legal Framework governing Radiation Protection, the Safety of Radiation Sources and the Safe Management of Radioactive Waste held in Ethiopia in 2001 called upon the IAEA to form a forum for African countries to consider the Code of Conduct on the Safety and Security of Radioactive Sources and give it a legally binding effect so that the peaceful use of nuclear technology is not compromised. Despite these laudable efforts, Africa still faces considerable challenges in the implementation of safety and security of radioactive sources because of weak regulatory control and lack of infrastructure to properly control, manage and secure radiation sources 1 . The purpose of this paper was therefore, to analyze, review, address and share knowledge and experience with regard to safety and security measures of radioactive materials in Africa. This project will benefit IAEA's African member states in creating nuclear safety and security networking in the region

  5. Reducing Risks from Sealed Radioactive Sources in Medicine

    International Nuclear Information System (INIS)

    2014-01-01

    Sealed radioactive sources are commonly used in a variety of medical applications for both diagnosis and therapy. The sources used in medical applications usually have high levels of radioactivity and, therefore, have the potential to cause serious and life threatening injuries if used improperly or maliciously, or risky if they become lost or are stolen

  6. Management of Disused Radioactive Sealed Sources in Egypt - 13512

    International Nuclear Information System (INIS)

    Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.

    2013-01-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralized radioactive waste management facility in Egypt by law 7/2010. (authors)

  7. Implementation of a database for the management of radioactive sources

    International Nuclear Information System (INIS)

    MOHAMAD, M.

    2012-01-01

    In Madagascar, the application of nuclear technology continues to develop. In order to protect the human health and his environment against the harmful effects of the ionizing radiation, each user of radioactive sources has to implement a program of nuclear security and safety and to declare their sources at Regulatory Authority. This Authority must have access to all the informations relating to all the sources and their uses. This work is based on the elaboration of a software using python as programming language and SQlite as database. It makes possible to computerize the radioactive sources management.This application unifies the various existing databases and centralizes the activities of the radioactive sources management.The objective is to follow the movement of each source in the Malagasy territory in order to avoid the risks related on the use of the radioactive sources and the illicit traffic. [fr

  8. Security of Radioactive Sources. Implementing Guide (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    There are concerns that terrorist or criminal groups could gain access to high activity radioactive sources and use these sources maliciously. The IAEA is working with Member States to increase control, accounting and security of radioactive sources to prevent their malicious use and the associated potential consequences. Based on extensive input from technical and legal experts, this implementation guide sets forth guidance on the security of sources and will serve as a useful tool for legislators and regulators, physical protection specialists and facility and transport operators, as well as for law enforcement officers.

  9. Categorization of radioactive sources. Revision of IAEA-TECDOC-1191, Categorization of radiation sources

    International Nuclear Information System (INIS)

    2003-07-01

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education; and they are also used in military applications. The International Basic Safety Standards provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation. Because of the wide variety of uses and activities of radiation sources, a categorization system is necessary so that the controls that are applied to the sources are commensurate with the radiological risks. In September 1998, following an assessment of the major findings of the first International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, held in Dijon, France, from 14 to 18 September 1998 (the Dijon Conference), the IAEA's General Conference (in resolution GC(42)/RES/12), inter alia, encouraged all governments 'to take steps to ensure the existence within their territories of effective national systems of control for ensuring the safety of radiation sources and the security of radioactive materials' and requested the Secretariat 'to prepare for the consideration of the Board of Governors a report on: (i) how national systems for ensuring the safety of radiation sources and the security of radioactive materials can be operated at a high level of effectiveness; and, (ii) whether international undertakings concerned with the effective operation of such systems and attracting broad adherence could be formulated'. In February 1999, the Secretariat submitted to the IAEA Board of Governors a report prepared in response to the request made of it by the General Conference. The Board took up the report at its March 1999 session and, inter alia, requested the Secretariat to prepare an action plan that took into account the conclusions and recommendations in the report, and the Board's discussion of the report. In August 1999, the Secretariat circulated a proposed Action Plan for

  10. The regulatory action in the problem of radioactive sources processed as scrap

    International Nuclear Information System (INIS)

    Truppa, Walter Adrian; Cateriano, Miguel Angel

    2005-01-01

    The loss of control of a radioactive source can result in a radiological emergency, especially if that source is treated as scrap. This paper presents a case registered in Argentina about discovery of a radioactive source of Kr-85, 9.25 GBq, used in a computer for industrial measurement of thickness. The radioactive source, without registration or identification, was registered by a portal for detection of radioactive material in the middle of the scrap that entered daily in the oven of a important steel company. From there, the Nuclear Regulatory Authority (RNA) conducted an investigation to determine the origin of the radioactive source, and in parallel made, in the laboratories of measurement, identification of radioactive material inside the source. This led to a company in financial and judicial bankruptcy, which had not notified the RNA about this situation, and also possessed, according to records, other eleven sources with similar characteristics. Finally the actions and regulatory effort allowed the localization of all the radioactive sources of this company, and its storage and deposit in an authorised repository

  11. Set of devices for producing radioactive 60Co-sources

    International Nuclear Information System (INIS)

    Eichhorn, P.; Tobisch, F.

    1982-01-01

    A set of devices for producing radioactive 60 Co-sources was developed. A single source has a radioactivity of 445x10 10 GBq. It consists of a double envelope of stainless steel filled with a mixture of small pieces of cobalt and stainless steel wire. The diameter of a source is 11 mm; the length 80 mm. Cobalt wires of different radioactivity with a length of about 110 mm and 0,8 mm diameter are the raw material. The set is located in a hot cell. Construction, functions and operation of the set are described in detail. (author)

  12. Radiation protection rules for handling of sealed radioactive sources in medicine

    International Nuclear Information System (INIS)

    1985-02-01

    The rules presented here relate to the use of sealed radioactive sources in medical therapy, with the radioactive sources being temporarily or permanently incorporated into body cavities or body tissues, or fixed to the body surface. They also relate to radioactive sources with dimensions below 5 mm (as e.g. seeds). (orig./HP) [de

  13. Transport of radioactive sources-an environmental problem

    International Nuclear Information System (INIS)

    Merckaert, G.

    1996-01-01

    Full text: The transport of dangerous goods is submitted to various regulations. These can be international, national or regional and they can differ from country to country. The basis for the regulations for dangerous goods can be found in the recommendations on the transport of dangerous goods, issued by the United Nations committee of experts on the transport of dangerous goods (orange book). For radioactive material the regulations for the safe transport of radioactive material, issued by the International Atomic Energy Agency (IAEA), are applied. The UN recommendations provide for 9 classes of dangerous goods. With regard to class 7, specifically related to the transport of radioactive material special recommendation relating to class 70, the IAEA regulations are referred to. These IAEA regulations for their part provide for 13 schedules, varying between weakly and highly radioactive. The radioactive sources which are used for non-destructive testing or for medical purposes are mostly sealed sources, i.e. the radioactive material is contained in a metallic shell. According to the nature of the isotope and their activity, the sources are transported either in industrial packagings, type A or type B packagings. According to the mode of transport, either air, sea, rail or road, various specific rules are applied, which however, are fortunately nearly completely harmonized. Special attention is paid to radiation protection, heat removal and the testing and fabrication of packagings. As a general rule, the safety of transport is based on the safety of the packagings, i.e. their ability to maintain, even in accident conditions, their capacity of tightness, shielding against radiation and removing the heat generated by the transported material

  14. Guidance on the Import and Export of Radioactive Sources. 2012 Edition

    International Nuclear Information System (INIS)

    2012-05-01

    The IAEA Code of Conduct on the Safety and Security of Radioactive Sources, published as IAEA/CODEOC/2004 in January 2004, provides guidance on how States can safely and securely manage radioactive sources that may pose a significant risk. The concept of such an international undertaking on the safety and security of radioactive sources was highlighted in the major findings of the International Conference on the Safety of Radiation Sources and Security of Radioactive Materials held in Dijon, France, in September 1998. Following that conference, the IAEA Board of Governors requested the Director General to initiate exploratory discussions relating to an international undertaking in the areas of the safety and security of radiation sources. This request was reflected in an Action Plan on the Safety of Radiation Sources and Security of Radioactive Materials, with the Secretariat organizing a series of open-ended meetings of technical and legal experts nominated by Member States to further explore the concept of such an undertaking. Noting comments made during meetings of the Board of Governors, the experts agreed that any international undertaking should, for the present, be in the form of a 'code of conduct'. The text of a Code of Conduct on the Safety and Security of Radioactive Sources was accordingly developed. Steps to strengthen the provisions of the Code were subsequently initiated following the International Conference of National Regulatory Authorities with Competence in the Safety of Radiation Sources and the Security of Radioactive Material held in Buenos Aires in December 2000. Moreover, growing international concern about the security of radioactive sources after the events of 11 September 2001 led to a number of issues being considered further by technical and legal experts. Furthermore, the International Conference on Security of Radioactive Sources held in Vienna in March 2003 made recommendations regarding additional actions that might be needed. In

  15. Characterization and packaging of disused sealed radioactive sources; Caracterizacion y acondicionamiento de fuentes radiactivas selladas en desuso

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, S.L. [Instituto Boliviano de Ciencia y Tecnologia Nuclear (IBTEN), La Paz (Bolivia, Plurinational State of)

    2013-07-01

    In Bolivia are generated disused sealed sources and radioactive waste resulting from the use of radioactive materials in industrial, research and medicine. The last includes the diagnosis and treatment. Whereas exposure to ionizing radiation is a potential hazard to personnel who applies it, to those who benefit from its use or for the community at large, it is necessary to control the activities in this field. The Instituto Boliviano de Ciencia y Tecnologia Nuclear - IBTEN is working on a regional project from International Atomic Energy Agency - IAEA, RLA/09/062 Project - TSA 4, Strengthening the National Infrastructure and Regulatory Framework for the Safe Management of Radioactive waste in Latin America. This Project has strengthened the regulatory framework regarding the safe management of radioactive waste. The aim of this work was focused primarily on the security aspects in the safe management of disused sealed sources. The tasks are listed below: 1. Characterization of disused sealed sources 2. Preparation for transport to temporary storage 3. Control of all disused radioactive sources. (author)

  16. DEPO-related to Radioactive Sources.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-24

    Design and Evaluation Process Outline (DEPO) is discussed as it pertains to protection of radioactive sources. The bulk of the report describes features of various kinds of detection systems, and follows this with systems for entry control and personnel identification.

  17. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  18. Sources and levels of radioactivity in the Philippine environment

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; De la Cruz, F.M.; Enriquez, E.B.; Garcia, T.Y.; Palad, L.H.; Enriquez, S.O.; Eduardo, J.M.; Asada, A.A.

    1996-01-01

    Over the years, the Health Physics Research Section has assessed the sources and levels of radiation exposure in the Philippine environment. The data show that although Filipinos are exposed to both natural and artificial sources of environmental radioactivity, natural sources contribute much more significantly to the dose received by Filipinos than artificial sources. The average equivalent dose rate due to external sources of natural radiation in the Philippines is 45 μSv h -1 . Of this total dose rate, an average of 22 μSv h -1 is due to cosmic radiation while an average of 23 μSv h -1 is due to terrestrial radiation. External sources of natural radiation in the Philippines thus account for an annual per caput effective dose of about 400 μSv. In contrast, the annual per caput dose due to an artificial source, i.e., nuclear power production, was estimated by UNSCEAR (1988) to be only 0.6 μSv. Based on levels of background radioactivity due to external sources of natural radiation which were measured in 1600 locations, a radiation map of the country was developed. Among the internal sources of natural radiation, radon is the large contributor to dose and is considered as a serious indoor pollutant. Indoor radon levels in about 400 Filipino houses ranged from 1 to 63 Bq m -3 with a mean of 24 Bq m -3 . Significantly higher levels ranging from 30 to 347 Bq m -3 were observed in underground, non-uranium mines. Since there are no operational nuclear power plant in the Philippines, artificial radionuclides in the environment consist mainly of long-lived 137 Cs and 90 Sr from atmospheric nuclear weapons tests

  19. Natural radioactivity in groundwater sources in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Currivan, L.; Dowdall, A.; Mcginnity, P.; Ciara, M. [Radiological Protection Institute of Ireland (Ireland); Craig, M. [Environmental Protection Agency (Ireland)

    2014-07-01

    The Radiological Protection Institute of Ireland (RPII) in collaboration with the Irish Environmental Protection Agency (EPA) undertook a national survey of radioactivity in groundwater sources for compliance with parameters set out in the European Communities Drinking Water Directive. The Directive outlines the minimum requirements for the quality of drinking water and water intended for human consumption. Over two hundred samples were screened for radioactivity. Where indicated, analysis for individual radionuclide activity was undertaken and the radiation dose arising calculated. Furthermore, samples were analysed for radon concentration. This survey is the first comprehensive national survey of radioactivity in groundwater sources in Ireland. Approximately 18 per cent of drinking water in Ireland originates from groundwater and springs with the remainder from surface water. Between 2007 and 2011, water samples from a representative network of groundwater sources were analysed and assessed for compliance with the radioactivity parameters set out in the Drinking Water Directive. The assessment was carried out using the methodology for screening drinking water set out by the WHO. For practical purposes the WHO recommended screening levels for drinking water below which no further action is required of 100 mBq/l for gross alpha activity and 1000 mBq/l for gross beta activity were applied. Of the 203 groundwater sources screened for gross alpha and gross beta all met the gross beta activity criteria of less than 1000 mBq/l and 175 supplies had gross alpha activity concentrations of less than 100 mBq/l. For these sources no further analysis was required. The remaining 28 sources required further (radionuclide-specific) analysis from an alpha activity perspective. Results on ranges and distributions of radionuclide concentrations in groundwater as well as ingestion doses estimated for consumers of these water supplies will be presented. Document available in abstract

  20. Managing the risks of legacy radioactive sources from a security perspective

    International Nuclear Information System (INIS)

    Alexander, Mark; Murray, Allan

    2008-01-01

    The safety and security risk posed by highly radioactive, long-lived sources at the end of their normal use has not been consistently well-managed in previous decades. The Brazilian Cs-137 accident in 1986 and the Thailand Co-60 accident in 2000 are prime examples of the consequences that ensue from the loss of control of highly dangerous sources after their normal use. With the new international emphasis on security of radioactive sources throughout their life cycle, there is now further incentive to address the management of risks posed by legacy, highly dangerous radioactive sources. The ANSTO South-East Asia Regional Security of Radioactive Sources (RSRS) Project has identified, and is addressing, a number of legacy situations that have arisen as a result of inadequate management practices in the past. Specific examples are provided of these legacy situations and the lessons learned for managing the consequent safety and security risk, and for future complete life-cycle management of highly radioactive sources. (author)

  1. Large-sized and highly radioactive 3H and 109Cd Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Shibata, S.; Kawakami, H.; Kato, S.

    1994-02-01

    A device for the deposition of a radioactive Langmuir-Blodgett (LB) film was developed with the use of: (1) a modified horizontal lifting method, (2) an extremely shallow trough, and (3) a surface pressure-generating system without piston oil. It made a precious radioactive subphase solution repeatedly usable while keeping its radioactivity concentration as high as possible. Any large-size thin films can be prepared by just changing the trough size. Two monomolecular-layers of Y-type films of cadmium [ 3 H] icosanoate and 109 Cd icosanoate were built up as 3 H and 109 Cd β-sources for electron spectroscopy with intensities of 1.5 GBq (40 mCi) and 7.4 MBq (200 μCi), respectively, and a size of 65x200 mm 2 . Excellent uniformity of the distribution of deposited radioactivity was confirmed by autoradiography and photometry. (author)

  2. Control of sealed radioactive sources in Peru

    International Nuclear Information System (INIS)

    Ramirez Quijada, R.

    2001-01-01

    The paper describes the inventory of radioactive sources in Peru and assesses the control. Three groups of source conditions are established: controlled sources, known sources, and lost and orphan sources. The potential risk, described as not significant, for producing accidents is established and the needed measures are discussed. The paper concludes that, while the control on sealed sources is good, there is still room for improvement. (author)

  3. Security of highly radioactive sources in Nepal

    International Nuclear Information System (INIS)

    Shrestha, Kamal K.

    2010-01-01

    Subsequent to 9/11, concerned countries and UN agencies have taken especial interest in the security of highly radioactive sources throughout the world. The IAEA Nuclear Security Plan (2006-2009) consequently made as a result of UN Security Council Resolution 1540 is binding to all States. The Global Threat Reduction Initiative (GTRI) of the US and the Global Threat Reduction Programme (GTRP) of UK have assisted the four hospitals in Nepal having more than 1,000 Curies of radioactivity in their Cobalt-60 sources used for teletherapy. The physical upgrade of the security of the nuclear materials has also been launched in Nepal for prevention of theft with malicious intention or threats. In this presentation, the radioisotopes in Nepal that comes under different categories according to TECDOC-1355 of IAEA will be described. Problems and issues regarding the security and protection of radioactive sources at hospitals, academic and research institutions that could be prevalent in many developing counties too will be discussed by taking a case study of one of the cancer hospitals in Kathmandu valley. (author)

  4. Development of an application simulating radioactive sources; Conception d'une application de simulation de sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)

    2011-05-15

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  5. Measures Against-Illicit Trafficking of Nuclear Materials and Other Radioactive Sources

    International Nuclear Information System (INIS)

    Barakat, M.B.; Nassef, M.H.; El Mongy, S.A.

    2008-01-01

    Since the early nineties, illicit trafficking (IT) of nuclear materials and radioactive sources appeared as a new trend which raised the concern of the international community due to the grave consequences that would merge if these materials or radioactive sources fell into the hands of terrorist groups. However, by the end of the last century illicit trafficking of nuclear materials and radioactive sources lost its considerable salience, in spite of seizure of considerable amounts of 2 '3'5U (76% enrichment) in Bulgaria (May 1999) and also 235 U (30% enrichment) in Georgia (April 2000). Nevertheless, IT should be always considered as a continued and viable threat to the international community. Awareness of the problem should be developed and maintained among concerned circles as the first step towards combating illicit trafficking of nuclear materials and radioactive sources. Illicit trafficking of nuclear and radioactive materials needs serious consideration and proper attention by the governmental law enforcement authorities. Measures to combat with IT of nuclear material or radioactive sources should be effective in recovery, of stolen, removed or lost nuclear materials or radioactive sources due to the failure of the physical protection system or the State System Accounting and Control (SSAC) system which are normally applied for protecting these materials against illegal actions. Measures such as use of modern and efficient radiation monitoring equipment at the borders inspection points, is an important step in preventing the illicit trafficking of nuclear and radioactive materials across the borders. Also providing radiological training to specific personnel and workers in this field will minimize the consequences of a radiological attack in case of its occurrence. There is a real need to start to enter into cooperative agreements to strengthen borders security under the umbrella of IAEA to faster as an international cooperation in the illicit trafficking

  6. Strengthening the control on radioactive sources - Cernavoda NPP operating experience

    International Nuclear Information System (INIS)

    Daian, I.; Simionov, V.

    2005-01-01

    This paper presents the national legal frame governing the radioactive source management, legislative requirements introduced during last years and current status of controlled radioactive sources program at Cernavoda NPP. Romania has only one nuclear power plant, Cernavoda NPP, equipped with five PHWR - CANDU-6 Canadian type reactors - with a 700 MW(e) gross capacity each, in different implementation stages. The legal representative of the nuclear power production sector in Romania is 'Nuclearelectrica' S.A. National Company (SNN). SNN is a governmental company controlled by the Ministry of Industry and Trade. The company has headquarters in Bucharest and three subsidiaries: - CNE-PROD Cernavoda (CNE-PROD), operating the Cernavoda NPP - Unit 1; - CNE-INVEST Cernavoda, in charge with the completion of Unit 2 and with the preservation of Units 3,4,5; - Nuclear Fuel Plant in Pitesti (FCN). Unit 1 is in commercial operation since December 2, 1996, Unit 2 is under construction (80% completed) and Units 3, 4, 5 are under preservation. The operation of Cernavoda NPP implies use of radioactive sources that may present a significant risk to health, property and the environment when control is lost. Within the last years CNCAN issued new regulations stating clear responsibilities for the different institutions involved in radioactive materials control programs. To manage radioactive sources in a safe way CNE-PROD established and revised the Controlled Radioactive Sources Program, as part of Station Radiation Protection Regulation, ensuring strict recording of the radioactive sources and their usage, ensuring physical and radiological security, protecting the personnel, members of the public and the environment from the hazards of ionizing radiation during the life cycle of the plant, including decommissioning. (authors)

  7. Strengthening the control on radioactive sources - Cernavoda NPP operating experience

    International Nuclear Information System (INIS)

    Daian, I.; Simionov, V.

    2005-01-01

    Full text: This paper presents the national legal frame governing the radioactive source management, legislative requirements introduced during last years and current status of controlled radioactive sources program at Cernavoda NPP. Romania has only one nuclear power plant, Cernavoda NPP, equipped with five PHWR - CANDU-6 Canadian type reactors - with a 700 MW(e) gross capacity each, in different implementation stages. The legal representative of the nuclear power production sector in Romania is 'Nuclearelectrica' S.A. National Company (SNN). SNN is a governmental company controlled by the Ministry of Industry and Trade. The company has headquarters in Bucharest and three subsidiaries: - CNE-PROD Cernavoda (CNE-PROD), operating the Cernavoda NPP - Unit 1; - CNE-INVEST Cernavoda, in charge with the completion of Unit 2 and with the preservation of Units 3,4,5; - Nuclear Fuel Plant in Pitesti (FCN). Unit 1 is in commercial operation since December 2, 1996, Unit 2 is under construction (80% completed) and Units 3, 4, 5 are under preservation. The operation of Cernavoda NPP implies use of radioactive sources that may present a significant risk to health, property and the environment when control is lost. Within the last years CNCAN issued new regulations stating clear responsibilities for the different institutions involved in radioactive materials control programs. To manage radioactive sources in a safe way CNE-PROD established and revised the Controlled Radioactive Sources Program, as part of Station Radiation Protection Regulation, ensuring strict recording of the radioactive sources and their usage, ensuring physical and radiological security, protecting the personnel, members of the public and the environment from the hazards of ionizing radiation during the life cycle of the plant. (authors)

  8. Radioactive starting aids for electrodeless light sources

    International Nuclear Information System (INIS)

    Proud, J.M.; Regan, R.J.; Haugsjaa, P.O.; Baird, D.H.

    1980-01-01

    The use of radioactive sources of α particles, β particles or γ rays as aids in starting a discharge in an electrodeless light source is discussed. The advantages of siting the sources at various positions in the device are discussed. Preferred materials are 85 Kr and 241 Am. (U.K.)

  9. The regulatory actions in the management of disuse radioactive sources

    International Nuclear Information System (INIS)

    Truppa, W.A.; Cordoba, M.F.; Poletti, M.; Calabria, M.A.; Pirez, C.

    2010-01-01

    During the last years, different incidents related to the discovery of inadvertent radioactive material have been reported through the international information systems available. From the analysis of the information received it can be concluded that those situations are derived from the inadequate application of concepts such as 'safety culture' and 'risk perception' or inadequate physical safety measures towards radioactive sources by the licensee. Among the activities that the regulators perform during the use of radioactive material, the most important are the ones related to avoiding the existence of disused radioactive sources. In this regard, the Nuclear Regulatory Authority (NRA) has implemented, through its Standards, regulatory mechanisms to adequately control and dispose of radioactive material. Concerning this matter, actions were taken in Argentina with the aim of disposing or keeping the custody in an authorized long term storage of every radioactive source used to measure thickness, humidity, level, weight, etc. that remained within the facilities without use and/or a suitable program to be reutilized within a period larger than six months. The objective of the present piece of work is to present the analysis and results of the actions fulfilled between 2002 and 2009, giving details about the regulatory activities performed in relation to the disposal and withdrawal of radioactive sources and the physical safety measures taken. (authors) [es

  10. Guide for disposition of radioactive-material sources

    International Nuclear Information System (INIS)

    Taylor, J.M.; Selby, J.M.

    1983-04-01

    This guide has been prepared to assist DOE Energy Technology Centers in disposing of radioactive-material sources. The guide describes the steps and requirements necessary to dispose of unwanted sources. The steps include obtaining approvals, source characterization, source disposition, packaging requirements, and shipment preparation. A flow chart is provided in the guide to assist the user in the necessary sequential steps of source disposition

  11. Tracking of Radioactive Sources in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Mohd Fazlie Abdul Rashid; Noor Fadilla Ismail; Khairuddin Mohamad Kontol; Hairul Nizam Idris; Azimawati Ahmad; Suzilawati Muhd Sarowi; Raymond, Y.T.L.

    2014-01-01

    Radioactive materials are used in Malaysian Nuclear Agency for various purposes such as research and development, calibration, tracer and irradiation. Inventory of radioactive materials is crucial for ensuring the security and control of all radioactive materials owned and used so as not to be lost or fall into the hands of people who do not have permission to possess or use it. Experience in many countries around the world proves that the improper inventory of radioactive material would lead to loss of control of radioactive materials and will eventually cause an accident of radiation exposure. Radioactive material database has been developed for the need to ensure traceability of radioactive materials in Malaysian Nuclear Agency. Records of radioactive materials are regularly updated based on the classification of the type of radionuclide, the total distribution in each building and the initial activity of radioactive sources. (author)

  12. Assessment on security system of radioactive sources used in hospitals of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Jitbanjong, Petchara, E-mail: petcharajit@gmail.com; Wongsawaeng, Doonyapong [Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand)

    2016-01-22

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.

  13. Assessment on security system of radioactive sources used in hospitals of Thailand

    Science.gov (United States)

    Jitbanjong, Petchara; Wongsawaeng, Doonyapong

    2016-01-01

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.

  14. Assessment on security system of radioactive sources used in hospitals of Thailand

    International Nuclear Information System (INIS)

    Jitbanjong, Petchara; Wongsawaeng, Doonyapong

    2016-01-01

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources

  15. Study of two different radioactive sources for prostate brachytherapy treatment

    International Nuclear Information System (INIS)

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.; Belinato, Walmir

    2015-01-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a 192 Ir and a 125 I radioactive sources. The 192 Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The 125 I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of 125 I and one of 192 Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the 192 Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the 125 I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  16. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  17. Challenges in Regulating Radiation Sources and Radioactive Waste in Nigeria

    International Nuclear Information System (INIS)

    Ngwakwe, C.

    2016-01-01

    Identifying challenges that hamper the efficiency and efficacy of Regulatory Infrastructure (People and Processes) as regards ensuring safety & security of radiation sources and radioactive waste is a major step towards planning for improvement. In a world constantly motivated by technological advancements, there has been considerable increase in the use of new technologies incorporating radioactive sources in both medical and industrial applications due to its perceived benefits, hence changing the dynamics of regulation. This paper brings to the fore, contemporary challenges experienced by regulators in the course of regulating radiation sources and radioactive waste in Nigeria. These challenges encountered in the business of regulating radiation sources and radioactive waste in Nigeria amongst others include; knowledge gap in the use of novel technologies for industrial applications (e.g. radiotracers in oil & gas and wastewater management), inadequate collaboration with operators to ensure transparency in their operations, inadequate cooperation from other government agencies using ionizing radiation sources, lack of synergy between relevant government agencies, difficulty in establishing standard radioactive waste management facility for orphan & disused sources, and inadequate control of NORMS encountered in industrial activities (e.g. well logging, mining). Nigerian Nuclear Regulatory Authority (NNRA), the body saddled with the responsibility of regulating the use of ionizing radiation sources in Nigeria is empowered by the Nuclear Safety and Radiation Protection Act to ensure the protection of life, property, and the environment from the harmful effects of ionizing radiation, hence are not immune to the aforementioned challenges. (author)

  18. Germanium detector calibration according to the standard NF M 60-810 without using radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Duda, J. M.; Garell, I.; Losset, Y.; Vichot, L. [CEA de Valduc, Service de Protection Contre Les Rayonnements, 21110 Is sur Tille (France); Chazalet, J.; Tauvel, Y.; Poulet, F. [IUP Genie des Systemes Industriels, Universite Blaise Pascal, Departement de Physique, 24 avenue des Landais, 63177 Aubiere Cedex (France)

    2009-07-01

    In-situ gamma ray spectrometry is used to determine the specific activities of natural and artificial radioactive nuclides in the soil with a good accuracy. This method is very interesting for environmental measurements and leads to soil determination activity. It is a cheaper method than analysis of great amounts of soil samples in the laboratory. As there is no standard soil, detection efficiency can be estimated using either statistical tools or combination of radioactive point sources calibration thanks to mathematical models of NF-M-60-810 standard representing the radionuclide distribution in soil. Experimental determination of detection efficiency requires a large number of operations involving the handling of radioactive standards in the energy range from 0.06 - 2 MeV. For these reasons, detection efficiency model has been determined without using radioactive sources. In order to reduce analytical time and to simplify the efficiency detector calibration, it is possible to associate numerical and deterministic methods and to get a relative accuracy below 25 per cent

  19. Cradle to Grave: Managing Disused Sealed Radioactive Sources in the Mediterranean Region

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Some countries in the Mediterranean region lack appropriate facilities for the safe management or disposal of radioactive waste such as disused radioactive sources. Disused radioactive sources could be lost, stolen or abandoned and thus fall outside the regulatory control. Such loss of control over disused sources presents a significant risk to the public and the environment

  20. Thermosensitive shutter for radioactive source housing

    International Nuclear Information System (INIS)

    Fullagar, H.

    1986-01-01

    A shutter apparatus for a radioactive source housing comprises a movable member and a thermosensitive releasing means operative normally to hold the movable member in an open position but to release the movable member to move to a position closing the housing to contain the source when the temperature exceeds a predetermined value, for example as a result of fire. (author)

  1. Controlling radioactive sources. Stronger 'cradle-to-grave' security needed, IAEA says

    International Nuclear Information System (INIS)

    2002-01-01

    This article highlights the IAEA activities in the field of radiation safety and security of radiation sources and other radioactive materials in its Member States. The IAEA has been active in lending its expertise to search out and secure orphaned sources in several countries. Additionally more than 70 States have joined with the IAEA to collect and share information on trafficking incidents and other unauthorized movements of radioactive sources and other radioactive materials. In March 2002 the IAEA Board of Governors approved a multi-faceted Action plan to Combat Nuclear Terrorism that includes upgrading radiation safety and security. One programme is designed to ensure that significant, uncontrolled radioactive sources are brought under regulatory control and properly secured by providing assistance to Member States in their efforts to identify, locate and secure or dispose of orphan sources

  2. Regulatory requirements of radiation and radioactive sources in India

    International Nuclear Information System (INIS)

    Sundara Rao, I.S.

    1993-01-01

    Manufacture and supply of radiation sources, their use and the disposal of radioactive materials are regulated through the application of Safe Disposal Radioactive Wastes Rules 1987. Salient aspects of these are discussed

  3. Strengthening the safety and security of radioactive sources worldwide: a perspective on Philippine contributions

    International Nuclear Information System (INIS)

    Murray, Allan

    2009-01-01

    Radioactive sources have been used for many decades in a wide variety of applications in all countries. The safety of radioactive sources and the associated radiation protection have been implemented by national and international programs during this time with cooperation through the IAEA intended to achieve application of minimum standards and harmonization of approach. The security of radioactive sources is however relatively new consideration. A perspective on the Philippine contributions to the safety and security of radioactive sources will be provided with reference to the following: What is radioactive source security and why it is important?; International cooperation, including the IAEA Code of Conduct; Regulation for radioactive source security; Implementation of radioactive source security measures for licenses, operators and others; Impact of regulatory and operational matters such as professional development and training, emergency preparedness and response, and radiation protection. (author)

  4. Characterization of radioactive orphan sources by gamma spectrometry

    International Nuclear Information System (INIS)

    Cruz W, H.

    2013-01-01

    The sealed radioactive sources are widely applicable in industry. They must have a permanent control and must be registered with the Technical Office of the National Authority (OTAN). However, at times it has identified the presence of abandoned sealed sources unknown to the owner. These sources are called 'orphan sources'. Of course these sources represent a high potential risk because accidents can trigger dire consequences depending on your activity and chemical form in which it presents the radioisotope. This paper describes the process and the actions taken to characterize two orphan radioactive sources from the smelter a Aceros Arequipa. For characterization we used a gamma spectrometry system using a detector NaI(Tl) 3″ x 3″ with a multichannel analyzer Nucleus PCA-II. The radioisotope identified was cesium - 137 ( 137 Cs) in both cases. Fortunately, the sources maintained their integrity would otherwise have generated significant pollution considering the chemical form of the radioisotope and easy dispersion. (author)

  5. Regulatory Control of Radioactive Sources in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.; Martin, J.L., E-mail: mrm@csn.es [Nuclear Safety Council, Madrid (Spain)

    2011-07-15

    The arrangements for the regulatory control of the safety and security of sealed radioactive sources in Spain are described. Emphasis is given to the situations which are most likely to result in the loss of control of sources and on the procedures introduced to reduce the likelihood of losses in these cases. Finally, the strategy for locating sources which have been lost from control (orphan sources) is described. (author)

  6. Development of an application simulating radioactive sources

    International Nuclear Information System (INIS)

    Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.

    2011-01-01

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  7. Development of methodology for the characterization of radioactive sealed sources

    International Nuclear Information System (INIS)

    Ferreira, Robson de Jesus

    2010-01-01

    Sealed radioactive sources are widely used in many applications of nuclear technology in industry, medicine, research and others. The International Atomic Energy Agency (IAEA) estimates tens of millions sources in the world. In Brazil, the number is about 500 thousand sources, if the Americium-241 sources present in radioactive lightning rods and smoke detectors are included in the inventory. At the end of the useful life, most sources become disused, constitute a radioactive waste, and are then termed spent sealed radioactive sources (SSRS). In Brazil, this waste is collected by the research institutes of the Nuclear Commission of Nuclear Energy and kept under centralized storage, awaiting definition of the final disposal route. The Waste Management Laboratory (WML) at the Nuclear and Energy Research Institute is the main storage center, having received until July 2010 about 14.000 disused sources, not including the tens of thousands of lightning rod and smoke detector sources. A program is underway in the WML to replacing the original shielding by a standard disposal package and to determining the radioisotope content and activity of each one. The identification of the radionuclides and the measurement of activities will be carried out with a well type ionization chamber. This work aims to develop a methodology for measuring or to determine the activity SSRS stored in the WML accordance with its geometry and determine their uncertainties. (author)

  8. Classification of radioactive self-luminous light sources - approved 1975. NBS Handbook 116

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard establishes the classification of certain radioactive self-luminous light sources according to radionuclide, type of source, activity, and performance requirements. The objectives are to establish minimum prototype testing requirements for radioactive self-luminous light sources, to promote uniformity of marking such sources, and to establish minimum physical performance for such sources. The standard is primarily directed toward assuring adequate containment of the radioactive material. Testing procedures and classification designations are specified for discoloration, temperature, thermal shock, reduced pressure, impact, vibration, and immersion. A range of test requirements is presented according to intended usage and source activity

  9. The safety and the security of radioactive sources

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Ghosh, P.K.; Nandakumar, A.N.

    2003-01-01

    A Task Group was appointed by Chairman, AERB to review the current practice and recommend procedures for ensuring the Safety and the Security of Radioactive Sources in India. The Task Group identified the issues involved and concluded that the current regulatory procedure relating to licensing was adequate in view of the stress placed on pre-licensing requirements and the undertakings obtained from the licensee and ensuring that appropriate radiation monitors and trained personnel are available at the licensee's institution. Each licensee is required to submit periodic reports confiriming the safety and the security of the sources in the possession of the institution. It is important to conduct regulatory inspection of the institutions frequently. In order to optimise the regulatory effort involved, the report recommends frequencies of inspections commensurate with the potential hazard associated with the source. For this purpose the sources are brought under three categories which are largely based on the categorization recommended by the International Atomic Energy Agency (IAEA), Vienna with deviations introduced on the basis of rationalized hazard potential associated with the sources. The importance of technical coordination between AERB and BARC is emphasised. (author)

  10. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  11. Experiments with radioactive samples at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

    2000-01-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented

  12. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  13. Radioactive target and source development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress

  14. Registration for the Hanford Site: Sources of radioactive emissions

    International Nuclear Information System (INIS)

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ''Radionuclide Air Emissions Report for the Hanford Site,'' published annually. It is a requirement that the following Statement of Compliance be provided: ''The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ''above sources'' is to be understood as meaning the combined air emissions from all sources registered by this submittal

  15. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  16. Radioactive check sources for alpha and beta sensitive radiological instrumentation

    International Nuclear Information System (INIS)

    Barnett, J.M.; Kane, J.E. II.

