WorldWideScience

Sample records for large marine ecosystem

  1. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: a comparative assessment

    DEFF Research Database (Denmark)

    Kirkman, Stephen P.; Yemane, Dawit; Atkinson, Lara J.

    2015-01-01

    Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community‐level sh......Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community...

  2. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  3. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  4. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    Science.gov (United States)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist

  5. Patterns and drivers of fish community assembly in a large marine ecosystem

    DEFF Research Database (Denmark)

    Pécuchet, Lauréne; Törnroos, Anna; Lindegren, Martin

    2016-01-01

    . To determine assembly rules, ecological similarities of co-occurring species are often investigated. This can be evaluated using trait-based indices summarizing the species’ niches in a given community. In order to investigate the underlying processes shaping community assembly in marine ecosystems, we...... investigated the patterns and drivers of fish community composition in the Baltic Sea, a semi-enclosed sea characterized by a pronounced environmental gradient. Our results showed a marked decline in species- and functional richness, largely explained by decreasing salinities. In addition, habitat complexity...

  6. Description of the East Brazil Large Marine Ecosystem using a trophic model

    Directory of Open Access Journals (Sweden)

    Kátia M.F. Freire

    2008-09-01

    Full Text Available The objective of this study was to describe the marine ecosystem off northeastern Brazil. A trophic model was constructed for the 1970s using Ecopath with Ecosim. The impact of most of the forty-one functional groups was modest, probably due to the highly reticulated diet matrix. However, seagrass and macroalgae exerted a strong positive impact on manatee and herbivorous reef fishes, respectively. A high negative impact of omnivorous reef fishes on spiny lobsters and of sharks on swordfish was observed. Spiny lobsters and swordfish had the largest biomass changes for the simulation period (1978-2000; tunas, other large pelagics and sharks showed intermediate rates of biomass decline; and a slight increase in biomass was observed for toothed cetaceans, large carnivorous reef fishes, and dolphinfish. Recycling was an important feature of this ecosystem with low phytoplankton-originated primary production. The mean transfer efficiency between trophic levels was 11.4%. The gross efficiency of the fisheries was very low (0.00002, probably due to the low exploitation rate of most of the resources in the 1970s. Basic local information was missing for many groups. When information gaps are filled, this model may serve more credibly for the exploration of fishing policies for this area within an ecosystem approach.

  7. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  8. Comparative analysis of marine ecosystems: workshop on predator-prey interactions

    DEFF Research Database (Denmark)

    Bailey, Kevin M.; Ciannelli, Lorenzo; Hunsicker, Mary

    2010-01-01

    in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16–18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling......Climate and human influences on marine ecosystems are largely manifested by changes in predator–prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator–prey interactions...

  9. Biomanipulation - a tool in marine ecosystem management and restoration?

    DEFF Research Database (Denmark)

    Lindegren, Martin; Möllmann, Christian; Hansson, Lars-Anders

    2010-01-01

    Widespread losses of production and conservation values make large-scale ecosystem restoration increasingly urgent. Ecological restoration by means of biomanipulation, i.e., by fishing out planktivores as to reduce the predation pressure on herbivorous zooplankton, has proven an effective tool...... in restoring degraded lakes and coastal ecosystems. Whether biomanipulation may prove a useful restoration method in open and structurally complex marine ecosystems is however still unknown. To promote a recovery of the collapsed stock of Eastern Baltic cod (Gadus morhua), large-scale biomanipulation of sprat...

  10. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og inter...

  11. Events Calendar: Smithsonian Marine Ecosystems Exhibit: Smithsonian Marine

    Science.gov (United States)

    current Smithsonian research on the plants and animals of the Indian River Lagoon and marine environments Station (SMS) at Fort Pierce Smithsonian Marine Station at Fort Pierce Website Search Box History Modeling Ecosystems Virtual Tour Facebook Instagram Twitter SMS Home › Smithsonian Marine

  12. Overview of integrative assessment of marine systems: the Ecosystem Approach in practice

    Directory of Open Access Journals (Sweden)

    Angel eBorja

    2016-03-01

    Full Text Available Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment: the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

  13. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    Science.gov (United States)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    Integrated assessments of large marine ecosystems require the understanding of interactions between environmental, ecological, and socio-economic factors that affect production and utilization of marine natural resources. Assessing the functioning of complex coupled natural-human systems calls for collaboration between natural and social scientists across disciplinary and national boundaries. We are developing a platform to implement and sustain informatics solutions for these applications, providing interoperability among very diverse and heterogeneous data and information sources, as well as multi-disciplinary organizations and people. We have partnered with NOAA NMFS scientists to facilitate the deployment of an integrated ecosystem approach to management in the Northeast U.S. (NES) and California Current Large Marine Ecosystems (LMEs). Our platform will facilitate the collaboration and knowledge sharing among NMFS natural and social scientists, promoting community participation in integrating data, models, and knowledge. Here, we present collaborative software tools developed to aid the production of the Ecosystem Status Report (ESR) for the NES LME. The ESR addresses the D-P-S portion of the DPSIR (Driver-Pressure-State-Impact-Response) management framework: reporting data, indicators, and information products for climate drivers, physical and human (fisheries) pressures, and ecosystem state (primary and secondary production and higher trophic levels). We are developing our tools in open-source software, with the main tool based on a web application capable of providing the ability to work on multiple data types from a variety of sources, providing an effective way to share the source code used to generate data products and associated metadata as well as track workflow provenance to allow in the reproducibility of a data product. Our platform retrieves data, conducts standard analyses, reports data quality and other standardized metadata, provides iterative

  14. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    Science.gov (United States)

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Linking Marine Ecosystem Services to the North Sea’s Energy Fields in Transnational Marine Spatial Planning

    Directory of Open Access Journals (Sweden)

    Christina Vogel

    2018-06-01

    Full Text Available Marine spatial planning temporally and spatially allocates marine resources to different users. The ecosystem approach aims at optimising the social and economic benefits people derive from marine resources while preserving the ecosystem’s health. Marine ecosystem services are defined as the benefits people obtain from marine ecosystems. The aim of this study is to determine which interrelations between marine ecosystem services and the marine energy industry can be identified for use in transnational marine spatial planning exemplified in the North Sea region. As the North Sea is one of the busiest seas worldwide, the risk of impairing the ecosystems through anthropogenic pressures is high. Drawing on a literature-based review, 23 marine ecosystem services provided by the North Sea region were defined and linked to seven offshore energy fields comprising oil and natural gas, wind, tides and currents, waves, salinity gradients, algal biomass, and geothermal heat. The interactions were divided into four categories: dependence, impact, bidirectional, or no interaction. Oil and natural gas, as well as algae biomass, are the fields with the most relations with marine ecosystem services while waves and salinity gradients exhibit the least. Some marine ecosystem services (Conditions for Infrastructure, Regulation of Water Flows, and Cognitive Development are needed for all fields; Recreation and Tourism, Aesthetic and Cultural Perceptions and Traditions, Cognitive Development, and Sea Scape are impacted by all fields. The results of this research provide an improved basis for an ecosystem approach in transnational marine spatial planning.

  16. Towards ecosystem-based management: Identifying operational food-web indicators for marine ecosystems

    DEFF Research Database (Denmark)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.

    2017-01-01

    ) are an important aspect of all marine ecosystems and biodiversity. Here we describe and discuss a process to evaluate the selection of operational food-web indicators for use in evaluating marine ecosystem status. This process brought together experts in food-web ecology, marine ecology, and resource management......, to identify available indicators that can be used to inform marine management. Standard evaluation criteria (availability and quality of data, conceptual basis, communicability, relevancy to management) were implemented to identify practical food-web indicators ready for operational use and indicators...... that hold promise for future use in policy and management. The major attributes of the final suite of operational food-web indicators were structure and functioning. Indicators that represent resilience of the marine ecosystem were less developed. Over 60 potential food-web indicators were evaluated...

  17. Geostatistical modelling of the spatial life history of post-larval deepwater hake Merluccius paradoxus in the Benguela Current Large Marine Ecosystem

    DEFF Research Database (Denmark)

    Jansen, T; Kristensen, K; Fairweather, T. P.

    2017-01-01

    paradoxus are not reflected in the current assessment and management practices for the Benguela Current Large Marine Ecosystem. In this study, we compiled data from multiple demersal trawl surveys from the entire distribution area and applied state-of the-art geostatistical population modelling (Geo...

  18. Marine Research Infrastructure collaboration in the COOPLUS project framework - Promoting synergies for marine ecosystems studies

    Science.gov (United States)

    Beranzoli, L.; Best, M.; Embriaco, D.; Favali, P.; Juniper, K.; Lo Bue, N.; Lara-Lopez, A.; Materia, P.; Ó Conchubhair, D.; O'Rourke, E.; Proctor, R.; Weller, R. A.

    2017-12-01

    Understanding effects on marine ecosystems of multiple drivers at various scales; from regional such as climate and ocean circulation, to local, such as seafloor gas emissions and harmful underwater noise, requires long time-series of integrated and standardised datasets. Large-scale research infrastructures for ocean observation are able to provide such time-series for a variety of ocean process physical parameters (mass and energy exchanges among surface, water column and benthic boundary layer) that constitute important and necessary measures of environmental conditions and change/development over time. Information deduced from these data is essential for the study, modelling and prediction of marine ecosystems changes and can reveal and potentially confirm deterioration and threats. The COOPLUS European Commission project brings together research infrastructures with the aim of coordinating multilateral cooperation among RIs and identifying common priorities, actions, instruments, resources. COOPLUS will produce a Strategic Research and Innovation Agenda (SRIA) which will be a shared roadmap for mid to long-term collaboration. In particular, marine RIs collaborating in COOPLUS, namely the European Multidisciplinary Seafloor and water column Observatory: EMSO (Europe), the Ocean Observatories Initiative (OOI, USA), Ocean Networks Canada (ONC), and the Integrated Marine Observing System (IMOS, Australia), can represent a source of important data for researchers of marine ecosystems. The RIs can then, in turn, receive suggestions from researchers for implementing new measurements and stimulating cross-cutting collaborations and data integration and standardisation from their user community. This poster provides a description of EMSO, OOI, ONC and IMOS for the benefit of marine ecosystem studies and presents examples of where the analyses of time-series have revealed noteworthy environmental conditions, temporal trends and events.

  19. Review on the Progress of Marine Ecosystem Management

    Institute of Scientific and Technical Information of China (English)

    Yao Xuefen; Zhang Luoping

    2007-01-01

    Along with the industrial development, adverse impacts on the natural environment become more serious, and ecosystem health and ecological security have also been deteriorated.The traditional environment management focused on the shortterm and economic benefits. Such managing pattern is not accommodating to the new situation of increasingly global environment problems and large scale marine environment problems.This paper introduces the advance and definition of a new managing pattern-ecosystem management. Meanwhile, the connotation of ecosystem management was summarized as seven points: Sustainability; Human is an important aspect of ecosystem management; Cooperation is the foundation of ecosystem management; Maintain health and security of ecosystem; Ecological diversity protection characters ecosystem management; Maintain the integrity of ecosystem; Ecosystem management must be founded on scientific theories and precise information. Somebody said Ecosystem Management is "a new label of old ideas". However, there is an essential difference between ecosystem management and traditional environmental management. In the last part of this paper, the differences of the approaches between ecosystem management and traditional environmental management are compared.

  20. Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Directory of Open Access Journals (Sweden)

    Angel Borja

    2016-09-01

    Full Text Available Human activities, both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services. Although there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly, while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce. Therefore, an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status specifically addressed these topics in order to support policy makers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges.

  1. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  2. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    Science.gov (United States)

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  3. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  4. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  5. Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.

    Science.gov (United States)

    Martin, Jeremy E; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent

    2017-06-05

    The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  7. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    Science.gov (United States)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-12-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning

  8. Migration, distribution and population (stock) structure of shallow-water hake (Merluccius capensis) in the Benguela Current Large Marine Ecosystem inferred using a geostatistical population model

    DEFF Research Database (Denmark)

    Jansen, Teunis; Kristensen, Kasper; Kainge, Paulus Inekela

    2016-01-01

    Shallow-water hake (Merluccius capensis) is of considerable ecological and economic importance in the Benguela Current Large Marine Ecosystem in South Africa and Namibia. Optimal management of the resource is currently constrained by the limited understanding of migration patterns and population...

  9. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    Science.gov (United States)

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  10. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  11. The marine ecosystem services approach in a fisheries management perspective

    DEFF Research Database (Denmark)

    Pedersen, Søren Anker; Lassen, Hans; Frost, Hans Staby

    that the concept of marine ecosystem services is not helpful for the two first mentioned types of analysis and that a cost-benefit analysis that is implied by the marine ecosystem services concept is inadequate for the third. We argue that the discussion needs to be divided into two: (1) finding the boundaries......This paper reviews the concepts of marine ecosystem services and their economic valuation in a European fisheries management perspective. We find that the concept is at best cumbersome for advising on how best to regulate fisheries even in an ecosystem context. We propose that operational fisheries...... management must consider three different types of analysis, the yield of and the effect of fishing on the commercial species, the effects of fishing on habitats and non-commercial species and finally an overall analysis of the combined impact of all human activities on the marine ecosystem. We find...

  12. Polar marine ecosystems: major threats and future change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A. [British Antarctic Survey, Cambridge (United Kingdom); Harris, C.M. [Environmental Research and Assessment, Grantchester (United Kingdom)

    2003-07-01

    This review of polar marine ecosystems covers both the Arctic and Antarctic, identifying the major threats and, where possible, predicting their possible state(s) in 2025. Although the two polar regions are similar in their extreme photoperiod, low temperatures, and in being heavily influenced by snow and ice, in almost all other respects they are very different. The Arctic Ocean is a basin surrounded by continental landmasses close to, and influenced by, large populations and industrial activities. In contrast, the Southern Ocean is contiguous with all the other great oceans and surrounds a single land mass; Antarctica is remote from major centres of population and sources of pollution. Marine environments in both Polar Regions have been highly disturbed by fishing activity, but, in terms of pollution, some areas remain among the most pristine in the world. There are, however, both local and global pressures. Over the 2025 time horizon, the greatest concern for the Arctic is probably the ecological implications of climate change, particularly insofar as sea ice extent and duration are likely to be affected. Such changes are not expected to be as pronounced in the Southern Ocean over this time period, and concerns are related more to direct threats from harvesting of marine living resources, and the ability to manage these fisheries sustainably. In both Polar Regions, the capacity of marine ecosystems to withstand the cumulative impact of a number of pressures, including climate change, pollution and overexploitation, acting synergistically is of greatest concern. (author)

  13. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  14. Typology and indicators of ecosystem services for marine spatial planning and management.

    Science.gov (United States)

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    Science.gov (United States)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism

  16. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  17. Marine ecosystems in alteration under global warming

    International Nuclear Information System (INIS)

    Prestrud, Paal

    2004-01-01

    It is commonly thought among fishermen, researchers and in the fishing industries that the administration and harvesting of the fish resources is more important for the stock of fish than are changes in the climate. However, many scientific investigations now link changes in temperature with changes in the spreading, survival and beginning of life processes. There is solid evidence that there are important changes in progress in the North Atlantic marine ecosystem caused by global warming. If the heating of the water masses continues, it will probably have a large impact on the ocean's productivity and consequently for the fishing industry

  18. Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries?

    Science.gov (United States)

    Bonde, R.K.; Aguirre, A.A.; Powell, J.