    1994-06-01

    Since 1991, the Westinghouse Hanford Company has examined the construction and use of alpha and beta radioactive check sources for calibrating instruments and for performing response checks of instruments used for operational and environmental radiation detection. The purpose of using a radioactive check source is to characterize the response of a radiation monitoring instrument in the presence of radioactivity. To accurately calibrate the instrument and check its response, the check source used must emulate as closely as possible the actual physical and isotopic conditions being monitored. The isotope employed and the physical methods used to fabricate the check source (among other factors) determine instrument response. Although information from applicable national and international standards, journal articles, books, and government documents was considered, empirical data collected is most valuable when considering the type of source to use for a particular application. This paper presents source construction methods, use considerations, and standard recommendations. The results of a Hanford Site evaluation of several types of alpha and beta sources are also given

  17. Development of technology for the large-scale preparation of 60Co polymer film source

    International Nuclear Information System (INIS)

    Udhayakumar, J.; Pardeshi, G.S.; Gandhi, Shymala S.; Chakravarty, Rubel; Kumar, Manoj; Dash, Ashutosh; Venkatesh, Meera

    2008-01-01

    60 Co sources (∼37 kBq) in the form of a thin film are widely used in position identification of perforation in offshore oil-well explorations. This paper describes the large-scale preparation of such sources using a radioactive polymer containing 60 Co. 60 Co was extracted into chloroform containing 8-hydroxyquinoline. The chloroform layer was mixed with polymethyl methacrylate (PMMA) polymer. A large film was prepared using the polymer solution containing the complex. The polymer film was then cut into circular sources, mounted on a source holder and supplied to various users

  18. The security of medical and industrial radioactive sources

    International Nuclear Information System (INIS)

    Bielefeld, Tom; Fischer, Helmut W.

    2008-01-01

    Recent foiled and successful terrorist plots in Europe and the US (including two cases in the UK and Germany which included plans to design radiological dispersal devices in 2004 and 2005), clearly demonstrate that domestic or locally acting terrorist cells have become an important part of the terrorist threat picture. The uncovered 'dirty bomb'-plots involved radioactive material of type or quantity that would not have caused much damage. Still, these observations underscore the necessity to revisit the issue of radioactive sources security in countries which may become the target of a radiological attack. This includes in particular countries in Europe, many of which in the past relied on sophisticated - but safety centred - regulations and functioning oversight institutions. In a pilot study, we have developed plausible attack scenarios involving medical and industrial sources used in Germany. Special emphasis was put on how such sources could be obtained by a locally acting terrorist group using criminal tactics and non-specialized equipment only. To this end, sources storage and handling as well as daily work procedures in hospitals and companies have been analysed to find weak points which could be discovered and exploited by terrorist groups. Publicly available technical information has been used to assess under which circumstances terrorists could obtain various types of sources or whole instruments. Calculations have been performed to estimate the radiation burden to a person handling these sources with improvised equipment. Our study shows that, even in a country with already high regulatory standards, hospitals and industrial facilities still need to introduce improvements to sources security. We therefore discuss and propose a number of affordable security upgrades. Many of our findings in Germany apply to other western countries as well. Hence, we call for a change of mentality of users and manufacturers to take into account not only the safety but

  19. Radioactive sources for ATLAS hadron tile calorimeter calibration

    International Nuclear Information System (INIS)

    Budagov, Yu.; Cavalli-Sforza, M.; Ivanyushenkov, Yu.

    1997-01-01

    The main requirements for radioactive sources applied in the TileCal calibration systems are formulated; technology of the sources production developed in the Laboratory of Nuclear Problems, JINR is described. Design and characteristics of the prototype sources manufactured in Dubna and tested on ATLAS TileCal module 0 are presented

  20. Code of Conduct on the Safety and Security of Radioactive Sources and the Supplementary Guidance on the Import and Export of Radioactive Sources

    International Nuclear Information System (INIS)

    2005-01-01

    In operative paragraph 4 of its resolution GC(47)/RES/7.B, the General Conference, having welcomed the approval by the Board of Governors of the revised IAEA Code of Conduct on the Safety and Security of Radioactive Sources (GC(47)/9), and while recognizing that the Code is not a legally binding instrument, urged each State to write to the Director General that it fully supports and endorses the IAEA's efforts to enhance the safety and security of radioactive sources and is working toward following the guidance contained in the IAEA Code of Conduct. In operative paragraph 5, the Director General was requested to compile, maintain and publish a list of States that have made such a political commitment. The General Conference, in operative paragraph 6, recognized that this procedure 'is an exceptional one, having no legal force and only intended for information, and therefore does not constitute a precedent applicable to other Codes of Conduct of the Agency or of other bodies belonging to the United Nations system'. In operative paragraph 7 of resolution GC(48)/RES/10.D, the General Conference welcomed the fact that more than 60 States had made political commitments with respect to the Code in line with resolution GC(47)/RES/7.B and encouraged other States to do so. In operative paragraph 8 of resolution GC(48)/RES/10.D, the General Conference further welcomed the approval by the Board of Governors of the Supplementary Guidance on the Import and Export of Radioactive Sources (GC(48)/13), endorsed this Guidance while recognizing that it is not legally binding, noted that more than 30 countries had made clear their intention to work towards effective import and export controls by 31 December 2005, and encouraged States to act in accordance with the Guidance on a harmonized basis and to notify the Director General of their intention to do so as supplementary information to the Code of Conduct, recalling operative paragraph 6 of resolution GC(47)/RES/7.B. 4. The

  1. Precise Mapping Of A Spatially Distributed Radioactive Source

    International Nuclear Information System (INIS)

    Beck, A.; Caras, I.; Piestum, S.; Sheli, E.; Melamud, Y.; Berant, S.; Kadmon, Y.; Tirosh, D.

    1999-01-01

    Spatial distribution measurement of radioactive sources is a routine task in the nuclear industry. The precision of each measurement depends upon the specific application. However, the technological edge of this precision is motivated by the production of standards for calibration. Within this definition, the most demanding field is the calibration of standards for medical equipment. In this paper, a semi-empirical method for controlling the measurement precision is demonstrated, using a relatively simple laboratory apparatus. The spatial distribution of the source radioactivity is measured as part of the quality assurance tests, during the production of flood sources. These sources are further used in calibration of medical gamma cameras. A typical flood source is a 40 x 60 cm 2 plate with an activity of 10 mCi (or more) of 57 Co isotope. The measurement set-up is based on a single NaI(Tl) scintillator with a photomultiplier tube, moving on an X Y table which scans the flood source. In this application the source is required to have a uniform activity distribution over its surface

  2. Introduction on the recycling of spent and disused radioactive sources

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Zang Ruihua

    2011-01-01

    It is not only a stress of environment safety, but also a waste of huge resources to send directly to store spent and disused radioactive sources. This article reviews some important aspects of management suggestions recommended by IAEA and requirements of regulations in China for disposing the spent and disused radioactive sources. The present condition and benefit of recycling spent and disused sources are analyzed. Some suggestions on carrying out recycling in China are put forward too. (authors)

  3. Regional Integrated Tenets to Reinforce the Safety and Security of Radioactive Sources (ClearZone)

    International Nuclear Information System (INIS)

    Salzer, P.

    2003-01-01

    The EURATOM Research and Training Programme on Nuclear Energy includes 2 main fields - fusion energy research and management of radioactive waste, radiation protection and other activities of nuclear technology and safety.Seven instruments (mechanisms) for projects management are used - 'Network of Excellence' (NOE); 'Integrated Project' (IP); 'Specific Targeted Research Project' or 'Specific Targeted Training Project' (STREP); 'Co-ordination Action' (CA); Actions to Promote and Develop Human Resources and Mobility Specific Support Actions; Integrated Infrastructure Initiatives. Two consecutive sub-projects are proposed: 'small' - countries of the Visegrad four + Austrian participant -within the 6th FP 'Specific Supported Actions' and 'large' - participation of more countries in the region - more oriented to practical implementation of the 'small' project findings - intention to use the 6th Framework Programme resources to co-financing the implementation activities. The main objectives are: to create effective lines of defense (prevention -detection - categorization - transport - storage) against malicious use of radioactive sources; to achieve and maintain a high level of safety and security of radioactive sources; to arise the radioactive sources management safety and security culture at the Central European region. Consortium of 11 organisations from Czech Republic, Slovak Republic, Austria, Hungary and Poland is established for the Project implementation. The Project task are grouped in the following areas: legislation, infrastructure, practices; metallurgical industry, cross border control; instrumentation and metrology; information system

  4. The United States initiative for international radioactive source management (ISRM)

    International Nuclear Information System (INIS)

    Naraine, N.; Karhnak, J.

    1999-01-01

    The United States takes seriously the potential problems from uncontrolled radioactive sources. To address these problems, the United States Department of State is leading the development of an initiative for International Radioactive Source Management (ISRM). The Department of State, through a number of Federal and state agencies, regulatory bodies and private industry, will endeavor to provide coordinated support to the international community, particularly through IAEA, to assist in the development and implementation of risk-based clearance levels to support import/export of radioactive contaminated metals and the tracking, management, identification, remediation, and disposition of 'lost sources' entering nation states and targeted industries. The United States believes that the international control of radioactive sources is critical in avoiding wide-spread contamination of the world metal supply. Thus the initiative has four objectives: (1) Protect sources from becoming lost (Tracking management); (2) Identify primary locations where sources have been lost (Stop future losses); (3) Locate lost sources (monitor and retrieve); and (4) Educate and train (deploy knowledge and technology). A number of efforts already underway in the United States support the overall initiative. The EPA has provided a grant to the Conference of Radiation Program Control Directors (CRCPD) to develop a nation-wide program for the disposition of orphaned radioactive sources. This program now has internet visibility and a toll-free telephone number to call for assistance in the disposal of sources. The Nuclear Regulatory Commission (NRC), the Department of Energy (DOE), and other government agencies as well as private companies are assisting CRCPD in this program. The NRC has begun a program to improve control of radioactive sources in the United States, and also intends to promulgate a regulation defining conditions for the release of materials from licensed facilities. The DOE is

  5. Sealed Radioactive Sources. Information, Resources, and Advice for Key Groups about Preventing the Loss of Control over Sealed Radioactive Sources

    International Nuclear Information System (INIS)

    2013-10-01

    Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents and incidents since the 1980's and publishes findings so that others can learn from them. There are growing concerns today about the possibility that an improperly stored source could be stolen and used for malicious purposes. To improve both safety and security, information needs to be in the hands of those whose actions and decisions can prevent a source from being lost or stolen in the first place. The IAEA developed this booklet to help improve communication with key groups about hazards that may result from the loss of control over sealed radioactive sources and measures that should be implemented to prevent such loss of control. Many people may benefit from the information contained in this booklet, particularly those working with sources and those likely to be involved if control over a source is lost; especially: officials in government agencies, first responders, medical users, industrial users and the metal recycling industry. The general public may also benefit from an understanding of the fundamentals of radiation safety. This booklet is comprised of several stand-alone chapters intended to communicate with these key groups. Various accidents that are described and information that is provided are relevant to more than one key group and therefore, some information is repeated throughout the booklet. This booklet seeks to raise awareness of the importance of the safety and security of sealed radioactive sources. However, it is not intended to be a comprehensive 'how to' guide for implementing safety and security measures for sealed radioactive sources. For more information on these measures, readers are encouraged to consult the key IAEA safety and security-related publications identified in this booklet

  6. Statement to the international conference on security of radioactive sources. Vienna, 11 March 2003

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    Around the world, radioactive sources have been used for decades to benefit humankind - to diagnose and treat illnesses, to monitor oil wells and water aquifers, to preserve food, as well as for many other uses. Millions of sources have been distributed worldwide over the past 50 years, with hundreds of thousands currently in use. Most of these sources, such as those in smoke detectors, are weakly radioactive and individually pose little radiological risk. However, about 12 000 industrial radiography sources are supplied annually; more than 10 000 medical radiotherapy units are in use. These types of sources - and others such as those contained in thermo-electric generators - are significant from a safety and security standpoint, because they contain potentially lethal quantities of radioactive material. To protect the public from the hazards of ionizing radiation, cradle-to-grave control is essential for these radioactive sources. For many years the IAEA has been helping States to strengthen their national regulatory infrastructures, to ensure that such radioactive sources are appropriately regulated at all times. Until recently, our emphasis has been on the safety of radioactive sources, with source security as one aspect of safety. However, in the wake of the September 2001 terrorist attacks, and the stark awareness of the potential for radioactive sources to be used in malevolent acts, source security has taken on a new urgency. But while a number of countries are stepping up relevant security measures, many others lack the resources or the national structures to effectively control radioactive sources

  7. Provision of RPA advice to users of minor radioactive sources

    International Nuclear Information System (INIS)

    French, A.P.; Anderson, A.G.

    1991-01-01

    The problems of providing cost effective Radiation Protection Supervisor (RPS) training and appropriate storage for minor radioactive sources are discussed. Threshold limits of radioactive holdings are proposed, above which an RPS should be formally trained and specialised source storage facilities provided. Proposals are made for the provision of practical radiation protection advice without need of a detailed hazard assessment. (author)

  8. Activity determination of the Am-241 sources from radioactive lightning rods

    International Nuclear Information System (INIS)

    Minematsu, Denise; Dellamano, Jose Claudio; Ferreira, Robson de Jesus

    2009-01-01

    The authorization for manufacture commerce and installation of radioactive lightning rods, in Brazil, was lifted in 1989 by the National Nuclear Energy Commission - CNEN (Resolution no 4/89). Since this date, these devices have been replaced and have been sent to the Institutes subordinated to the CNEN, amongst them the Nuclear and Energy Research Institute - IPEN-CNEN/SP. Radioactive Waste Management Laboratory - RWML of the IPEN - CNEN/SP had received, approximately, 16,000 units up to the end of 2008. The radioactive lightning rod is constituted in its majority, for a central metallic rod, where two or three metallic plates are mounted. In these plates, on average, six Am-241 sources are fixed. The process used for the radioactive lightning rods treatment is the dismantling of the device and the withdrawal of the sources from the metallic plates. The activity values of the lightning rods sources, supplied by the manufacturers, vary from two to three orders of magnitude and therefore it is necessary to characterize these sources. This paper describes the methodology used to measure the actual activity of each Am-241 sources extracted from the radioactive lightning rods. The first step was to sample tens of Am-241 sources and carry out the activity measurements for further use in the system calibration. The equipment used in this first stage was a gamma spectrometer, previously calibrated with an Am-241 standard source, in agreement with the same arrangement and same geometry in the measures of the sources. Results show that there are sources with similar activity values of those supplied by the manufacturers, but there are also sources with no activity - or also activity very low compared with the expected value -, as well as sources contend other radionuclides. (author)

  9. Sources to radioactive contamination in Murmansk and Arkhangelsk counties

    International Nuclear Information System (INIS)

    Nilsen, T.; Boehmer, N.

    1994-02-01

    The report gives a general view of information gathered by the Bellona Foundation on the use of nuclear energy, as well as storage and processing of radioactive waste in the region. Information has been collected since 1989 through extensive field work in the Russian Federation. During the gathering of source material for the report, crucial importance has been attached to Russian sources encountered during the field work. The report intends to present a survey of the various sources of possible radioactive pollution, and the historical background for placing the sources in the region. As it appears from the report, the most significant contamination source is the military activity. The Bellona Foundation has made a point of describing the sources only on a technical base, and no attempts have been made to evaluate risks and consequences of conceivable accidents. 78 refs

  10. Development of a 60Co radioactive rod source used for γ-ray level gauge

    International Nuclear Information System (INIS)

    Lin Yibing; Pan Liangcai; Yin Shunjiu

    1991-09-01

    The installation of level gauge used for urea stripping tower, the structure and forming of radioactive rod source, and the calculation of its approximate linear graduation are described. The theoretical and practical feasibility has been confirmed from the test results of comparing the imported radioactive rod source to the developed radioactive rod source. The technological process of production, method for obtaining distribution of radioactivity along the axis, and the test and operation of developed rod source on site are also presented

  11. Methodology for safety and security of radioactive sources and materials. The Israeli approach

    International Nuclear Information System (INIS)

    Keren, M.

    1998-01-01

    About 10 Radioactive incidents occurred in Israel during 1996-1997. Some of them were theft or lost of Radioactive equipment or sources, some happened because misuse of Radioactive equipment and some of other reasons. Part of them could be eliminated if a better methodological attitude to the subject existed. A new methodology for notification, registration and licensing is described. Hopefully this methodology will increase defense in depth and the Safety and Security of Radioactive sources and materials. Information on the inventory of Radioactive sources and materials is essential. Where they are situated, what is the supply rate or all history from berth to grave. Persons involved are important: Who are the Radiation Safety Officers (RSO), what is their training and updating programs. As much as possible information on the site and places where those Radioactive sources and materials are used. Procedures for security of sources and materials is part of site information, beside safety precautions. Users are obliged to inform on any changes and to ask for confirmation to those changes. The same is when high activity sources are moved across the country. (author)

  12. Control of radioactive sources in industry through regulatory inspections

    International Nuclear Information System (INIS)

    Leocadio, J.C.; Ramalho, A.T.; Pinho, A.S.; Lourenco, M.M.J.; Nicola, M.S.; D'Avila, R.L.; Melo, I.F.; Cucco, A.C.S.

    2005-01-01

    In Brazil, the applications of ionizing radiation in industry are accomplished about 900 radioactive facilities, which handle approximately 3.000 radiation sources. The control of radioactive sources used in industrial installations authorized by the Brazilian Nuclear Energy Commission (CNEN) is accomplished by Servico de Radioprotecao na Industria Radiativa (SERIR) of the Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ, Brazil. This service carries out regulatory inspections in the practices of industrial radiography, nuclear gauges, industrial irradiators and oil wells logging. The frequency of inspections depends on the type of practice, ranging from a year to 5 years, depending on the risk involved. This paper presents a brief description of the situation of radiation safety in the use of radioactive sources in the industries of the country. The results obtained with regulatory inspections at industrial installations demonstrate that the conditions of safety and radiation protection in these facilities are satisfactory when compared with the technical regulations, both national and international

  13. Certified training for nuclear and radioactive source security management

    International Nuclear Information System (INIS)

    Johnson, Daniel

    2017-01-01

    Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. (author)

  14. Concretes characterization for spent radioactive sources

    International Nuclear Information System (INIS)

    Martinez B, J.; Monroy G, F. P.

    2013-10-01

    The present work includes the preparation and characterization of the concrete used as conditioning matrix of spent radioactive sources in the Treatment Plant of Radioactive Wastes of the Instituto Nacional de Investigaciones Nucleares (ININ). The concrete tests tubes were subjected to resistance assays to the compression, leaching, resistance to the radiation and porosity, and later on characterized by means of X rays diffraction, scanning electron microscopy and infrared spectrometry, with the purpose of evaluating if this concrete accredits the established tests by the NOM-019-Nucl-1995. The results show that the concrete use in the Treatment Plant fulfills the requirements established by the NOM-019-Nucl-1995. (author)

  15. Radioactive source simulation for half-life experiment

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Decthyothin, Chanti

    1999-01-01

    A simulation of radioactivity decay by using programmable light source with a few minutes half-life is suggested. A photodiode with digital meter label in cps is use instead of radiation detector. Both light source and photodiode are installed in a black box to avoid surrounding room light. The simulation set can also demonstrate Inverse Square Law experiment of radiation penetration. (author)

  16. Safety and security of radioactive sources in industrial radiography in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, A. S.; Nazrul, M. Abdullah [Industrial Inspection Service Limited, Dhaka (Bangladesh)

    2013-07-01

    Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing the risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)

  17. Safety and security of radioactive sources in industrial radiography in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A. S.; Nazrul, M. Abdullah

    2013-01-01

    Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing the risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)

  18. Development of target ion source systems for radioactive beams at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Delahaye, P. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Couratin, C. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); LPC Caen, 6 bd Maréchal Juin, 14050 CAEN Cedex (France); Dubois, M.; Franberg-Delahaye, H.; Henares, J.L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France)

    2013-12-15

    Highlights: • For Spiral 1, a febiad ion source has been connected to a graphite target. • For Spiral 2, an oven made with a carbon resistor is under development. • We made some measurement of effusion in the Spiral 2 target. • A laser ion source is under construction. -- Abstract: The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  19. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  20. Malicious acts involving radioactive sources: prevention and preparedness for response

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2008-01-01

    Full text: The increasing concern over the malevolent use of radioactive sources and radiological terrorism demands strengthening the preparedness for response to radiological emergencies. In spite of various security measures adopted internationally, availability of orphan sources cannot be completely ruled out. The trends in terrorism also indicates the possibility of various means which may be adopted by terrorists especially if they are aware of the challenges of radioactive contamination in public domain and the capability of 'denial of area' and the fear factor which can be injected during such radiological emergencies. It is to be well understood that whatever measures are taken by some countries in preventing the sources from getting stolen or smuggled in/out of their country are not adequate to eliminate radiological terrorism in a global level unless all nations collectively address and ensure the security of radioactive sources, hence preventing the generation of any orphan sources. While preparedness for response to various radiological emergency scenario have many common factors, the challenges involved in responding to radiological terrorism involves understanding the fear factor due to the presence of radioactive contamination after the blast and thermal effects on the victims and issues like handling of contaminated and seriously injured persons, restriction on the movement of responders and forensic teams in a contaminated field etc. Hence an understanding and anticipation of all possible means of radiological terrorism is very essential to prevent and to reduce the consequences. There are many deterrents, which are to be developed and maintained by all nations collectively which should include intelligence, wide usage of radiation monitors by customs, police and other security agencies, installation of state of the art high sensitive radiation monitors and systems etc to prevent and deter stealing and illicit trafficking of radioactive sources

  1. Safety of radiation sources and other radioactive materials in Jordan

    International Nuclear Information System (INIS)

    Majali, M.M.

    2001-01-01

    Since joining the IAEA Model Project for upgrading radiation protection infrastructure in countries of West Asia, Jordan has amended its radiation safety legislation. The Regulatory Authority is improving its inventory system for radiation sources and other radioactive materials and also its notification, registration, licensing, inspection and enforcement systems. It has established national provisions for the management of orphan sources after they have been found. The system for the control of the radiation sources and other radioactive materials entering the country has been improved by the Regulatory Authority. (author)

  2. Collection of a radioactive source of $^{83}$Kr to study the gas distribution dynamics in a large GRPC detector

    CERN Multimedia

    An ultra-granular hadronic calorimeter was built using Glass Resistive Plate Chamber (GRPC) detectors as the sensitive medium. The gas of those detectors of $1 \\times 1$ m$^{2}$ each is constrained to be on one side of the detector. To ensure good gas distribution a prototype was built. Such a scheme could be extended to larger GRPC detectors of more than 2 m$^{2}$ if found efficient. To check the performance a radioactive gas could be used in association with the usual gas mixture used to operate the GRPC. The distribution of the radioactive gas can be monitored thanks to the 1 cm$^2$ resolution provided by the embedded electronics used to read out the detector. The radioactive $^{83}$Kr source (obtained from $^{83}$Rb decay) could be produced at the ISOLDE facility and will be used to study larger GRPC detectors at CERN.

  3. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  4. A Hard Month's Work in Manila. Securing Radioactive Sources

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Security managers keep a watchful eye on spent radioactive sources. These disused sources, which served myriad purposes in medicine, industry and research, present a potential security threat; they could be obtained by terrorists to construct a dirty bomb. To ensure nuclear security and safety, it is essential to package, store and eventually dispose of these spent sources safely and securely. In some cases, that is easier said than done. For instance, removing an old and highly radioactive source from a medical device is difficult and dangerous. Imagine doing this remotely, using manipulators, in temperatures of up to 35 degrees and over 20 times. This is exactly what the IAEA, together with the South African Nuclear Energy Corporation (Necsa), successfully achieved in March and April 2013 at the Philippine Nuclear Research Institute (PNRI) in Manila. (author)

  5. Radioactive sources production in the Boris Kidric Institute of nuclear sciences

    International Nuclear Information System (INIS)

    Radosavljevic, B.; Nemoda, Dj.; Memedovic, T.; Bircanin, LJ.

    1978-01-01

    Since 1960, in the Laboratory for radioisotopes production of the Institute isotopes were produced for industrial, medical and research purposes. From the beginning, this activity was developed in two directions: 1. sealed sources, for industrial radiography, teletherapy Cobalt, later for lightning arresters, level meters, densitometers etc., 2. radioactive sources that need chemical treatment for different applications in industry and research. This paper lists the types of radioactive sources and methods for production [sr

  6. National campaign for the search and recovery of Orphan radioactive sources

    International Nuclear Information System (INIS)

    Carboneras, Pedro; Ortiz, Maria T.; Correa, Cristina; Rueda, Carmen

    2008-01-01

    This paper aims to describe the main initial approaches of the campaign for the 'Recovery of Orphan Radioactive Sources' undertaken in Spain, in addition to the steps taken, the experience gained and the partial results obtained. The campaign began on 19th February 2007 and this paper reports the findings until 31st December 2007. The paper aims to share the experience gained with others who are considering or are already involved in similar campaigns and to enable opinions to be exchanged with those responsible for such campaigns in other countries. The campaign was initiated by the Spanish Ministry of Industry, Tourism and Trade with the expert assistance of the Nuclear Security Council. The initiative came about as a result of national legislation currently in force regarding the control of highly active and orphan radioactive source, which implements a European Directive. The campaign was commissioned to ENRESA (the Spanish National Company for Radioactive Waste Management) and the work, which began in 2007, will continue into 2008. The campaign aims to seek and recover the largest possible number of orphan radioactive sources (an Orphan radioactive source is understood to be one which is detected outside the standard control system and which, when detected, has an activity level higher than the exemption levels established in national and European regulations), and involves the collaboration of various different agents and organisations where such sources are or may be found. Finally, the paper provides details regarding the number and radiological characteristics of the sources which have already been recovered in Spain during the 2007 campaign. (author)

  7. Sealed radioactive sources and method of their production

    International Nuclear Information System (INIS)

    Benadik, A.; Tympl, M.; Stopek, K.

    1985-01-01

    The active layer of the proposed sources consists of an inorganic sorbent activated with a radioactive component in form of gel, xerogel or glass. The active particles of the inorganic sorbent have the shape of spheres 2 to 2000 μm in diameter. The sources have a tubular, cylindrical or needle shape and are compact with low leachability. They feature minimal radionuclide leakage, they are reliable and safe. Their production technology is proposed. The inorganic sorbent is put in contact with the sollution of the radioactive compound, then separated from the liquid phase, filled into containers, dried, calcined or sintered or otherwise heat-processed into glass at temperatures of 250 -1800 degC. (M.D.)

  8. Sources and fate of environmental radioactivity at the earth's surface

    International Nuclear Information System (INIS)

    El-Daoushy, F.

    2010-01-01

    Sources and fate of environmental radioactivity at the earth surface This is to link environmental radioactivity to RP in Africa? To describe the benefits of Africa from this field in terms of RP, safety and security policies. To create a mission and a vision to fulfil the needs of ONE PEOPLE, ONE GOAL, ONE FAITH. Sources, processes and fate of environmental radioactivity Previous experience helps setting up an African agenda.(1) Factors influencing cosmogenic radionuclides(2) Factors influencing artificial radionuclides: (a) nuclear weapon-tests (b) nuclear accidents (c) Energy, mining and industrial waste (3) Factors influencing the global Rn-222 and its daughters. (4) Dynamics of cycles of natural radioactivity, e.g. Pb-210. (5) Environmental radiotracers act as DIAGNOSTIC TOOLS to assess air and water quality and impacts of the atmospheric and hydrospheric compartments on ecosystems.6) Definition of base-lines for rehabilitation and protection. Climate influences sources/behaviour/fate of environmental radioactivity. Impacts on life forms in Africa would be severe. Assessing environmental radioactivity resolves these issue

  9. Certified Training for Nuclear and Radioactive Source Security Management.

    Science.gov (United States)

    Johnson, Daniel

    2017-04-01

    Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Establishment of radioactive source retirement mechanism based on the method of environmental liability insurance

    International Nuclear Information System (INIS)

    Wang Hongwei

    2013-01-01

    The retirement of radioactive source is a difficult problem that we are facing during the radiation safety regulation in China. This paper analyses the reason of the problem regarding the retirement of radioactive source both from the utilization units and the regulatory body. It is considered that the basic reason is the enterprises don't arrange and use the retirement funds reasonably, which is an economic problem. There exists a limitation when facing the radioactive source retirement in light of licensing and regulation mechanism of the manufacture, selling, uses of radioactive sources in China, and the key to solve this economic problem is to introduce economic method, Some measures and suggestions are given to establish radioactive sources retirement mechanism by using economic methods, based on the comprehensive analysis of the concept, development and function of the environmental liability insurance. (author)

  11. Sources of radioactive contamination inside houses

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2010-01-01

    People may be exposed at home to multiple sources of nuclear radiation such as gamma, beta and alpha rays emitters. House atmosphere is polluted with nuclear radiation from water pollutants and rocks used in the construction. Radon is the only radioactive non-metallic element. Environmental organizations estimated that all houses contain varying concentrations of radon gas, and the residents are exposed to levels of radon over the years. The source of radon in houses is uranium, which may be found in rocks of the house, soil of the garden, water of the deep artesian wells and building materials, especially granite rocks. Breathing air that contains high levels of radon causes lung cancer. Radon is the second cause of lung disease after smoking. There are many means to reduce house pollution including: utilisation of air filters to remove contaminated dust particles, keep residential areas away from the establishments that use nuclear technology or embedded by nuclear waste, avoid using materials made from asbestos in construction works and proper use and disposal of chemicals and medicines containing radioactive isotopes. (author)

  12. Regulatory control of radiation sources and radioactive materials: The UK position

    International Nuclear Information System (INIS)

    Englefield, C.; Holyoak, B.; Ledgerwood, K.; Littlewood, K.

    2001-01-01

    The paper presents the organizations involved in the regulation of the safety of radiation sources and the security of radioactive materials across the UK. The safety of radiation sources is within the regulatory remit of the Health and Safety Executive, under the Health and safety of Work Act 1974 and associated regulations. Any employer using radiation sources has a statutory duty to comply with this legislation, thereby protecting workers and the public from undue risk. From a radioactive waste management perspective, the storage and use of radioactive materials and the accumulation and disposal of radioactive waste are regulated by the environment agencies of England and Wales, Scotland, and Northern Ireland, under the Radioactive Substances Act 1993. Special regulatory arrangements apply to nuclear sites, such as power stations and fuel cycle plants, and some additional bodies are involved in the regulation of the security of fissile materials. An explanation is given in the paper as to how these organizations to work together to provide a comprehensive and effective regulatory regime. An overview of how these regulators have recently started to work more closely with other enforcement bodies, such as the Police and Customs and Excise is also given, to illustrate the approach that is being applied in the UK to deal with orphan sources and illicit trafficking. (author)

  13. The new orphaned radioactive sources program in the United States

    International Nuclear Information System (INIS)

    Naraine, N.; Karhnak, J.M.

    1998-01-01

    Exposure of the public to uncontrolled radioactive sources has become an significant concern to the United States (US) Government because of the continuous increase in the number of sources that are being found, sometimes without proper radiation markings. This problem is primarily due to inadequate control, insufficient accountability, and improper disposal of radioactive materials. The US Environmental Protection Agency (EPA) has funded a cooperative 'orphaned' source initiative with the Conference of Radiation Control Program Directors (CRCPD) to bring under control unwanted sources and thus reduce the potential for unnecessary exposure to the public, workers and the environment. The program is being developed through the cooperative efforts of government agencies and industry, and will provide a quick and efficient method to bring orphaned sources under control and out of potentially dangerous situations. (author)

  14. Transport of radioactive source of cobalt-60 for the steel industry

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2009-01-01

    Radioactive materials are used in the fields of medicine, industry, research and nuclear power production. The use of radioactive material may involve transportation and this implies in the application of safety measures to the workers, public and the environment. Many types of radioactive material are produced all over the world and some modes of transport are involved. The IAEA regulations are based on the philosophy that radioactive material being transported should be adequately packaged to provide protection against the hazards of the material under all conditions of transport. Some Brazilian steel industries control the levels of liquid steel in continuous casting systems by means of sealed sources of cobalt-60. The Center for Development of Nuclear Technology-CDNT produces several of these sources to meet these industries and these sources must be transported in packages designed and tested as requirements of the rules of carriage of radioactive materials. For the transportation of seven sources of cobalt-60 with total activity of 1 GBq since CDNT to the applicant industries was designed, built and tested a Type A package. The thickness of the shield to meet the surface dose rate and the index of transport was calculated by MCNP (Monte Carlo N-Particle Transport Code-Version 5) and practical values were compatible. The sealed sources of cobalt-60 were tested as to leak through the tightness test conducted according to ISO 9978:1992 (E) and the tests to demonstrate the capability of resistance of packaged under normal conditions of transport were made on the facilities of CDNT. (author)

  15. Temporary Operational Protocol for making safe and managing Orphaned or Seized Radioactive Sources

    International Nuclear Information System (INIS)

    2013-01-01

    This protocol outlines the arrangements to manage the safe interim storage of an orphaned radioactive source or of a source identified for seizure, pending its ultimate disposal. Such sources may be sources found outside of regulatory control, detected at a frontier or seized in the public interest. This includes a radioactive source arising from a CBRN, chemical, biological, radiological, nuclear, incident, following neutralisation of any associated dispersal device and confirmation of the suspect object as radioactive. The arrangements in this protocol are meant to be consistent with and used in conjunction with relevant protocols to the Major Emergency Framework Document and may be revisited as necessary as those protocols are further developed

  16. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    2003-08-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  17. Lesson Learned from Conditioning of Disused Sealed Radioactive Sources (DSRS) in Malaysia

    International Nuclear Information System (INIS)

    Nik Marzukee Nik Ibrahim; Mohd Abdul Wahab Yusof; Norasalwa Zakaria

    2016-01-01

    This paper presents the conditioning of disused sealed radioactive source (DSRS) in Malaysia. In Malaysia, sealed radioactive sources (SRS) are widely used in Malaysia especially in industry, medicine and research. Once SRS are no longer in use, they are declared disused and managed as radioactive waste. In order to reduce the risk associated with disused sealed radioactive sources (DSRS), the first priority would be to bring them under appropriate controls. This paper describes the experience developed and activities performed by Nuclear Malaysia throughout the period in conditioning of DSRS as well as future programme to further enhancing the infrastructure. Collaborative efforts with the various relevant groups such as Loji and Prototaip Development Centre (PDC) and Industrial Technology Division (BTI) provide an effective avenue in ensuring successful implementation of the programme. Currently, until August 2015, Malaysia has in possession about 12,154 unit of DSRS categories 3-5 and 4 units of DSRS category 2 sources which being stored at the interim storage facility Nuclear Malaysia. A national activity was implemented for the on-the-job training of personnel tasked with the conditioning of DSRS, at the Waste Technology Development Centre (WasTeC) facilities. This is part of -cradle-to-grave- control of radioactive sources to protect the workers and public from the hazards of ionizing radiation. (author)

  18. Establishment and application of a large calibration device of artificial radionuclide plane source

    International Nuclear Information System (INIS)

    Hu Mingkao; Zhang Jiyun; Wang Xinxing; Zhang Sheng

    2010-01-01

    With the expansion of the application fields of nuclear techniques and the development of economy, more and more airborne/vehicle and other large γ spectrometers are applied in the environment radiation monitoring of artificial radioactive nuclides. In order to ensure the reliability of the monitoring results, a large calibration device of artificial radionuclide plane source is established. The paper introduces the device's built history and the results of application. (authors)

  19. Automatic exposure system for radioactive source at teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia G.; Gaal, Vladmir; Morais, Sergio Luiz de; Rodrigues, Varlei

    2013-01-01

    The development of Compton Scattering experiment, studied by undergraduate students of the Medical Physics course at the Universidade Estadual de Campinas (UNICAMP), takes place in the Medical Physics Teaching Laboratory, belonging to the Gleb Wataghin Physics Institute (IFGW/UNICAMP). The experiment consists of a fixed 137 Cs radioactive source, with current activity of 610.5 MBq and a scintillation detector that turns around the center of the system whose function is to detect the scattered photons spectrum by a scatter object (target). The 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662 MeV. This source is exposed only when an attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver a radiation dose to users when done manually. Considering the stochastic harmful effects of ionizing radiation, the goal of this project was to develop an automatic exposure system of the radioactive source, in order to reduce the radiation dose received during the Compton Scattering experiment. The developed system is micro controlled and performs standard operating routines, responding to emergencies. Furthermore, an electromagnetic lock enables quick closing of the barrier by gravity, in case of interruption of the electrical current circuit. Besides reducing the total dose to lab users, the system adds more security to the routine, since it limits the access to the radioactive source and prevents accidental exposure. (author)

  20. Responsibility on using Radioactive Sources in Industry

    International Nuclear Information System (INIS)

    El-Baroudy, M. M.