    2004-01-01

    The order Sirenia is represented by three species of manatees and one species of dugong distributed in tropical and subtropical regions of the world and considered vulnerable to extinction. The sentinel species concept is useful to identify indicators of the environment and may reflect the quality of health in marine ecosystems. The single species approach to evaluate ecological health may provide a series of “snap shots” of environmental changes to determine if animal, human, or ecosystem health may be affected. Under this concept, marine vertebrates may be good integrators of changes over space and time, and excellent sentinels of ecosystem health. Based on their life history, manatees may or may not be ideal sentinels, as they are robust, long-lived species and appear remarkably resilient to natural disease and the effects of human-related injury and trauma. These characteristics might be the result of an efficient and responsive immune system compared to other marine mammals. Although relatively immune to infectious agents, manatees face other potentially serious threats, including epizootic diseases and pollution while in large aggregations. Manatees can serve as excellent sentinels of harmful algal blooms due to their high sensitivity, specifically to brevetoxicosis, which has caused at least two major die-offs in recent times. Threats to manatees worldwide, such as illegal hunting and boat collisions, are increasing. Habitat is being lost at an alarming rate and the full effects of uncontrolled human population growth on the species are unknown. The manatee may serve as a sentinel species, prognosticating the deleterious effects of unhealthy marine and aquatic ecosystems on humans. We have identified a number of critical research needs and opportunities for transdisciplinary collaboration that could help advance the use of the sentinel species concept in marine ecosystem health and monitoring of disease emergence using our knowledge on these magnificent

  19. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  20. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin [ed.; Studsvik Nuclear AB (Sweden)

    2010-12-15

    the ecosystem is the sediment. For uranium the sediment pool and the dissolved pool are almost equally large, dominant pool for iodine is the dissolved phase. In Laxemar-Simpevarp the mean biomass is considerable higher than in Forsmark. A major difference between the sites is the high abundances of the blue mussels in the exposed basins with extensive hard-bottoms. The annual mean NEP in the whole marine area in Laxemar-Simpevarp is negative i.e. more carbon is released to the atmosphere than is fixed in biomass. However, not all basins are heterothropic, coastal basins with high macrophyte biomasses are generally autothropic. The largest carbon pool in the area is the DIC-pool followed by the sediment pool and the filter feeders. Advective flux generates the largest carbon flux in the ecosystem followed by the biotic flux; consumption by filter feeders. Runoff, diffusion, burial and precipitation are generally small fluxes in the area.

  1. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Aquilonius, Karin

    2010-12-01

    the ecosystem is the sediment. For uranium the sediment pool and the dissolved pool are almost equally large, dominant pool for iodine is the dissolved phase. In Laxemar-Simpevarp the mean biomass is considerable higher than in Forsmark. A major difference between the sites is the high abundances of the blue mussels in the exposed basins with extensive hard-bottoms. The annual mean NEP in the whole marine area in Laxemar-Simpevarp is negative i.e. more carbon is released to the atmosphere than is fixed in biomass. However, not all basins are heterothropic, coastal basins with high macrophyte biomasses are generally autothropic. The largest carbon pool in the area is the DIC-pool followed by the sediment pool and the filter feeders. Advective flux generates the largest carbon flux in the ecosystem followed by the biotic flux; consumption by filter feeders. Runoff, diffusion, burial and precipitation are generally small fluxes in the area. In average only 0.8% of the carbon initially consumed in the food web reaches the top predators

  2. Can schooling regulate marine populations and ecosystems?

    Science.gov (United States)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem

  3. Implementing ecosystem-based marine management as a process of regionalisation

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Raakjær, Jesper; van Tatenhove, Jan

    2015-01-01

    and the Baltic Sea Fisheries Forum, both examples of regionalisation processes in order to implement ecosystem-based marine management. The Helsinki Commission Group for implementation of the ecosystem approach is a joint management body for the implementation of the Baltic Sea Action Plan and the European Union......This article deals with the implementation of ecosystem-based marine management in the Baltic Sea. It explores and documents in particular the preliminary lessons from environmental and fisheries management with reference to the Helsinki Commission Group for implementation of the ecosystem approach......'s Marine Strategy Framework Directive. The Baltic Sea Fisheries Forum is a new governing body to facilitate regional cooperation in fisheries management. The aim of the article is twofold: a) to describe and discuss two different pathways of regionalisation in the Baltic Sea and b) to explore how...

  4. Intertemporal Choice of Marine Ecosystem Exploitation

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    Management, however, requires models that can link the ecosystem level to the operation level, so this paper examines an ecosystem production model and shows that it is suitable for applying ground rent theory. This model is the simplest possible that incorporates the principles of size as the main......, it is probably detrimental from an economic point of view. The marine ecosystem therefore requires an ecosystem management for economic reasons; in this context, models like the one presented here can serve as useful planning tools....... determinant of the predator--prey interaction, the inclusion of mass balance in the predator--prey allocation, and mortality and somatic growth as consequences of the predator--prey allocation. The model needs to be parameterized for the specific ecosystem and the price and cost functions must be established...

  5. Marine and coastal ecosystem services on the science-policy-practice nexus

    NARCIS (Netherlands)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino; Ruiz-Frau, Ana; Burkhard, Kremena; Lillebø, Ana I.; Oudenhoven, van Alexander P.E.; Ballé-Béganton, Johanna; Rodrigues, João Garcia; Nieminen, Emmi; Oinonen, Soile; Ziemba, Alex; Gissi, Elena; Depellegrin, Daniel; Veidemane, Kristina; Ruskule, Anda; Delangue, Justine; Böhnke-Henrichs, Anne; Boon, Arjen; Wenning, Richard; Martino, Simone; Hasler, Berit; Termansen, Mette; Rockel, Mark; Hummel, Herman; Serafy, El Ghada; Peev, Plamen

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services

  6. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  7. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    Science.gov (United States)

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  8. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto......Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...

  9. Marine ecosystem analysis for wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.; Cho, T.J.

    1982-01-01

    Environmental surveys to provide base-line data for assessing the potential impact of the operation of Wolseong NPP on marine ecosystems were performed at 3-month intervals in 1981. Physico-chemical properties of seawater and gross beta activities in seawater and marine organisms were examined. The result shows that the ecosystems are non-polluted, typical of near-shore waters. The results of ecological surveys are summarized as follows: A total of 84 taxa of phytoplankton diatom were identified. Of the species, about 70 % are described as neritic species, and the major bloom occurred in September. The analysis of diversity indices shows that the community is very stable. The dominant species of zooplankton were protozoan Noctiluca scintillans and copepods. A total of 83 species of marine algae were identified. The algal community was more diverse in September-December than in March-July, and the dominant species were Chondria crassicaulis and Corallina pilulifera. Total algal production per unit area (0.25 m 2 ) was, on the average, 20 g-dry. The biomass of bacterial population was highest in December, and the result of multiple regression analysis indicates that the important environmental factors are nutrients, salinity and temperature. Primary productivities measured by Carbon-14 method were 1.11 mg C/m 3 /hr at 1 m depth, and 1.45 mg C/m 3 /hr at 6 m depth. As a whole the marine ecosystems adjacent Wolseong NPP site are thought to be stable. (author)

  10. The Economics of Marine Ecosystem Services – the Fisheries Case

    DEFF Research Database (Denmark)

    Ravensbeck, Lars

    of five papers, but additionally five other documents have been authored or co-authored in relation to the thesis. The first document is a book chapter that surveys the state of art in some main areas related to green accounting and the links to economic value of ecosystem services particularly those......The thesis “The Economics of Marine Ecosystem Services − the Fisheries Case” focuses on some of the issues in marine resources economics that have attracted significant interest in recent years. Historically, the central issue has been fisheries economics and how to management fish stocks to obtain...... in the formation of flows of ecosystem services from the oceans it is possible to integrate classical fisheries economics with a broader ecosystem approach. The core element of the thesis is the combination of fisheries economics, an ecosystem approach and extended, applied bioeconomic models. The thesis consists...

  11. Reviewing evidence of marine ecosystem change off South Africa ...

    African Journals Online (AJOL)

    Recent changes have been observed in South African marine ecosystems. The main pressures on these ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing ...

  12. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  13. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  14. Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Desiree Tommasi

    2017-06-01

    Full Text Available Decisions made by fishers and fisheries managers are informed by climate and fisheries observations that now often span more than 50 years. Multi-annual climate forecasts could further inform such decisions if they were skillful in predicting future conditions relative to the 50-year scope of past variability. We demonstrate that an existing multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3 years, and the next 1–10 years being warmer or cooler than the 50-year average at the surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface temperature (SST terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member ensemble global prediction system showed significant improvements in skill over the use of a 50-year climatology for most Large Marine Ecosystems (LMEs in the North Atlantic, the western Pacific, and Indian oceans. Through a comparison of the forecast skill of initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the predictable signature of radiative forcing changes over the 50-year timescale rather than prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the only coastal regions where initialization significantly contributed to SST prediction skill at the 1 to 10 year scale.