    2004-01-01

    The Present study aims at explaining the role of the state, through legislations and regulatory decisions, in defining the responsible for implementing the Basic safety standards for protection against ionizing radiations, which should be followed when applying radioactive sources in industry. This study deals with the objectives of protection of the workers, the public and the environment against radiation hazards, as well as the role of the International community and the national legislations in providing for such protection. The study also addressed the responsibility, defining the responsible parties in the different practices. Finally, some radiation accidents in foreign countries and some cases handled in Egyptian courts are discussed concerning accidents that occurred on using radioactive sources in industry. The study concluded that unification of regulatory bodies in Egypt is needed and that the regulatory body should be completely separated from the applications facilities in such a way that the regulators would be completely independent in their judgement and in decision making. (Author)

  1. Development of radioactive sealed sources in epoxy matrix

    International Nuclear Information System (INIS)

    Benega, Marcos A.G.; Nagatomi, Helio R.; Rostelato, Maria Elisa C.M.; Karan Junior, Dib; Souza, Carla D.; Tiezzi, Rodrigo; Rodrigues, Bruna T.; Peleias Junior, Fernando S.

    2013-01-01

    The aim of the present work is to study and develop commercial resins for manufacturing solid sealed sources. The sources are produced with radionuclides of barium-133, cesium-137 and cobalt-57. They are used in radiation detectors verification. For the immobilization of the radionuclides in the epoxy matrix, it is made use of emulsifying agents that ensure the miscibility between resin and aqueous radioactive solution, as well as curing agents for controlling, curing and sealing the standard radioactive solution completely. As a result, it is expected to obtain standard sealed sources and equivalent to water. The equivalence to water is an important and necessary characteristic. The radioisotopes used in nuclear medicine are supplied in an aqueous form and the resin applied must have a very similar density comparing to the water. The sources must also be comparable in quality to sources produced internationally, but with low cost and wide available materials in the market. It is intended to create a national technology able to meet the demand of this product in the domestic market and achieve excellence in quality through accreditation and certification of the product by the appropriate agencies. The study of the necessary parameters used in the production of these sources, will bring technology for the manufacture of other categories of standard sealed sources, those used for nuclear medicine, image, laboratories and industry. (author)

  2. Regulatory Oversight of Radioactive Sources through the Integrated Management of Safety and Security

    International Nuclear Information System (INIS)

    Horvath, K.

    2016-01-01

    The Hungarian Atomic Energy Authority (HAEA) has full regulatory competence; its mission is to oversee the safety and security of all the peaceful applications of atomic energy. All the radioactive sources having activity above the exemption level is registered and licensed both from safety and security points of view. The Hungarian central register of radioactive sources contains about 7,000 radioactive sources and 450 license holders. In order to use its limited resources the HAEA has decided to introduce an integrated regulatory oversight programme. Accordingly, during the licensing process and inspection activities the HAEA intends to assess both safety and security aspects at the same time. The article describes the Hungarian the various applications of radioactive materials, and summarizes the preparation activities of the HAEA. (author)

  3. Ion sources for initial use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surfaceionization sources are also under design consideration for generating negative radioactive ion beams from high electron-affinity elements. A brief review of the HRIBF will be presented, followed by a detailed description of the design features, operational characteristics, ionization efficiencies, and beam qualities (emittances) of these sources

  4. Environmental Radioactivity from Natural, Industrial, and Military Sources

    International Nuclear Information System (INIS)

    Maarouf, B. H.

    2007-01-01

    This book is a translation of the fourth edition of the original book which was written as a reference source for the scientist, engineer, or administrator with a professional interest in the subject, but it may also be a value to the reader who wishes to understand the technical facts behind the public debate. The subject of environmental radioactivity has aspects of vast dimensions. The text of the book concerns primarily with the behavior of radioactive substances when they enter the environment. The important and elaborate technology by which passage of radioactive materials to the environment may be prevented and the equally important field of health physics that is concerned with protecting the atomic energy worker were thus placed beyond the bounds of this work.

  5. Government/Industry Partnership on the Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Cefus, Greg; Colhoun, Stefan C.; Freier, Keith D.; Wright, Kyle A.; Herdes, Gregory A.

    2006-01-01

    In the past, industry radiation protection programs were built almost exclusively around radiation safety and the minimization of radiation dose exposure to employees. Over the last decade, and especially the last few years, the emphasis has shifted to include the physical security and enhanced control of radioactive materials. The threat of nuclear and radiological terrorism is a genuine international security concern. In May 2004, the U.S. Department of Energy/U.S. National Nuclear Security Administration unveiled the Global Threat Reduction Initiative (GTRI) to respond to a growing international concern for the proper control and security of radioactive and nuclear materials. An integral part of the GTRI, the International Radiological Threat Reduction (IRTR) Program, was established in February 2002, originally as a Task Force. The IRTR Program is foremost a government-to-government cooperative program with the mission to reduce the risk posed by vulnerable radioactive materials that could be used in a Radioactive Dispersal Device (RDD). However, governments alone cannot prevent the misuse and illicit trafficking of radioactive sources. By expanding the role of private industry as a partner, existing government regulatory infrastructures can be enhanced by formulating and adopting industry self-regulation and self-policing measures. There is international concern regarding the security and control of the vast number of well-logging sources used during oil exploration operations. The prevalence of these sources, coupled with their portability, is a legitimate security concern. The energy exploration industry has well established safety and security protocols and the IRTR Program seeks to build on this foundation. However, the IRTR Program does not have sufficient resources to address the issue without industry assistance, so it is looking to the oil and gas industry to help identify alternative means for accomplishing our mutual objectives. This paper describes

  6. Management of spent sealed radioactive sources

    International Nuclear Information System (INIS)

    Vicente, Roberto; Sordei, Gian-Maria; Hiromoto, Goro

    2002-01-01

    The number of sealed radiation sources used in industrial, medical, and research applications in Brazil amounts to hundreds of thousands. Spent or disused sources are being collected and stored as radioactive waste in nuclear research centers, awaiting for a decision on their final disposal. However, a safe and economically feasible disposal technology is unavailable. The aim of this paper is to report the development of the concept of a repository and a treatment process that will allow the final disposal of all the spent sealed sources in a safe, dedicated, and exclusive repository. The concept of the disposal system is a deep borehole in stable geologic media, meeting the radiological performance standards and safety requirements set by international organizations. (author)

  7. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Preter, Peter De; Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An

    2007-01-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  8. Scientific capabilities of the advanced light source for radioactive materials

    International Nuclear Information System (INIS)

    Shuh, D.K.

    2007-01-01

    The Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory (LBNL) is a third-generation synchrotron radiation light source and is a U.S. Department of Energy (DOE) national user facility. Currently, the ALS has approximately forty-five operational beamlines spanning a spectrum of scientific disciplines, and provides scientific opportunities for more than 2 000 users a year. Access to the resources of the ALS is through a competitive proposal mechanism within the general user program. Several ALS beamlines are currently being employed for a range of radioactive materials investigations. These experiments are reviewed individually relying on a graded hazard approach implemented by the ALS in conjunction with the LBNL Environmental, Health, and Safety (EH and S) Radiation Protection Program. The ALS provides radiological work authorization and radiological control technician support and assistance for accepted user experimental programs. LBNL has several radioactive laboratory facilities located near the ALS that provide support for ALS users performing experiments with radioactive materials. The capabilities of the ALS beamlines for investigating radioactive materials are given and examples of several past studies are summarised. (author)

  9. Current status of securing Category 1 and 2 radioactive sources in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y-F.; Tsai, C-H. [Atomic Energy Council of Executive Yuan of Taiwan (China)

    2014-07-01

    For enhancing safe and secure management of Category 1 and 2 radioactive sources against theft or unauthorized removal, AEC (Atomic Energy Council) of Taiwan have been regulating the import/export of the sources ever since 2005, in compliance with the IAEA's (International Atomic Energy Agency) 'Guidance on the Import and Export of Radioactive Sources'. Furthermore in consulting the IAEA Nuclear Security Series No.11 report, administrative regulations on the program of securing the sources have been embodied into AECL's regulatory system since 2012, for the purpose of enforcing medical and non-medical licensees and industrial radiographers to establish their own radioactive source security programs. Regulations require that security functions such as access control, detection, delay, response and communication and security management measures are to be implemented within the programs. This paper is to introduce the current status in implementing the security control measures in Taiwan. (author)

  10. Activities and Issues in Monitoring Scrap Metal Against Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y., E-mail: sychen@anl.gov [Argonne National Laboratory, Argonne, IL (United States)

    2011-07-15

    Over the past few decades, the global scrap metal industry has grown increasingly vigilant regarding radioactive contamination. Accidental melts of radioactive sources in some smelting facilities, in particular, have caused considerable damage and required recovery efforts costing tens of millions of dollars. In response, the industry has developed and deployed countermeasures. Increasingly expensive and sophisticated radiation monitoring devices have been implemented at key scrap entry points - ports and scrapyards. Recognition of the importance of such endeavors has led to a series of activities aimed at establishing organized and coordinated efforts among the interested parties. Recent concerns over the potential use of radioactive sources for radiological devices in terrorist acts have substantially heightened the need for national and international authorities to further control, intercept, and secure the sources that have escaped the regulatory domain. Enhanced collaboration by the government and industry could substantially improve the effectiveness of efforts at control; the 'Spanish Protocol' as developed by the Spanish metal industry and government regulators is a good example of such collaboration. (author)

  11. The importance of governmental control of radioactive sources used in industrial applications

    International Nuclear Information System (INIS)

    Anna Firpo Fuerth, Q.F.; Beatriz Souto Ameigenda, Q.F.

    1998-01-01

    Industrial applications of radioactive sources require good management practices dealing with control and registration. In the following case, a special event occurred between two routine inspections: trading. Then a new human factor came into scene: workers with no specific training and knowledge related to radioactive sources. The up going situation triggered emergency procedures. Finally, there were no negative consequences. (author)

  12. Approaches to assign security levels for radioactive substances and radiation sources

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Petrovskij, N.P.; Pinchuk, G.N.; Telkov, S.N.; Kuzin, V.V.

    2011-01-01

    The article contains analyzed provisions on categorization of radioactive substances and radiation sources according to the extent of their potential danger. Above provisions are used in the IAEA documents and in Russian regulatory documents for differentiation of regulatory requirements to physical security. It is demonstrated that with the account of possible threats of violators, rules of physical protection of radiation sources and radioactive substances should be amended as regards the approaches to assign their categories and security levels [ru

  13. Code of conduct on the safety and security of radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The objective of this Code is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through tile fostering of international co-operation. In particular, this Code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost.

  14. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    2001-03-01

    The objective of this Code is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through tile fostering of international co-operation. In particular, this Code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost

  15. Implantation of a databank of radioactive sources

    International Nuclear Information System (INIS)

    Santos, Joana D'Arc Moraes dos

    2015-01-01

    Radionuclides are isotopes that emit radiation. They can be safely applied in medicine, industry, basic research, for metrology and for environmental control. In most applications each radionuclide needs to be characterized regarding their activity concentration (AC) in Becquerel per gram (Bq / g) and also their measurement uncertainty. The Radionuclide Laboratory in the Institute of Radiation Protection and Dosimetry, belonging to the National Nuclear Energy Commission (CNEN), has a number of standardization systems, where the activity concentrations and the measurement uncertainty are determined. Some radionuclides are stored in glass vials for later use; they have billions of years’ half-lives. These standard solutions are identified by their symbol radioactive element followed by a number. There are hundreds of light bulbs with radioactive sources that periodically need their concentration of activity to be inventoried. The previously deployed control system only allowed access from a unique laboratory point. The inventory was done individually and then was integrated to individual activities in order to determine the overall activity of each radionuclide. This work aims to implement an integrated standards database to an information system that allows users to gain access from various lab points. Thus, the inventory of radioactive sources can be performed in order to signal the need to acquire new solutions. Also, it can indicate, through new activities concentrations, after decay, when different solutions may be discarded in accordance with legal standards of radiation protection and management of the CNEN waste, in order to protect the population and the environment. The adjustment of the existing deficiencies in the system previously used will allow better control related to the use of radioactive materials, minimizing the risks of improper disposal of radionuclides in the environment and can be considered the greatest contribution this work. (author)

  16. The ultimate solution. Disposal of disused sealed radioactive sources (DSRS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2011-01-01

    The borehole disposal concept (BDC) was first presented to ICEM by Potier, J-M in 2005. This paper repeats the basics introduced by Potier and relates further developments. It also documents the history of the development of the BDC. For countries with no access to existing or planned geological disposal facilities for radioactive wastes, the only options for managing high activity or long-lived disused radioactive sources are to store them indefinitely, return them to the supplier or find an alternative method of disposal. Disused sealed radioactive sources (DSRS) pose an unacceptable radiological and security risk if not properly managed. Out of control sources have already led to many high-profile incidents or accidents. One needs only to remember the recent accident in India that occurred earlier this year. Countries without solutions in place need to consider the future management of DSRSs urgently. An on-going problem in developing countries is what to do with sources that cannot be returned to the suppliers, sources for which there is no further use, sources that have not been maintained in a working condition and sources that are no longer suitable for their intended purpose. Disposal in boreholes is intended to be simple and effective, meeting the same high standards of long-term radiological safety as any other type of radioactive waste disposal. It is believed that the BDC can be readily deployed with simple, cost-effective technologies. These are appropriate both to the relatively small amounts and activities of the wastes and the resources that can realistically be found in developing countries. The South African Nuclear Energy Corporation Ltd (Necsa) has carried out project development and demonstration activities since 1996. The project looked into the technical feasibility, safety and economic viability of BDC under the social, economic, environmental and infrastructural conditions currently prevalent in Africa. Implementation is near at hand with

  17. Type testing of devices with inserted radioactive sources

    International Nuclear Information System (INIS)

    Rolle, A.; Droste, B.; Dombrowski, H.

    2006-01-01

    In Germany devices with inserted radioactive sources can get a type approval if they comply with specific requirements. Whoever operates a device whose type has been approved in accordance with the German Radiation Protection Ordinance does not need an individual authorization. Such type approvals for free use are granted by the Federal Office for Radiation Protection (B.f.S.) on the basis of type testing performed by the Physikalisch-Technische Bundesanstalt (P.T.B.), the national metrology institute, and the Bundesanstalt fur Materialforschung und -prufung (B.A.M.), the Federal Institute for Materials Research and Testing. Main aspects of the assessment are the activity of the radioactive sources, the dose equivalent rate near the devices, the tamper-proofness and leak-tightness of the sources and the safety of the construction of the devices. With the new Radiation Protection Ordinance in 2001, more stringent requirements for a type approval were established. Experiences with the new regulations and the relevant assessment criteria applied by P.T.B. and B.A.M. will be presented. (authors)

  18. Revised IAEA Code of Conduct on the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Wheatley, J. S.

    2004-01-01

    The revised Code of Conduct on the Safety and Security of Radioactive Sources is aimed primarily at Governments, with the objective of achieving and maintaining a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations; and through the fostering of international co-operation. It focuses on sealed radioactive sources and provides guidance on legislation, regulations and the regulatory body, and import/export controls. Nuclear materials (except for sources containing 239Pu), as defined in the Convention on the Physical Protection of Nuclear Materials, are not covered by the revised Code, nor are radioactive sources within military or defence programmes. An earlier version of the Code was published by IAEA in 2001. At that time, agreement was not reached on a number of issues, notably those relating to the creation of comprehensive national registries for radioactive sources, obligations of States exporting radioactive sources, and the possibility of unilateral declarations of support. The need to further consider these and other issues was highlighted by the events of 11th September 2001. Since then, the IAEA's Secretariat has been working closely with Member States and relevant International Organizations to achieve consensus. The text of the revised Code was finalized at a meeting of technical and legal experts in August 2003, and it was submitted to IAEA's Board of Governors for approval in September 2003, with a recommendation that the IAEA General Conference adopt it and encourage its wide implementation. The IAEA General Conference, in September 2003, endorsed the revised Code and urged States to work towards following the guidance contained within it. This paper summarizes the history behind the revised Code, its content and the outcome of the discussions within the IAEA Board of Governors and General Conference. (Author) 8 refs

  19. Safety of radioactive sources in Portugal

    International Nuclear Information System (INIS)

    Ferro de Carvalho, A.

    2001-01-01

    The safety of radioactive sealed sources is assured in Portugal through a control system with a main goal of prevention of lost of control and inappropriate waste. The legal tools of the regulatory system are: authorization to use, keep, transfer or transport; a deposit of money as a guarantee; civil liability insurance; periodical information. The competent authority shall keep a national inventory of sealed sources. About 50% of the new sources authorized in 1999 were to be used in medical brachytherapy and industrial radiography. The radionuclide Ir-192 contributed with 99.6 % to the total amount of activity. The control system implemented in the country appears to be effective for activities over some GBq but quite ineffective for lower activities. It is supposed that the law will be revised in the near future to increase the effectiveness of the sealed source control system. (author)

  20. Radioactive sources of main radiological concern in the Kola-Barents region

    International Nuclear Information System (INIS)

    Bergman, R.; Baklanov, A.

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  1. Radioactive sources of main radiological concern in the Kola-Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Baklanov, A

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  2. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  3. Feasibility of large volume casting cementation process for intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhuying; Chen Baisong; Zeng Jishu; Yu Chengze

    1988-01-01

    The recent tendency of radioactive waste treatment and disposal both in China and abroad is reviewed. The feasibility of the large volume casting cementation process for treating and disposing the intermediate level radioactive waste from spent fuel reprocessing plant in shallow land is assessed on the basis of the analyses of the experimental results (such as formulation study, solidified radioactive waste properties measurement ect.). It can be concluded large volume casting cementation process is a promising, safe and economic process. It is feasible to dispose the intermediate level radioactive waste from reprocessing plant it the disposal site chosen has resonable geological and geographical conditions and some additional effective protection means are taken

  4. Inventory and categorization of radioactive sources in the CDTN, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Silva, Fabio; Tello, Cledola Cassia Oliveira de

    2011-01-01

    Radioactive sources have wide application, in the medicine, industry, agriculture and in the research centers. After the use those sources are considered radioactive wastes and conducted to the CNEN research institutes, that have the legal responsibility to receive and control. The safe attribution of wasted sources is essential for minimizing the possibility oc accident occurrence. The data of the stored sources in the CDTN are included and processed in the data bank SISFONT - Sistema de Informacoes sobre Fontes Seladas Fora de Uso, but this system does not allow their categorization. For that, a efficient, precise and easy interaction categorization system was developed

  5. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The objective of the code of conduct is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through the fostering of international co-operation. In particular, this code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost. (N.C.)

  6. Outlines on data base for the use of radioactive sources, and environmental impact in egypt

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; Amin, E; El-Said, Kh M [National Center for Nuclear Safety and Radiation Control, AEA Cairo (Egypt); Gomaa, M A [Reactors Division Nuclear Research Center, AEA Cairo, (Egypt)

    1997-12-31

    Radio isotopes and radioactive sources have shown increase applications in scientific research, agriculture, medicine and industry. The prime concern in regulating activities involving the release of radioactive materials into the environment, is ensuring the safety of individuals and population. The management of radioactive wastes generated from medical centers, research institutes, industrial facilities, mining operations, and research reactors caused serious accidents. Radiation sources mismanagement resulted in injuries or fatalities to individuals. The objectives of this work is to develop the required data base and establish the necessary rules for safe management of radioactive sources. 1 fig., 3 tabs.

  7. Method of preparing initial multilayer radioactive pellets in production of planar radioactive sources

    International Nuclear Information System (INIS)

    Stopek, K.; Satorie, Z.

    1982-01-01

    A compact radioactive foil is placed into a press mould on a thin surface layer of compacted or powder metal and is covered with powder metal. In order to achieve the required dimension and activity the radioactive foil is cut from a large sheet. The multilayer pellet is compacted and rolled using routine methods applied in powder metallurgy. This method excludes the possibility of destroying the active pellet during handling, improves its mechanical properties and is seven times less time demanding than methods used so far. (M.D.)

  8. Requirements for the register of physical persons for the preparation, use and handling radioactive sources

    International Nuclear Information System (INIS)

    1998-07-01

    This norm establishes the process for register of superior level profession nals enabled to the preparation, using, and handling of radioactive sources. This norm applies to the physical persons candidates applying to the register for preparation, use and handling of radioactive sources in radioactive installations at the industry, agriculture, teaching and researching

  9. Safety of radiation sources and security of radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l`energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  10. Safety of radiation sources and security of radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l'energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  11. Strengthening control over radioactive sources in authorized use and regaining control over orphan sources. National strategies

    International Nuclear Information System (INIS)

    2004-02-01

    The objective of this report is to provide practical guidance to States on the development of a national strategy for improving control over radioactive sources, particularly dangerous sources (Categories 1-3). Part of this process involves the determination of the magnitude of the potential problem with orphan and vulnerable sources and indeed, whether or not a national strategy is needed. The ultimate objective is that States will use this report to develop and then implement a plan of action that will result in all significant sources being managed in a safe and secure manner. This report attempts to provide both the background knowledge and the methodology necessary for an individual or small team of responsible persons to develop a national strategy for improving control over all radioactive sources, but especially orphan and vulnerable sources. The background knowledge given in Chapter 3 is an update of the information on practices that was given in IAEA-TECDOC-804, which focused on spent radioactive sources. After some introductory material, this report provides both the factual information and the general steps needed to develop and implement a national strategy. Part I contains background information for those who are not already familiar with the subject including the need for national strategies, the generic causes of loss of control of sources, with specific examples and the common applications of radioactive sources. Part II details the actual process for the development and implementation of a national strategy, which includes assessing the problem by first gathering specific and national information, determining the nature and magnitude of the problem, developing the national strategy by evaluating, and prioritizing possible solutions, implementing the strategy subsequent to a high level decision; and evaluating the effectiveness of the plan and making changes as a result until the desired objective is achieved. Searches for sources will be part of

  12. Source terms for airborne radioactivity arising from uranium mill wastes

    International Nuclear Information System (INIS)

    O'Riordan, M.C.; Downing, A.L.

    1978-01-01

    One of the problems in assessing the radiological impact of uranium milling is to determine the rates of release to the air of material from the various sources of radioactivity. Such source terms are required for modelling the transport of radioactive material in the atmosphere. Activity arises from various point and area sources in the mill itself and from the mill tailings. The state of the tailings changes in time from slurry to solid. A layer of water may be maintained over the solids during the life of the mine, and the tailings may be covered with inert material on abandonment. Releases may be both gaseous and particulate. This paper indicates ways in which radon emanation and the suspension of long-lived particulate activity might be quantified, and areas requiring further exploration are identified

  13. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  14. Reducing Uncontrolled Radioactive Sources through Tracking and Training: US Environmental Protection Agency Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Kopsick, D.A., E-mail: kopsick.deborah@epa.gov [US Environmental Protection Agency, Washington, DC (United States)

    2011-07-15

    The international metal processing industries are very concerned about the importation of scrap metal contaminated with radioactive materials. When radioactive sources fall out of regulatory control, improper handling can cause serious injury and death. There is no one way to address this problem and various US governmental and industry entities have developed radiation source control programmes that function within their authorities. The US Environmental Protection Agency's (EPA) mission is to protect public health and the environment. To ensure this protection, EPA's approach to orphan sources in scrap metal has focused on regaining control of lost sources and preventing future losses. EPA has accomplished this through a number of avenues including training development, product stewardship, identification of non-radiation source alternatives, physical tagging of sources, field testing of innovative radiation detection instrumentation and development of international best practices. In order to achieve its goal of enhanced control on contaminated scrap metal and orphaned radioactive sources, EPA has forged alliances with the metals industry, other Federal agencies, state governments and the IAEA. (author)

  15. Safe management of sealed radioactive sources at Karachi nuclear power complex

    International Nuclear Information System (INIS)

    Tahir, T.B.; Qamar, A.

    2000-01-01

    This paper describes the conditioning of sealed radioactive sources, carried out at the Karachi Nuclear Power Complex (KNPC) in co-operation with the IAEA. The radioactive sources were radium needles of various size, used by various radiotherapy units in different hospitals throughout the country. For some time the use of radium needles had been abandoned and they were stored in hospitals awaiting proper disposal. Since their storage conditions were not ideal and there was a potential of leakage of radioactive material into the environment, it was decided to condition and store them safely. A significant logistic effort was required to identify these sources, bring them to a central facility and condition them according to current international standards. Various steps were involved in conditioning the sources: place it in a stainless steel capsule, weld the capsule, test it for a leak, place the capsule in a lead shielded package, put and seal the shielded package in a concrete-lined steel drum and finally store it at the waste storage facility. A total amount of about 1500 mg of Radium needles were conditioned. Radiation exposure during the entire operation was within acceptable limits. (author)

  16. Prevention of illicit trafficking of nuclear material and radioactive sources

    International Nuclear Information System (INIS)

    Kravchenko, N.

    2001-01-01

    Full text: Countries like Russia, which have a large nuclear industry, export a significant number of radioactive sources and substances. Some of them are nuclear material. In general, it is the task of the customs inspectors to verify that the content of the shipment is in agreement with the declaration (as safeguards inspectors verify operators declarations). In case of other goods, this is easy. The consignment can be opened and the content can be seen and compared with the declaration. In the case of radioactive shipments this cannot be done. The radioactive substance is in a shielded container and opening is often only possible in a hot cell. Opening of the package and measurement of the removed source in presence of the customs inspector is impossible because the customs inspector is impossible because the customs control begins only after the declaration has been registered. Therefore, the Russian customs authorities have contracted a company to develop a gamma spectrometer, which can be used to verify the source, even if inside the shielded shipping container. Throughout the country - near the where many shipments or receivables take place - there are 18 customs offices, equipped with gamma spectrometers and special software. If a container arrives for customs inspection, its design is called from a database. Then the gamma spectrum outside the container is measured and the measured gamma peak energy and intensity is compared with the expected, which is calculated by software based on the design information of the container. This approach works well. Several cases were already discovered in Russia, where there were attempts to use legal shipments for smuggling radioactive sources. I would like to mention some technical problems concerning control of legal export and import of radioactive sources: a) There are not enough commercial suppliers, which offer the needed equipment; because of lack of competition prices for the equipment are too high b) Presently

  17. Storage of low-level radioactive waste and regulatory control of sealed sources in Finland

    International Nuclear Information System (INIS)

    Rahola, T.; Markkanen, M.

    2006-01-01

    This paper is concentrated on the non nuclear low-level radioactive waste. The cornerstone for maintaining radioactive sources under control in Finland is that all practices involving sources are subject to authorization and all licensing information, including information on each individual source, are entered into a register which is continuously updated based on applications and notifications received from the licenses. Experiences during the past twenty years have shown that source-specific records of sources combined with regular inspections at the places of use have prevented efficiency losing control over sealed radioactive sources. The current capacity in the interim storage for State owned waste is not adequate for all used sealed sources and other small user waste which are currently kept in the possession of the licensees. Thus, expansion of the storage capacity and other options for taking care of the small user waste is under consideration. (N.C.)

  18. A Hard Month's Work in Manila. Securing Radioactive Sources (Arabic Edition)

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Security managers keep a watchful eye on spent radioactive sources. These disused sources, which served myriad purposes in medicine, industry and research, present a potential security threat; they could be obtained by terrorists to construct a dirty bomb. To ensure nuclear security and safety, it is essential to package, store and eventually dispose of these spent sources safely and securely. In some cases, that is easier said than done. For instance, removing an old and highly radioactive source from a medical device is difficult and dangerous. Imagine doing this remotely, using manipulators, in temperatures of up to 35 degrees and over 20 times. This is exactly what the IAEA, together with the South African Nuclear Energy Corporation (Necsa), successfully achieved in March and April 2013 at the Philippine Nuclear Research Institute (PNRI) in Manila. (author)

  19. A Hard Month's Work in Manila. Securing Radioactive Sources (Chinese Edition)

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Security managers keep a watchful eye on spent radioactive sources. These disused sources, which served myriad purposes in medicine, industry and research, present a potential security threat; they could be obtained by terrorists to construct a dirty bomb. To ensure nuclear security and safety, it is essential to package, store and eventually dispose of these spent sources safely and securely. In some cases, that is easier said than done. For instance, removing an old and highly radioactive source from a medical device is difficult and dangerous. Imagine doing this remotely, using manipulators, in temperatures of up to 35 degrees and over 20 times. This is exactly what the IAEA, together with the South African Nuclear Energy Corporation (Necsa), successfully achieved in March and April 2013 at the Philippine Nuclear Research Institute (PNRI) in Manila. (author)

  20. A Hard Month's Work in Manila. Securing Radioactive Sources (Spanish Edition)

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Security managers keep a watchful eye on spent radioactive sources. These disused sources, which served myriad purposes in medicine, industry and research, present a potential security threat; they could be obtained by terrorists to construct a dirty bomb. To ensure nuclear security and safety, it is essential to package, store and eventually dispose of these spent sources safely and securely. In some cases, that is easier said than done. For instance, removing an old and highly radioactive source from a medical device is difficult and dangerous. Imagine doing this remotely, using manipulators, in temperatures of up to 35 degrees and over 20 times. This is exactly what the IAEA, together with the South African Nuclear Energy Corporation (Necsa), successfully achieved in March and April 2013 at the Philippine Nuclear Research Institute (PNRI) in Manila. (author)

  1. A Hard Month's Work in Manila. Securing Radioactive Sources (Russian Edition)

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Security managers keep a watchful eye on spent radioactive sources. These disused sources, which served myriad purposes in medicine, industry and research, present a potential security threat; they could be obtained by terrorists to construct a dirty bomb. To ensure nuclear security and safety, it is essential to package, store and eventually dispose of these spent sources safely and securely. In some cases, that is easier said than done. For instance, removing an old and highly radioactive source from a medical device is difficult and dangerous. Imagine doing this remotely, using manipulators, in temperatures of up to 35 degrees and over 20 times. This is exactly what the IAEA, together with the South African Nuclear Energy Corporation (Necsa), successfully achieved in March and April 2013 at the Philippine Nuclear Research Institute (PNRI) in Manila. (author)

  2. Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal

    Science.gov (United States)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.

  3. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Richard W. [Los Alamos National Laboratory

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  4. Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1991-01-01

    This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors

  5. Radioactive source calibration technique for the CMS hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, E.; Lawlor, C.; Rohlf, J.W. E-mail: rohlf@bu.edu; Wu, S.X.; Baumbaugh, A.; Elias, J.E.; Freeman, J.; Green, D.; Lazic, D.; Los, S.; Ronzhin, A.; Sergueev, S.; Shaw, T.; Vidal, R.; Whitmore, J.; Zimmerman, T.; Adams, M.; Burchesky, K.; Qian, W.; Baden, A.; Bard, R.; Breden, H.; Grassi, T.; Skuja, A.; Fisher, W.; Mans, J.; Tully, C.; Barnes, V.; Laasanen, A.; Barbaro, P. de; Budd, H

    2003-10-01

    Relative calibration of the scintillator tiles used in the hadronic calorimeter for the Compact Muon Solenoid detector at the CERN Large Hadron Collider is established and maintained using a radioactive source technique. A movable source can be positioned remotely to illuminate each scintillator tile individually, and the resulting photo-detector current is measured to provide the relative calibration. The unique measurement technique described here makes use of the normal high-speed data acquisition system required for signal digitization at the 40 MHz collider frequency. The data paths for collider measurements and source measurements are then identical, and systematic uncertainties associated with having different signal paths are avoided. In this high-speed mode, the source signal is observed as a Poisson photo-electron distribution with a mean that is smaller than the width of the electronics noise (pedestal) distribution. We report demonstration of the technique using prototype electronics for the complete readout chain and show the typical response observed with a 144 channel test beam system. The electronics noise has a root-mean-square of 1.6 least counts, and a 1 mCi source produces a shift of the mean value of 0.1 least counts. Because of the speed of the data acquisition system, this shift can be measured to a statistical precision better than a fraction of a percent on a millisecond time scale. The result is reproducible to better than 2% over a time scale of 1 month.

  6. Code of practice for the control and safe handling of radioactive sources used for therapeutic purposes (1988)

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is intended as a guide to safe practices in the use of sealed and unsealed radioactive sources and in the management of patients being treated with them. It covers the procedures for the handling, preparation and use of radioactive sources, precautions to be taken for patients undergoing treatment, storage and transport of radioactive sources within a hospital or clinic, and routine testing of sealed sources [fr

  7. Charge Breeding of Radioactive Ions in an Electron Cyclotron Resonance Ion Source(ECRIS) at ISOLDE

    CERN Multimedia

    Lindroos, M

    2002-01-01

    The development of an efficient charge breeding scheme for the next generation of RIB facilities will have a strong impact on the post-accelerator for several Radioactive Ion Beam (RIB) projects at European large scale facilities. At ISOLDE/CERN there will be the unique possibility to carry out experiments with the two possible charge breeding set-ups with a large variety of radioactive isotopes using identical injection conditions. One charge breeding set-up is the Penning trap/EBIS combination which feeds the REX-ISOLDE linear accelerator and which is in commissioning now. The second charge breeder is a new ECRIS PHOENIX developed at the ISN ion source laboratory at Grenoble. This ECRIS is now under investigation with a 14 GHz amplifier to characterize its performance. The experiments are accompanied by theoretical studies in computer simulations in order to optimize the capture of the ions in the ECRIS plasma. A second identical PHOENIX ECRIS which is under investigation at the Daresbury Laboratory is avai...

  8. The control of radioactive sources in Brazil

    International Nuclear Information System (INIS)

    Oliveira, S.M.V.; Menezes, C.F.; Alves Filho, A.D.; Xavier, A.M.

    1998-01-01

    The radiological accident of Goiania in 1987 brought to light several deficiencies in the licensing of medical, industrial and research facilities, which handle radioisotopes, as well as in the control of radioactive sources in Brazil. The article describes some of the technical and administrative measures taken to ensure the adoption of appropriate radiological safety standards throughout the country and thereby reduce the incidence of radiological accidents. (author)

  9. Design and development of the network based system for the supervision of radioactive sources

    International Nuclear Information System (INIS)

    Yang Yaoyun; Su Genghua; Zhang Hui; Li Junli; Zhu Li

    2010-01-01

    Objective: To help the environmental protection authorities to upgrade the management of the related organizations and radioactive sources and improve the information level of nuclear technology utilization's supervision. Methods: On the basis of investigation of requirements, the network based system for the supervision of radioactive sources was divided into application system and supervision system, based on MYSQL and SQL Server2005 respectively. Results: The system satisfied the current requirements of the nuclear technology utilization's supervision and is in nationwide operation. Conclusion: The system achieved the dynamic tracking management of radioactive sources and improved the efficiency and level of radiation safety supervision in nuclear technology utilizations. (authors)

  10. Analysis of the reasons of recently some radioactive source accidents and suggestions for management countermeasures

    International Nuclear Information System (INIS)

    Su Yongjie; Feng Youcai; Song Chenxiu; Gao Huibin; Xing Jinsong; Pang Xinxin; Wang Xiaoqing; Wei Hong

    2007-01-01

    The article introduces recently some radioactive source accidents in China, and analyses the reasons of the accidents. Some important issues existed in the process of implementing new regulation were summarized, and some suggestions for managing radioactive sources are made. (authors)

  11. Illicit trafficking of nuclear material and other radioactive sources

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yuecel, A.; Yavuz, U.

    2001-01-01

    As it is known, for the fact that the illicit trafficking and trading of nuclear materials are being increased over the past few years because of the huge demand of third world states. Nuclear materials like uranium, plutonium, and thorium are used in nuclear explosives that have very attractive features for crime groups, terrorist groups and, the states that are willing to have this power. Crime groups that make illegal trade of nuclear material are also trying to market strategic radioactive sources like red mercury and Osmium. This kind of illegal trade threats public safety, human health, environment also it brings significant threat on world peace and world public health. For these reasons, both states and international organizations should take a role in dealing with illicit trafficking. An important precondition for preventing this kind of incidents is the existence of a strengthened national system for control of all nuclear materials and other radioactive sources. Further, Governments are responsible for law enforcement within their borders for prevention of illegal trading and trafficking of nuclear materials and radiation sources

  12. Regulatory control and safety of radiation and radioactive sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2001-01-01

    The application of ionizing radiation and radioactive sources in different fields such as, medicine, industry, agriculture, research and teaching is constantly increasing in Bangladesh. Any system enacted to control exposure to ionizing radiation has as primary objective the protection of health of people against the deleterious effects of radiation. Establishing the appropriate level of radiological protection and safety of radiation sources used in practice or intervention attains this objective. The regulatory program governing the safe use of radioactive and radiation sources in Bangladesh is based on the legislation enacted as Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97 and its implementation by the competent authority. The radiation control infrastructures and procedure are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection, personal dose monitoring, emergency preparedness, etc. The issue of security of radiation source is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country

  13. Predicting induced radioactivity for the accelerator operations at the Taiwan Photon Source.

    Science.gov (United States)

    Sheu, R J; Jiang, S H

    2010-12-01

    This study investigates the characteristics of induced radioactivity due to the operations of a 3-GeV electron accelerator at the Taiwan Photon Source (TPS). According to the beam loss analysis, the authors set two representative irradiation conditions for the activation analysis. The FLUKA Monte Carlo code has been used to predict the isotope inventories, residual activities, and remanent dose rates as a function of time. The calculation model itself is simple but conservative for the evaluation of induced radioactivity in a light source facility. This study highlights the importance of beam loss scenarios and demonstrates the great advantage of using FLUKA in comparing the predicted radioactivity with corresponding regulatory limits. The calculated results lead to the conclusion that, due to fairly low electron consumption, the radioactivity induced in the accelerator components and surrounding concrete walls of the TPS is rather moderate and manageable, while the possible activation of air and cooling water in the tunnel and their environmental releases are negligible.

  14. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  15. Instructions for use of radioactive sources; Notices d'utilisation des sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    In the industrial and research domain, article L.1333-4, R.1333-26 and R.1333-27 of the public health code submit to authorization of the minister of health the 'nuclear following activities ': the manufacturing of radionuclides; the manufacturing of products or devices by containing; the import, the export of radionuclides, products or devices that contain some; the distribution of radionuclides, of products or devices that contain some; the use of devices emitting X-rays or radioactive sources and the use of accelerators others than electron microscopes; the irradiation of products whatever nature it is, including food products. The activity bringing to plan the manufacturing or the use of radionuclides (in the form of sealed or not sealed sources) there is, in the terms of the public health code (C.S.P.) and except in the cases of exemption which are mentioned there, the obligation to obtain an authorization to hold and to make or to use these radionuclides. The regulations in radioprotection being in full evolution, one will find in these notices the main evolutions relative to the regime of authorizations. (N.C.)

  16. Design and tests of a package for the transport of radioactive sources

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2011-01-01

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  17. Low-level radioactive waste source terms for the 1992 integrated data base

    International Nuclear Information System (INIS)

    Loghry, S.L.; Kibbey, A.H.; Godbee, H.W.; Icenhour, A.S.; DePaoli, S.M.

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF 6 ) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and open-quotes otherclose quotes. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF 6 conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992

  18. The physical protection of radiation sources and radioactive materials in Tanzania

    International Nuclear Information System (INIS)

    Sungita, Y.Y.; Massalu, I.

    2002-01-01

    Full text: In recognition of the legal deficiency and the awareness of radiation safety, the parliament of the United Republic of Tanzania enacted the protection from radiation act no. 5 of 1983, which established the national radiation commission (NRC) as a regulatory authority. The main objective of the act was to provide for a legal framework and guidance of the control of the use of radiation sources and radioactive materials with the view to achieve an assurance for acceptance level of radiation protection and safety standard. Due to trade liberalization that is currently experienced in the country, the increase in the number of radiation practices is observed yearly. medical diagnostic x-ray facilities constitute 72 % of all radiation installations in the country. Radioactive materials used in research, teaching and industrial application constitute 24 % and those used in therapy and nuclear medicine is 4 %. About seven radioactive materials incidents occurred in Tanzania during 1996-2000. Among these cases, some were illegal possession and across-boarder trafficking of radioactive materials. Theft and losses radioactive equipments or sources were also experienced. This presentation discusses the experienced incidents of illegal possession, theft and loss of radioactive materials and the lesson learnt from those events in connection with our operational laws. The needs for improvement of the whole system of notification, authorization, registration and licensing to cope up with increase in radiation practices and cross-border illegal trafficking of radioactive materials. The importance of involving immigration officers, police and custom officer with proper training in radiation safety aspect is emphasized. The recommendation are given in an attempt to rescue the situation. (author)

  19. Main Activities to Improve the Control of Radioactive Sources and Maintain an Effective Regulatory Nuclear Systems in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.

    2016-01-01

    Since 2006, the Directorate of Nuclear Safety and Security, DRS, of National Nuclear Energy Commission, CNEN, has gone through many improvements. In 2006 CNEN signed the commitment to the recommendations of the Code of Conduct on The Safety and Security of Radioactive Sources and the Guidance on The Import and Export of Radioactive Sources. The DRS is responsible for the licensing and control of nuclear facilities, fuel cycle, waste management and the control of radioactive sources and authorizations of medical and industrial installations. In 2009 the department responsible for the control of radioactive sources and authorizations of medical and industrial installations implemented an “Electronic Management System” in which this System integrates the transport department and waste management department. The Electronic Management System is linked to the register of radioactive sources and facilities and there is an access on line to the Customs, making the control of import and export of radioactive sources robust, efficient and fast. During the period from 2006 until 2015 the most relevant regulations related to the control of radioactive sources and authorizations of medical and industrial installations were reviewed and some were elaborated and issued. These documents were in line with the Categorization of Radioactive Sources and the International Basic Safety Standards, issued in the IAEA Safety Standard Series as General Safety Requirements Part 3 (GSR Part 3). The paper describes all the steps that were adopted in order to implement these systems and the improvements on our Nuclear Regulatory Systems. (author)

  20. Influence of the radioactive source position inside the well-type ionization chamber

    International Nuclear Information System (INIS)

    Kuahara, L.T.; Correa, E.L.; Potiens, M.P.A.

    2015-01-01

    The activimeter, instrument used in radionuclide activity measurement, consists primarily of a well type ionization chamber coupled to a special electronic device. Its response, after calibration, is shown in activity units (Becquerel or Curie). The goal of this study is to verify radioactive source position influence over activity measured by this instrument. Radioactive sources measurements were made at different depths inside the ionization chamber well. Results showed maximum variation of -23 %, -28 % and -15 % for 57 Co, 133 Ba and 137 Cs, respectively. (author)

  1. Enhancing the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Hickey, J.

    2004-01-01

    The NRC initiatives to improve safety and security of sources began before 091101 and include both international and domestic activities. They supported the development and implementation of the IAEA Code of Conduct, which provides categorization of sources of concern, based on risk, improvement of regulatory programs of all member countries and improvement of safety and security of sources. International activities include the IAEA International Conference on Security of Sources (Vienna, Austria, March, 2003), the trilateral cooperation with Canada and Mexico, the assistance to individual countries to improve security and the proposed rule on export and import of radioactive material. The domestic initiatives are to issue the security orders and advisories to licensees, issue the panoramic irradiator orders (June 2003), issue the manufacturer orders (January 2004), complete the interim national source inventory, develop the national source tracking system, maintain the orphan source registration and retrieval program and upgrade the emergency preparedness

  2. Integrated Management Program for Radioactive Sealed Sources in Egypt IMPRSS

    International Nuclear Information System (INIS)

    Hasan, A.; El-Adham, K.

    2004-01-01

    Sealed sources are usually in capsules made of stainless steel. They are the size of a pen or a finger and contain one of hundreds of radioactive elements (e.g., Iridium, Radium) or their isotopes. They are air-tight and very durable, contain the radioactive material but not radiation. They are used in the health sector, industry, military, and universities. Incidents occurred in Met Halfa, Egypt, 2000 (Iridium-192); Goiania, Brazil, 1987 (Cesium-137); Mexico and Southwest U.S., 1977 -1984 (Cobalt-60); Peru, 1999 (Iridium-1992); Poland 2001 (Cobalt-60). The IMPRSS Mission is based on a joined partnership between the Egyptian Atomic Energy Authority, the Egyptian Ministry of Health, the Sandia National Laboratories, the International Atomic Energy Agency and others. The IMPRSS Mission protects human health and the environment in Egypt from mismanaged sealed sources, is developed jointly with MOH and EAEA, provides capabilities for managing radioactive sealed sources in Egypt, increases public awareness, provides education and training, improves emergency response capabilities, develops a permanent disposal facility, ensures the program is self-sustaining and ensures close coordination with the IAEA. Infrastructure how to manage sealed sources is discussed. It includes awareness, tracking and inventory control, security, recovery, conditioning and storage, recycling and disposal. Emergency response, regulatory reform, education and training and its targets are provided. The government of Egypt can protect the people of Egypt and is ready for emergencies. Prevention is the first line of defence and detection is the second line of defence. Adequate Emergency Response saves lives and adequate control reduces risk of mismanaged uses or deliberate misuses of sources. A Cradle-to-Grave approach is built on existing capabilities at EAEA and MOH

  3. Regional cooperation to reduce the safety and security risks of Orphan radioactive sources

    International Nuclear Information System (INIS)

    Howard, Geoffrey; Hacker, Celia; Murray, Allan; Romallosa, Kristine; Caseria, Estrella; Africa del Castillo, Lorena

    2008-01-01

    ANSTO's Regional Security of Radioactive Sources (RSRS) Project, in cooperation with the Philippine Nuclear Research Institute (PNRI), has initiated a program to reduce the safety and security risks of orphan radioactive sources in the Philippines. Collaborative work commenced in February 2006 during the Regional Orphan Source Search and Methods Workshop, co-hosted by ANSTO and the US National Nuclear Security Administration. Further professional development activities have occurred following requests by PNRI to ANSTO to support improvements in PNRI's capability and training programs to use a range of radiation survey equipment and on the planning and methods for conducting orphan source searches. The activities, methods and outcomes of the PNRI-ANSTO cooperative program are described, including: i.) Delivering a training workshop which incorporates use of source search and nuclide identification equipment and search methodology; and train-the-trainer techniques for effective development and delivery of custom designed training in the Philippines; ii.) Support and peer review of course work on Orphan Source Search Equipment and Methodology developed by PNRI Fellows; iii.) Supporting the delivery of the inaugural National Training Workshop on Orphan Source Search hosted by PNRI in the Philippines; iv.) Partnering in searching for orphan sources in Luzon, Philippines, in May 2007. The methods employed during these international cooperation activities are establishing a new model of regional engagement that emphasises sustainability of outcomes for safety and security of radioactive sources. (author)

  4. Comparison of public exposures from different sources of radioactive contamination in recent years in Slovenia

    International Nuclear Information System (INIS)

    Vokal, B.; Krizman, M.

    2003-01-01

    In spite of that Slovenia is a small country it contains a considerable variety of radioactive sources, which cause radioactive contamination of the environment. These sources mostly belong to nuclear fuel cycle, as the Krsko Nuclear Power Plant, the Zirovski vrh Uranium Mine (in the decommissioning), the TRIGA Research Reactor and Central low and intermediate level radioactive waste storage. Some other technological enhanced natural radiation sources, for example, the Sostanj Thermal Power Plant have also an impact to the environment. The comparison of the public exposure due to various sources of radioactive releases to the exposure of a members of the public in Slovenia shows that the critical group in the vicinity of the Zirovski Vrh uranium mine is the most exposed one in Slovenia. The global contamination due to the Chernobyl accident and the past nuclear tests was estimated to be around 10 μSv in Slovenia while the estimated annual dose for all other radioactive facilities are in the order of magnitude of one μSv. In this review the releases from the hospitals are not reported but some studies showed that it is not negligible. (authors)

  5. The error sources appearing for the gamma radioactive source measurement in dynamic condition

    International Nuclear Information System (INIS)

    Sirbu, M.

    1977-01-01

    The error analysis for the measurement of the gamma radioactive sources, placed on the soil, with the help of the helicopter are presented. The analysis is based on a new formula that takes account of the attenuation gamma ray factor in the helicopter walls. They give a complete error formula and an error diagram. (author)

  6. Real breakthrough in detection of radioactive sources by portal monitors with plastic detectors and New Advanced Source Identification Algorithm (ASIA-New)

    Energy Technology Data Exchange (ETDEWEB)

    Stavrov, Andrei; Yamamoto, Eugene [Rapiscan Systems, Inc., 14000 Mead Street, Longmont, CO, 80504 (United States)

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the Rapiscan company. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co- 57, Ba-133 and other). New variant of ASIA is based on physical principles, a phenomenological approach and analysis of some important parameter changes during the vehicle passage through the monitor control area. Thanks to this capability main advantage of new system is that this system can be easily installed into any RPM with plastic detectors. Taking into account that more than 4000 RPM has been installed worldwide their upgrading by ASIA-New may significantly increase probability of detection and verification of radioactive sources even masked by NORM. This algorithm was tested for 1,395 passages of

  7. Nuclear and x-ray spectroscopy with radioactive sources

    International Nuclear Information System (INIS)

    Fink, R.W.

    1977-01-01

    Research in nuclear chemistry for 1977 is reviewed. The greatest part of the effort was directed to nuclear spectroscopy (systematics, models, experimental studies), but some work was also done involving fast neutrons and x rays from radioactive sources. Isotopes of Tl, Hg, Au, and Eu were studied in particular. Personnel and publications lists are also included. 5 figures, 1 table

  8. Regulatory inspection: a powerful tool to control industrial radioactive sources

    International Nuclear Information System (INIS)

    Silva, F.C.A. da; Leocadio, J.C.; Ramalho, A.T.

    2008-01-01

    An important contribution for Brazilian development, especially for the quality control of products, is the use of radiation sources by conventional industries. There are in Brazil roughly 3,000 radioactive sources spread out among 950 industries. The main industrial practices involved are: industrial radiography, industrial irradiators, industrial accelerators, well logging petroleum and nuclear gauges. More than 1,800 Radiation Protection Officers (RPOs) were qualified to work in these practices. The present work presents a brief description of the safety control over industrial radioactive installations performed by the Brazilian Regulatory Authority, i.e. the National Commission of Nuclear Energy (CNEN). This paper also describes the national system for radiation safety inspections, the regulation infrastructure and the national inventory of industrial installations. The inspections are based on specific indicators, and their periodicity depends on the risk and type of installation. The present work discusses some relevant aspects that must be considered during the inspections, in order to make the inspections more efficient in controlling the sources. One of these aspects regards the evaluation of the storage place for the sources, a very important parameter for preventing future risky situations. (author)

  9. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  10. Flowsheets and source terms for radioactive waste projections

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF 6 conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables

  11. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  12. Securing radioactive sources into disuse, NORM, management, security assessment, exclusion, exemption and clearance

    International Nuclear Information System (INIS)

    Bastidas Pazmino, Jorge

    2008-01-01

    Full text: The Ecuadorian Atomic Energy Commission, through the unity of Radiation Protection Services, with the area of Radioactive Waste Management, has made the study of disused radioactive sources at the national level and are kept in the Temporary Storage of Radioactive Waste; has been made joint efforts with the Department of Energy of the United States for the repatriation of sources originating in that country; similarly, the use of radioactive materials in medicine, industry and research has had a significant increase in the country in the recent years, resulting in the generation of radioactive wastes requiring proper management, to ensure protection to human health and the environment now and into the future. Ecuador, through the Ecuadorian Atomic Energy Commission ensures that the Radioactive Waste Management is done by ensuring an adequate level of protection to human beings and the environment, seeks to meet the objectives of protection of human health, environmental protection, protection beyond national borders; protection of future generations; charges imposed on future generations; national legal framework; control of the production of radioactive wastes; unit interplay between production and radioactive waste management; security installations; in the same way within this framework are the NORM of which has been carried out preliminary studies in the Ecuador Orient, which is part of the lung that Amazon uses oxygen to the whole world, have been submitted NORM as a result of oil hidden within the operation, which has presented measures of exposure high inlays within hose from the wells operating and currently looking to move to the next stage, which are considering different alternatives for managing radioactive waste as more appropriate. (author)

  13. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  14. Control of trafficking of radioactive sources/substances on European Community eastern border

    International Nuclear Information System (INIS)

    Lovjagina, Irina; Graveris, Visvaldis

    2008-01-01

    Full text: Taking into account Latvia geographical location, historical core stones (the dissolution of Soviet Union, join to European Community) and increasing of the international terrorism treats, control fissile and non-fissile radioactive material become one of high priorities. During past 2 years active work and practical exercise with representative from Ministry of Defense, Police, and Custom etc. on control of trafficking of such materials were performed and Operational Manual for Control on Radioactive Materials for Customs and Policy officers is issued. All land borders check points with Russian Federation and Byelorussian, all harbors and airports were equipped with a gamma/ neutrons or gamma control portals. To control unwanted material traffic within the country, as well as to ensure the recycled scrap metal is source-free use of monitoring portals and additional portable detectors in the past years strictly increased. Cases with alarm levels, when gamma dose rate exceeds more than 1.5 times the background level, are subject to reporting and analyzing by Radiation Safety Centre (RDC) experts (24 hours on duty). Consultative phone service for inhabitants is maintained; guidelines and working procedures within Authority and other Institutions involving were developed and implemented. As a result, in 2007 RDC has got 612 reports from the border. In 83% cases this was relevant to the trains, in 17%- to the trucks. Mostly enhanced activity was due to potassium compounds in fertilizers (85%), due to ceramics (4%), abrasives (2.5%), and refractory materials (3%). Controlling scrap metal there were revealed two sources in 2007 - one Sr-90 calibration source and other Cs-137 orphan source (origin unknown). The presence of radioactive sources in scrap in the past 3 years has been represented by Co-60, Cs-137 and Sr-90 sources, parts of statically electricity neutralizers, Ra-226. Several times NORM industries polluted materials were from scrap excluded

  15. Accident with radioactive substances in laboratory. An exercise during the education of persons in radiation protection, who are working with open radioactive sources

    International Nuclear Information System (INIS)

    Stolze, B.

    2003-01-01

    In spite of carefulness it is possible,that contamination occur by handling unscaled radioactive sources or in case of an accident. It is demonstrated in an exercise managing an accident with unscaled radioactive sources. The persons, who are educated in radiation protection for handling unsealed radioactive sources, must have knowledge of theoretical regulations of the radiation protection law and of the limits in radiation protection. Also they have to know the handling to reduce possible contamination. They have to be able to calculate the dose of skin contamination. In my lecture I give some information on regulations of accidents with radioactive sources in Germany and a scenario of an accident and I explain, what is to do to manage this event. A person opened an ampoule. The activity splashed and contaminated the person's hand, arm and face. Also in the room there was a contamination. The desk and the floor were contaminated. There were 50 MBq P-32 as NaH 2 P''32O 3 in water solution, I give a report on practices in our courses, which the participants have to do. The radiological experts have to decontaminate the skin and they have to calculate the skin-dose and to give the information to the authorities. (Author) 4 refs

  16. Regulatory control of radiation sources and radioactive materials in Ireland

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fenton, D.; O'Flaherty, T.

    2001-01-01

    The primary legislation governing safety in uses of ionizing radiation in Ireland is the Radiological Protection Act, 1991. This Act provided for the establishment in 1992 of the Radiological Protection Institute of Ireland, and gives the Institute the functions and powers which enable it to be the regulatory body for all matters relating to ionizing radiation. A Ministerial Order made under the Act in 2000 consolidates previous regulations and, in particular, provides for the implementation in Irish law of the 1996 European Union Directive which lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Under the legislation, the custody, use and a number of other activities involving radioactive substances and irradiating apparatus require a licence issued by the Institute. Currently some 1260 licences are in force. Of these, some 850 are in respect of irradiating apparatus only and are issued principally to dentists and veterinary surgeons. The remaining licences involve sealed radiation sources and/or unsealed radioactive substances used in medicine, industry or education. A schedule attached to each licence fully lists the sealed sources to which the licence applies, and also the quantities of radioactive substances which may be acquired or held under the licence. It is an offence to dispose of, or otherwise relinquish possession of, any licensable material other than in accordance with terms and conditions of the licence. Disused sources are returned to the original supplier or, where this is not possible, stored under licence by the licensee who used them. Enforcement of the licensing provisions relies primarily on the programme of inspection of licensees, carried out by the Institute's inspectors. The Institute's Regulatory Service has a complement of four inspectors, one of whom is the Manager of the Service. The Manager reports to one of the Institute's Principal

  17. Application of radioactive sources in analytical instruments for planetary exploration

    International Nuclear Information System (INIS)

    Economou, T.E.

    2008-01-01

    Full text: In the past 50 years or so, many types of radioactive sources have been used in space exploration. 238 Pu is often used in space missions in Radioactive Heater Units (RHU) and Radioisotope Thermoelectric Generators (RTG) for heat and power generation, respectively. In 1960's, 2 ' 42 Cm alpha radioactive sources have been used for the first time in space applications on 3 Surveyor spacecrafts to obtain the chemical composition of the lunar surface with an instrument based on the Rutherford backscatterring of the alpha particles from nuclei in the analyzed sample. 242 Cm is an alpha emitter of 6.1 MeV alpha particles. Its half-life time, 163 days, is short enough to allow sources to be prepared with the necessary high intensity per unit area ( up to 470 mCi and FWHM of about 1.5% in the lunar instruments) that results in narrow energy distribution, yet long enough that the sources have adequate lifetimes for short duration missions. 242 Cm is readily prepared in curie quantities by irradiation of 241 Am by neutrons in nuclear reactors, followed by chemical separation of the curium from the americium and fission products. For long duration missions, like for example missions to Mars, comets, and asteroids, the isotope 244 Cm (T 1/2 =18.1 y, E α =5.8 MeV) is a better source because of its much longer half-life time. Both of these isotopes are also excellent x-ray excitation sources and have been used for that purpose on several planetary missions. For the light elements the excitation is caused mainly by the alpha particles, while for the heavier elements (> Ca) the excitation is mainly due to the x-rays from the Pu L-lines (E x =14-18 keV). 244 Cm has been used in several variations of the Alpha Proton Xray Spectrometer (APXS): PHOBOS 1 and 2 Pathfinder, Russian Mars-96 mission, Mars Exploration Rover (MER) and Rosetta. Other sources used in X-ray fluorescence instruments in space are 55 Fe and 109 Cd (Viking1,2, Beagle 2) and 57 Co is used in Moessbauer

  18. Spent sealed radioactive sources conditioning technology for the disposal at the national repository Baita-Bihor

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.

    2006-01-01

    A spent sealed radioactive source(SRS) is a high integrity capsule which contains a small amount of concentrated radionuclide with an activity which ranges from a few MBq up to levels of hundreds TBq. Presently, there are now many spent and unusable SRS in Romania, which have been used a long time in various industrial applications (smoke detectors, weld testing etc.). Considering the activity of the Radioactive Waste Treatment Plant (STDR) at the Institute for Nuclear Research Pitesti regarding radioactive source collecting from various economic agents, several radioactive sources are held in the intermediate storage deposit facility on the institute platform awaiting conditioning for the final disposal. This paper presents the conditioning technology for this sources, which has as ultimate purpose to completion of a product which matches the waste acceptance requirements imposed by the National Authority Control of Nuclear Activities, CNCAN, for the disposal site DNDR Baita - Bihor. The technology used for obtaining the final product allows two options for the immobilization of the sources in the 218 L steel drum and these are: Sources placed in the original packages and which can not be dismantled will be isolated by encapsulation in 10 litters metal capsules and then conditioned in 218 l steel drum, with a concrete biological shielding; Sources removed from the initial package are isolated in stainless steel capsules, which are to be conditioned in the same 218 L steel drum. The final product obtained as a result of the concrete conditioning operations of the spent SRS in 218 L steel drum is the steel drum - concrete - low radioactive waste assembly which presents itself as a concrete block which includes one or more capsules containing SRS. (author)

  19. A thermoelectric-conversion power supply system using a strontium heat source of high-level radioactive nuclear waste

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2011-01-01

    A thermoelectric-conversion power supply system with radioactive strontium in high-level radioactive waste has been proposed. A combination of Alkali Metal Thermo-Electric Conversion (AMTEC) and a strontium fluoride heat source can provide a compact and long-lived power supply system. A heat source design with strontium fluoride pin bundles with Hastelloy cladding and intermediate copper has been proposed. This design has taken heat transportation into consideration, and, in this regard, the feasibility has been confirmed by a three-dimensional thermal analysis using Star-CD code. This power supply system with an electric output of 1 MW can be arranged in a space of 50 m 2 and approximately 1.1 m height and can be operated for 15 years without refueling. This compact and long-lived power supply is suitable for powering sources for remote places and middle-sized ships. From the viewpoint of geological disposal of high-level waste, the proposed power supply system provides a financial base for strontium-cesium partitioning. That is, a combination of minor-actinide recycling and strontium-cesium partitioning can eliminate a large part of decay heat in high-level waste and thus can save much space for geological disposal. (author)

  20. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  1. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tiezzi, Rodrigo; Rostelato, Maria Elisa C.M.; Nagatomi, Helio R.; Zeituni, Calos A.; Benega, Marcos A.G.; Souza, Daiane B. de; Costa, Osvaldo L. da; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Santos, Rafael Melo dos; Melo, Emerson Ronaldo de, E-mail: rktiezzi@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karan Junior, Dib [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2015-07-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133, Cesium-137 and Cobalt-57,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum solubility of the resin in water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical

  2. Characterization of sealed radioactive sources. Uncertainty analysis to improve detection methods

    International Nuclear Information System (INIS)

    Cummings, D.G.; Sommers, J.D.; Adamic, M.L.; Jimenez, M.; Giglio, J.J.; Carney, K.P.

    2009-01-01

    A radioactive 137 Cs source has been analyzed for the radioactive parent 137 Cs and stable decay daughter 137 Ba. The ratio of the daughter to parent atoms is used to estimate the date when Cs was purified prior to source encapsulation (an 'age' since purification). The isotopes were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In addition, Ba was analyzed by isotope dilution ICP-MS (ID-ICP-MS). A detailed error analysis of the mass spectrometric work has been undertaken to identify areas of improvement, as well as quantifying the effect the errors have on the 'age' determined. This paper reports an uncertainty analysis to identifying areas of improvement and alternative techniques that may reduce the uncertainties. In particular, work on isotope dilution using ICP-MS for the 'age' determination of sealed sources is presented. The results will be compared to the original work done using external standards to calibrate the ICP-MS instrument. (author)

  3. Quality control of concretes for conditioning of spent radioactive sources

    International Nuclear Information System (INIS)

    Gonzalez N, M.

    2015-01-01

    The spent sealed radioactive sources are considered as a specific type of radioactive wastes and should be properly stored to ensure their integrity and prevent or limit the release of radionuclides in the geosphere. For this, these sources can be put up in concrete matrices. This research presents the evaluation and characterization of five concretes prepared with 4 brands of commercial cements: CPC Extra RS, CPC 30R Impercem of Cemex, Cruz Azul CPC 30R and CPC 30R of Apasco; three sizes of coarse aggregate (<30 mm, 29-11 mm and <10 mm) and fine aggregate (0.0797 mm) used as matrices for conditioning of spent sealed radioactive sources, in order to verify if these specific concretes accredit the standard NOM-019-Nucl-1995. After hardening for 28 days the concrete specimens were subjected to the tests: compressive strength; thermal cycles, irradiation, leaching and permeability, later to be characterized by: 1) X-ray diffraction in order to meet their crystalline phases; 2) scanning electron microscopy, to determine changes in morphology; 3) infrared spectroscopy, to determine the structural changes of concrete from its functional groups; 4) Raman spectroscopy to determine their structural changes and 5) Moessbauer spectroscopy, which determines changes in the oxidation state of iron in the concrete. According to the results and the changes presented by each concrete after applying the tests set by NOM-019-Nucl-1995, is concluded that the concrete made with cement Cemex brand (CPC 30-RS Extra), gravel of particle size 11-29 mm and sieved sand (0.0797 mm) can be used as matrices of spent sealed sources conditioning. Is remarkable a morphological and structural change of the concrete due to gamma irradiation and heat treatment. (Author)

  4. Methodology study for fixation of radioactive iodine in polymeric substrate for brachytherapy sources

    International Nuclear Information System (INIS)

    Rodrigues, Bruna T.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Tiezzi, Rodrigo; Souza, Daiane B. de; Benega, Marcos A.G.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Zeituni, Calos A.; Fernandes, Vagner; Melo, Emerson Ronaldo de; Camargo, Anderson Rogerio de

    2015-01-01

    Cancer is now the second leading cause of death by disease in several countries, including Brazil. Prostate cancer is the most common among men. Brachytherapy is a modality of radiotherapy in which radioactive seeds are placed inside or in contact with the organ to be treated. The most widely used radioisotope in prostate brachytherapy is Iodine-125 which is presented fixated on a silver substrate that is subsequently placed inside a titanium capsule. A large dose of radiation is released only in the targeted tumor protecting healthy surrounding tissues. The technique requires the application of 80 - 120 seeds per patient. The implants of seeds have low impact and non-surgical procedures. Most patients can return to normal life within three days with little or no pain. This work proposes an alternative to the seeds that have already been developed, in order to reduce the cost by obtaining a better efficiency on fixing the radioactive iodine onto the epoxy resin. Methods have been developed to perform the fixation of Iodine-125 onto polymeric substrates. The parameters analyzed were the immersion time, type of static or dynamic reaction, concentration of the adsorption solution, the specific activity of the radioactive source, the need for carrier and chemical form of the radioactive Iodine. These experiments defined the most effective method to fixate the Iodine onto the polymeric material (epoxy resin), the Iodine activity in the polymeric substrate, the activity of the distribution of variation in a plot of polymeric cores and the efficiency of the epoxy resin to seal the seed. (author)

  5. Security of radioactive materials for medical use

    International Nuclear Information System (INIS)

    Elliott, A.

    2006-01-01

    Both sealed and unsealed radioactive sources are used in hospitals throughout the world for diagnostic and therapeutic purposes. High activity single sealed sources are used in teletherapy units, although these are becoming less common as they are replaced by linear accelerators, and in blood irradiator units, which are in widespread use. Lower activity sealed sources are used in brachytherapy. High activity unsealed sources are used typically for the treatment of thyroid cancer and neuroblastoma in inpatients while diagnostic doses of unsealed radioactive materials have much lower activities. In the case of a central radiopharmacy producing patient doses of radiopharmaceutical for several Nuclear Medicine departments, however, quite large amounts of radioactive materials may be held. Hospitals are, by their nature, less secure than other licensed nuclear sites and the ever-changing patient /visitor (and staff) population is a further complicating factor. Hitherto, security of radioactive materials in hospitals has tended to be considered from the perspective only of radiation safety but this approach is no longer sufficient

  6. Large source test stand for H-(D-) ion source

    International Nuclear Information System (INIS)

    Larson, R.; McKenzie-Wilson, R.

    1981-01-01

    The Brookhaven National Laboratory Neutral Beam Group has constructed a large source test stand for testing of the various source modules under development. The first objective of the BNL program is to develop a source module capable of delivering 10A of H - (D - ) at 25 kV operating in the steady state mode with satisfactory gas and power efficiency. The large source test stand contains gas supply and vacuum pumping systems, source cooling systems, magnet power supplies and magnet cooling systems, two arc power supplies rated at 25 kW and 50 kW, a large battery driven power supply and an extractor electrode power supply. Figure 1 is a front view of the vacuum vessel showing the control racks with the 36'' vacuum valves and refrigerated baffles mounted behind. Figure 2 shows the rear view of the vessel with a BNL Mk V magnetron source mounted in the source aperture and also shows the cooled magnet coils. Currently two types of sources are under test: a large magnetron source and a hollow cathode discharge source

  7. Search for lost or orphan radioactive sources based on Nal gamma spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Within recent decades many radioactive sources have been lost, stolen, or abandoned, and some have caused contamination or irradiation of people. Therefore reliable methods for source recovery are needed. The use of car borne NaI(Tl) detectors is discussed. Standard processing of spectra in general...

  8. Safety of radiation sources and security of radioactive materials. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1999-01-01

    This International Conference, hosted by the Government of France and co-sponsored by the European Commission, the International Criminal Police Organization (Interpol) and the World Customs Organization (WCO), was the first one devoted to the safety of radiation sources and the security of radioactive materials and - for the first time - brought together radiation safety experts, regulators, and customs and police officers, who need to closely co-operate for solving the problem of illicit trafficking. The technical sessions reviewed the state of the art of twelve major topics, divided into two groups: the safety of radiation sources and the security of radioactive materials. The safety part comprised regulatory control, safety assessment techniques, engineering and managerial measures, lessons from experience, international cooperation through reporting systems and databases, verification of safety through inspection and the use of performance indicators for a regulatory programme. The security part comprised measures to prevent breaches in the security of radioactive materials, detection and identification techniques for illicit trafficking, response to detected cases and seized radioactive materials, strengthening awareness, training and exchange of information. The Conference was a success in fostering information exchange through the reviews of the state of the art and the frank and open discussions. It raised awareness of the need for Member States to ensure effective systems of control and for preventing, detecting and responding to illicit trafficking in radioactive materials. The Conference finished by recommending investigating whether international undertakings concerned with an effective operation of national systems for ensuring the safety of radiation sources and security of radioactive materials

  9. Security of radioactive sources in industrial radiography

    International Nuclear Information System (INIS)

    Popp, Andrew; Murray, Allan

    2010-01-01

    This paper describes the need and new requirements to ensure the security of radioactive sources used in the practice of industrial radiography. We describe the discussions and issues arising during the september 2010 regional workshop held in Sydney on the application of security measures to industrial radiography practices. The workshop provided the perspectives of both radiation regulators and industry practitioners, including those from the Philippines. We describe the outputs of the workshop, and how they were developed, and make suggestions for further consideration and applications of security measures in the practice of industrial radiography. (author)

  10. The design of radioactive source tracking management system based on RFID

    International Nuclear Information System (INIS)

    Yan Yongjun; Zhou Jianliang

    2008-01-01

    The paper introduces a solution of safety and security management system of radioactive source in storage and use by employing advanced RFID technology and computer database technology. And make some suggestions for further improvement. (authors)

  11. Study of classification and disposed method for disused sealed radioactive source in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl; Lee, Seung Hee [FNC Technology Co., Ltd.,Yongin (Korea, Republic of)

    2016-09-15

    In accordance with the classification system of radioactive waste in Korea, all the disused sealed radioactive sources (DSRSs) fall under the category of EW, VLLW or LILW, and should be managed in compliance with the restrictions for the disposal method. In this study, the management and disposal method are drawn in consideration of half-life of radionuclides contained in the source and A/D value (i.e. the activity A of the source dividing by the D value for the relevant radionuclide, which is used to provide an initial ranking of relative risk for sources) in addition to the domestic classification scheme and disposal method, based on the characteristic analysis and review results of the management practices in IAEA and foreign countries. For all the DSRSs that are being stored (as of March 2015) in the centralized temporary disposal facility for radioisotope wastes, applicability of the derivation result is confirmed through performing the characteristic analysis and case studies for assessing quantity and volume of DSRSs to be managed by each method. However, the methodology derived from this study is not applicable to the following sources; i) DSRSs without information on the radioactivity, ii) DSRSs that are not possible to calculate the specific activity and/or the source-specific A/D value. Accordingly, it is essential to identify the inherent characteristics for each of DSRSs prior to implementation of this management and disposal method.