  15. Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge.

    Science.gov (United States)

    Shaw, Susan D; Kannan, Kurunthachalam

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of synthetic halogenated organic compounds used in commercial and household products, such as textiles, furniture, and electronics, to increase their flame ignition resistance and to meet fire safety standards. The demonstrated persistence, bioaccumulation, and toxic potential of these compounds in animals and in humans are of increasing concern. The oceans are considered global sinks for PBDEs, as higher levels are found in marine organisms than in terrestrial biota. For the past three decades, North America has dominated the world market demand for PBDEs, consuming 95% of the penta-BDE formulation. Accordingly, the PBDE concentrations in marine biota and people from North America are the highest in the world and are increasing. Despite recent restrictions on penta- and octa-BDE commercial formulations, penta-BDE containing products will remain a reservoir for PBDE release for years to come, and the deca-BDE formulation is still in high-volume use. In this paper, we review all available data on the occurrence and trends of PBDEs in the marine ecosystems (air, water, sediments, invertebrates, fish, seabirds, and marine mammals) of North and South America. We outline here our concerns about the potential future impacts of large existing stores of banned PBDEs in consumer products, and the vast and growing reservoirs of deca-BDE as well as new and naturally occurring brominated compounds on marine ecosystems.

  16. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Science.gov (United States)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the

  17. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Directory of Open Access Journals (Sweden)

    D. P. Tittensor

    2018-04-01

    Full Text Available Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0, part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size, and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM Coupled Model Intercomparison Project Phase 5 (CMIP5 outputs under prescribed scenarios for historic (from the 1950s and future (to 2100 time periods; it will be adapted to CMIP phase 6 (CMIP6 in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems

  18. Modeling the role and impact of alien species and fisheries on the Israeli marine continental shelf ecosystem

    Science.gov (United States)

    Corrales, X.; Ofir, E.; Coll, M.; Goren, M.; Edelist, D.; Heymans, J. J.; Gal, G.

    2017-06-01

    The ecosystems of the Israeli Mediterranean coast have undergone significant changes in recent decades mainly due to species invasions and fishing. In order to characterize the structure and functioning of the marine continental shelf of the Israeli Mediterranean coast and assess temporal changes, we developed a food web model representing two time periods: 1990-1994 and 2008-2012. The 1990-1994 and 2008-2012 food web models were composed of 39 and 41 functional groups, respectively. Functional groups ranged from primary producers to top predators, and included six and eight alien functional groups, respectively, encompassing several crustacean and fish species. Input data included local surveys and fishery statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. Results of the competitive interactions between alien and native species and changes in trophic flows between food web components highlight the increasing impact of alien species over time. Fishing had noticeable impacts in both time periods and played an important role in the ecosystem. Despite different productivity rates and other environmental differences, the Israeli marine ecosystem shared common structural and functional traits with other Mediterranean marine ecosystems. This is the first attempt to study the ecosystem of the Levant region using mass-balance models and to integrate such a large amount of alien species into food web analyses.

  19. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  20. Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean management.

    Science.gov (United States)

    Hunsicker, Mary E; Kappel, Carrie V; Selkoe, Kimberly A; Halpern, Benjamin S; Scarborough, Courtney; Mease, Lindley; Amrhein, Alisan

    2016-04-01

    Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information

  1. Marine ecosystem analysis for Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.H.; Cho, T.S.

    1980-01-01

    The effect of both radioactive and thermal effluents discharged from the plant on aquatic ecosystem is one of the primary concerns in evaluating the environmental impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases. There is also another possible synergistic effect, that is, the combination of the above stresses, which may cause an impact severer than that of the sum of the individual impact. This report deals with species diversity and seasonal variations of those numbers of phytoplankton, marine algae and microorganisms, and distribution of radioactivity of marine organisms, as well as those data pertaining to sea water analysis. The present survey is designed to provide a partial baseline information for environmental impact assessment of Kori nuclear plant unit no. 1. (author)

  2. Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models

    OpenAIRE

    Urtizberea, Agurtzane; Dupont, Nicolas; Rosland, Rune; Aksnes, Dag L.

    2013-01-01

    In marine ecosystem models, the underwater light intensity is commonly characterized by the shading of phytoplankton in addition to a background light attenuation coefficient. Colour dissolved organic matter (CDOM) is an important component of the background light attenuation, and we investigate how variation in CDOM attenuation affects euphotic zone properties in a general marine ecosystem model. Our results suggest that euphotic zone properties are highly sensitive to CDOM variations occurr...

  3. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  4. Optimal foraging in marine ecosystem models: selectivity, profitability and switching

    DEFF Research Database (Denmark)

    Visser, Andre W.; Fiksen, Ø.

    2013-01-01

    ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...

  5. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  6. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.

    Science.gov (United States)

    Ellingsen, Kari E; Anderson, Marti J; Shackell, Nancy L; Tveraa, Torkild; Yoccoz, Nigel G; Frank, Kenneth T

    2015-09-01

    1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  7. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    Science.gov (United States)

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    Science.gov (United States)

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  9. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  10. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  11. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  12. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  13. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  14. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  15. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  16. Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile

    Science.gov (United States)

    Friedlander, Alan M.; Ballesteros, Enric; Beets, Jim; Berkenpas, Eric; Gaymer, Carlos F.; Gorny, Matthias; Sala, Enric

    2013-01-01

    1. An expedition to Salas y Gómez and Easter islands was conducted to develop a comprehensive baseline of the nearshore marine ecosystem, to survey seamounts of the recently created Motu Motiro Hiva Marine Park (MMHMP) – a no-take marine reserve of 150 000 km2 – and to compare these results with Easter Island where the marine ecosystem is similar but has no marine protection. 2. Live coral cover was surprisingly high at both Easter Island (53%) and Salas y Gómez (44%), especially considering their sub-tropical location, high wave energy environments, and geographic isolation. 3. Endemic and regionally-endemic species comprised 77% of the fish abundance at Easter Island and 73% at Salas y Gómez. Fish biomass at Salas y Gómez was relatively high (1.2 t ha-1) and included a large proportion of apex predators (43%), whereas at Easter Island it was almost three times lower (0.45 t ha-1) with large predators accounting for less than 2% of the biomass, despite good habitat quality. 4. The large cohort of small sharks and the absence of larger sharks at Salas y Gómez suggest mesopredator release consistent with recent shark fishing. The fish fauna at the seamounts between Easter Island and Salas y Gómez, outside of MMHMP, harboured 46% endemic species, including a new species of damselfish (Chromis sp. nov.) and probably a new species of Chimaera (Hydrolagus). Numerous seamounts adjacent to Salas y Gómez are currently not included in the MMHMP. 5. This expedition highlights the high biodiversity value of this remote part of the Pacific owing to the uniqueness (endemicity) of the fauna, large apex predator biomass, and geographic isolation.

  17. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  18. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  19. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  20. Typology and indicators of ecosystem services for marine spatial planning and management

    NARCIS (Netherlands)

    Bohnke-Henrichs, A.; Baulcomb, C.; Koss, R.; Hussain, S.; Groot, de R.S.

    2013-01-01

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a

  1. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  2. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    Science.gov (United States)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  3. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  4. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    Science.gov (United States)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  5. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  6. marine survival ecosystem indicators - Estimating the ecosystem indicators of anadromous salmonids in the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this project is to develop a simple approach for estimating the marine survival and causes of trends in survival. Data is a summary of ecosystem...

  7. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    Science.gov (United States)

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  8. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  9. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  10. Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues

    NARCIS (Netherlands)

    Katsanevakis, Stelios; Stelzenmuller, Vanessa; Filatova, Tatiana

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  11. Ecosystem-based marine spatial management: review of concepts, policies, tools and critical issues

    NARCIS (Netherlands)

    Katsanevakis, S.; Stelzenmueller, V.; South, A.; Hoof, van L.J.W.; Hofstede, ter R.

    2011-01-01

    Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather

  12. The marine ecosystem services approach in a fisheries management perspective

    OpenAIRE

    Søren Anker Pedersen; Hans Lassen; Hans Frost

    2015-01-01

    This paper reviews the concepts of marine ecosystem services and their economic valuation in a European fisheries management perspective. We find that the concept is at best cumbersome for advising on how best to regulate fisheries even in an ecosystem context.We propose that operational fisheries management must consider three different types of analysis, the yield of and the effect of fishing on the commercial species, the effects of fishing on habitats and non-commercial species and finall...

  13. Concepts and approaches for marine ecosystem research with reference to the tropics

    OpenAIRE

    Matthias Wolff

    2002-01-01

    The present article gives an overview on the leading concepts and modelling approaches for marine ecosystems’ research including (1) The trophodynamic theory of pelagic ecosystems, (2) Compartment/network models, (3) Mesocosm experiments and (4) Individual based modelling approaches and virtual ecosystems (VE). The main research questions addressed, as well as the potential and limits of each approach, are summarized and discussed and it is shown how the concept of ecosystem has changed over ...

  14. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach

    NARCIS (Netherlands)

    Beaumont, N.J.; Austen, M.C.; Atkins, J.P.; Burdon, D.; Degraer, S.; Dentinho, T.P.; Serous, S.; Holm, P.; Horton, T.; Ierland, van E.C.; Marboe, A.H.; Starkey, D.J.; Townsend, M.; Zarzycki, T.

    2007-01-01

    This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to

  15. Ocean-Atmosphere Coupling associated with Typhoons/ Hurricane and their impacts on marine ecosystem (Invited)

    Science.gov (United States)

    Tang, D. L.

    2010-12-01

    DanLing TANG South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China Phone (86) 13924282728; Fax/Tel: (86) 020 89023203 (off), 020 89023191 (Lab),Email,lingzistdl@126.com, Typhoon / hurricane activities and their impacts on environments have been strengthening in both intensity and spatial coverage, along with global changes in the past several decades; however, our knowledge about impact of typhoon on the marine ecosystem is very scarce. We have conducted a series studies in the South China Sea (SCS), investigating phytoplankton, sea surface temperature (SST), fishery data and related factors before, during, and after typhoon. Satellite remote sensing and in situ observation data obtained from research cruise were applied. Our study showed that typhoon can support nutrients to surface phytoplankton by inducing upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton; both typhoon winds and rain can enhance production of marine phytoplankton. Slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. We conservatively estimate that typhoon periods may account for 3.5% of the annual primary production in the oligotrophic SCS. It indicated that one typhoon may induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phytoplankton bloom by upwelling. We have suggested a new index to evaluate typhoon impact on marine ecosystem and environment. This is the first time to report moving eddies and eddy-shape phytoplankton blooms associated with tropical cyclone, the relationship among tropical cyclone, cold eddy upwelling and eddy-shape phytoplankton bloom may give some viewpoint on the tropical cyclone's affection on the mesoscale circulation. Those studies may

  16. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  17. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  18. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  19. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability......Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  20. Marine ecosystem acoustics (MEA): Quantifying processes in the sea at the spatio-temporal scales on which they occur

    KAUST Repository

    Godøl, Olav Rune

    2014-07-22

    Sustainable management of fisheries resources requires quantitative knowledge and understanding of species distribution, abundance, and productivity-determining processes. Conventional sampling by physical capture is inconsistent with the spatial and temporal scales on which many of these processes occur. In contrast, acoustic observations can be obtained on spatial scales from centimetres to ocean basins, and temporal scales from seconds to seasons. The concept of marine ecosystem acoustics (MEA) is founded on the basic capability of acoustics to detect, classify, and quantify organisms and biological and physical heterogeneities in the water column. Acoustics observations integrate operational technologies, platforms, and models and can generate information by taxon at the relevant scales. The gaps between single-species assessment and ecosystem-based management, as well as between fisheries oceanography and ecology, are thereby bridged. The MEA concept combines state-of-the-art acoustic technology with advanced operational capabilities and tailored modelling integrated into a flexible tool for ecosystem research and monitoring. Case studies are presented to illustrate application of the MEA concept in quantification of biophysical coupling, patchiness of organisms, predator-prey interactions, and fish stock recruitment processes. Widespread implementation of MEA will have a large impact on marine monitoring and assessment practices and it is to be hoped that they also promote and facilitate interaction among disciplines within the marine sciences.

  1. Fisheries management, the ecosystem approach, regionalisation and the elephants in the room

    NARCIS (Netherlands)

    Hoof, van L.J.W.

    2015-01-01

    Many definitions of the ecosystem approach circulate, the common denominator being the system approach which seeks to take the entirety of a marine ecosystem into consideration. As marine ecosystems cover large geographical areas this approach calls for cooperation between the riparian states. This

  2. Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Damare, V.S.

    This review summarizes increasing evidence for the role of Labyrinthulomycetes in marine ecosystems gathered over the last six decades. It focuses on their diversity, habitats, biomass, productivity and overall role in food webs and remineralization...

  3. Marine Ecosystems Analysis (MESA) Program, New York Bight Surficial Sediment Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Ecosystems Analysis (MESA) Program, New York Bight Study was funded by NOAA and the Bureau of Land Management (BLM). The Atlas was a historical...

  4. Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    DEFF Research Database (Denmark)

    Peck, M.A.; Neuenfeldt, Stefan; Essington, V.M.

    2014-01-01

    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium...... on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what...

  5. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review.

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.

  6. Ecosystem Pen Pals: Using Place-Based Marine Science and Culture to Connect Students

    Science.gov (United States)

    Wiener, Carlie S.; Matsumoto, Karen

    2014-01-01

    The marine environment provides a unique context for students to explore both natural and cultural connections. This paper reports preliminary findings on Ecosystem Pen Pals, an ocean literacy program for 4th and 5th graders focused on using a pen pal model for integrating traditional ecological knowledge into marine science. Surveys with…

  7. The Sea Around Us Project: documenting and communicating global fisheries impacts on marine ecosystems.

    Science.gov (United States)

    Pauly, Daniel

    2007-06-01

    The Sea Around Us Project, initiated by the Pew Charitable Trusts in Philadelphia, PA, and located at the Fisheries Centre, University of British Columbia, Vancouver, Canada, started in mid 1999. Its goal was (and still is) to investigate the impact of fisheries on marine ecosystems and to propose policies to mitigate these impacts. Although conceived as a global activity, the project first emphasized the data-rich North Atlantic as a test bed for developing its approaches, which rely on mapping of catch data and indicators of ecosystem health derived from the analysis of long catch time series data. Initial achievements included mapping the decline, throughout the North Atlantic basin, of high-trophic level fishes from 1900 to the present and the presentation of compelling evidence of change in the functioning of the North Atlantic ecosystems, summarized in a 2003 book. The Central and South Atlantic were the next basins to be tackled, with emphasis on the distant-water fleet off West Africa, culminating in a major conference in Dakar, Senegal, in 2002. The project then emphasized the North Pacific, Antarctica, and marine mammals and the multiplicity of tropical Indo-Pacific fisheries before it turned completely global, with all our major analyses and reports (e.g., on the interactions between marine mammals and fisheries, on fuel consumption by fleets, on the catches of small-scale fisheries, on subsidies to fisheries) being based on global studies. Broadly, the work of the project is aimed at a reappraisal of fisheries, from the benign activity that many interested people still perceive them to be, to a realization that they have become the driver for massive loss of biodiversity in the ocean. Moreover, the emphasis on global estimates (rather than local estimates of dubious generality) has allowed the project to contribute to various global initiatives (e.g., developing the Marine Trophic Index for the Convention on Biological Diversity, quantifying marine

  8. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  9. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2)

  10. Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach.

    Science.gov (United States)

    Beaumont, N J; Austen, M C; Atkins, J P; Burdon, D; Degraer, S; Dentinho, T P; Derous, S; Holm, P; Horton, T; van Ierland, E; Marboe, A H; Starkey, D J; Townsend, M; Zarzycki, T

    2007-03-01

    This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to validate the definitions of goods and services, and to identify knowledge gaps and likely difficulties of quantifying the goods and services. A validated theoretical framework for the assessment of goods and services is detailed, and examples of the goods and services at a variety of case study areas are documented. These results will enable future assessments of marine ecosystem goods and services. It is concluded that the utilisation of this goods and services approach has the capacity to play a fundamental role in the Ecosystem Approach, by enabling the pressures and demands of society, the economy and the environment to be integrated into environmental management.