  12. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  13. Opening remarks at the International Conference on the Safety and Security of Radioactive Sources, Bordeaux, France, 27 June 2005

    International Nuclear Information System (INIS)

    Taniguchi, T.

    2005-01-01

    The vast majority of radioactive sources are controlled properly. However, radiological accidents have occurred in all regions of the world - which indicates that there is not always sufficient control of sources throughout their life cycle. Even advanced countries with developed regulatory systems lose track of sources each year resulting in orphan sources with the potential to cause incidents or accidents. Actually, an increasing number of cases of uncontrolled movement of sources are reported the Agency's Illicit Trafficking Database (ITDB). The International Conference on Security of Radioactive Sources, held in Vienna, Austria, in 2003, addressed these concerns and called for international initiatives, including the updating of the IAEA Action Plan for the Safety and Security of Radioactive Sources. As a direct result of the updated Action Plan the Code of Conduct on the Safety and Security of Radioactive Sources was revised and approved by the Board of Governors in 2003, its supporting Guidance on the Import and Export of Radioactive Sources was developed and approved in 2004 and the Safety Guide on Categorization of Radioactive Sources was completed recently. All three documents were developed under the auspices of the IAEA to achieve international consensus and they play a central role in this Conference. It is worth noting that more than 70 countries have already expressed their intention to follow the guidance given in the Code of Conduct on the Safety and Security of Radioactive Sources - and I would like to encourage more countries to do so. The Agency has been promoting for some time now the idea of a Global Nuclear Safety Regime. At the heart of this regime is a strong and effective national safety infrastructure where - as an overriding priority - safety issues are given the attention warranted by their significance. The need for sustainable regulatory infrastructure for the safety and security of radioactive sources was discussed at the

  14. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  15. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  16. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as … well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  17. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  18. Elimination of used sources. Taking over and storage

    International Nuclear Information System (INIS)

    Desroches, J.

    1982-02-01

    The waste disposal of sealed radioactive sources used in medicine and industry poses technical problems for high activity sources and economic problems for small sources. Some cases of large radioactive sources elimination are reviewed and the formalities to be completed for the waste disposal of sources in general are briefly described [fr

  19. Nuclear refugees after large radioactive releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Groell, Jérôme

    2016-01-01

    However improbable, large radioactive releases from a nuclear power plant would entail major consequences for the surrounding population. In Fukushima, 80,000 people had to evacuate the most contaminated areas around the NPP for a prolonged period of time. These people have been called “nuclear refugees”. The paper first argues that the number of nuclear refugees is a better measure of the severity of radiological consequences than the number of fatalities, although the latter is widely used to assess other catastrophic events such as earthquakes or tsunami. It is a valuable partial indicator in the context of comprehensive studies of overall consequences. Section 2 makes a clear distinction between long-term relocation and emergency evacuation and proposes a method to estimate the number of refugees. Section 3 examines the distribution of nuclear refugees with respect to weather and release site. The distribution is asymmetric and fat-tailed: unfavorable weather can lead to the contamination of large areas of land; large cities have in turn a higher probability of being contaminated. - Highlights: • Number of refugees is a good indicator of the severity of radiological consequences. • It is a better measure of the long-term consequences than the number of fatalities. • A representative meteorological sample should be sufficiently large. • The number of refugees highly depends on the release site in a country like France.

  20. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  1. Ukrainian efforts in preventing illicit trafficking in nuclear materials and other radioactive sources

    International Nuclear Information System (INIS)

    Kondratov, S.I.

    1998-01-01

    The Ukrainian efforts in preventing illicit trafficking in nuclear materials and other radioactive sources are described. Attention is paid for Ukrainian Government's Decree intended, in particular, to facilitate in establishing well-coordinated activities of the Ukrainian law enforcement bodies and other agencies involved, assigning the status of the main expert organization on illicit trafficking in nuclear materials to the Scientific Center 'Institute for Nuclear Research', in developing the three-years Program on prevention illicit trafficking in nuclear materials and other radioactive sources on the Ukrainian territory as well as measures at the State and customs borders. The main directions provided by the draft Program mentioned are presented as well. (author)

  2. Radioactive sources and contaminated materials in scrap: monitoring, detection and remedial actions

    International Nuclear Information System (INIS)

    Gallini, R.; Berna, V.; Bonora, A.; Santini, M.

    1999-01-01

    The scrap recycling in steel and other metal mills represents one of the most relevant activities in the Province of Brescia (Lombardy, Italy). In our Province more than 20 million tonnes of metal scrap are recycled every year by a melting process. Since 1990, many accidents which took place were caused by the unwanted melting of radioactive sources, that were probably hidden in metal scrap. In 1993, the Italian Government stated directives to monitor metal scrap imported from non-EC countries because of the suspicion of the illegal traffic of radioactive materials. In 1996, a law imposed the control of all metal scrap, regardless of their origins. Since 1993, our staff have controlled thousands of railway wagons and trucks. Approximately a hundred steel mills and foundries of aluminium, cooper, brass, etc. have also been controlled and many samples have been collected (flue dust, slag, finished products). During these controls, contaminated areas have been brought to light in two warehouses (Cs 137), in 6 companies (Cs 137 and Am 241), in two landfills of industrial waste (Cs 137) and in a quarry (Cs 137). Up to now the contaminated areas have been cleaned, except for the last one. About 150 radioactive sources on contaminated materials have been found in metal scrap. We found radioactive sources of Co 60, Ra 226, Ir 192, Kr 85, Am 241, while the contamination of metals was mainly due to Ra 226. The situation described above justifies an accurate control of the amount of scrap to reduce the risk of contamination of the workers in the working areas, in the environment and in the general public. (author)

  3. Public education on sources and effects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Martin, J.E.; Rengan, K.

    1993-01-01

    A six-day workshop, developed for providing information on sources and effects of radioactive waste disposal to the general public, is described. The materials were used successfully with a group representing the general public. An extension of the workshop for high school and junior high school science teachers is discussed. (author) 1 tab

  4. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico; Proyeccion de generacion de desechos radiactivos solidos, liquidos y fuentes radiactivas gastadas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E. [Universidad Politecnica del Valle de Toluca, Km 5.7 Carretera Almoloya de Juarez, Estado de Mexico (Mexico); Monroy G, F.; Lizcano C, D., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  5. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generationa

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  6. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  7. Methods and apparatus for safely handling radioactive sources in measuring-while-drilling tools

    International Nuclear Information System (INIS)

    Wraight, P.D.

    1989-01-01

    This patent describes a method for removing a chemical radioactive source from a MWD tool which is coupled in a drill string supported by a drilling rig while a borehole is drilled and includes logging means for measuring formation characteristics in response to irradiation of the adjacent formations by the radioactive source during the drilling operation. The steps of the method are: halting the drilling operation and then removing the drill string from the borehole for moving the MWD tool to a work station at the surface where the source is at a safe working distance from the drilling rig and will be accessible by way of one end of the MWD tool; positioning a radiation shield at a location adjacent to the one end of the MWD tool where the shield is ready for receiving the source as it is moved away from the other end of the MWD tool and then moving the source away from the other end of the MWD tool for enclosing the source within the shield; and once the source is enclosed within the shield; removing the shield together with the enclosed source from the MWD tool for transferring the enclosed source to another work station

  8. Feasibility study on utilization of vitrified radioactive waste as radiation sources

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Yoshii, Fumio; Hyakutake, Kenichiro

    1995-01-01

    A feasibility study on utilization of vitrified high level radioactive waste (VW) as radiation source has been carried out. Natural rubber latex was radiation vulcanized with VW to demonstrate the feasibility. The dose rate was 0.1 kGy/hr. As a sensitizer, n-butyl acrylate was added. Negligible small activation of natural rubber (NR) latex by neutron from the VW was observed. The residual sensitizer in the irradiated latex and physical properties of film molded from the irradiated latex were the same level with the conventional radiation vulcanization of NR latex with γ-rays from Co-60. Surgical gloves and protective rubber gloves for radioactive contamination were produced from 20 litters of NR latex vulcanized with 2 VWs. The physical properties of both gloves were acceptable. These results suggested that vitrified high level waste can be used as an industrial radiation source. (author)

  9. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine

    International Nuclear Information System (INIS)

    Tiezzi, Rodrigo

    2016-01-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133 and Cesium-137,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum miscibility of the resin with the water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical and

  10. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  11. Over the border - the problems of uncontrolled radioactive materials crossing national borders

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K.E. E-mail: k.duftschmid@aon.at

    2002-03-01

    Cross-border movement of radioactive materials and contaminated items, in particular metallurgical scrap, has become a problem of increasing importance. Radioactive sources out of regulatory control, now often called 'orphan sources', have frequently caused serious, even deadly, radiation exposures and widespread contamination. The United States Nuclear Regulatory Commission reported over 2300 incidents of radioactive materials found in recycled metal scrap and more than 50 accidental smeltings of radioactive sources. A further potentially serious problem is illicit trafficking in nuclear and other radioactive materials. In 1995 the International Atomic Energy Agency (IAEA) started a programme to combat illicit trafficking in nuclear and other radioactive materials, which includes an international database on incidents of illicit trafficking, receiving reports from some 80 member states. For the period 1993-2000 the IAEA database includes 345 confirmed incidents. While from 1994-1996 the frequency declined significantly, this trend has been reversed since 1997, largely due to radioactive sources rather than nuclear material. This paper compares monitoring techniques for radioactive materials in scrap applied at steel plants and scrap yards with monitoring at borders, a completely different situation. It discusses the results of the 'Illicit Trafficking Radiation Detection Assessment Program', a large international pilot study, conducted in cooperation between the IAEA, the Austrian Government and the Austrian Research Centre Seibersdorf. The aim of this exercise was to derive realistic and internationally agreed requirements for border monitoring instrumentation. Finally the present extent of border monitoring installations is discussed. (author)

  12. Development of Radioactive Inventory Evaluation System using 3D Shape and Multiple Radiation Measurement

    International Nuclear Information System (INIS)

    Lee, Sang Chul; Kim, Won Seok; Han, Byong Su; Moon, Joo Hyun

    2013-01-01

    The increase of the operating NPPs and the superannuation of the equipment in NPPs cause a large amount of the metal radioactive waste. Presently the metal radioactive wastes are stored in the temporary storage facility in NPPs because of the delay of the construction of the final disposal facility. The radioactive level of general metal radioactive wastes is low, and the radioactive level can be lowered by the simple decontamination process. If the radioactive wastes are disposed as the industry waste, the disposal cost is diminished largely. For the disposal of the radioactive wastes as the industrial wastes, the radioactive level of the target wastes are evaluated. It is difficult to know the position of the source term for most of the metal radioactive and the source term is distributed non-homogeneously. And the self-shielding effect of the metal material makes the evaluation more difficult. In this study, the radioactive inventory evaluation system for the metal radioactive waste is developed. For the correction of the uncertainty of the position and the non-homogeneity of the source term, the 3D shape and multiple radiation measurement are used. The existing gamma-ray measurement system for the metal radioactive waste cannot reflect the position and the distribution of the source term and the effect of self-shielding. This evaluation system suggested in this system can calculate the reasonable value regarding to the position and the distribution of the source term and the effect of self-shielding. By the calculation of the partial inventory of the target metal waste, the advantage in the application of the clearance criteria can be obtained

  13. Declaration and authorization forms for the fabrication, distribution or use of radioactive sources or electric generators of ionizing radiation

    International Nuclear Information System (INIS)

    2010-01-01

    This document gathers all the forms to be completed when declaring or when asking for an authorization for the fabrication, retailing or use of radioactive sources or electric equipment generating ionizing radiation. These forms can concern all domains (use of sealed radioactive sources, possession and use of a particle accelerator or of radionuclides, import or export of radionuclides or of products containing radionuclides), or the use of such materials or equipment in the medical sector, or the fabrication and use in industry or research, or in user's guides for radioactive sources

  14. Radioactive waste management in the USSR: A review of unclassified sources

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets

  15. Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking

    International Nuclear Information System (INIS)

    Mosorov, Volodymyr

    2015-01-01

    The Radioactive Particle Tracking (RPT) technique is widely applied to study the dynamic properties of flows inside a reactor. Usually, a single radioactive particle that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside a 3D volume of interest, and its positions are determined by an array of scintillation detectors, which count the incoming photons. The particle position coordinates are calculated by using a reconstruction procedure that solves a minimization problem between the measured counts and calibration data. Although previous studies have described the influence of specified factors on the RPT resolution and sensitivities, the question of how to choose an appropriate source strength and reconstruction procedure for the given RPT setup remains an unsolved problem. This work describes and applies the original strategy for fitting both the source strength and the sampling time interval to a specified RPT setup to guarantee a required accuracy of measurements. Additionally, the measurement accuracy of an RPT setup can be significantly increased by changing the reconstruction procedure. The results of the simulations, based on the Monte Carlo approach, have demonstrated that the proposed strategy allows for the successful implementation of the As Low As Reasonably Achievable (ALARA) principle when designing the RPT setup. The limitations and drawbacks of the proposed procedure are also presented. - Highlights: • We develop an original strategy for fitting source strength and measurement time interval in radioactive particle tracking (RPT) technique. • The proposed strategy allows successfully to implement the ALAPA (As Low As Reasonably Achievable) principle in designing of a RPT setup. • Measurement accuracy of a RPT setup can be significantly increased by improvement of the reconstruction procedure. • The algorithm can be applied to monitor the motion of the radioactive tracer in a reactor

  16. Radioactive artifacts: historical sources of modern radium contamination

    International Nuclear Information System (INIS)

    Blaufox, M.D.

    1988-01-01

    Radium has been distributed in a wide variety of devices during the early part of this century. Antique objects containing significant amounts of radium turn up at flea markets, antique shows, and antique dealers, in a variety of locations. These objects include radium in devices which were used by legitimate medical practitioners for legitimate medical purposes such as therapy, as well as a wide variety of quack cures. These devices may contain anywhere from a few nanocuries to as much as several hundred microcuries of radium. In addition to medical sources, a large variety of scientific instruments utilize radium in luminous dials. These instruments include compasses, azimuth indicators, and virtually any object which might require some form of calibration. In addition, the consumer market utilized a large amount of radium in the production of wrist watches, pocket watches, and clocks with luminous dials. Some of these watches contained as much as 4.5 microCi of radium, and between 1913 and 1920 about 70 gm was produced for the manufacture of luminous compounds. In addition to the large amount of radium produced for scientific and consumer utilization, there were a number of materials produced which were claimed to contain radium but in fact did not, further adding to the confusion in this area. The wide availability of radium is a result of the public's great fascination with radioactivity during the early part of this century and a belief in its curative properties. A number of objects were produced in order to trap the emanations of radium in water for persons to drink in order to benefit from their healing effects. Since the late 20s and early 30s the public's attitude towards radiation has shifted 180 degrees and it is now considered an extremely dangerous and harmful material

  17. Thin, Conductive, Pyrrolyc film production for radioactive sources backings

    International Nuclear Information System (INIS)

    Rodriguez, L.; Arcos, J.M. los

    1993-01-01

    A procedure for electro polymerization of pyrrole has been set up in order to produce thin, (> 15 μg/cm2) homogeneous (thickness variation < 2%) films, with no need for additional metallization to be used as backings of radioactive sources, having 10-0,4 Kfl/sample, for 35-70 μg/cm . The experimental equipment, reagent and procedure utilized is described as well as the characterization of Pyrrolyc films produced. (Author) 28 refs

  18. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    Science.gov (United States)

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  19. The development of a methodology to assess population doses from multiple sources and exposure pathways of radioactivity

    International Nuclear Information System (INIS)

    Hancox, J.; Stansby, S.; Thorne, M.

    2002-01-01

    The Environment Agency (EA) has new duties in accordance with the Basic Safety Standards Directive under which it is required to ensure that doses to individuals received from exposure to anthropogenic sources of radioactivity are within defined limits. In order to assess compliance with these requirements, the EA needs to assess the doses to members of the most highly exposed population groups ('critical' groups) from all relevant potential sources of anthropogenic radioactivity and all relevant potential exposure pathways to such radioactivity. The EA has identified a need to develop a methodology for the retrospective assessment of effective doses from multiple sources of radioactive materials and exposure pathways associated with those sources. Under contract to the EA, AEA Technology has undertaken the development of a suitable methodology as part of EA R and D Project P3-070. The methodology developed under this research project has been designed to support the EA in meeting its obligations under the Euratom Basic Safety Standards Directive and is consistent with UK and international approaches to radiation dosimetry and radiological protection. The development and trial application of the methodology is described in this report

  20. Avoiding radiation exposure while training to locate a radioactive source: a virtual reality exercise

    International Nuclear Information System (INIS)

    Marins, E.R.; Cotelli do Espírito Santo, A.; Abreu Mól, A. C. de; Cunha, G.; Landau, L.

    2015-01-01

    A technician undergoing radioprotection training must learn to use radiation detectors. Practical exercises involve being near to radiation sources. The work here presented reduces the exposure to individuals using a virtual environment to achieve preliminary apprenticeship prior using real radioactive sources. (authors)

  1. Radioactivity in the environment

    International Nuclear Information System (INIS)

    Costello, J.M.

    1983-01-01

    Radioactivity is a natural phenomenon. Out of 1700 known isotopes of 104 chemical elements, only about 16 per cent are stable. Seventy-three radioactive isotopes of 39 elements occur naturally in the terrestrial environment. The significance of environmental radioactivity lies in the contribution to the annual exposure of the general population to ionising radiation. This exposure results largely from natural sources of radioactivity and radiation together with applications of radiation in medicine. Minor contributions are from nuclear weapons tests, nuclear power production and the nuclear fuel cycle, and consumer products including luminous clocks and watches, television receivers and smoke detectors. The natural background radiation level varies substantially with altitude and geographic location. Although no satisfactory evidence is available that natural variations in background radiation levels are detrimental to humans, upper limits of risk have been estimated for possible somatic and genetic effects from these levels of radiation. Contributory sources of and variability in the radiation background are reviewed and the relation between effective dose equivalent and associated detriment outlined. The risk from exposure to an average level of background radiation is compared with risks from other human activities

  2. The French Experience Regarding Peer Reviews to Improve the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Lachaume, J.-L.; Bélot, G.

    2015-01-01

    France has a 50 year history of control over radioactive sources. Convinced that peer reviews may be helpful to improve any regulatory system, France decided to experience a ‘full scope’ Integrated Regulatory Review Service mission in 2006 and its follow-up mission in 2009, including a review of the implementation of the Code of Conduct. The reviews, interviews and observations performed during these missions enabled the experts to have a thorough knowledge of the French system and to highlight its strengths and ways for improvements. Following these reviews, France decided to rely on its good practices, extend them as much as possible and to define, implement and address an action plan to improve its regulatory control over radioactive sources, while maintaining the prime responsibility on the operators. While good practices in the tracking of sources were maintained and slight evolutions were conducted in the safety regulations, licensing process, and inspection and enforcement actions, the major outcome of these reviews will obviously consist of the entrustment of the French Nuclear Safety Authority with the role of the regulatory authority for the security of radioactive sources and the implementation of dedicated provisions. (author)

  3. A general description of the Swedish radiation protection regulations of radioactive sources

    International Nuclear Information System (INIS)

    Staalnacke, C.-G.

    2001-01-01

    The regulation of ionizing radiation in Sweden is based on both the Radiation Protection Act and Ordinance from 1998. The Swedish Radiation Protection Institute (SSI) acts as the regulatory authority for radiation safety and issues detailed regulations in specific areas. The report summarizes how the SSI controls radiation sources, including orphan sources for which a process for analyzing their occurrence has started in Sweden. A number of proposed procedures for the control and follow-up of sealed radioactive sources is provided. (author)

  4. A review of methods for sampling large airborne particles and associated radioactivity

    International Nuclear Information System (INIS)

    Garland, J.A.; Nicholson, K.W.

    1990-01-01

    Radioactive particles, tens of μm or more in diameter, are unlikely to be emitted directly from nuclear facilities with exhaust gas cleansing systems, but may arise in the case of an accident or where resuspension from contaminated surfaces is significant. Such particles may dominate deposition and, according to some workers, may contribute to inhalation doses. Quantitative sampling of large airborne particles is difficult because of their inertia and large sedimentation velocities. The literature describes conditions for unbiased sampling and the magnitude of sampling errors for idealised sampling inlets in steady winds. However, few air samplers for outdoor use have been assessed for adequacy of sampling. Many size selective sampling methods are found in the literature but few are suitable at the low concentrations that are often encountered in the environment. A number of approaches for unbiased sampling of large particles have been found in the literature. Some are identified as meriting further study, for application in the measurement of airborne radioactivity. (author)

  5. Code of practice for the use of sealed radioactive sources in borehole logging (1998)

    International Nuclear Information System (INIS)

    1989-12-01

    The purpose of this code is to establish working practices, procedures and protective measures which will aid in keeping doses, arising from the use of borehole logging equipment containing sealed radioactive sources, to as low as reasonably achievable and to ensure that the dose-equivalent limits specified in the National Health and Medical Research Council s radiation protection standards, are not exceeded. This code applies to all situations and practices where a sealed radioactive source or sources are used through wireline logging for investigating the physical properties of the geological sequence, or any fluids contained in the geological sequence, or the properties of the borehole itself, whether casing, mudcake or borehole fluids. The radiation protection standards specify dose-equivalent limits for two categories: radiation workers and members of the public. 3 refs., tabs., ills

  6. Study on induced radioactivity of China Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wu Qingbiao; Wang Qingbin; Wu Jingmin; Ma Zhongjian

    2011-01-01

    China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.(authors)

  7. Declaration and authorization forms for the fabrication, distribution or use of radioactive sources or electric generators of ionizing radiation; Formulaires de declaration et d'autorisation de fabrication, de distribution ou d'utilisation de sources radioactives ou de generateurs electriques de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document gathers all the forms to be completed when declaring or when asking for an authorization for the fabrication, retailing or use of radioactive sources or electric equipment generating ionizing radiation. These forms can concern all domains (use of sealed radioactive sources, possession and use of a particle accelerator or of radionuclides, import or export of radionuclides or of products containing radionuclides), or the use of such materials or equipment in the medical sector, or the fabrication and use in industry or research, or in user's guides for radioactive sources

  8. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  9. Management and packaging of radioactive sources (90Sr) for their transport

    International Nuclear Information System (INIS)

    Morales C, M; Roas Z, N.

    2000-09-01

    This work describes the different activities that were carried out in relation to the identification of five sources of 90 Sr and the administrative administrations in the face of the regulatory authority of the country, Comision Nacional de Energia Atomica (CONEA), for the transfer of the sources toward its final destination. The preparation of the package and the documentation presented before the CONEA were in agreement to that settled down in the Regulation for the safe transport of radioactive materials (IAEA)

  10. Management of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    2002-09-01

    The objective of this report is to provide all people involved in the handling and management of high activity sources with sufficient information about processes that are required for the safe management of spent high activity radioactive sources (SHARS). This includes examples of spent source management that are already taking place and also a description of the range of appropriate options that are available for each stage in the management process. This report also aims to identify the important issues to be addressed in order to develop a waste management strategy as part of the integrated management strategy that takes account of international experience and the guidance and principles that have been learned from that experience. This report relates specifically to SHARS, which are spent sources that have the potential, with short exposures, to produce acute health effects if handled incorrectly. In addition, they may also incur significant economic costs in any retrieval or environmental remediation operation, following loss of or damage to such a source. The report provides guidance on the technical, administrative and economic issues associated with SHARS from the moment they cease to be in use through to disposal, including temporary storage, transport, conditioning and interim storage

  11. Radioactive inventories and sources for contamination of the Kara Sea

    International Nuclear Information System (INIS)

    Bradley, D.J.; Jenquin, U.P.

    1995-01-01

    The focus of this paper is on detailing the magnitudes of the sources of radionuclides that may be available, or have already been released to the Ob and Yenisey river systems. The emphasis is on the amounts of radioactivity that have been discharged to the environment in the West Siberian Basin. This are potential source terms to the Kara Sea via the Ob and Yenisey rivers. Russian estimates of what has been discharged to the Barents and Kara Seas, including direct ocean discharges, are summarized to provide some perspective on contamination of the Kara Sea. 1 fig., 3 tabs

  12. The detection of orphan radioactive sources and the regulatory attitude; La deteccion de fuentes radiactivas huerfanas y la actitud regulatoria

    Energy Technology Data Exchange (ETDEWEB)

    Truppa, W.; Amodei, A.; Castro, L.; Rojas, C. [Autoridad Regulatoria Nuclear, Subgerencia Control de Instalaciones Radiactivas Clase ll y III, Av. Del Libertador 8250 Ciudad de Buenos Aires (C1429BNP) (Argentina)]. e-mail: wtruppa@sede.arn.gov.ar

    2006-07-01

    In the last decade, the appearance of orphan control radioactive sources has been one constant restlessness in the environment of the regulatory control. Of the well-known cases in the world the more common have been the appearance of type sources or industrial use, which by control lack, by negligence or abandonment were without the due protection and receipt. It is presented in this work the detection of a radioactive source of Cs-137 pickup among the scrap that entered to an important steelworks of the country, by a detector of portal type. Starting from there, Ia Nuclear Regulatory Authority (ARN) it carried out a deep investigation to determine the origin of the radioactive source, which drove to detect and to put low control to other three radioactive sources of the same type used in level measurement, originally housed in a tank of daily consumption of gas-oil, inside a craft that it was broken up for it sale like scrap. During the execution of these tasks they took the regulatory collection, chord to what indicates the normative of the Argentine Republic, harmonized by the international requirements as for the control of radioactive material. (Author)

  13. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  14. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  15. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  16. Management of disused long lived sealed radioactive sources (LLSRS)

    International Nuclear Information System (INIS)

    2003-06-01

    The document provides advice the sealed source users and the national waste management organizations with the technical know-how on the management of disused and spent long lived sealed radioactive sources (LLSRS) and with the particular guidelines required for handling, conditioning for storage, and storage of these sources. The guidance is intended to assist in establishing compliance with the present standards, requirements, and adopted practices. It also provides background material for any possible technical assistance to developing countries and serves as a reference for technical staff involved with IAEA programmes on the subject. Because of the historic nature of many of the sources under this category and the lack of well developed technical procedures recognized on the international level, this publication can serve as a basis for establishing future handling and conditioning procedures. The LLSRS addressed in this publication are primarily those containing radionuclides having half-lives greater than 30 years. These sources may contain long lived alpha-emitters, mainly 238 Pu, 239 Pu, 237 Np, 241 Am, 226 Ra; beta-emitters: 14 C, and 63 Ni and could be neutron sources such as PuBe, RaBe and AmBe

  17. Management of spent sealed radioactive sources in the European Union

    International Nuclear Information System (INIS)

    Cecille, L.; Taylor, D.

    2000-01-01

    For several years, the European Commission (EC) has been active in the field of spent sealed radioactive sources (SSRS) to improve management schemes and to prepare Euratom Directives that will impact on national legislation and regulatory schemes in European Member States (MS). The main safety issues related to the management of SSRS are described and recommendations made are presented. Additional projects are outlined. (author)

  18. Virtual Reality Based Accurate Radioactive Source Representation and Dosimetry for Training Applications

    International Nuclear Information System (INIS)

    Molto-Caracena, T.; Vendrell Vidal, E.; Goncalves, J.G.M.; Peerani, P.; )

    2015-01-01

    Virtual Reality (VR) technologies have much potential for training applications. Success relies on the capacity to provide a real-time immersive effect to a trainee. For a training application to be an effective/meaningful tool, 3D realistic scenarios are not enough. Indeed, it is paramount having sufficiently accurate models of the behaviour of the instruments to be used by a trainee. This will enable the required level of user's interactivity. Specifically, when dealing with simulation of radioactive sources, a VR model based application must compute the dose rate with equivalent accuracy and in about the same time as a real instrument. A conflicting requirement is the need to provide a smooth visual rendering enabling spatial interactivity and interaction. This paper presents a VR based prototype which accurately computes the dose rate of radioactive and nuclear sources that can be selected from a wide library. Dose measurements reflect local conditions, i.e., presence of (a) shielding materials with any shape and type and (b) sources with any shape and dimension. Due to a novel way of representing radiation sources, the system is fast enough to grant the necessary user interactivity. The paper discusses the application of this new method and its advantages in terms of time setting, cost and logistics. (author)

  19. Radioactive heat source and method of making same

    International Nuclear Information System (INIS)

    Elsner, N.B.

    1977-01-01

    A radioactive source of heat which is resistant to cremation conditions is made by encapsulating a radioisotope within a containment vessel and forming a refractory metal silicide diffusion coating exterior thereof. A secondary molybdenum vessel may be provided with a molybdenum silicide coating and then heated in air to oxidize its outer layer. A layer is applied exterior of the diffusion-coating which provides a continuous ceramic oxide layer upon subjection to cremation. This outer layer may be discrete silica carried in a hardenable binder of an organic polymer, and a minor amount of antimony is preferably also included

  20. Risk Prevention for Nuclear Materials and Radioactive Sources

    International Nuclear Information System (INIS)

    Badawy, I.

    2008-01-01

    The present paper investigates the parameters which may have effects on the safety of nuclear materials and other radioactive sources used in peaceful applications of atomic energy. The emergency response planning in such situations are also indicated. In synergy with nuclear safety measures, an approach is developed in this study for risk prevention. It takes into consideration the collective implementation of measures of nuclear material accounting and control, physical protection and monitoring of such strategic and dangerous materials in an integrated and coordinated real-time mode at a nuclear or radiation facility and in any time

  1. Radiation-hygienic estimation of interstitial gamma therapy conducted according to principle of subsequent introduction of radioactive sources

    International Nuclear Information System (INIS)

    Zamyatin, O.A.; Golikov, V.Ya.; Korenkov, I.P.; Ter-Kazar'yan, N.S.; Mindlin, G.M.

    1978-01-01

    A comparative study of two radiation-hygienic methods of interstitial gamma-therapy: with subsequent introduction of radioactive needles of a standard type; with subsequent manual introduction of 60 Co sources have been carried out. Chronometry-dosimetric methods of investigation and the methods of individual dosimetry underlie the studies. The obtained data showed, that doses of irradiation to which medical personnel is subjected during the use of the method of subsequent manual introduction of the active sources are 3-4 times lower, than those during the introduction of standard radioactive needles with a higher quality of the procedure performance, ensuring a good therapeutic effect. All this makes it possible to consider interstitial gamma-therapy with the use of the principle of subsequent introduction of the source to be a more perspective method than interstitial gamma-therapy with the use standard radioactive needless 60 Co

  2. Remote monitoring of radioactive sources based on i.MX27 platform

    International Nuclear Information System (INIS)

    Li Defeng; Wang Renbo; Lin Gangyong; Ding Yufei

    2012-01-01

    It based on the ASIC solutions, has chosen Freescale's i.MX27 development system as a platform for designing video capture and transmission system. The article uses the latest H.264 video compression standard and complete the entire system of hardware and software design, which is successfully applied to remote monitoring of radioactive sources. (authors)

  3. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  4. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  5. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    Energy Technology Data Exchange (ETDEWEB)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M. [Centro de lnvestigacion en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua, (Mexico); Rodriguez P, A. [World Wildlife Fund (WWF), Chihuahuan Desert Program, Coronado 1005, 31000 Chihuahua (Mexico); Manjon C, G.; Garcia T, R. [Universidad de Sevilla, Departamento de Fisica Aplicada 11, ETS Arquitectura, Av. Reina Mercedes 2, 41012 Sevilla, (Spain); Crespo, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid, (Spain)]. e-mail: elena.montero@cimav.edu.mx

    2007-07-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  6. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    International Nuclear Information System (INIS)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M.; Rodriguez P, A.; Manjon C, G.; Garcia T, R.; Crespo, T.

    2007-01-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  7. Characterization of radioactive orphan sources by gamma spectrometry; Caracterizacion de fuentes huerfanas radiactivas por espectrometria gamma

    Energy Technology Data Exchange (ETDEWEB)

    Cruz W, H., E-mail: wcruz@ipen.gob.pe [Instituto Peruano de Energia Nuclear (PGRR/IPEN), Lima (Peru). Planta de Gestion de Residuos Radiactivos

    2013-07-01

    The sealed radioactive sources are widely applicable in industry. They must have a permanent control and must be registered with the Technical Office of the National Authority (OTAN). However, at times it has identified the presence of abandoned sealed sources unknown to the owner. These sources are called 'orphan sources'. Of course these sources represent a high potential risk because accidents can trigger dire consequences depending on your activity and chemical form in which it presents the radioisotope. This paper describes the process and the actions taken to characterize two orphan radioactive sources from the smelter a Aceros Arequipa. For characterization we used a gamma spectrometry system using a detector NaI(Tl) 3″ x 3″ with a multichannel analyzer Nucleus PCA-II. The radioisotope identified was cesium - 137 ({sup 137}Cs) in both cases. Fortunately, the sources maintained their integrity would otherwise have generated significant pollution considering the chemical form of the radioisotope and easy dispersion. (author)

  8. COMPARISON OF RECURSIVE ESTIMATION TECHNIQUES FOR POSITION TRACKING RADIOACTIVE SOURCES

    International Nuclear Information System (INIS)

    Muske, K.; Howse, J.

    2000-01-01

    This paper compares the performance of recursive state estimation techniques for tracking the physical location of a radioactive source within a room based on radiation measurements obtained from a series of detectors at fixed locations. Specifically, the extended Kalman filter, algebraic observer, and nonlinear least squares techniques are investigated. The results of this study indicate that recursive least squares estimation significantly outperforms the other techniques due to the severe model nonlinearity

  9. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    An Hongxiang; Fan Zhiwen; Al-Mughrabi, M.

    2011-01-01

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 10 13 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  10. Order No 485 on the use of unsealed radioactive sources in hospitals, laboratories, etc

    International Nuclear Information System (INIS)

    1985-11-01

    This Order, made in furtherance of an Order of 20 Novembre 1975 concerning safety precautions in the use of radioactive substances, implements in Directive 80/836/Euratom on radiation protection. It lays down a licensing system for the purchase and use of unsealed radioactive sources and also provides for their storage and disposal. The National Board of Health is the licensing authority. The Order also prescribes radiation protection measures for laboratory personnel [fr

  11. The Russian Northern Fleet. Sources of radioactive contamination

    International Nuclear Information System (INIS)

    Nilsen, T.; Kudrik, I.; Nikitin, A.