  11. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  12. Identifying marine pelagic ecosystem management objectives and indicators

    DEFF Research Database (Denmark)

    Trenkel, Verena M.; Hintzen, Niels T.; Farnsworth, Keith D.

    2015-01-01

    . Overall 26 objectives were proposed, with 58% agreement in proposed objectives between two workshops. Based on published evidence for pressure-state links, examples of operational objectives and suitable indicators for each of the 26 objectives were then selected. It is argued that given the strong......International policy frameworks such as the Common Fisheries Policy and the European Marine Strategy Framework Directive define high-level strategic goals for marine ecosystems. Strategic goals are addressed via general and operational management objectives. To add credibility and legitimacy...... scale in some cases. In the evidence-based approach used in this study, the selection of species or region specific operational objectives and indicators was based on demonstrated pressure-state links. Hence observed changes in indicators can reliably inform on appropriate management measures. (C) 2015...

  13. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    NARCIS (Netherlands)

    Drakou, E.G.; Kermagoret, C.; Liquete, C.; Ruiz-Frau, A.; Burkhard, K.; Lillebø, A.I.; van Oudenhoven, A.P.E.; Ballé-Béganton, J.; Rodrigues, J.G.; Nieminen, E.; Oinonen, S.; Ziemba, A.; Gissi, E.; Depellegrin, D.; Veidemane, K.; Ruskule, A.; Delangue, J.; Böhnke-Henrichs, A.; Boon, A.; Wenning, R.; Martino, S.; Hasler, B.; Termansen, M.; Rockel, M.; Hummel, H.; El Serafy, G.; Peev, P.

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership

  14. Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach

    NARCIS (Netherlands)

    Embling, C.B.; Illian, J.; Armstrong, E.; van der Kooij, J.; Sharples, J.; Camphuysen, K.C.J.; Scott, B.E.

    2012-01-01

    1. Spatial management of marine ecosystems requires detailed knowledge of spatio-temporal mechanisms linking physical and biological processes. Tidal currents, the main driver of ecosystem dynamics in temperate coastal ecosystems, influence predator foraging ecology by affecting prey distribution

  15. Effectiveness of marine protected areas in managing the drivers of ecosystem change: a case of Mnazi Bay Marine Park, Tanzania.

    Science.gov (United States)

    Machumu, Milali Ernest; Yakupitiyage, Amararatne

    2013-04-01

    Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park's legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park's sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.

  16. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    International Nuclear Information System (INIS)

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography

  17. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  18. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics

    Science.gov (United States)

    Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim

    2009-04-01

    Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.

  19. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  20. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  1. As multiple fish species in large marine ecosystems are harvested ...

    African Journals Online (AJOL)

    CMPTMAC10

    and of other top predators such as marine mammals. This concern ... whereas single-species fishing theory implies that fishing leads to surplus by removing larger, older, less-productive ...... pools (the “cod is not a tuna” problem, Longhurst.

  2. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  3. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    International Nuclear Information System (INIS)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ 34 S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ 34 S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ 34 S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over

  4. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  5. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, Stefan

    2014-01-01

    This report synthesizes the results about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services in Norway, from interviews and a workshop with stakeholders in 2013.

  6. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems

    NARCIS (Netherlands)

    Govers, Laura L.; Man in 't Veld, Willem A.; Meffert, Johan P.; Bouma, Tjeerd J.; van Rijswick, Patricia C. J.; Heusinkveld, Jannes H. T.; Orth, Robert J.; van Katwijk, Marieke M.; van der Heide, Tjisse

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is

  7. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  8. Measurement of changes in marine benthic ecosystem function following physical disturbance by dredging

    OpenAIRE

    Wan Hussin, Wan Mohd Rauhan

    2012-01-01

    Measuring the impact of physical disturbance on macrofaunal communities and sediment composition is important given the increased demand for the exploitation and disturbance of marine ecosystems. The aim of the present investigation was to provide a comprehensive study about the extent to which the disturbance (especially aggregate dredging) may affect benthic ecosystem function. The first part of the thesis concerns a field investigation of the impacts of dredging on the be...

  9. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  10. Coupling ecosystems exposure to nitrogen and species sensitivity to hypoxia: modelling marine eutrophication in LCIA

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) quantifies impacts of anthropogenic emissions by applying substance-specific impact potentials, or Characterisation Factors (CF), to the amount of substances emitted. Nitrogen (N) emissions from human activities enrich coastal marine...... ecosystems and promote planktonic growth that may lead to marine eutrophication impacts. Excessive algal biomass and dissolved oxygen (DO) depletion typify the ecosystem response to the nutrient input. The present novel method couples a mechanistic model of coastal biological processes that determines...... the ecosystem response (exposure) to anthropogenic N enrichment (eXposure Factor, XF [kgO2·kgN-1]) with the sensitivity of species exposed to oxygen-depleted waters (Effect Factor, EF [(PAF)·m3·kgO2-1], expressed as a Potentially Affected Fraction (PAF) of species). Thus, the coupled indicator (XF*EF, [(PAF)·m3...

  11. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  12. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...... biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future......Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed...

  13. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen

    2016-07-01

    Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.

  14. ICES and PICES strategies for coordinating research on the impacts of climate change on marine ecosystems

    DEFF Research Database (Denmark)

    Kim, S.; Hollowed, Anne B.; Barange, Manuel

    2014-01-01

    organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies......The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative...... on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two...

  15. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    Science.gov (United States)

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).

  16. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Directory of Open Access Journals (Sweden)

    Erik Olsen

    2018-03-01

    Full Text Available Ecosystem-based management (EBM of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass, while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups. Changing fishing pressure (doubling or halving had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks to taking into account competing

  17. Exploring industry specific social welfare maximizing rates of water pollution abatement in linked terrestrial and marine ecosystems

    NARCIS (Netherlands)

    Roebeling, P.C.; Hendrix, E.M.T.; Grieken, van M.E.

    2009-01-01

    Marine ecosystems are severely affected by water pollution originating from coastal catchments, while these ecosystems are of vital importance from an environmental as well as an economic perspective. To warrant sustainable economic development of coastal regions, we need to balance the marginal

  18. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience

    OpenAIRE

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A.; Chartrand, Kathryn; York, Paul H.; Rasheed, Michael A.; Caley, M. Julian

    2017-01-01

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined...

  19. Fate and effects of petroleum hydrocarbons in marine coastal ecosystems

    International Nuclear Information System (INIS)

    Vanderhorst, J.R.

    1977-01-01

    Preliminary results are reported from field and laboratory studies on the effects of petroleum hydrocarbons on marine organisms of Northwest Pacific coastal ecosystems. Chemical methods for the characterization of test solutions for specific hydrocarbons (benzene, toluene, xylene, and heptodecane) were developed concurrently with population and community studies of the effects of short-term and chronic exposures. Results are reported from studies on algae (Ulva), clams (protothaca staminea), crustaceans (Anomyx and Neomysis) and burrowing worms

  20. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  1. Extremophiles in an Antarctic Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    Iain Dickinson

    2016-01-01

    Full Text Available Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  2. Editorial: Global in scope and regionally rich: an IndiSeas workshop helps shape the future of marine ecosystem indicators

    NARCIS (Netherlands)

    Shin, Y.J.; Bundy, A.; Piet, G.J.

    2012-01-01

    This report summarizes the outcomes of an IndiSeas workshop aimed at using ecosystem indicators to evaluate the status of the world’s exploited marine ecosystems in support of an ecosystem approach to fisheries, and global policy drivers such as the 2020 targets of the Convention on Biological

  3. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  4. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services

    DEFF Research Database (Denmark)

    Lindegren, Martin; Holt, Ben G.; MacKenzie, Brian R.