    1996-08-01

    The report describes the problems that the Russian Northern Fleet is experiencing with its nuclear powered vessels and with the storage of spent fuel and other nuclear wastes that the operation of these vessels generates. One of the most serious problems is the lack of regional storage and treatment facilities for radioactive waste. This waste is now deposited haphazardly throughout the various navy yards and bases. The establishment of a regional storage facility for spent fuel, radioactive reactor components, and liquid and solid nuclear waste is a necessary precondition for carrying out the decommissioning of nuclear submarines in an environmentally viable manner. A recurrent theme in the report is the lack of civilian control over the different Northern Fleet nuclear facilities. This leads to a disregard of international recommendations with regard to the handling of nuclear waste. Considerable effort has been made to provide comprehensive references in the report, making it clear that the authors sources of information have been open. By presenting this information the authors hope to contribute to increased insight and consequently to help realize necessary national and international measures. 93 refs

  12. The Russian Northern Fleet. Sources of radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, T [Bellona Foundation, Oslo (Norway); Kudrik, I [Bellona Foundation Branch Office, Murmansk (Russian Federation); Nikitin, A [Scientific Production Association ` ` Typhoon` ` , Obninsk (Russian Federation)

    1996-08-01

    The report describes the problems that the Russian Northern Fleet is experiencing with its nuclear powered vessels and with the storage of spent fuel and other nuclear wastes that the operation of these vessels generates. One of the most serious problems is the lack of regional storage and treatment facilities for radioactive waste. This waste is now deposited haphazardly throughout the various navy yards and bases. The establishment of a regional storage facility for spent fuel, radioactive reactor components, and liquid and solid nuclear waste is a necessary precondition for carrying out the decommissioning of nuclear submarines in an environmentally viable manner. A recurrent theme in the report is the lack of civilian control over the different Northern Fleet nuclear facilities. This leads to a disregard of international recommendations with regard to the handling of nuclear waste. Considerable effort has been made to provide comprehensive references in the report, making it clear that the authors sources of information have been open. By presenting this information the authors hope to contribute to increased insight and consequently to help realize necessary national and international measures. 93 refs.

  13. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources

  14. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources.

  15. Search for lost or orphan radioactive sources based on NaI gamma spectrometry

    International Nuclear Information System (INIS)

    Aage, H.K.; Korsbech, U.

    2003-01-01

    Within recent decades many radioactive sources have been lost, stolen, or abandoned, and some have caused contamination or irradiation of people. Therefore reliable methods for source recovery are needed. The use of car borne NaI(Tl) detectors is discussed. Standard processing of spectra in general can disclose strong and medium level signals from manmade nuclides. But methods for detecting low level signals from weak, distant or shielded sources can be improved. New methods for source detection and identification based on noise adjusted singular value decomposition and on area specific stripping of spectra are presented

  16. Study of radioactive sources accumulation with application of thermoluminescence dosemeters on the base of alkaline earth metals sulfates

    International Nuclear Information System (INIS)

    Tokbergenov, I.; Sadykov, T.

    2001-01-01

    Methodic for study of accumulation and distribution of radioactive sources in a nature objects is developed. An essence of the method consists of in that quantity of accumulated radioactive sources in a nature objects is defining by absorption dose measured with help of thermoluminescent dosemeters on the base of alkaline earth metals sulfates such as CaSO 4 :Dy and SrSO 4 :Eu

  17. Experimental methods in radioactive ion-beam target/ion source development and characterization

    International Nuclear Information System (INIS)

    Welton, R.F.; Alton, G.D.; Cui, B.; Murray, S.N.

    1998-01-01

    We have developed off-line experimental techniques and apparatuses that permit direct measurement of effusive-flow delay times and ionization efficiencies for nearly any chemically reactive element in high-temperature target/ion sources (TIS) commonly used for on-line radioactive ion-beam (RIB) generation. The apparatuses include a hot Ta valve for effusive-flow delay-time measurements, a cooled molecular injection system for determination of ionization efficiencies, and a gas flow measurement/control system for introducing very low, well-defined molecular flows into the TIS. Measurements are performed on a test stand using molecular feed compounds containing stable complements of the radioactive nuclei of interest delivered to the TIS at flow rates commensurate with on-line RIB generation. In this article, the general techniques are described and effusive-flow delay times and ionization efficiency measurements are reported for fluorine in an electron-beam plasma target/ion source developed for RIB generation and operated in both positive- and negative-ion extraction modes. copyright 1998 American Institute of Physics

  18. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. Few technical issues remain in determining the shape of the IAEA's revision of its regulations to accommodate air transport of large quantities of radioactive material. In the next two years the detailed wording of the regulations will be fully worked out and proposed for inclusion in SS6. Considering the breadth of the member state participation in the process, it seems likely that the approved version of the 1995 revision of SS6 will contain air mode revisions that move away from the predominantly mode independent character that characterized their first 30 years. (J.P.N.)

  19. Expansion design for a radioactive sources handling laboratory type II class B

    International Nuclear Information System (INIS)

    Sanchez S, P. S.; Monroy G, F.; Alanis, J.

    2013-10-01

    The Radioactive Wastes Research Laboratory (RWRL) of the Instituto Nacional de Investigaciones Nucleares (Mexico), at the moment has three sections: instrumental analysis, radioactive material processes, counting and a license type II class C, to manipulate radioactive material. This license limits the open sources handling to 300 kBq for radionuclides of very high radio-toxicity as the Ra-226, for what is being projected the license extension to type II class B, to be able to manage until 370 MBq of this radionuclides type, and the Laboratory, since the location where is the RWRL have unused area. This work presents a proposal of the RWRL expansion, taking into account the current laboratory sections, as well as the established specifications by the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The current planes of the RWRL and the expansion proposal of the laboratory are presented. (Author)

  20. Application of wireless sensor network to problems of detection and tracking of radioactive sources

    International Nuclear Information System (INIS)

    Dupuy, P

    2006-01-01

    International efforts are being conducted to warranty a continuous control of radioactive sources. A theoretical and practical study has been achieved about the feasibility of installing wireless sensor networks on nuclear installations, or plants that uses radioactive material. The study is faced through the implementation of a system designed over the relatively new platform of motes, that gives a great flexibility for distributing sensors taking advantages of new wireless technologies and high-level programming. The work shows an analysis of the state of the technique of sensors, detectors, antennas and power supply including nuclear power supply. It also shows contributions on these fields by experimentation and proposed designs. Three applications that justify the technology are shown and a demonstration project is proposed. The social improvements of the system basically are a technical approach to the continuous control of radioactive sources during their life cycle and the online monitoring of the staff with the possibility of identifying and optimizing the procedures that are the maximum of expositions in practice or detecting potentials expositions [es

  1. Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components

    International Nuclear Information System (INIS)

    Lewis, Mark S.

    2008-01-01

    The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation

  2. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  3. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on

  4. A study on the safety of spent fuel management. Radioactive source term modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Lee, Hoo Keun; Park, Keun Il; Hwoang, Jung Ki; Chung, Choong Hwan [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1992-02-01

    The types and probabilities of events which may occur during the process of reception, transfer and storage of spent fuels in an away-from-reactor (AFR) spent fuel storage facility were analyzed in order to calculate the amount of radioactive material released to operation area and atmosphere, and the basic model for predicting the radioactive source-term under normal and abnormal operations were developed. Also, oxidation and dissolution of U0{sub 2} pellet was investigated to estimate the amount of radioactive materials released from spent fuel and the release characteristics of radionuclides from defected spent fuel rods was analyzed. Basic information using FIRAC code to analyze the ventilation system during fire accident was prepared and FIRIN was detached from FIRAC modified to simulate the compartment fire by personal computer. (Author).

  5. Design and production of activimeters verification sealed radioactive sources

    International Nuclear Information System (INIS)

    Serra, R.; Hernandez Rivero, A. T.; Oropesa, P.; Rapado, M.; Falcon, L.

    2006-01-01

    Measurement in a radionuclide calibrator (activimeter) of the doses to be administered to a patient for diagnosis or radiotherapeutic treatment is an essential element in Nuclear Medicine practice. To assure that patient will receive the optimal doses that guarantee the necessary quality of the image to be studied or optimum radiotherapeutic effect, the activity determination should fulfil established accuracy requirements. To this aim, the overall uncertainty in activity determination must not surpass a preestablished limit of about 10 % for the expanded uncertainty of the activity value (with a coverage factor k = 3). To have suitable equipment, periodically calibrated for specialized and authorized specialists and frequently verified in inter calibration periods to guarantee detection of any malfunctioning, are essential requirements to assure the compliance with the prescribed regulations and limiting values. This paper describes the design and production of two models of 137 Cs activimeters verification sealed radioactive sources elaborated with this aim at the Radionuclide Metrology Department of the Isotope Centre of Cuba. Taking into account the international experience in this field was defined 3 -10 MBq as convenient activity range, the 137 Cs as a suitable radionuclide, and a classification ISO/99/C22212 (ISO 2919:1999) for the sealed sources to be obtained. In designed and produced models the activity is bonded in a hydrogel copolymer obtained by gamma irradiation, in a 60 Co irradiator, of a mixture of a 137 Cs aqueous solution with an approximate activity of 5 MBq with two proper monomers (acrylamide and methacrylic acid). The density of obtained copolymer is similar to that of the radioactive solutions employed in nuclear medicine departments for diagnosis and therapy. The obtained sources have appropriate physical stability for a temperature range between 40 o C below zero and 80 o C, as well as for defined activity range. The stability of the

  6. Production of calibration sources and/or radioactive tracers with the cyclotron CV-28

    International Nuclear Information System (INIS)

    Osso Junior, Joao Alberto

    1995-01-01

    The present stage of production of calibration sources and radioactive tracers with the Cyclotron CV-28 is described. Among the methods already developed special attention is given to the production of 57 Co, 109 Cd and 111 In. (author). 3 refs

  7. Attenuation of contaminant plumes in homogeneous aquifers: Sensitivity to source function at moderate to large peclet numbers

    International Nuclear Information System (INIS)

    Selander, W.N.; Lane, F.E.; Rowat, J.H.

    1995-05-01

    A groundwater mass transfer calculation is an essential part of the performance assessment for radioactive waste disposal facilities. AECL's IRUS (Intrusion Resistant Underground Structure) facility, which is designed for the near-surface disposal of low-level radioactive waste (LLRW), is to be situated in the sandy overburden at AECL's Chalk River Laboratories. Flow in the sandy aquifers at the proposed IRUS site is relatively homogeneous and advection-dominated (large Peclet numbers). Mass transfer along the mean direction of flow from the IRUS site may be described using the one-dimensional advection-dispersion equation, for which a Green's function representation of downstream radionuclide flux is convenient. This report shows that in advection-dominated aquifers, dispersive attenuation of initial contaminant releases depends principally on two time scales: the source duration and the pulse breakthrough time. Numerical investigation shows further that the maximum downstream flux or concentration depends on these time scales in a simple characteristic way that is minimally sensitive to the shape of the initial source pulse. (author). 11 refs., 2 tabs., 3 figs

  8. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  9. Radiological assessment of the radioactive wastes management

    International Nuclear Information System (INIS)

    Domenech Nieves, Haydee; Hernandez Saiz, Alejandro

    1996-01-01

    In the work are obtained the dose values resulting from the evaluation of the conditioning operations of wastes in the scenarios of exposure that are mentioned and are compared with the dose restriction suggested for the moment for such tasks. The radioactive wastes that are evaluated in the work are: liquids -both those from the generating institutions and the ones stored in the Managua- located deposit, Radon-226 not-in-use solids and sources 226: the results demonstrate that it is possible to treat in a year the total volume of the liquid and solid radioactive wastes as well as a large number of sources of Radon-226

  10. Radioactivity measurements in Egyptian Phosphate Mines and Their Significance As a Source of Hazardous Radioactive Waste

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.; Abdel Hady, M.L.

    1999-01-01

    Phosphate mines that may contain radioactive traces in the composition of their ores represent source of hazardous radioactive waste in the environment. Radioactivity measurements have been conducted in nine underground phosphate mines in the Egyptian Eastern Desert in order to estimate the occupational radiation exposure of mine workers in those mining sites. Measurements were carried out of airborne radon and its short- lived decay products (progeny) and thoron progeny, as well as radiation from mines walls, ceilings and floors. Conventional, well established techniques, methods and instrumentation were used to make these measurements. Comparison of experimental data and theoretical predictions showed partial agreement between these two sets of data. This result is partly attributed to the complex layout of these mines, which causes undesirable ventilation conditions, such as recirculation airflow patterns, which could not be adequately identified or quantified. The radiation data obtained were used to estimate the maximum Annual Dose (MAD), and other important occupational radiation exposure variables. These calculations indicate that in eight out of the nine mines surveyed, the MAD exceeded (by a factor of up to 7) the maximum recommended level by ICRP 60. Numbers of suggestions are made in order to reduce the MAD in the affected mines. This study could help in the estimation of the environmental impact of these mine operations on the environment

  11. Radioactive particles in the environment: sources, particle characterization and analytical techniques

    International Nuclear Information System (INIS)

    2011-08-01

    Over the years, radioactive particles have been released to the environment from nuclear weapons testing and nuclear fuel cycle operations. However, measurements of environmental radioactivity and any associated assessments are often based on the average bulk mass or surface concentration, assuming that radionuclides are homogeneously distributed as simple ionic species. It has generally not been recognised that radioactive particles present in the environment often contain a significant fraction of the bulk sample activity, leading to sample heterogeneity problems and false and/or erratic measurement data. Moreover, the inherent differences in the transport and bioavailability of particle bound radionuclides compared with those existing as molecules or ions have largely been ignored in dose assessments. To date, most studies regarding radionuclide behaviour in the soil-plant system have dealt with soluble forms of radionuclides. When radionuclides are deposited in a less mobile form, or in case of a superposition of different physico-chemical forms, the behaviour of radionuclides becomes much more complicated and extra efforts are required to provide information about environmental status and behaviour of radioactive particles. There are currently no documents or international guides covering this aspect of environmental impact assessments. To fill this gap, between 2001 and 2008 the IAEA performed a Coordinated Research Programme (CRP- G4.10.03) on the 'Radiochemical, Chemical and Physical Characterization of Radioactive Particles in the Environment' with the objective of development, adoption and application of standardized analytical techniques for the comprehensive study of radioactive particles. The CRP was in line with the IAEA project intended to assist the Member States in building capacity for improving environmental assessments and for management of sites contaminated with radioactive particles. This IAEA-TECDOC presents the findings and achievements of

  12. Some statistical problems inherent in radioactive-source detection

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1978-01-01

    Some of the statistical questions associated with problems of detecting random-point-process signals embedded in random-point-process noise are examined. An example of such a problem is that of searching for a lost radioactive source with a moving detection system. The emphasis is on theoretical questions, but some experimental and Monte Carlo results are used to test the theoretical results. Several idealized binary decision problems are treated by starting with simple, specific situations and progressing toward more general problems. This sequence of decision problems culminates in the minimum-cost-expectation rule for deciding between two Poisson processes with arbitrary intensity functions. As an example, this rule is then specialized to the detector-passing-a-point-source decision problem. Finally, Monte Carlo techniques are used to develop and test one estimation procedure: the maximum-likelihood estimation of a parameter in the intensity function of a Poisson process. For the Monte Carlo test this estimation procedure is specialized to the detector-passing-a-point-source case. Introductory material from probability theory is included so as to make the report accessible to those not especially conversant with probabilistic concepts and methods. 16 figures

  13. Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa (FNRBA)

    International Nuclear Information System (INIS)

    Severa, R.

    2010-01-01

    Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa(FNRBA) is a regional organization comprising of nuclear regulatory bodies it’s goals are to promote the establishment of regulatory infrastructure in all countries of the Region to adopt joint action plan for implementation of self-assessment and work with Member States to upgrade their regulatory infrastructures, develop and promote a framework for capacity building in areas of radiation and nuclear safety and security, to create an opportunity for mutual support and coordination of regional initiatives by leveraging the development and utilization of regional and international resources and expertise and to serve as reference body on matters relating to nuclear and radiation safety and security in the Region. Radioactive active sources continue to play an increasingly important role in socio-economic activities on the African continent. There is also an ever increasing need to ensure that radioactive sources are utilized in a safe and secure manner

  14. Safety and security of radiation sources and radioactive materials: A case of Zambia - least developed country

    International Nuclear Information System (INIS)

    Banda, S.C.

    1998-01-01

    In Zambia, which is current (1998) classified as a Least Developed Country has applications of nuclear science and technology that cover the medical, industrial, education and research. However, the application is mainly in medical and industry. Through the responsibility of radiation source is within the mandate of the Radiation Protection Board. The aspects involving security fall on different stake holders some that have no technical knowledge on what radiation is about. The stake holders in this category include customs clearing and forwarding agents, state security/defence agencies and the operators. Such a situation demands a national system that should be instituted to meet the safety and security requirements but takes into account the involvement of the diverse stake holders. In addition such system should avoid unnecessary exposure, ensure safety of radioactive materials and sources, detect illicit trade and maintain integrity of such materials or sources. This paper will provide the status on issue in Zambia and the challenges that exist to ensure further development in application of Nuclear Science and Technology (S and T) in the country takes into account the safety and security requirements that avoid deliberate and accidental loss of radiation sources and radioactive materials. The Government has a responsibility to ensure that effective system is established and operated to protect radiation sources and radioactive materials from theft, sabotage and ensure safety. (author)

  15. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  16. Management of nontritium radioactive wastes from fusion power plants

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-09-01

    This report identifies nontritium radioactive waste sources for current conceptual fusion reactor designs. Quantities and compositions of the radwaste are estimated for the tokamaks of the University of Wisconsin (UWMAK-I), the Princeton Plasma Physics Laboratory (PPPL), and the Oak Ridge National Laboratory (ORNL); the Reference Theta Pinch Reactor of the Los Alamos Scientific Laboratory (LASL); and the Minimum Activation Blanket of the Brookhaven National Laboratory (BNL). Disposal of large amounts of radioactive waste appears necessary for fusion reactors. Although the curie (Ci) level of the wastes is comparable to that of fission products in fission reactors, the isotopes are less hazardous, and have shorter half-lives. Therefore radioactivity from fusion power production should pose a smaller risk than radioactivity from fission reactors. Radioactive waste sources identified for the five reference plants are summarized. Specific radwaste treatments or systems had to be assumed to estimate these waste quantities. Future fusion power plant conceptual designs should include radwaste treatment system designs so that assumed designs do not have to be used to assess the environmental effects of the radioactive waste

  17. Theoretical and instrumental aspects of preparation of radioactive sources for precise nuclear spectroscopy

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Kadyrzhanov, K.K.; Zhdanov, V.S.

    2005-01-01

    Full text: Precise investigations of spectra from nuclear radiations are quite sensitive to quality of radiation sources used. In an ideal case a source should introduce no noticeable distortion into registered spectrum. In spectroscopy of low-energy gamma-quanta, electrons and alpha particles sample preparation quite frequently turns to be challenging independent scientific investigation. Source preparation is conventionally performed at two stages - extraction of activity from a target and its uniform distribution over a substrate. A general requirement to such radioactive layer is maximal total and specific activity. Unfortunately, there is no universal source preparation method currently available for precise spectroscopy. In a number of cases excellent results are provided by fractional sublimation method based on ability of some elements to evaporate from target material at heating. The method demonstrates a several advantages. The paper introduces a complex of experimental equipment for preparation of high-quality radioactive sources. This complex is arranged in a well-protected heavy box equipped with master-slave manipulators. Biological protection of the box makes it possible to handle activities up to 10 11 Bq. Main part of the complex is a special vacuum post that assures works with active samples in the vacuum up to 10 -7 mm Hg - the operations include fractional sublimation, thermal evaporation, thermal diffusion, evaporation by electron beam, etc. All units of the vacuum post arranged in the box are designed to work with master-slave manipulators. The post is mainly used for preparation of a high-quality beta sources and extraction of microamounts of radionuclides from reactor and cyclotron targets by the method of fractional sublimation. Another important unit of the complex is an equipment for selective chemisorption in vacuum. Complex comprises all required auxiliary equipment The entire complex operated at high rate of reliability. The paper pays

  18. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  19. Report on the legislation in the field of nuclear safety and regulatory control of radiation sources and radioactive materials in Yugoslavia

    International Nuclear Information System (INIS)

    Kolundzija, V.

    2001-01-01

    The national regulatory infrastructure in Yugoslavia is described in the report, including the legal framework governing the safety of radiation sources and the security of radioactive materials. The organization and competencies of the Yugoslav Nuclear Safety Administration are explained, in particular regarding the national system of notification, registration, licensing, inspection and enforcement of radiation sources and radioactive materials, where the Federal Ministry of Economy and the Federal Ministry of Labour, Health and Social Policy are sharing competencies. Finally, the report refers to the national provisions on the management of disused sources; on planning, preparedness and response to abnormal events and emergencies; on the recovery of control over orphan sources; and on the education and training in the safety of radiation sources and the security of radioactive materials. (author)

  20. Effective regulatory control of radioactive sources

    International Nuclear Information System (INIS)

    Meserve, R.A.

    2001-01-01

    This paper provides an overview of the situation in the USA regarding government control over use of radiation sources, the challenges it faces and the potential paths to their resolution. In the light of the large number of radiation sources in use worldwide, the safety record on balance is remarkably good. But there is still considerable room for improvement. The IAEA has an important role to play, and it is playing it effectively

  1. The role of the Gosatomnadzor of Russia in national regulating of safety of radiation sources and security of radioactive materials

    International Nuclear Information System (INIS)

    Mikhailov, M.V.; Sitnikov, S.A.

    2001-01-01

    As at the end of 1999, the Gosatomnadzor of Russia supervised 6551 radiation sources, including 1285 unsealed sources with individual activity from a minimal level to 1x10 12 Bq and a total activity of 585x10 12 Bq, and also 5266 sealed sources with individual activity from 30 to 1x10 17 Bq and the total activity of more than 11x10 17 Bq. A national infrastructure has been created in the Russian Federation in order to regulate the safety of nuclear energy use. The infrastructure includes the legal system and the regulatory authorities based on and acting according to it. The regulation of radiation safety, including assurance of radiation source safety and radioactive material security (management of disused sources, planning, preparedness and response to abnormal events and emergencies, recovery of control over orphan sources, informing users and others who might be affected by lost source, and education and training in the safety of radiation sources and the security of radioactive materials), is realized within this infrastructure. The legal system includes federal laws ('On the Use of Nuclear Energy' and 'On Public Radiation Safety'), a number of decrees and resolutions of the President and the Government of the Russian Federation, federal standards and rules for nuclear energy use, and also departmental and industrial manuals and rules, State standards, construction standards and rules and other documents. The safety regulation tasks have been defined by these laws, according to which regulatory authorities are entrusted with the development, approval and putting into force of standards and rules in the nuclear energy use, with issuing licenses for carrying out nuclear activities, with safety supervision assurance, with review and inspection implementation, with control over development and realization of protective measures for workers, population and environment in emergencies at nuclear and radiation hazardous facilities. Russian national regulatory

  2. Radon adsorbed in activated charcoal—a simple and safe radiation source for teaching practical radioactivity in schools and colleges

    Science.gov (United States)

    Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.

    2012-07-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal. Radon gas from ambient air in the laboratory was adsorbed into about 70 g of activated charcoal inside metallic canisters. Gamma radiation was subsequently emitted from the canisters, following the radioactive decay of radon and its progenies. The intensities of the emitted gamma-rays were measured at suitable intervals using a NaI gamma-ray detector. The counts obtained were analysed and used to demonstrate the radioactive decay law and determine the half-life of radon. In addition to learning the basic properties of radioactivity the students also get practical experience about the existence of natural sources of radiation in the environment.

  3. Radon adsorbed in activated charcoal- a simple and safe radiation source for teaching practical radioactivity in schools and colleges

    International Nuclear Information System (INIS)

    Al-Azmi, D.S.

    2014-01-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, an ubiquitous inert gas, and the adsorptive property of activated charcoal. Radon gas from ambient air in the laboratory was adsorbed into about 70 gram of activated charcoal inside metallic canisters. Gamma radiation was subsequently emitted from the canisters, following the radioactive decay of radon and its progenies. The intensities of the emitted gamma-rays were measured at suitable intervals using a NaI gamma-ray detector. The counts obtained were analysed and used to demonstrate the radioactive decay law and determine the half-life of radon. In addition to learning the basic properties of radioactivity, the students also get practical experience about the existence of natural sources of radiation in the environment. (author)

  4. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  5. French studies for improvement of the data for radioactive sources

    International Nuclear Information System (INIS)

    Duchemin, B.; Nimal, B.; Nimal, J.C.; Blachot, J.; Chouha, M.

    1988-01-01

    The 1987 version of the CEA radioactivity data bank is just distributed. This data bank is used to compute concentrations, activities, β and γ spectra, which give sources for shielding purposes. To improve this data bank at short cooling time (t < 200 sec) a methodology based on the statistical model is used to take account of the upper unknown levels. To give an example of the results we get, a brief summary of the studies we made for the TCHERNOBYL case is given

  6. Environmental radiation control and quality management system in design and operation of sealed radioactive sources

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2007-01-01

    New environmental regulations and radiation safety standards are being implemented almost daily to ensure radiation safety, in particular for practices causing exposures to undue radiation doses. A particular emphasis of real challenge for organizations and users of radiation sources has to be for proper radiological safety assessment and is becoming cost effectively to be prepared for auditing. Special concern for the environment is of global . nature, and hence environmental auditing has been and will continue to be an essential practice for improving the environment and for meeting the relevant regulations and standards. In general, most facilities that deal with radioactive sources undertake strict safety measures in terms of personnel radiation protection, handling procedures and security. Hence, those measures should comply with the requirements of the environmental protection standards. Accordingly, a successful quality management system must balance realities of organization and personnel in achieving quality objectives. Organizational principles are found in the technical aspects of' quality management, such as, charting, requirements, measurements, procedures, ... , etc. Human principles are found in the communication side of quality management (e.g. meetings, ,decision making, ,teams, ... , etc). The quality management must understand and balance skills needed to blend them together. Large gamma irradiators present a high potential radiation hazard to the surrounding environment, since the amount of radioactivity is of the order of (P Bq) and a very high dose rates are produced during irradiation. Application of environmental radiation control deemed by regulatory authority and a proper quality management system by the utility would serve public health and safety

  7. Control of radioactive materials on the medical science campus

    International Nuclear Information System (INIS)

    Thompson, C.H.; Vandergrift, J.F.; Slayden, S.A.; Dalrymple, G.V.

    1977-01-01

    There are persistent and difficult control problems associated with the large scale use of radionuclides: nowhere are these more apparent than in a large university medical center. If a safe environment is to be maintained with respect to employees, students, patients, and the general public, a program must be devised for effective supervision and control of radioactive sources. An automated system has been developed for the inventory and control of radioactive materials that has proven a valuable asset in a large institution. The reports generated have assisted in making responsible judgements, as well as assuring the continuation of single licensure for the medical science campus. (author)

  8. Regulatory control of radiation sources and radioactive materials in the Czech Republic

    International Nuclear Information System (INIS)

    Drabova, D.; Prouza, Z.

    2001-01-01

    The paper describes legal and regulatory provisions for radiation protection and safe use of sources of ionizing radiation in the Czech Republic with special emphasis on aspects of bringing activities under regulatory control and releasing them from it. It covers the development of a new legal framework, the work of the regulatory body, an overview of sources in use and provisions to achieve effective regulatory control of facilities and releases of radioactive material into the environment. Also, it describes reported unusual events with a proposed scheme for their classification and evaluation. (author)

  9. Assessment of the properties of disused sealed radioactive sources for disposal in a borehole facility

    International Nuclear Information System (INIS)

    Adjepong, K.

    2015-01-01

    Radioactive wastes arise from applications in which radioactive materials are used. Medicine, industries and agriculture are examples of areas where radioactive materials are used. Most of the radioactive materials used in nuclear applications are in the form of sealed radioactive sources (SRS). After a number of usages, the SRS may no longer be useful enough for its original purpose and will be considered as a disused sealed radioactive source (DSRS). DSRS are potentially dangerous to human health and the environment, and therefore important to manage them safely. Currently in Ghana, DSRS are collected and stored awaiting a final disposal option. There are ongoing plans to implement the Borehole Disposal of Disused Sealed Sources (BOSS) system in Ghana as a final disposal option. There are, however, concerns about the number of DSRS disposal packages that can safely be disposed in a narrow borehole underground in a long term without posing any harm to people and the environment. It is therefore necessary to assess the properties of DSRS that need to be placed into the borehole to determine the safety of this disposal option. For this study, 160 DSRS were selected from the DSRS inventory. The present activity, volume, A/D ratio and thermal output of all the DSRS were determined. The SIMBOD database tool was used to determine the number of capsules and disposal packages that will be required with respect to the DSRS registered into it. Also, verification measurements to confirm the DSRS inventory data were conducted. The assessment have shown that DSRS used in this study would require a total of seven (7) capsules. The estimated total activity of the disposal packages were below the waste acceptance criteria and the thermal output for each disposal package were also below the 50W limit. One borehole with an estimated length of 57 m will be safe to dispose the DSRS used in this study. The verification measurements confirmed the confirmed the DSRS inventory data. It

  10. Low-level radioactive waste performance assessments: Source term modeling

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Godbee, H.W.; Miller, L.F.

    1995-01-01

    Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages

  11. Reducing the threat of RDDs. It's not enough to plug gaps in security systems for radioactive sources. Needed are integrated 'cradle-to-grave' controls to prevent high-risk sources from finding their way into the wrong hands

    International Nuclear Information System (INIS)

    Ferguson, C.D.

    2003-01-01

    Common radioactive materials, such as commercial radioactive sources used in medicine, industry, and scientific research, could fuel radiological dispersal devices (RDDs). While the IAEA has worked toward improving the security of radioactive sources long before the September 11 attacks, the IAEA moved quickly after this date to increase its efforts to prevent these materials from becoming tools of radiological terror. IAEA Director General Elbaradei has spoken often about the need for a 'cradle-to-grave' protection system for radioactive materials. While the IAEA and several Member States have striven to establish such a system, more thinking and work are still required to develop an integrated, layered, and cooperative defense system for radioactive source security. Security improvement should be prioritized on those radioactive sources that pose the greatest security risks. Although perfect security systems do not exist a layered security system should be established. This means that multiple barriers should be in place to lessen the likelihood of a radiological terror act. A summary of the findings of the International Conference on Security of Radioactive sources held in March 2003 is included in this paper

  12. Sources to environmental radioactive contamination from nuclear activities in the former USSR

    International Nuclear Information System (INIS)

    Polikarpov, G.G.; Aarkrog, A.

    1993-01-01

    There is three major sites of radioactive environmental contamination in the former USSR: the Cheliabinsk region in the Urals, Chernobyl NPP in Ukraine and Novaya Zemlya in the Arctic Ocean. The first mentioned is the most important with regard to local (potential) contamination, the last one dominates the global contamination. A number of sites and sources are less well known with regard to environmental contamination. This is thus the case for the plutonium production factories at Tomsk and Dodonovo. More information on nuclear reactors in lost or dumped submarines is also needed. From a global point of view reliable assessment of the radioactive run-off from land and deposits of nuclear waste in the Arctic Ocean are in particular pertinent

  13. Comparison between methods for fixing radioactive iodine in silver substrate for manufacturing brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Peleias Junior, Fernando S.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M., E-mail: fernandopeleias@gmail.com, E-mail: czeituni@ipen.br, E-mail: elisaros@ipen.br; and others

    2013-07-01

    Cancer is a term used generically to represent a group of more than 100 illnesses, including malignant tumors from different locations. According to World Health Organization (WHO), is a leading cause of death worldwide, accounted for 7.6 million deaths. Prostate cancer is the sixth most common type in the world, representing about 10% of all cases of cancer and its treatment may be by surgery, radiotherapy or even vigilant observation. A method of radiotherapy which has been extensively used in the early and intermediate stages of the illness is brachytherapy, where radioactive seeds are placed inside or next to the area requiring treatment, which reduces the probability of unnecessary damage to surrounding healthy tissues. Currently, the radioactive isotope Iodine-125, adsorbed on silver substrate, is one of the most used in prostate brachytherapy. The present study compares several deposition methods of radioactive Iodine on silver substrate, in order to choose the most suitable one to be implemented at the laboratory of radioactive sources production of IPEN. The methodology used was chosen based on the available infrastructure and experience of the researchers of the institute. Therefore, Iodine-131 was used for testing (same chemical behavior of Iodine -125). Three methods were selected: method 1 (test based on electrodeposition method, developed by David Kubiatowicz) which presented efficiency of 65.16% ; method 2 (chemical reaction based on the method developed by David Kubiatowicz -HCl) which presented efficiency of 70.80%; method 3 (chemical reaction based on the method developed by Dr. Maria Elisa Rostelato) which presented efficiency of 55.80% . Based on the results, the second method is the suggested one to be implemented at the laboratory of radioactive sources production of IPEN. (author)

  14. Comparison between methods for fixing radioactive iodine in silver substrate for manufacturing brachytherapy sources

    International Nuclear Information System (INIS)

    Peleias Junior, Fernando S.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.

    2013-01-01

    Cancer is a term used generically to represent a group of more than 100 illnesses, including malignant tumors from different locations. According to World Health Organization (WHO), is a leading cause of death worldwide, accounted for 7.6 million deaths. Prostate cancer is the sixth most common type in the world, representing about 10% of all cases of cancer and its treatment may be by surgery, radiotherapy or even vigilant observation. A method of radiotherapy which has been extensively used in the early and intermediate stages of the illness is brachytherapy, where radioactive seeds are placed inside or next to the area requiring treatment, which reduces the probability of unnecessary damage to surrounding healthy tissues. Currently, the radioactive isotope Iodine-125, adsorbed on silver substrate, is one of the most used in prostate brachytherapy. The present study compares several deposition methods of radioactive Iodine on silver substrate, in order to choose the most suitable one to be implemented at the laboratory of radioactive sources production of IPEN. The methodology used was chosen based on the available infrastructure and experience of the researchers of the institute. Therefore, Iodine-131 was used for testing (same chemical behavior of Iodine -125). Three methods were selected: method 1 (test based on electrodeposition method, developed by David Kubiatowicz) which presented efficiency of 65.16% ; method 2 (chemical reaction based on the method developed by David Kubiatowicz -HCl) which presented efficiency of 70.80%; method 3 (chemical reaction based on the method developed by Dr. Maria Elisa Rostelato) which presented efficiency of 55.80% . Based on the results, the second method is the suggested one to be implemented at the laboratory of radioactive sources production of IPEN. (author)

  15. Automatic opening system for radioactive source in teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia Gibin; Gaal, Vladimir; Rodrigues, Varlei; Morais, Sergio Luiz de

    2013-01-01

    Compton scattering phenomenon is experimentally studied during the medical physics laboratory course at the University of Campinas (UNICAMP). The Teaching Laboratory of Medical Physics from IFGW/UNICAMP has a structure for its development: a fixed 137 Cs sealed source with activity 610.5MBq, whose emitted radiation collides on a target, and a scintillation detector that turns around the target and detects scattered photons spectrum. 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662MeV. This source is exposed only when attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver radiation dose to users when done manually. Taking into account the stochastic harmful effects of ionizing radiation, the objective of this project was to develop an automatic exposure system of the radioactive source in order to reduce the dose during the Compton scattering experiment. The developed system is micro controlled and performs standard operating routines and responds to emergencies. Electromagnetic lock enables quick closing barrier by gravity in case of interruption of electrical current circuit. Besides reducing the total dose of lab users, the system adds more security in the routine since it limits access to the source and prevents accidental exposure. (author)

  16. Classification system of radioactive sources to attend radiological emergencies, the last three cases of theft in Mexico

    International Nuclear Information System (INIS)

    Ruiz C, M. A.; Garcia M, T.