    2018-01-01

    spatial scale. We demonstrate a pronounced spatial mismatch between the existing degree of protection and all the conservation priorities above, highlighting that neither the world's most diverse, nor the most productive ecosystems are currently the most protected ecosystems. Furthermore, we show...... more effectively than the existing degree of protection, which at best is only marginally better than a random expectation. Therefore, a holistic perspective is needed when designating an appropriate degree of protection of marine conservation priorities worldwide....

  5. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    OpenAIRE

    Johnson, Johanna E.; Holbrook, Neil J.

    2014-01-01

    The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temper...

  6. Marine spatial planning (MSP: A first step to ecosystem-based management (EBM in the Wider Caribbean

    Directory of Open Access Journals (Sweden)

    John C Ogden

    2010-10-01

    Full Text Available The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC. Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 71-79. Epub 2010 October 01.La rápida disminución de los ecosistemas costeros del Mar Caribe está entrando en su quinta década. Algunos de los mejores aportes científicos que documentan este descenso y sus causas han sido realizados por los laboratorios de la Asociación de Laboratorios Marinos del Caribe (ALMC. Alarmados por las tendencias, los pioneros de la conservación del Caribe establecieron áreas marinas protegidas (MPAs que se extendieron por toda la región. Desafortunadamente, muchas de estas áreas tienen poca o ninguna protección y ahora se conoce que son demasiado pequeñas para ser efectivas en el mantenimiento de los ecosistemas costeros. La planificación espacial marina (MSP es promisoria para englobar las grandes escalas geográficas de los procesos ecológicos y los impactos humanos que influyen en los ecosistemas costeros y las

  7. Rapid assessment of risks to a mobile marine mammal in an ecosystem-scale marine protected area.

    Science.gov (United States)

    Grech, A; Marsh, H

    2008-06-01

    Ecosystem-scale networks of marine protected areas (MPAs) are important conservation tools, but their effectiveness is difficult to quantify in a time frame appropriate to species conservation because of uncertainties in the data available. The dugong (Dugong dugon) is a mobile marine species that occurs in shallow inshore waters of an ecosystem-scale network of MPAs (the Great Barrier Reef World Heritage Area [GBRWHA]). We developed a rapid approach to assess risk to dugongs in the region and evaluate options to ameliorate that risk. We used expert opinion and a Delphi technique to identify and rank 5 human factors with the potential to adversely affect dugongs and their sea grass habitats: netting, indigenous hunting, trawling, vessel traffic, and poor-quality terrestrial runoff. We then quantified and compared the distribution of these factors with a spatially explicit model of dugong distribution. We estimated that approximately 96% of habitat of high conservation value for dugongs in the GBRWHA is at low risk from human activities. Using a sensitivity analysis, we found that to decrease risk, commercial netting or indigenous hunting had to be reduced in remote areas and the effects of vessel traffic, terrestrial runoff, and commercial netting had to be reduced in urban areas. This approach enabled us to compare and rank risks so as to identify the most severe risks and locate specific sites that require further management attention.

  8. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management

    Directory of Open Access Journals (Sweden)

    M. SALOMIDI

    2012-02-01

    Full Text Available The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources.

  9. Ballast water management that adapts to climate changes and reduces harmful bio-invasions in marine eco-systems

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2015-01-01

    food-webs and eco-systems. Economic impacts include reductions in fisheries production and algae blooms harmful for fish farms, tourism and human health. Due to the rising temperatures of the Oceans, organisms that prefer a warm climate may take roots in marine ecosystems that were previously too cold...... in marine ecosystem of changed factors in the shipping sector, for instance change of number, size, and design of vessels as well as treatment technologies of ballast water. New areas for shipping due to climate changes are also included. Our study would contribute to improve decision support tools, usable...... for them. In addition, future changes of temperature, storm patterns and sea-currents may also change shipping routes and ballast water management practices. Based on methods like stock taking, trend tracking and scenario modeling the paper aims to evaluate possible ecological and economic impacts...

  10. Payments for coastal and marine ecosystem services: prospects and principles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Essam Yassin

    2012-05-15

    Coastal and marine resources provide millions of impoverished people across the global South with livelihoods, and provide the world with a range of critical 'ecosystem services', from biodiversity and culture to carbon storage and flood protection. Yet across the world, these resources are fast-diminishing under the weight of pollution, land clearance, coastal development, overfishing, natural disasters and climate change. Traditional approaches to halt the decline focus on regulating against destructive practices, but to little effect. A more successful strategy could be to establish payments for ecosystem services (PES) schemes, or incorporate an element of PES in existing regulatory mechanisms. Examples from across the world suggest that PES can work to protect both livelihoods and environments. But to succeed, these schemes must be underpinned by robust research, clear property rights, equitable benefit sharing and sustainable finance.

  11. A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model

    Directory of Open Access Journals (Sweden)

    I. Hoteit

    2003-01-01

    Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology

  12. Evaluating Threats in Multinational Marine Ecosystems: A Coast Salish First Nations and Tribal Perspective.

    Directory of Open Access Journals (Sweden)

    Joseph K Gaydos

    Full Text Available Despite the merit of managing natural resources on the scale of ecosystems, evaluating threats and managing risk in ecosystems that span multiple countries or jurisdictions can be challenging. This requires each government involved to consider actions in concert with actions being taken in other countries by co-managing entities. Multiple proposed fossil fuel-related and port development projects in the Salish Sea, a 16,925 km2 inland sea shared by Washington State (USA, British Columbia (Canada, and Indigenous Coast Salish governments, have the potential to increase marine vessel traffic and negatively impact natural resources. There is no legal mandate or management mechanism requiring a comprehensive review of the potential cumulative impacts of these development activities throughout the Salish Sea and across the international border. This project identifies ongoing and proposed energy-related development projects that will increase marine vessel traffic in the Salish Sea and evaluates the threats each project poses to natural resources important to the Coast Salish. While recognizing that Coast Salish traditions identify all species as important and connected, we used expert elicitation to identify 50 species upon which we could evaluate impact. These species were chosen because Coast Salish depend upon them heavily for harvest revenue or as a staple food source, they were particularly culturally or spiritually significant, or they were historically part of Coast Salish lifeways. We identified six development projects, each of which had three potential impacts (pressures associated with increased marine vessel traffic: oil spill, vessel noise and vessel strike. Projects varied in their potential for localized impacts (pressures including shoreline development, harbor oil spill, pipeline spill, coal dust accumulation and nearshore LNG explosion. Based on available published data, impact for each pressure/species interaction was rated as

  13. Seventy-one important questions for the conservation of marine biodiversity.

    Science.gov (United States)

    Parsons, E C M; Favaro, Brett; Aguirre, A Alonso; Bauer, Amy L; Blight, Louise K; Cigliano, John A; Coleman, Melinda A; Côté, Isabelle M; Draheim, Megan; Fletcher, Stephen; Foley, Melissa M; Jefferson, Rebecca; Jones, Miranda C; Kelaher, Brendan P; Lundquist, Carolyn J; McCarthy, Julie-Beth; Nelson, Anne; Patterson, Katheryn; Walsh, Leslie; Wright, Andrew J; Sutherland, William J

    2014-10-01

    The ocean provides food, economic activity, and cultural value for a large proportion of humanity. Our knowledge of marine ecosystems lags behind that of terrestrial ecosystems, limiting effective protection of marine resources. We describe the outcome of 2 workshops in 2011 and 2012 to establish a list of important questions, which, if answered, would substantially improve our ability to conserve and manage the world's marine resources. Participants included individuals from academia, government, and nongovernment organizations with broad experience across disciplines, marine ecosystems, and countries that vary in levels of development. Contributors from the fields of science, conservation, industry, and government submitted questions to our workshops, which we distilled into a list of priority research questions. Through this process, we identified 71 key questions. We grouped these into 8 subject categories, each pertaining to a broad component of marine conservation: fisheries, climate change, other anthropogenic threats, ecosystems, marine citizenship, policy, societal and cultural considerations, and scientific enterprise. Our questions address many issues that are specific to marine conservation, and will serve as a road map to funders and researchers to develop programs that can greatly benefit marine conservation. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    DEFF Research Database (Denmark)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree...... lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change....

  15. Methodological challenges in assessing the environmental status of a marine ecosystem: case study of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Henn Ojaveer

    Full Text Available Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity, less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances. The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.

  16. A marine eutrophication impacts assessment method in LCIA coupling coastal ecosystems exposure to nitrogen and species sensitivity to hypoxia

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) aims at quantifying potential impacts of anthropogenic emissions. It delivers substance-specific Characterisation Factors (CF) expressing ecosystem responses to marginal increments in emitted quantities. Nitrogen (N) emissions from e.......g. agriculture and industry enrich coastal marine ecosystems. Excessive algal growth and dissolved oxygen (DO) depletion typify the resulting marine eutrophication. LCIA modelling frameworks typically encompass fate, exposure and effect in the environment. The present novel method couples relevant marine...... biological processes of ecosystem’s N exposure (Exposure Factor, XF) with the sensitivity of select species to hypoxia (Effect Factor, EF). The XF converts N-inputs into a sinking carbon flux from planktonic primary production and DO consumed by bacterial respiration in bottom waters, whereas EF builds...

  17. Whale Multi-Disciplinary Studies: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    Science.gov (United States)

    Maine Univ., Orono. Coll. of Education.

    This multidisciplinary unit deals with whales, whaling lore and history, and the interaction of the whale with the complex marine ecosystem. It seeks to teach adaptation of marine organisms. It portrays the concept that man is part of the marine ecosystem and man's activities can deplete and degrade marine ecosystems, endangering the survival of…

  18. Contribution of waterborne nitrogen emissions to hypoxia-driven marine eutrophication: modelling of damage to ecosystems in life cycle impact assessment (LCIA)

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias

    Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia) in...... and atmospheric deposition as a consequence of fossil fuels combustion.......Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia......) in bottom waters. Hypoxia is identified as an important and widespread cause of disturbance to marine ecosystems and has been linked to the increasing anthropogenic pressure. This is driven by environmental emissions of reactive nitrogen, mainly from N-containing fertilizers used in agriculture...

  19. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  20. International perceptions of an integrated, multi-sectoral, ecosystem approach to management

    DEFF Research Database (Denmark)

    Marshak, Anthony R.; Link, Jason S.; Shuford, Rebecca

    2017-01-01

    The Ecosystem Approach to Management (EAM) has emerged over the past decades, largely to promote biodiversity conservation, and more recently sectoral tradeoffs in the management of marine ecosystems. To ascertain the state of practice of EAM operationalization, a workshop was held, which include...

  1. Climate change and the marine ecosystem of the western Antarctic Peninsula

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  2. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  3. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  4. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  5. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  6. VECTORS of change in the marine environment: Ecosystem and economic impacts and management implications

    Science.gov (United States)

    Austen, M. C.; Crowe, T. P.; Elliott, M.; Paterson, D. M.; Peck, M. A.; Piraino, S.

    2018-02-01

    Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and non-renewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive.

  7. Making the ecosystem approach operational-Can regime shifts in ecological- and governance systems facilitate the transition?

    DEFF Research Database (Denmark)

    Österblom, H.; Gårdmark, A.; Bergström, L.

    2010-01-01

    Effectively reducing cumulative impacts on marine ecosystems requires co-evolution between science, policy and practice. Here, long-term social–ecological changes in the Baltic Sea are described, illustrating how the process of making the ecosystem approach operational in a large marine ecosystem...... stimulating innovations and re-organizing governance structures at drainage basin level to the Baltic Sea catchment as a whole. Experimentation and innovation at local to the regional levels is critical for a transition to ecosystem-based management. Establishing science-based learning platforms at sub...

  8. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    DEFF Research Database (Denmark)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.

    2014-01-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from...... for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider...

  9. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity

    Science.gov (United States)

    Rode, Karyn D.; Wilson, Ryan R.; Douglas, David C.; Muhlenbruch, Vanessa L; Atwood, Todd C.; Regehr, Eric V.; Richardson, Evan; Pilfold, Nicholas; Derocher, Andrew E.; Durner, George M.; Stirling, Ian; Amstrup, Steven C.; St Martin, Michelle; Pagano, Anthony M.; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in

  10. Studies on 14C labelled chlorpyrifos in model marine ecosystem

    International Nuclear Information System (INIS)

    Pandit, G.G.; Mohan Rao, A.M.; Kale, S.P.; Murthy, N.B.K.; Raghu, K.

    1997-01-01

    Chlorpyrifos is one of the widely used organophosphorus insecticides in tropical countries. Experiments were conducted with 14 C labelled chlorpyrifos to study the distribution of this compound in model marine ecosystem. Less than 50 per cent of the applied activity remained in water in 24 h. Major portion of the applied chlorpyrifos (about 4.2 % residue per g) accumulated into the clams with sediment containing a maximum of 5 to 6 per cent of applied compound. No degradation of chlorpyrifos was observed in water or sediment samples. However, metabolic products were formed in clams. (author). 4 refs., 3 tabs

  11. Marine Planning Benefits the Environment

    Science.gov (United States)

    Coastal and Marine Spatial Planning (CMSP) and Ecosystem-Based Management (EBM) are management approaches that allow sustainable coastal and ocean planning. The basic unit of management under CMSP is a large region, with the United States coastlines and Great Lakes divided into ...

  12. Assessment of Marine Litter in the Barents Sea, a Part of the Joint Norwegian–Russian Ecosystem Survey

    Directory of Open Access Journals (Sweden)

    Bjørn E. Grøsvik

    2018-03-01

    Full Text Available This study presents a large-scale monitoring of marine litter performed in the joint Norwegian–Russian ecosystem monitoring surveys in the period from 2010 to 2016 and contribute to documentation of the extent of marine litter in the Barents Sea. The distribution and abundance of marine litter were calculated by recordings of bycatch from the pelagic trawling in upper 60 m, from bottom trawling close to the sea floor, and floating marine debris at surface by visual observations. The study is comprehensive regarding coverage and number with registrations from 2,265 pelagic trawls and 1,860 bottom trawls, in addition to surface registration between the stations. Marine litter has been recorded from 301 pelagic and 624 of the bottom trawl catches. In total, 784 visual observations of floating marine debris were recorded during the period. Marine litter has been categorized according to volume or weight of the material types plastic, wood, metal, rubber, glass, paper, and textile. Marine litter is observed in the entire Barents Sea and distribution vary with material densities, ocean currents and depth. Plastic dominated number of observations with marine litter, as 72% of surface observations, 94% of pelagic trawls, and 86% of bottom trawls contained plastic. Observations of wood constituted 19% of surface observations, 1% of pelagic trawls, and 17% of bottom trawls with marine litter. Materials from other categories such as metal, rubber, paper, textile, and glass were observed sporadically. Recordings of wood dominated surface observations (61.9 ± 21.6% by volume and on seafloor (59.4 ± 35.0% by weight, while plastic dominated marine litter observations in upper 60 m depth (86.4 ± 16.5% by weight over these 7 years. Based on recordings and volume or area covered, mean levels of plastic in the upper 60 m of the Barents Sea were found to 0.011 mg m−3 (pelagic and 2.9 kg km−2 at sea floor over the study period. Average levels of marine

  13. Towards ecosystem-based management

    NARCIS (Netherlands)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.; Rogers, Stuart I.; Levin, Philip S.; Rochet, Marie-Joelle; Bundy, Alida; Belgrano, Andrea; Libralato, Simone; Tomczak, Maciej; Wolfshaar, van de K.E.; Pranovi, Fabio; Gorokhova, Elena; Large, Scott I.; Niquil, Nathalie; Greenstreet, Simon P.R.; Druon, Jean-Noel; Lesutiene, Jurate; Johansen, Marie; Preciado, Izaskun; Patricio, Joana; Palialexis, Andreas; Tett, Paul; Johansen, Geir O.; Houle, Jennifer; Rindorf, Anna

    2017-01-01

    Modern approaches to Ecosystem-Based Management and sustainable use of marine resources must account for the myriad of pressures (interspecies, human and environmental) affecting marine ecosystems. The network of feeding interactions between co-existing species and populations (food webs) are an

  14. The marine ecosystems of the South Pacific coast of Costa Rica: state of knowledge and management perspectives