    2014-10-01

    Following last three cases of theft of radioactive material in Mexico is convenient to describe how to classify radioactive sources and make decisions to confront the emergency. For this there are IAEA publications, which determine the Dangerous values or value D, for different radionuclides and activity values usually used in practice, and employees in industry, medicine and research. The literature also describes the different scenarios to determine the activity of different radioisotopes that can cause deterministic effects to workers or the population and thus classify the degree of relative risk that these sources may be involved in an accident. Defined the classification of sources, we can make decisions to respond to emergencies in their proper perspective also alert the public to the description of the risks associated with the sources in question, without this leading to a situation of greater crisis. (Author)

  17. Overview of sources of radioactive particles of Nordic relevance as well as a short description of available particle characterisation techniques

    International Nuclear Information System (INIS)

    Lind, O.C.; Salbu, B.; Nygren, U.; Thaning, L.; Ramebaeck, H.; Sidhu, S.; Roos, P.; Poellaenen, R.; Ranebo, Y.; Holm, E.

    2008-10-01

    The present overview report show that there are many existing and potential sources of radioactive particle contamination of relevance to the Nordic countries. Following their release, radioactive particles represent point sources of short- and long-term radioecological significance, and the failure to recognise their presence may lead to significant errors in the short- and long-term impact assessments related to radioactive contamination at a particular site. Thus, there is a need of knowledge with respect to the probability, quantity and expected impact of radioactive particle formation and release in case of specified potential nuclear events (e.g. reactor accident or nuclear terrorism). Furthermore, knowledge with respect to the particle characteristics influencing transport, ecosystem transfer and biological effects is important. In this respect, it should be noted that an IAEA coordinated research project was running from 2000-2006 (IAEA CRP, 2001) focussing on characterisation and environmental impact of radioactive particles, while a new IAEA CRP focussing on the biological effects of radioactive particles will be launched in 2008. (au)

  18. Overview of sources of radioactive particles of Nordic relevance as well as a short description of available particle characterisation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lind, O.C.; Salbu, B. (Norwegian Univ. of Life Sciences (Norway)); Nygren, U.; Thaning, L.; Ramebaeck, H. (Swedish Defense Research Agency (FOI) (Sweden)); Sidhu, S. (Inst. for Energy Technology (Norway)); Roos, P. (Technical Univ. of Denmark. Risoe DTU, Roskilde (Denmark)); Poellaenen, R. (STUK (Finland)); Ranebo, Y.; Holm, E. (Univ. Lund (Sweden))

    2008-10-15

    The present overview report show that there are many existing and potential sources of radioactive particle contamination of relevance to the Nordic countries. Following their release, radioactive particles represent point sources of short- and long-term radioecological significance, and the failure to recognise their presence may lead to significant errors in the short- and long-term impact assessments related to radioactive contamination at a particular site. Thus, there is a need of knowledge with respect to the probability, quantity and expected impact of radioactive particle formation and release in case of specified potential nuclear events (e.g. reactor accident or nuclear terrorism). Furthermore, knowledge with respect to the particle characteristics influencing transport, ecosystem transfer and biological effects is important. In this respect, it should be noted that an IAEA coordinated research project was running from 2000-2006 (IAEA CRP, 2001) focussing on characterisation and environmental impact of radioactive particles, while a new IAEA CRP focussing on the biological effects of radioactive particles will be launched in 2008. (author)

  19. Sources of ionizing radiation, radioactive or nuclear materials out of control. National system of response in Slovakia

    International Nuclear Information System (INIS)

    Auxtova, L.; Adamek, P.; Moravecb, R.; Melich, M.

    2003-01-01

    In this paper authors deals with the Customs inspection of radioactive materials - present situation as well as with situation after accession of the Slovak Republic process to European Union (EU). he actual response system to incidents with orphan sources or radioactive material occurring in metal scrap, illicit trafficking and disused sources out of control is laid down on the following scheme. The national strategy is aimed to establish a more effective responding system preventing further illegal trafficking with regard to the acceding process which will require for new member states joining EU proper arrangements in improving the safety of radiation sources over the life-cycle to ensure the effective functioning in the conditions of the Slovak Republic's membership in the European Union

  20. Spotting Radioactive Sources Buried Underground Using an Airborne Radiation Monitoring System

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Wengrowicz, U.; Beck, A.; Marcus, E.; Tirosh, D.

    2002-01-01

    This article provides theoretical background concerning the capability of the Airborne Radiation Monitoring System [1]to detect fission products buried at 1-meter depth under the ground surface,at a flight altitude of 100 meters above ground.The 137 Cs source was used as a typical fission product. The System monitors radioactive contamination in the air or on the ground using two 2 inch NaI(Tl) scintillation detectors and computerized accessories for analysis purposes

  1. Dose-rate mapping and search of radioactive sources in Estonia

    International Nuclear Information System (INIS)

    Ylaetalo, S.; Karvonen, J.; Ilander, T.; Honkamaa, T.; Toivonen, H.

    1996-12-01

    The Estonian Ministry of Environment and the Finnish Centre for Radiation and Nuclear Safety (STUK) agreed in 1995 on a radiation mapping project in Estonia. The country was searched to find potential man-made radioactive sources. Another goal of the project was to produce a background dose-rate map over the whole country. The measurements provided an excellent opportunity to test new in-field measuring systems that are useful in a nuclear disaster. The basic idea was to monitor road sides, cities, domestic waste storage places and former military or rocket bases from a moving vehicle by measuring gamma spectrum and dose rate. The measurements were carried out using vehicle installed systems consisting of a pressurised ionisation chamber (PIC) in 1995 and a combination of a scintillation spectrometer (NaI(TI)) and Geiger-Mueller-counter (GM) in 1996. All systems utilised GPS-satellite navigation signals to relate the measured dose rates and gamma-spectra to current geographical location. The data were recorded for further computer analysis. The dose rate varied usually between 0.03-0.17 μSv/h in the whole country, excluding a few nuclear material storage places (in Saku and in Sillamae). Enhanced dose rates of natural origin (0.17-0.5 μSv/h) were measured near granite statues, buildings and bridges. No radioactive sources were found on road sides or in towns or villages. (orig.) (14 refs.)

  2. Induced radioactivity in LDEF components

    Science.gov (United States)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  3. Strengthening the safety of radiation sources and the security of radioactive materials: Timely action

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1999-01-01

    When used as they should be, commercial radiation sources and radioactive materials are useful tools that pose no unacceptable risks to people or environment. In fact, their applications in fields such as medicine, industry, agriculture, and environmental research help countries to achieve sizeable social and economic benefits important to global goals of sustainable development. For most of the past half century, the IAEA has been instrumental in advancing the application of techniques that constructively make use of ionizing radiation properties, particularly in developing countries. But though global standards are in place, and being strengthened, a disturbing picture is emerging. It is regrettably framed by tragic consequences from accidents that involved unsafe, abandoned, lost, or uncontrolled radiation sources, including illicit trafficking of radioactive materials, notably in the 1990s. A turning point in global awareness of serious problems came in 1998, at an international conference in France. In March 1999, the IAEA Board of Governors discussed the issue, and a multi faced Action Plan is being submitted to the general Conference. This edition of IAEA Bulletin looks closely at the problems and issues the international community is facing, and the steps States are taking to reinforce the safety and security of radioactive materials

  4. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    Science.gov (United States)

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  5. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Science.gov (United States)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  6. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Energy Technology Data Exchange (ETDEWEB)

    Banks, T.I., E-mail: tbanks@berkeley.edu [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Freedman, S.J. [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Wallig, J.; Ybarrolaza, N. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gando, A.; Gando, Y.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kishimoto, Y. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Koga, M. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Mitsui, T. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Nakamura, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); and others

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  7. Assessment of the threat from diverted radioactive material and 'orphan sources' - An international comparison

    International Nuclear Information System (INIS)

    Steinhausler, F.

    2001-01-01

    Full text: Multiple international activities have been undertaken to contain the trafficking of weapons-usable material in order to reduce the risk from the proliferation of such material. In addition, over the past decade the issue of unintended handling and transport of radioactive material has become increasingly important. Concurrent with the growing number of radioactive sources in industry, medicine, agriculture and research, the probability for losing control over such sources increases as well ('orphan sources'). The potential impact on society and the environment from these two categories of threat has been documented extensively in the literature. In this study representatives from 11 countries in the Americas, Europe and Asia-Pacific formed a network to exchange information concerning nuclear and other radioactive material on the following topic areas: Legislation and regulatory practices for the production, processing, handling, use, holding, storage, transport, import, and export; History of site-specific non-compliance and enforcement actions, as well as punitive actions; National approach for handling the issue of orphan sources; The role of national security forces; Managerial and technical procedures to ensure material inventory control and accountancy; Aspects of physical protection on-site and during transport; Technical/scientific expertise and equipment available at the national level to detect, identify and quantify such material in the field; Level of practical implementation of technical equipment to detect such material at border crossings, airports, railway stations, and mail distribution centres; Cases of seizure of nuclear and contaminated materials, illegal sales and fraud; Training programmes available for preventing, detecting and responding to the loss of control. The results of the analysis show that, despite several international consensus documents and supporting legislation, in several cases major additional efforts are needed

  8. Mössbauer and Raman spectroscopy characterization of concretes used in the conditioning of spent radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx; González-Neri, M.; González-Díaz, R. C.; Ortíz-Arcivar, G.; Corona-Pérez, I. J. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico); Nava, N. [Instituto Mexicano del Petroleo (Mexico); Cabral-Prieto, A.; Escobar-Alarcón, L. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico)

    2015-06-15

    Spent radioactive sources are considered a type of radioactive waste which must be stored properly. These sources are usually conditioned in concrete that functions as shield and physical barrier to prevent the potential migration of radionuclides, and must have suitable properties: mechanical, thermal or irradiation resistance. Concretes used in the conditioning of spent radioactive source in Mexico were tested, preparing concrete test specimens with Portland cement CPC 30RS EXTRA CEMEX and aggregates, and subjected to compression strength, γ-ray-irradiation and thermal resistance assays and subsequently analyzed by Mössbauer and Raman Spectroscopies as well as by Scanning Electron Microscopy, in order to correlate the radiation and temperature effects on the compressive strengths, the oxidation states of iron and the structural features of the concrete. Iron was found in the concrete in Fe {sup 2+} and Fe {sup 3+} in the tetrahedral (T) and two octahedral positions (O1, O2). Radiolysis of water causes the dehydratation (200-600 kGy) and rehydratation (1000-10000 kGy) of calcium silicate hydrates (C-S-H) and ferric hydrate phases in concretes and structural distortion around the iron sites in concretes. The compressive strength of concretes are not significantly affected by γ-radiation or heat.

  9. Determination of activation level energy of nuclear isomers by calibration of microspectra of radioactive sources

    International Nuclear Information System (INIS)

    Veres, A.; Pavlicsek, I.

    1980-01-01

    Nuclear isomers with unknown activation level were irradiated by calibrated radioactive sources. The integral cross sections were calculated for different energies of the sources. The activation energy was given by values coinciding with each other within the limits of error. The method made the determination of the unknown level of 1180+-10 keV of 195 Pt nucleus possible. (author)

  10. Compliance assurance in the safe transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1994-01-01

    Quality Assurance in the transport of radioactive materials (RAM) has been a legal requirement in Switzerland since 1 January 1990. Some four years later, Switzerland is well on the way to having a comprehensive system of Compliance Assurance covering the transport of RAM. By the end of 1994 Compliance Assurance will be fully operational with regard to nuclear fuel cycle shipments which account for over 90% of all radioactivity transported in Switzerland. Compliance Assurance has been delayed in Switzerland for non-fuel-cycle radioactive material shipments. This has been due to the need to modify the legal infrastructure for the relevant supervisory authorities. Nevertheless, it is hoped to have Compliance Assurance related to Radiation Units (large sources in Type B packages) operational before the end of 1994. Systematic progress is being made regarding Compliance Assurance relating to the movement of smaller sources. This involves a very large number of smaller organisations and will take some time to become routine. (author)

  11. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  12. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  13. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  14. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  15. Radioactive thickness gauge (1962); Jauge d'epaisseur radioactive (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Guizerix, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I{sub 1}/I{sub 2}) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [French] L'auteur decrit une jauge d'epaisseur dans laquelle le cristal scintillant detecteur 'voit' alternativement une source radioactive a travers le materiau a mesurer, puis une source de reference de meme nature; la separation des rayonnements est faite dans le temps a l'aide d'un volet absorbeur a secteurs alternativement pleins et creux. Les courants correspondants aux deux sources sont separes apres le tube photomultiplicateur par un detecteur synchrone avec la rotation du volet. On fait ensuite le quotient de ces deux courants a l'aide d'un potientometre enregistreur classique. il resulte de cette disposition que la valeur moyenne de la reponse, qui est de la forme G = f(I{sub 1}/I{sub 2}) n'est pas affectee par la decroissance des sources radioactives, et qu'elle est peu sensible aux variations de haute tension, de temperature ou des proprietes de l'air dans l'intervalle source-detecteur. On donne les performances de cette jauge. (auteur)

  16. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    Science.gov (United States)

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  17. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  18. The IAEA code of conduct on the safety of radiation sources and the security of radioactive materials. A step forwards or backwards?

    International Nuclear Information System (INIS)

    Boustany, K.

    2001-01-01

    About the finalization of the Code of Conduct on the Safety and Security of radioactive Sources, it appeared that two distinct but interrelated subject areas have been identified: the prevention of accidents involving radiation sources and the prevention of theft or any other unauthorized use of radioactive materials. What analysis reveals is rather that there are gaps in both the content of the Code and the processes relating to it. Nevertheless, new standards have been introduced as a result of this exercise and have thus, as an enactment of what constitutes appropriate behaviour in the field of the safety and security of radioactive sources, emerged into the arena of international relations. (N.C.)

  19. Health and safety impacts from discrete sources of naturally-occurring and accelerator-produced radioactive materials (NARM)

    International Nuclear Information System (INIS)

    Nussbaumer, D.; Wiblin, C.; Welch, L.

    1993-02-01

    This report characterizes discrete sources of naturally-occurring and accelerator-produced radioactive material (NARM) and estimates risks posed by the possession, use and disposal of them. A distinction between discrete and diffuse NARM sources is made with discrete sources being high activity, low volume and diffuse sources being low activity, high volume. Two nanocuries per gram is used as a separation guide between high and low activity, although use of this value does not impact the report's conclusions. Most NARM is under regulatory control of States that either license or register users but reporting requirements are not uniform. Use in consumer products has declined with virtually no production today; however, lack of information available concerning radiation exposures resulting form possession of ageing radium sources precludes a quantitative risk assessment in this report. The report identifies the type of information needed to permit such an assessment. Regarding accelerator-produced radioactive material (ARM), use of this material in nuclear medicine programs has recently increased. Available radiation exposure data regarding ARM handling and use indicates that the risk to workers and the public is low at this time

  20. Management and disposal of disused sealed radioactive sources in Europe

    International Nuclear Information System (INIS)

    Wells, D.A.; Angus, M.J.; Cecille, L.

    2001-01-01

    Full text: Sealed radioactive sources have been widely used for many decades in industry, medicine and research. Although most countries have laid down a regulatory framework to control sealed sources, there are still a number of uncertainties concerning the management of historical Ra- 226 alpha sources and the possibility of retrieving non-registered sources. Both these uncertainties may represent high radiological risks for the population. In addition, management schemes and practises implemented in different countries can be somewhat conflicting and create problems for storage and disposal. This paper describes the results of three studies that were carried out between 1998 and 2001 to consider the situation relating to the regulation and management of spent sealed radioactive sources (SSRS) in each of the fifteen current European Union (EU) member states and the ten central and eastern European (C and EE) countries that are currently being considered for admission to the European Union (namely, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia). The general aim of the studies was to acquire a thorough understanding of the management of SSRS in each country, in order to recommend improvements in management schemes and to establish whether the application of common disposal criteria would be advantageous. The studies covered the following activities: Estimation of the inventory of SSRS in store and disposed in each country; Analysis of the relevant regulations and regulatory framework in each country; Description and review of the current management practises in each country; Estimation of the number of unregistered SSRS (including identification of the reasons why SSRS are lost' and recommending ways of recovering lost' sources). It was important to understand the full life-cycle of sealed radioactive sources, from manufacture through to disposal. Much of the information contained in these studies was obtained

  1. The German system to prevent, detect and respond to illicit uses of nuclear materials and radioactive sources

    International Nuclear Information System (INIS)

    Fechner, J.B.

    2001-01-01

    The German system to prevent, detect and respond to illicit uses of nuclear materials and radioactive sources consists of a variety of different elements: International and national laws and regulations covering safeguards, physical protection, and import/export control; Licensing and regulatory supervision of all activities related to nuclear materials and radioactive sources, including import and export; Responsibility of the licensee to ensure compliance with licensing conditions; sanctions; Law enforcement by police, security and customs authorities; prosecution and penalties; Detection of illicitly trafficked radioactive materials through intelligence and technical means; analysis capabilities; Response arrangements for normal and for severe cases of illicit use of nuclear materials; Participation in international programmes and POC-systems. Safeguards measures have been implemented in Germany in accordance with the Non- Proliferation Treaty and with safeguards agreements based on INFCIRC/153. As Germany is a member of the European Union, the Euratom Treaty and the Euratom-Ordinance Nr. 3227/76 together with the Verification Agreement between the IAEA, the European Commission and the European Member States have led to safeguards measures jointly implemented by the IAEA and by Euratom. The relevant international law for the physical protection of nuclear material in force in Germany is the Convention on the Physical Protection of Nuclear Material. The recommendations on physical protection objectives and fundamentals and on physical protection measures specified in INFCIRC/225/Rev. 4 have been taken into account in various national regulations pertaining to the national design basis threat, the physical protection of LWR nuclear power plants, of interim spent fuel storage facilities, of facilities containing category III material, of nuclear material and radioactive waste transports by road or railway vehicles, aircraft or sea vessels; additional guidelines

  2. Automated management of radioactive sources in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Kheliewi, Abdullah S.; Jamil, M. F.; Basar, M. R.; Tuwaili, W. R.

    2014-01-01

    For usage of radioactive substances, any facility has to register and take license from relevant authority of the country in which such facility is operating. In the Kingdom of Saudi Arabia (KSA), the authority for managing radioactive sources and providing licenses to organizations for its usage is the National Center of Radiation Protection (NCRP). This paper describes the system that automates registration and licensing process of the National Center of Radiation Protection. To provide 24×7 accesses to all the customers of NCRP, system is developed as web-based application that provide facility to online register, request license, renew license, check request status, view historical data and reports etc. and other features are provided as Electronic Services that would be accessible to users via internet. The system also was designed to streamline and optimize internal operations of NCRP besides providing ease of access to its customers by implementing a defined workflow through which every registration and license request will be routed. In addition to manual payment option, the system would also be integrated with SADAD (online payment system) that will avoid lengthy and cumbersome procedures associated with manual payment mechanism. Using SADAD payment option license fee could be paid through internet/ATM machine or branch of any designated bank, Payment will be instantly notified to NCRP hence delay in funds transfer and verification of invoice could be avoided, SADAD integration is discussed later in the document

  3. Automated management of radioactive sources in Saudi Arabia

    Science.gov (United States)

    Al-Kheliewi, Abdullah S.; Jamil, M. F.; Basar, M. R.; Tuwaili, W. R.

    2014-09-01

    For usage of radioactive substances, any facility has to register and take license from relevant authority of the country in which such facility is operating. In the Kingdom of Saudi Arabia (KSA), the authority for managing radioactive sources and providing licenses to organizations for its usage is the National Center of Radiation Protection (NCRP). This paper describes the system that automates registration and licensing process of the National Center of Radiation Protection. To provide 24×7 accesses to all the customers of NCRP, system is developed as web-based application that provide facility to online register, request license, renew license, check request status, view historical data and reports etc. and other features are provided as Electronic Services that would be accessible to users via internet. The system also was designed to streamline and optimize internal operations of NCRP besides providing ease of access to its customers by implementing a defined workflow through which every registration and license request will be routed. In addition to manual payment option, the system would also be integrated with SADAD (online payment system) that will avoid lengthy and cumbersome procedures associated with manual payment mechanism. Using SADAD payment option license fee could be paid through internet/ATM machine or branch of any designated bank, Payment will be instantly notified to NCRP hence delay in funds transfer and verification of invoice could be avoided, SADAD integration is discussed later in the document.

  4. Automated management of radioactive sources in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kheliewi, Abdullah S.; Jamil, M. F.; Basar, M. R.; Tuwaili, W. R. [National Center for Radiation Protection, King Abdulaziz City for Science and Technology, 11442 Riyadh (Saudi Arabia)

    2014-09-30

    For usage of radioactive substances, any facility has to register and take license from relevant authority of the country in which such facility is operating. In the Kingdom of Saudi Arabia (KSA), the authority for managing radioactive sources and providing licenses to organizations for its usage is the National Center of Radiation Protection (NCRP). This paper describes the system that automates registration and licensing process of the National Center of Radiation Protection. To provide 24×7 accesses to all the customers of NCRP, system is developed as web-based application that provide facility to online register, request license, renew license, check request status, view historical data and reports etc. and other features are provided as Electronic Services that would be accessible to users via internet. The system also was designed to streamline and optimize internal operations of NCRP besides providing ease of access to its customers by implementing a defined workflow through which every registration and license request will be routed. In addition to manual payment option, the system would also be integrated with SADAD (online payment system) that will avoid lengthy and cumbersome procedures associated with manual payment mechanism. Using SADAD payment option license fee could be paid through internet/ATM machine or branch of any designated bank, Payment will be instantly notified to NCRP hence delay in funds transfer and verification of invoice could be avoided, SADAD integration is discussed later in the document.

  5. U Y 105 standard use of non sealed radioactive sources in nuclear medicine: approve for Industry energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requirements radiological safety for use non sealed radioactive sources in nuclear medicine.The present standard is used in operation or nuclear medicine practices using non sealed radioactive sources with diagnostic and therapeutic purposes in vivo and in vitro

  6. Radioactivity of some dried fruits

    International Nuclear Information System (INIS)

    Akhmedova, G.; Mamatkulov, O.B.; Hushmuradov, Sh.H.

    2004-01-01

    Full text: Radioactivity radiation from natural and artificial sources often acts at the same time in complicated combinations and without exception on all inhabitants of our planet. Natural and artificial radioactive isotopes pass into living organism by biological chain: soil-water-air-plants-foodstuffs-person and can be sources of inside irradiation. Accumulation of radionuclides in living organism in large quantities limit permissible concentration (LPC) can lead to pathological changes in organism. With above mentioned at the radioecological investigations, researches and control of changes of radionuclides concentration in environmental objects have important interests. Investigations of determination of radioactivity of environmental objects, which began in 1960 by professor Muso Muminov are continued in the department of nuclear physics of Samarkand State University. We work out semiconducting gamma-spectrometric method of determination of radionuclides concentration in weak -active environmental samples. We investigated radioactivity of different samples of natural environment and generalized results. In this work the results of investigation of radioactivity of same dried fruits are presented. The spectra of γ-radiation of following dried fruits as grapes, apricot, apple and peach was investigated. In measured gamma-radiation spectra of these samples gamma-transitions of 226 Ra, 232 Th, 40 K natural radionuclides and product of 137 Cs division. The specific gamma-activities these radionuclides were determined. The 40 K have most specific activity and 137 Cs - least. The calculated quantities of specific gamma-activity of radionuclides in gamma-spectra of investigated samples can replace to following row: 40 K > 232 Th > 226 Ra > 137 Cs

  7. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NARCIS (Netherlands)

    Banks, T.I.; Freedman, S.J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B.K.; Han, K.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Sakai, M.; Horton-Smith, G.A.; Downum, K.E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an

  8. Order of 25 March 1981 concerning the approval of special form radioactive materials in sealed sources

    International Nuclear Information System (INIS)

    1981-01-01

    This order determines the models of sealed sources which constitute special form radioactive materials within the meaning of the Order of 24 November 1977 concerning the characteristics of such materials. (NEA) [fr

  9. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. The impetus for this effort was spawned in part by the decision of the Japanese government to move large quantities of reprocessed plutonium by air from France to Japan. The exploration of options for overflights of United States and Canadian airspace (among others) and landings in Anchorage, Alaska, generated intense debate in the US and countries that might have been overflown. The debate centered on general questions of the need to air transport plutonium in large quantities, package survival in an accident, prenotification, emergency response, routing, safeguards and other facets of the proposed operations. In the US, which already had the most stringent regulations for packaging of plutonium shipped by air (NUREG-0360), there was immediate additional legislative action to increase the stringency by requiring demonstration that an aircraft carrying plutonium in certified packagings could undergo a severe crash without release of plutonium (the Murkowski amendment). In the United Kingdom there was an official inquiry that resulted in a high visibility report (ACTRAM 88) and a conclusion that the IAEA should examine regulatory needs in the general area of air transport

  10. Evaluation of low-level solid radioactive waste generated by a large hospital and disposed of with ordinary refuse

    International Nuclear Information System (INIS)

    Conte, L.; Pedroli, G.; Monciardini, M.; Bianchi, L.; Novario, R.; Beretta, A.

    1996-01-01

    In the Lombardy region some hospitals have recently been reported to the local authorities because of the presence of radioactivity in hospital refuse sent to the municipal tips for incineration. On various occasions the refuse collectors coming from the hospitals had to return with their refuse as traces of radioactivity were detected at the entrance to the tips equipped with monitoring systems. Hospitals administering radioactive substances for diagnostic or therapeutic purposes produce radioactive waste mainly in solid and liquid form. This waste is principally present in patient excreta and in contaminated materials. Radioactive waste present in patient excreta is normally disposed of through the sewage system provided that the concentration limits and annual activity stipulated by law are respected. The contaminated materials coming from the departments that carry out radioisotopic investigations and therapy with unsealed sources can be collected separately and sent to a tip after a period of storage to permit radioactive decay. However, part of the radioactive waste escapes all checks and inevitably mixes with normal refuse or with special hospital refuse that is not considered radioactive. This occurs in the case of: 1. excreta from patients who are not hospitalised after a radioisotopic investigation and materials contaminated by the excreta; 2. excreta from hospitalised patients which are eliminated outside the nuclear medicine and radiotherapy departments; 3. contaminated materials produced with unsealed sources in hospital departments other than those of nuclear medicine and radiotherapy; The waste indicated in point 1 is probably the main problem in ecological terms as the patients who are not hospitalised eliminate radioactive excreta into domestic sewage systems and can also contaminate materials that are disposed of with normal household refuse. In this case any solution to the problem would seriously affect diagnostic activities carried out in the

  11. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  12. Conditioning of low level radioactive wastes, spent radiation sources and their transport at the interim storage building of the Institute of Nuclear Physics in Albania

    International Nuclear Information System (INIS)

    Qafmolla, L.

    2000-01-01

    Aspects of treatment and management of radioactive wastes resulting from the use of radiation sources and radioisotopes in research, medicine and industry, are described. The methods applied for the conditioning of low-level radioactive wastes and spent radiation sources are simple. Solid radioactive wastes with low-level activity, after accumulation, minimization, segregation and measurement, are burned or compressed in a simple compactor of the PGS type. Spent radiation sources are placed into 200 l drums, are cemented and conditioned. Conditioned drums from the Radiation Protection Division of the Institute of Nuclear Physics (INP), which is the responsible Institution for the treatment and management of radioactive wastes in Albania, are transported to the interim storage building of the Institute of Nuclear Physics in Tirana. Work to construct a new building for treatment and management of radioactive wastes and spent radiation sources within the territory of INP is underway. Funds have been allocated accordingly: based on the Law No. 8025 of 25.11.1995, it is the Albanian Government's responsibility to finance activities concerned with the treatment and management of radioactive wastes generating from the use of ionizing radiation in science, medicine and industry in the country. (author)

  13. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  14. Radioactive waste evacuation of the sources of a low dose rate brachytherapy unit

    International Nuclear Information System (INIS)

    Serrada, A.; Huerga, C.; Santa Olalla, I.; Vicedo, A.; Corredoira, E.; Plaza, R.; Vidal, J.; Tellez, M.

    2006-01-01

    Introduction The second class Radioactive Installation start -up authorization makes responsible for its security to the installation exploiter and supervisor. The specifications established in the authorization, which are mandatory, point out several actions, some of these actions are the hermeticity tests of radioactive sources an radiologic controls of environment dosimetry. It is necessary to optimize the time spent in each activity, managing them as reasonably as possible. An important matter to take into account is to keep and control only those radioactive or radiological equipment which, even if are in work, have an appropriate performance for the patient treatment Material And Method a Paz hospital has an intracavity brachytherapy (L.D.R.), Curietron model. The Radioprotection Department proposed to remove from service the unit due to its age, this was carried out by the Commission of Guarantee and Quality Control. There were different solutions taken into account to decommission the unit, finally the option chosen as the most convenient for the installation was to manage directly the withdrawal of the radioactive material which consisted of seven Cs-137 probes model CsM1 and total nominal certificated activity of 7770 MBq ( 210 mCi ) dated in May 2005. It also has to be considered as a radioactive waste the inner storage elements of the Curietron and the transport and storage curie stock, built with depleted uranium. To accomplish this aim an evacuation container was designed consisting of an alloy of low-melting point (M.C.P.96), which fulfills the transport conditions imposed by E.N.R.E.S.A. ( Empresa Nacional de Residuos Radiactivos, S.A). A theoretical calculation was performed to estimate the thickness of the shield which adequate to the rate of dose in contact demanded. Accuracy of these calculations has been verified using T.L. dosimetry. Results The radiation levels during the extraction intervention of the radioactive probes and its transfer to

  15. Radioactive waste management in Lebanon

    International Nuclear Information System (INIS)

    Assi, Muzna

    2011-01-01

    The disused sealed radioactive sources including orphan sources in Lebanon, along with the growing industry of sealed radioactive sources in medical, industrial and research fields have posed a serious problem for authorities as well as users due to the lack of a national store for disused radioactive sources. Assistance from the International Atomic Energy Agency (IAEA) was requested to condition and store disused radium needles and tubes present at two facilities. The mission took place on July 25, 2001 and was organized by the IAEA in cooperation with the Lebanese Atomic Energy Commission (LAEC). Other disused radioactive sources were kept in the facilities till a safer and securer solution is provided; however orphan sources, found mainly during export control, were brought and stored temporarily in LAEC. The necessity of a safe and secure store became a must. Prior to October 2005, there was no clear legal basis for establishing such store for disused radioactive sources, until the ministerial decree no 15512 dated October 19, 2005 (related to the implementation of decree-law no 105/83) was issued which clearly stated that 'The LAEC shall, in cooperation with the Ministry of Public Health, establish a practical mechanism for safe disposal of radioactive waste'. Following this, the work on inventory of disused sealed sources along with collecting orphan sources and placing them temporarily in LAEC was legally supported. Moreover, several missions were planned to repatriate category I and II sources, one of which was completed specifically in August 2009; other missions are being worked on. In 2008, a national technical cooperation project with the IAEA was launched. Under the Technical Cooperation (TC) project with reference number LEB3002, the project was entitled 'Assistance in the establishment of a safe temporary national storage at the LAEC for orphan sources and radioactive waste' which cycle is 2009-2011. Under this project, a national store for

  16. Radon Adsorbed in Activated Charcoal--A Simple and Safe Radiation Source for Teaching Practical Radioactivity in Schools and Colleges

    Science.gov (United States)

    Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.

    2012-01-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal.…

  17. Large magnitude gridded ionization chamber for impurity identification in alpha emitting radioactive samples

    International Nuclear Information System (INIS)

    Santos, R.N. dos.

    1992-01-01

    This paper refers to a large magnitude gridded ionization chamber with high resolution used in the identification of α radioactive samples. The chamber and the electrode have been described in terms of their geometry and dimensions, as well as the best results listed accordingly. Several α emitting radioactive samples were used with a gas mixture of 90% Argon plus 10% Methane. We got α energy spectrum with resolution around 22,14 KeV in agreement to the best results available in the literature. The spectrum of α energy related to 92 U 233 was gotten using the ionization chamber mentioned in this work; several values were found which matched perfectly well adjustment curve of the chamber. Many other additional measures using different kinds of adjusted detectors were successfully obtained in order to confirm the results gotten in the experiments, thus leading to the identification of some elements of the 92 U 233 radioactive series. Such results show the possibility of using the chamber mentioned for measurements of α low activity contamination. (author)

  18. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  19. Reconstruction and modernization of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Kolev, I.; Dralchev, D.; Spasov, P.; Jordanov, M.

    2000-01-01

    This report presents briefly the most important issues of the study performed by EQE - Bulgaria. The objectives of the study are the development of conceptual solutions for construction of the following facilities in the Novi Han radioactive waste repository: an operational storage for unconditioned high level spent sources; new temporary buildings over the existing radioactive waste storage facilities; a rain-water draining system ect. The study also includes the engineering solutions for conservation of the existing facilities, currently full with high level spent sources. A 'Program for reconstruction and modernization' has been created, including the analysis of some regulation aspects concerning this program implementation. In conclusions the engineering problems of Novi Han repository are clear and appropriate solutions are available. They can be implemented in both cases of 'small' or 'large' reconstruction. The reconstruction project anyway should start with the construction of a new site infrastructure. Reconstruction and modernization of Novi Han radioactive waste repository is the only way to improve the management and safety of radioactive waste from medicine, industry and scientific research in Bulgaria

  20. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  1. The radiation monitoring of environment around place of treatment and storage of radioactive wastes

    International Nuclear Information System (INIS)

    Vdovina, E.D.

    2001-01-01

    Full text: Large success was attained in the field of radiation protection of research nuclear center, but it is necessary to carry out works in this way around place of treatment and storage of radioactive wastes too. Moreover, for protection of environment it is necessary to control radiation condition of system (radioactive wastes of nuclear center - environment). There is large amount of natural and man-made radionuclides in environment and it is important to solve problem to control individual radionuclides, polluting natural environment. Also, it is necessary to control concentrations of specific radionuclides, which are marks of definite radioactive source. The radionuclides 137 Cs, 90 Sr, 60 Co, 141 Ce, 144 Ce, 95 Zr, 95 Nb, 131 I and natural radionuclides of uranium, thorium and their products of decay are basic radionuclides. The 57 Co, 35 S, 32 P are considered also basic radionuclides taking into consideration specialization of our Institute. The basic problems of control of environment are following: observation of radioactive pollution level of environment objects; estimation of radioactive pollution level with the purpose of warning of possible negative consequences; investigation of dynamics of radioactivity and prognosis of radioactive pollution of environment objects; influence on sources of radioactive pollution. There is large volume information, characterizing radiation condition of environment around research nuclear center and around place of treatment and storage of radioactive wastes. The bank of environment object analysis result date was build for investigation of information. The system of protection around location of treatment and storage of radioactive wastes and around nuclear center consists of control of radioactive wastes, superficial and underground water, soil, plants, atmospheric precipitation. There are analysis of total β- activity, α-activity and γ-spectrometry. This control includes estimation of throw down values

  2. Proposal of the concept of selection of accidents that release large amounts of radioactive substances in the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Ono, Masato; Honda, Yuki; Takada, Shoji; Sawa, Kazuhiro

    2015-01-01

    In Position, construction and equipment of testing and research reactor to be subjected to the use standards for rules Article 53 (prevention of expansion of the accident to release a large amount of radioactive material) generation the frequency is a lower accident than design basis accident, when what is likely to release a large amount of radioactive material or radiation from the facility has occurred, and take the necessary measures in order to prevent the spread of the accident. There is provided a lower accident than frequency design basis accidents, for those that may release a large amount of radioactive material or radiation. (author)

  3. Radioactive aerosols of the object 'Ukryttya' (a review). Part 4.2. Sources and generation of radioactive aerosols during technogenic activities in 1987 - 2005

    International Nuclear Information System (INIS)

    Ogorodnikov, B.I.; Pazukhin, Eh.M.

    2006-01-01

    The sources of radioactive aerosol formation were considered at operation. It is shown that concentrations, radionuclide composition, size distribution, transfer and transformation in environment depended on physical and chemical processes proceeding within reactor breakdown, man-caused activity into premises of the object 'Shelter' and near ChNPP. 34 refs.; 7 figs.; 11 tab

  4. Resistance to radiation and concretes thermal cycles for conditioning of spent radioactive sources

    International Nuclear Information System (INIS)

    Gonzalez N, M.; Monroy G, F.; Gonzalez D, R. C.; Corona P, I. J.; Ortiz A, G.

    2014-10-01

    In order to know the concrete type most suitable for use as a matrix of conditioning of spent radioactive sources, concrete test tubes using 4 different types of cement were prepared: CPC 30-Rs Extra, CPC 30-R Impercem, CPC 30-R Rs and CPC 30-R with two gravel sizes >30 mm and <10 mm. The concrete test tubes were subjected to testing compressive strength after 28 days of hardening and after being irradiated and subjected to thermal cycles. Subsequently they were characterized by X-ray diffraction and scanning electron microscopy, in order to evaluate whether these concretes accredited the tests set by the NOM-019-Nucl-1995. The results show that the compressive strength of the hardened concretes to 28 days presents values between 36 and 25 MPa; applying irradiation the resistance may decrease to 30% of its original strength; and if subjected to high and low temperatures the ettringite formation also causes a decrease in resistance. The results show that concretes made from cement Impercem, Cruz Azul with gravel <10 mm comply with the provisions of standard and they can be used for conditioning of spent radioactive sources. (Author)

  5. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  6. Large Data Visualization with Open-Source Tools

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Visualization and post-processing of large data have become increasingly challenging and require more and more tools to support the diversity of data to process. In this seminar, we will present a suite of open-source tools supported and developed by Kitware to perform large-scale data visualization and analysis. In particular, we will present ParaView, an open-source tool for parallel visualization of massive datasets, the Visualization Toolkit (VTK), an open-source toolkit for scientific visualization, and Tangelohub, a suite of tools for large data analytics. About the speaker Julien Jomier is directing Kitware's European subsidiary in Lyon, France, where he focuses on European business development. Julien works on a variety of projects in the areas of parallel and distributed computing, mobile computing, image processing, and visualization. He is one of the developers of the Insight Toolkit (ITK), the Visualization Toolkit (VTK), and ParaView. Julien is also leading the CDash project, an open-source co...

  7. The use of radioactive sources for the study of wear in refractory linings; L'emploi de sources radioactives pour l'etude de l'usure des revetements refractaires

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, G; Hours, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Following a discussion on the radioactive method for studying wear in refractory linings (description of the method, advantages and disadvantages, choice of radioactive indicator and detection), the article deals in some detail with the problems of safety involved in this technique. The two most important points discussed are: 1- the need to fix an upper limit of activity in the cast iron: the authors propose a figure of 1 mc of cobalt 60 in 500 tons; 2- the precautions necessary to remedy the diffusion of cobalt 60 in the brickwork (development of special pyro-ceramic sources). After a discussion on the international view point regarding the use of the method, a brief outline of some French projects is given, with particular reference to the case of a blast furnace. A note from the Commission interministerielle des Radioelements is given as an appendix; this deals with special conditions laid down for the use of radioelements in the determination of wear in refractory walls. (author) [French] Apres avoir discute de la methode radioactive pour l'etude de l'usure des revetements refractaires (description de la methode, avantages et inconvenients, choix de l'indicateur radioactif et detection), l'article traite plus particulierement des problemes de securite intervenant dans cette application. Les deux points les plus importants discutes dans ce rapport sont: 1- la necessite de fixer l'activite limite de la fonte et les auteurs proposent ici le chiffre de 1 mc de cobalt 60 dans 500 tonnes de fonte; 2- les remedes a apporter a la diffusion du cobalt 60 dans la maconnerie (realisation de sources speciales en pyrocerame). Apres avoir examine le point de vue international sur l'utilisation de la methode, l'article decrit brievement quelques realisations francaises en etudiant plus particulierement le cas d'un haut-fourneau. En annexe, se trouve une note de la Commission interministerielle des Radio-elements traitant des conditions particulieres d'emploi des radio

  8. Global threat reduction initiative efforts to address transportation challenges associated with the recovery of disused radioactive sealed sources - 10460

    International Nuclear Information System (INIS)

    Whitworth, Julie; Abeyta, Cristy L.; Griffin, Justin M.; Matzke, James L.; Pearson, Michael W.; Cuthbertson, Abigail; Rawl, Richard; Singley, Paul

    2010-01-01

    Proper disposition of disused radioactive sources is essential for their safe and secure management and necessary to preclude their use in malicious activities. Without affordable, timely transportation options, disused sealed sources remain in storage at hundreds of sites throughout the country and around the world. While secure storage is a temporary measure, the longer sources remain disused or unwanted the chances increase that they will become unsecured or abandoned. The Global Threat Reduction Initiative's Off-Site Source Recovery Project (GTRIlOSRP), recovers thousands of disused and unwanted sealed sources annually as part of GTRl's larger mission to reduce and protect high risk nuclear and radiological materials located at civilian sites worldwide. Faced with decreasing availability of certified transportation containers to support movement of disused and unwanted neutron- and beta/gamma-emitting radioactive sealed sources, GTRIlOSRP has initiated actions to ensure the continued success of the project in timely recovery and management of sealed radioactive sources. Efforts described in this paper to enhance transportation capabilities include: (sm b ullet) Addition of authorized content to existing and planned Type B containers to support the movement of non-special form and other Type B-quantity sealed sources; (sm b ullet) Procurement of vendor services for the design, development, testing and certification of a new Type B container to support transportation of irradiators, teletherapy heads or sources removed from these devices using remote handling capabilities such as the IAEA portable hot cell facility; (sm b ullet) Expansion of shielded Type A container inventory for transportation of gamma-emitting sources in activity ranges requiring use of shielding for conformity with transportation requirements; (sm b ullet) Approval of the S300 Type A fissile container for transport of Pu-239 sealed sources internationally; (sm b ullet) Technology transfer of

  9. Prevention of the use of legal trafficking for nuclear material and radioactive sources smuggling. Keynote address/session 9

    International Nuclear Information System (INIS)

    Kravchenko, N.

    2001-01-01

    Full text: Countries like Russia, which have a large nuclear industry, export a significant number of radioactive sources and substances. Some of them are nuclear material. In general, it is the task of the customs inspectors to verify that the content of the shipment is in agreement with the declaration (as safeguards inspectors verify operators declarations). In case of other goods, this is easy. The consignment can be opened and the content can be seen and compared with the declaration. In the case of radioactive shipments this cannot be done. The radioactive substance is in a shielded container and opening is often only possible in a hot cell. Opening of the package and measurement of the removed source in presence of the customs inspector is impossible because the customs control begins only after the declaration has been registered. Therefore, the Russian customs authorities have contracted a company to develop a gamma spectrometer, which can be used to verify the source, even if inside the shielded shipping container. Throughout the country - where many shipments or receivables take place - there are 18 customs offices, equipped with gamma spectrometers and special software. If a container arrives for customs inspection, its design is called from a database. Then the gamma spectrum outside the container is measured and the measured gamma peak energy and intensity is compared with the expected, which is calculated by software based on the design information of the container. This approach works well. Several cases were already discovered in Russia, where there were attempts to use legal shipments for smuggling radioactive sources. I would like to mention some technical problems concerning control of legal export and import of radioactive sources: a) There are not enough commercial suppliers which offer the needed equipment; because of lack of competition prices for the equipment are too high. b) Presently available equipment is mainly based on HPGE cooled

  10. Handling of disused radioactive materials in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1999-10-01

    This paper describes the handling of disused radioactive sources. It also shows graphic information of medical and industrial equipment containing radioactive sources. This information was prepared as part of a training course on radioactive wastes. (The author)

  11. Management for the prevention of accidents from disused sealed radioactive sources

    International Nuclear Information System (INIS)

    2001-04-01

    The objective of this report is to provide advice to sealed radiation source (SRS) users, radioactive waste operators, and other concerned public sectors on the measures to be taken to reduce the risk of accidents associated with disused or spent SRS. The report also explains policies as well as technical and administrative procedures to minimize the risk of accidents and to mitigate the consequences should an accident occur. The report emphasizes areas of high risk in handling disused or spent SRS in any form and condition to help to save health, life and financial resources

  12. Project Update: RLA/9/081 ''Strengthening Cradle-to-Grave Control of Radioactive Sources in the Caribbean Region''

    International Nuclear Information System (INIS)

    Grant, Charles

    2017-01-01

    Why are we concerned about sources? Security, Safety & Health: Security - With sources under control the world is a safer place; Safety - Of people and environment for preservation of economies; Including Health - Sources are invaluable part of modern technological medical treatments. Goiania 1987: Cs-137 Source Small capsule (93 grams of powder); 112,800 people required monitoring; 271 people found contaminated; 4 dead; 7 houses demolished. Objectives and Outcomes - Objective: To protect the people and the environment from potential adverse effects of ionizing radiation while enabling and fostering the safe and secure use of radioactive sources to promote sustainable socioeconomic development. Outcome: Have a national inventory in place in every MS of all (disused) sealed radioactive sources. IAEA Member States participating: Antigua and Barbuda, Bahamas, Barbados, Belize, Dominica, Guyana, Jamaica, Trinidad and Tobago

  13. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  14. Radioactivity in papers: the concentration and source of naturally occurring radionuclides

    International Nuclear Information System (INIS)

    Kobashi, Asaya

    2005-01-01

    The radioactivities of naturally occurring radionuclides ( 226 Ra, 228 Ra, 228 Th and 40 K) in papers such as magazines, newspapers, and copying papers produced in Japan were determined by gamma-ray spectrometry to obtain information on radioactivity level of papers. The X-ray diffraction measurement of the samples was also carried out to elucidate the source of radionuclides contained in them. The average 226 Ra, 228 Ra, 228 Th, and 40 K contents of pocket-sized books were 6.4, 21.5, 23.7, and 18.8 Bq kg -1 , respectively, and those of other kinds of samples were near to or less than the values. The 228 Th content was generally somewhat higher than the 228 Ra content. Possibly 228 Ra was leached from the raw materials of the papers to water during their production in preference to 228 Th. The concentrations of the naturally occurring radionuclides were correlated to each other. The X-ray diffraction study showed that kaolinite, talc, and calcite were contained in the papers. The kaolinite content of the samples was correlated to the concentrations of the naturally occurring radionuclides, indicating that the naturally occurring radionuclides in the paper samples were mainly brought with kaolinite used as filler or coating pigment in the papers. The regression analysis of the data showed that the natural radioactivity content of filler kaolinite was higher than that of pigment kaolinite. (author)

  15. Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes

    Science.gov (United States)

    Anikeev, Andrey V.

    2012-06-01

    The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

  16. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  17. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  18. MODIFIED APPROACH FOR SITE SELECTION OF UNWANTED RADIOACTIVE SEALED SOURCES DISPOSAL IN ARID COUNTRIES (CASE STUDY - EGYPT)

    International Nuclear Information System (INIS)

    ABDEL AZIZ, M.A.H.; COCHRAN, J.R.

    2008-01-01

    The aim of this study is to present a systematic methodology for siting of radioactive sealed sources disposal in arid countries and demonstrate the use of this methodology in Egypt. Availing from the experience gained from the greater confinement disposal (GCD) boreholes in Nevada, USA, the IAEA's approach for siting of near disposal was modified to fit the siting of the borehole disposal which suits the unwanted radioactive sealed sources. The modifications are represented by dividing the surveyed area into three phases; the exclusion phase in which the areas that meet exclusion criteria should be excluded, the site selection phase in which some potential sites that meet the primary criteria should be candidate and the preference stage in which the preference between the potential candidate sites should be carried out based on secondary criteria to select one or two sites at most. In Egypt, a considerable amount of unwanted radioactive sealed sources wastes have accumulated due to the peaceful uses of radio-isotopes.Taking into account the regional aspects and combining of the proposed developed methodology with geographic information system (GIS), the Nile Delta and its valley, the Sinai Peninsula and areas of historical heritage value are excluded from our concern as potential areas for radioactive waste disposal. Using the primary search criteria, some potential sites south Kharga, the Great Sand Sea, Gilf El-Kebear and the central part of the eastern desert have been identified as candidate areas meeting the primary criteria of site selection. More detailed studies should be conducted taking into account the secondary criteria to prefer among the above sites and select one or two sites at most

  19. Radioactivity and Environment

    International Nuclear Information System (INIS)

    Sanchez Leon, J.G.

    1993-01-01

    Radioactivity is one of the most studied natural phenomena. Most of irradiation suffered by the human being is produced by natural sources. The second source in order of importance is nuclear medicine. The average level of radiation received by the man is 2.4 mSv/year and this value can be modified naturally in 20-30%. The author provides a review on radioactivity sources like natural (cosmic rays, extraterrestrial radiation, internal earth radiation, radon) and artificial (Nuclear explosions, professional exposure, nuclear medicine, nuclear power plants and accidents)

  20. Effects of natural radioactivity on food radioactivity measurement

    International Nuclear Information System (INIS)

    Ennyu, Atsuhito

    2012-01-01

    Since the accident of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Company, groups and individuals including local governments, food manufacturers, distribution circles, retail circles, and citizens are eager to measure the radioactivity of food, in order to confirm the safety of food from the concerns about radioactive contamination. The measurement of radioactivity of food is done by quantitatively determining gamma rays due to radioactive cesium that was incorporated into the biosphere cycle after having been released into the environment. As for the radioactivity measurement of food using gamma-ray spectrometry with a potassium iodide scintillation detector, which is very commonly used, this paper describes the handling method of obtained data, the principle of erroneous detection of radioactive cesium and iodine interrupted by natural radionuclides, and countermeasures for it. Major natural radioactivity sources are uranium series and thorium series. This paper explains gamma rays, which are characteristic in the decay process of uranium series and often affect the measurement of radioactive cesium in food and water. (O.A.)

  1. Environmental radioactivity from natural, industrial, and military sources

    International Nuclear Information System (INIS)

    Eisenbud, M.

    1987-01-01

    This document is the third edition of a book generally considered a standard in the field of radioactive materials in the environment. Topics include radiation protection standards, transport mechanisms, terrestrial and aquatic pathways, reprocessing of nuclear fuels, radioactive waste management, the fallout from nuclear explosions, nuclear accidents, and risk assessment

  2. The UK's Surplus Source Disposal Programme: successful management of a national radioactive legacy

    International Nuclear Information System (INIS)

    Williams, Clive; Burns, Philip; Wakerley, Malcolm; Watson, Isabelle; Cook, Marianne; Moloney, Barry

    2010-01-01

    Between 2004 and 2009, the Surplus Source Disposal Programme (SSDP) arranged and subsidised the safe disposal or recycling of more than 11 000 unwanted radioactive items containing in total more than 8.5 x 10 14 Bq of activity, from some 500 sites throughout the United Kingdom. Sources were removed principally from universities, schools and colleges, museums, and hospitals. SSDP was funded by the UK Government and managed by the Environment Agency. The programme was delivered at a total cost of Pounds 7.14 million, nearly Pounds 2 million less than its initial budget. This was a big success for health and safety, the environment, business and the public purse. Current legislative requirements under the High Activity Sealed Sources Directive, which came into effect during 2005, will prevent a build-up of high activity surplus sources in future. Continuing vigilance may be needed to avoid a build-up of lower activity disused sources. (note)

  3. Radioactivity of Consumer Products

    Science.gov (United States)

    Peterson, David; Jokisch, Derek; Fulmer, Philip

    2006-11-01

    A variety of consumer products and household items contain varying amounts of radioactivity. Examples of these items include: FiestaWare and similar glazed china, salt substitute, bananas, brazil nuts, lantern mantles, smoke detectors and depression glass. Many of these items contain natural sources of radioactivity such as Uranium, Thorium, Radium and Potassium. A few contain man-made sources like Americium. This presentation will detail the sources and relative radioactivity of these items (including demonstrations). Further, measurements of the isotopic ratios of Uranium-235 and Uranium-238 in several pieces of china will be compared to historical uses of natural and depleted Uranium. Finally, the presenters will discuss radiation safety as it pertains to the use of these items.

  4. Customs control over the transportation of radiation sources and radioactive materials through the frontier of the Republic of Belarus

    International Nuclear Information System (INIS)

    Derevyashko, A.

    1998-01-01

    1. As it is shown in the name the main purpose of this Paper is to describe system of customs control over transportation of radiation sources and radioactive materials through the frontier of the Republic of Belarus, clarifying herewith influence of global situation on the creation of this system and noting technical needs of Customs Administration of Belarus in its activities aimed at strengthening the control system. 2. The Republic of Belarus has not the enterprises of atomic-industrial complex and does not produce radioactive and nuclear materials, so, control over them is largely connected with their transit through frontiers of Belarus and its territory. It is necessary to note, that the frontier of Belarus with the Ukraine, Poland and Baltic States is an external frontier of a Custom Union between Belarus, Russia, Kazakhstan and Kirghizia. On the territory of the last three states are concentrated extraction and production of radioactive and nuclear materials, part of which can be transported by the shortest way to the European countries through the territory and frontiers of the Republic of Belarus. 3. The significant part of the republic territory suffered from Chernobyl catastrophe. In a number of the polluted regions of Belarus there were created the zones of >, the residing on them is prohibited by legislation. On those territories there were created numerous burial grounds for the conditionally radioactive and low radioactive wastes. In this connection, there is also a danger of illegal importation of various radioactive wastes from contiguous countries to these zones and burial them there. On the other hand, there are known the numerous cases of exportation of various materials, subjects, food from the polluted zones even out of Belarus. 4. Taking into account the aforesaid the Customs Administration of the Republic of Belarus as well as other public authorities, clearly recognizes the necessity of organization of an effective radiation control on

  5. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  6. Repatriation of disused sealed sources in Peru

    International Nuclear Information System (INIS)

    Mallaupoma, Mario; Abeyta, Cristy; Matzke, Jim

    2013-01-01

    Sealed radioactive sources are used around the world in medicine, industry and research within a wide range of applications. Sources may contain a large spectrum of radionuclides, which can have different levels of activity as well as different periods of half-life. At the end of their useful life, they are considered as worn-out or obsolete. However, the residual levels of radioactivity, which have those sources, can be high, representing a high radiation risk. This publication describes the technical actions carried out by the specialized group of the Peruvian Institute of Nuclear energy (IPEN) and Los Alamos National Laboratory which supports the program of 'Global Threat Reduction Initiative's' (GTRI) within the implementation of 'Offsite Source Recovery Program' (OSRP)

  7. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources

    International Nuclear Information System (INIS)

    Medhat, M.E.

    2012-01-01

    Highlights: ► Basic description of artificial neural networks. ► Natural gamma ray sources and problem of detections. ► Application of neural network for peak detection and activity determination. - Abstract: Artificial neural network (ANN) represents one of artificial intelligence methods in the field of modeling and uncertainty in different applications. The objective of the proposed work was focused to apply ANN to identify isotopes and to predict uncertainties of their activities of some natural radioactive sources. The method was tested for analyzing gamma-ray spectra emitted from natural radionuclides in soil samples detected by a high-resolution gamma-ray spectrometry based on HPGe (high purity germanium). The principle of the suggested method is described, including, relevant input parameters definition, input data scaling and networks training. It is clear that there is satisfactory agreement between obtained and predicted results using neural network.

  8. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    Maunoury, L.

    1998-01-01

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  9. Characterizing, for packaging and transport, large objects contaminated by radioactive material having a limited A2 value

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Cash, J.M.; Best, R.E.

    1998-02-01

    The International Atomic Energy Agency (IAEA) Regulations for the safe packaging and transportation of radioactive materials follow a graded approach to the requirements for both packaging and controls during transport. The concept is that, the lower the risk posed to the people and the environment by the contents, (1) the less demanding are the packaging requirements and (2) the smaller in number are the controls imposed on the transport of the material. There are likely to be a great number of situations arising in coming years when large objects, contaminated with radioactive material having unlimited A 2 values will result from various decommissioning and decontamination (D and D) activities and will then require shipment from the D and D site to a disposal site. Such situations may arise relatively frequently during the cleanup of operations involving mining, milling, feedstock, and uranium enrichment processing facilities. Because these objects are contaminated with materials having an unlimited A 2 value they present a low radiological risk to worker and public safety and to the environment during transport. However, when these radioactive materials reside on the surfaces of equipment and other large objects, where the equipment and objects themselves are not radioactive, the radioactive materials appear as surface contamination and, if the contaminated object is categorized as a surface contaminated object, it would need to be packaged for shipment according to the requirements of the Regulations for SCO. Despite this categorization, alternatives may be available which will allow these contaminants, when considered by themselves for packaging and transport, to be categorized as either (1) a limited quantity of radioactive material to be shipped in an excepted package or (2) low specific activity (LSA) materials to be shipped in an IP-1 package or possibly even shipped unpackaged. These options are discussed in this paper

  10. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Izmir, A.I.; Uslu, I.

    2001-01-01

    2000. By categorizing the disposal of 'solid', 'liquid' and 'gaseous' waste, an efficient management system is achieved. Solid radioactive waste consists mainly of protective clothing, plastic sheets and bags, gloves, masks, organs and tissues, animal carcasses, filters, overshoes, paper wipes, towels, metal and glass, hand tools, discarded radiopharmaceuticals containers and discarded equipment. It generally contains a relatively low level of radioactivity when compared to liquid wastes. Special consideration should always be given to the management of contaminated sharp objects, such as needles and syringes, scalpel blades, blood lancets, glass ampoules, etc. Short-lived solid radioactive wastes are stored in the waste storage rooms of the facilities until their activities reduce to an acceptable level to be released to the municipal waste disposal area. The liquid waste can be discharged to sewage system when its activity concentration come down to permissible discharge level which is based on IAEA S S-70. The liquid waste from iodine therapy patients is mostly collected and stored in storage tanks. If the treated patient number is low the waste should be collected separately in shielded drums and stored in waste storage rooms of the facilities until its activity concentration level decreases to an acceptable level. b) Management of Sealed Sources. Sealed radiation sources are widely used in industry, medicine and research in Turkey. Sealed sources have a life cycle, which begins with manufacture and culminates in disposal. Each source life cycle comprises a number of potential stages. A source life cycle can involve individuals in the following key organisations: regulator, manufacturer, Original Equipment Manufacturer, distributor, user (one or subsequent users), waste management organisation, and operator of storage or disposal facility. The large number of organisations potentially involved and their interactions mean that life cycles tend to be complex and can

  11. Nuclear and x-ray spectroscopy with radioactive sources. Fifteenth annual progress report

    International Nuclear Information System (INIS)

    Rink, R.W.; Wood, J.L.

    1979-01-01

    Research during the year is summarized briefly for the following areas: nuclear spectroscopy (including nuclear systematics and models and experimental studies of heavy-nucleus decays), x rays from radioactive sources (including L-subshell x-ray fluorescence and Coster-Kronig yields and the measurement of tailing corrections in low-energy coincidence intensity determinations), and miscellaneous topics concerning computer codes and equipment. One may assume publication of completed work in the usual channels. Lists of personnel, publications, etc., are included. 7 figures

  12. In-situ vitrification: a large-scale prototype for immobilizing radioactively contaminated waste

    International Nuclear Information System (INIS)

    Carter, J.G.; Buelt, J.L.

    1986-03-01

    Pacific Northwest Laboratory is developing the technology of in situ vitrification, a thermal treatment process for immobilizing radioactively contaminated soil. A permanent remedial action, the process incorporates radionuclides into a glass and crystalline form. The transportable procss consists of an electrical power system to vitrify the soil, a hood to contain gaseous effluents, an off-gas treatment system and cooling system, and a process control station. Large-scale testing of the in situ vitrification process is currently underway

  13. Inventory and categorization of radioactive sources in the CDTN, Minas Gerais, Brazil; Inventario e categorizacao de fontes radioativas no CDTN, Minas Gerais, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabio; Tello, Cledola Cassia Oliveira de, E-mail: silvaf@cdtn.b, E-mail: tellocc@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    Radioactive sources have wide application, in the medicine, industry, agriculture and in the research centers. After the use those sources are considered radioactive wastes and conducted to the CNEN research institutes, that have the legal responsibility to receive and control. The safe attribution of wasted sources is essential for minimizing the possibility oc accident occurrence. The data of the stored sources in the CDTN are included and processed in the data bank SISFONT - Sistema de Informacoes sobre Fontes Seladas Fora de Uso, but this system does not allow their categorization. For that, a efficient, precise and easy interaction categorization system was developed

  14. Radioactive thickness gauge (1962); Jauge d'epaisseur radioactive (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Guizerix, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I{sub 1}/I{sub 2}) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [French] L'auteur decrit une jauge d'epaisseur dans laquelle le cristal scintillant detecteur 'voit' alternativement une source radioactive a travers le materiau a mesurer, puis une source de reference de meme nature; la separation des rayonnements est faite dans le temps a l'aide d'un volet absorbeur a secteurs alternativement pleins et creux. Les courants correspondants aux deux sources sont separes apres le tube photomultiplicateur par un detecteur synchrone avec la rotation du volet. On fait ensuite le quotient de ces deux courants a l'aide d'un potientometre enregistreur classique. il resulte de cette disposition que la valeur moyenne de la reponse, qui est de la forme G = f(I{sub 1}/I{sub 2}) n'est pas affectee par la decroissance des sources radioactives, et qu'elle est peu sensible aux variations de haute tension, de temperature ou des proprietes de l'air dans l'intervalle source-detecteur. On donne les performances de cette jauge. (auteur)

  15. IAEA Helps Remove Highly Radioactive Material from Five South American Countries

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) has helped remove 27 disused highly radioactive sources from five South American countries in a significant step forward for nuclear safety and security in the region. It was the largest such project ever facilitated by the IAEA. The material, mainly used for medical purposes such as treating cancer and sterilizing instruments, was transported to Germany and the United States for recycling. Canada, where some of the sources were manufactured, funded the project upon requests for IAEA support from Bolivia, Ecuador, Paraguay, Peru and Uruguay. The sealed Cobalt-60 and Caesium-137 sources pose safety and security risks when no longer in use, according to Raja Adnan, Director of the IAEA’s Division of Nuclear Security. “The removal of this large number of radioactive sources has significantly reduced those risks in the five countries,” Adnan said. In recent years, the IAEA has assisted Bosnia and Herzegovina, Cameroon, Costa Rica, Honduras, Lebanon, Morocco, Tunisia and Uzbekistan in the removal of disused sources. The South American operation was the largest the IAEA has so far coordinated in terms of both the number of highly radioactive sources and countries involved. While nuclear safety and security are national responsibilities, the IAEA helps Member States upon request to meet these responsibilities through training, technical advice, peer reviews and other advisory services. Such efforts may include support for Member States in implementing the safe and cost-effective recovery, conditioning, storage, disposal or transportation of disused sealed radioactive sources (DSRS).

  16. Radioactivity in consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  17. Radioactive concrete sources at IRD/CNEN, Brazil, for calibration of uranium exploration and environmental field instruments

    International Nuclear Information System (INIS)

    Barreto, P.M.C.; Campos, C.A.; Malheiros, T.M.M.; Locborg, L.

    1988-01-01

    A radiometric calibration system consisting of eight radioactive concrete sources was constructed at the Institute of Radiation Protection and Dosimetry (IRD) of the Brazilian Nuclear Energy Commission (CNEN). These sources, stimulating rock outcrops, are available to geophysicists interested in uranium explotation and scientists working with natural radioactivity in environmental research. The sources are of cylindrical shape with 3m diameter and 0.5m thickness weighing approximately 7.5 tonnes each. They are disposed in a circle having in its centre a 4m diameter water pond for cosmi-ray and instrument noise corrections. Uranium, thorium and potassium ores were added to the concrete under such conditions as to achieve perfect homogenization. One hundred and four samples were collected and analysed by eight laboratories. In addition, in-situ radiometric grade determination were performed with calibrated instruments resulting a total of 2.100 determinations of U, Th and K, from which the reference values were assigned to each source. With this system, it is possible to calculate sensitivity constants and stripping ratios for portable gamma-ray spectrometers. It also provides excellent means for the calibration of radiation detectors used in environmental monitoring, in which humidity, temperature and omni-directional gamma flux, similar to the natural environmental, are simulated. (author) [pt

  18. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  19. Digital intelligence sources transporter

    International Nuclear Information System (INIS)

    Zhang Zhen; Wang Renbo

    2011-01-01

    It presents from the collection of particle-ray counting, infrared data communication, real-time monitoring and alarming, GPRS and other issues start to realize the digital management of radioactive sources, complete the real-time monitoring of all aspects, include the storing of radioactive sources, transporting and using, framing intelligent radioactive sources transporter, as a result, achieving reliable security supervision of radioactive sources. (authors)

  20. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    International Nuclear Information System (INIS)

    Wurdiyanto, G; Candra, H

    2016-01-01

    The standardization of radioactive sources ( 125 I, 131 I, 99m Tc and 18 F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125 I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125 I, 131 I, 99m Tc and 18 F respectively, by about 5 to 6% of the expanded uncertainties. (paper)

  1. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    Science.gov (United States)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  2. Import/export Service of Radioactive Material

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export service of radioactive material (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Web site: http://cern.ch/service-rp-shipping/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch Radioactive Sources Service Please note that the radioactive sources service (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Moreover, the service being reduced transports between Swiss and French sites (and vice versa) will now be achieved by internal transport. Web site : http://cern.ch/service-radioactive-sources/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch

  3. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  4. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  5. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  6. Security problems arising from the use of radioactive sources in the study of the wear in refractory linings

    International Nuclear Information System (INIS)

    Courtois, G.; Hours, R.; Le Clerc, P.; Pons, A.

    1960-01-01

    The determination of the wear in refractories is a problem to which these are at present only a few solutions, and these limited or delicate to use. That is the reason why the use of radioactive tracers contained in the refractory has met with rapid success. Unfortunately, the development of the method has been retarded by the need to limit severely the amounts of radioelement incorporated and also by the observation that diffusion of the radioactive product occurred in the refractory. As a result, the limiting amount of 1 mc/500 metric tons of cast-iron has been adopted in France, with the proviso that no single source exceeds 3 mc. Further, we have made special sources with a view to avoiding diffusion phenomena. The essential feature of these sources is that they use pyro-ceramic a non porous material having a high melting point and being, very inert chemically. In these sources, the radioelement can either be entirely encased in the pyro-ceramic or be an integral part of its composition. A comparative study of the two types of sources is actually under way. (author) [fr

  7. Wipe sampling for characterization of noncompactable radioactive waste

    International Nuclear Information System (INIS)

    Barbieri, Aline E.O.; Ferreira, Robson J.; Vicente, Roberto

    2009-01-01

    Wipe sampling is a method of monitoring radioactive surface contamination on working area and on radioactive, non-compactable wastes, constituted of large pieces of replaced parts of equipment in nuclear and radioactive installations. In this method, sampling is executed by rubbing a disc of filter paper on the contaminated surface in such a way as to collect entirely or partially the deposited material. The target radioisotopes are subsequently measured directly on the wipe or extracted by appropriate radio analytical methods and then qualitatively and quantitatively determined. The collection factor, or the efficiency with which the material is removed from the surface and deposited on the smear, is the main source of error in quantitative measurements. The determination of the collection efficiency is the object of this communication. (author)

  8. The measurement results of radioactive sources in Turkish hardcoal enterprise (TTK)

    International Nuclear Information System (INIS)

    Gonul, Bicher

    2006-01-01

    Full text: In Health Department of TTK there are 3 roentgen equipments. Because of these equipments reflecting X-ray, therefore they categorized as the group of producing radioactive source.Each equipment has the capacity of 100 MA. According to radiation safeyt regulations and codes of practice, the equipment is used under the licence certificate of number 99/4173. In 2000, due to change of responsible personnel in the department, when TTK applied for changing licence, the application was rejected because responsible personel had to be graduate from radiology branch. On 5 May 2003, as referred to in article four of radiation safety regulations, educational seminar on the subject of personnel responsible for radiation protection and to protect personnel to be assigned in dangerous and extraordinary situations from radiation was given by Turkish Atomic Energy Authority (TAEK) in Safety and Training Department of TTK. It came on the scene that the personnel working in Health Department of TTK had to be trained and certificated by TAEK. For this purpose, TTK applied for the examination done by TAEA on 21 June 2003. But this application was not accepted as the personel had to be graduated from radiology branch.To renew the licience according to the radiation regulations, the application will be done again to TAEK after preparing necesarry conditions.The dosimeter results of the personnel at roentgen equipment in Health Department of TTK are measured and in the hand of TTK. For BERTHOLD type Cs-137 model equipment used for measuring density in filtration unit, Catalagz? Washery Plant has providing and using licence under the certificate of number KRY0049.02.001 dated on 26 May 2005 according to radiation safety regulations and statutes given by TAEA .As referred to in article 15 of radiation safety regulations published in official paper having number of 23999 and dated on 24 March 2006, the areas which can be subjected to over the annual dosage of 1mSv are named as

  9. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  10. Non-linear degradation model of cement barriers in a borehole repository for disused radioactive sources

    International Nuclear Information System (INIS)

    Gharbieh, Heidar K.; Cota, Stela

    2015-01-01

    Narrow diameter borehole facilities (a few tens of centimeters), like the BOSS concept developed by the IAEA, provide a safe and cost effective disposal option for radioactive waste and particularly disused sources. The BOSS concept (borehole disposal of sealed radioactive sources) comprises a multi-barrier system of cement grout and stainless steel components. In order to predict the long-time performance of the cement barriers as an input of a future safety assessment under the specific hydrochemical and hydrological conditions, a non-linear degradation model was developed in this work. With the assistance of the program 'PHREEQC' it describes the change of the porosity and the hydraulic conductivity with time, which also let to conclusions concerning the change of the sorption capacity of the cement grout. This work includes the theoretical approach and illustrates the non-liner degradation by means of an exemplary water composition found in the saturated zone and the dimensions of the backfill made of cement grout representing a barrier of the BOSS borehole facility. (author)

  11. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  12. Atmospheric transport, diffusion, and deposition of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  13. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  14. Recovery from Iridium-192 flakes of a radioactive source for industrial use after a radiation incident

    International Nuclear Information System (INIS)

    Cruz, W.H.; Zapata, L.A.

    2013-01-01

    The Iridium-192 ( 192 Ir) is the most used and ideal for industrial radiography applications, especially in petrochemical plants and pipelines and provides better contrast sensitivity for thick (25.4 mm). This source has constructive sealed double encapsulation, the internal capsule containing stainless steel to radioactive material in the form of flakes and welded with TIG process. The radiological incident happened at a gas station fuel sales in circumstances in which there was a homogeneity test welds a tank, the flakes or Ir-192 fell off his ponytail and left scattered over an area of 2 m 2 , some fell flat areas and other land so collected in lead shielding and metal container and ground source. Full recovery of the leaflets was performed at the Division of radioactive waste management (GRRA) gaining a total of 22 flakes with no radiation risk to staff performance and installation and the conclusion was reached that the misapplicaion of TIG welding was the main cause the incident. (author)

  15. Hygienic assessment of radioactive iodine isotopes

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1987-01-01

    Sources of radioactive iodine isotopes and their biological significance depending on the way of intake are discussed. The degree of food contamination by radioactive iodine as well as products, which serve as the source of its intake into the human body, and results of their processing are considered. The danger of radioactive iodine intake by different groups of population as well as thyroid irradiation effects are discussed. Description of activities, directed to the human body protection against radioactive iodine and assessment of these protection measures efficiency is presented

  16. Challenges associated with the behaviour of radioactive particles in the environment.

    Science.gov (United States)

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position

  17. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication,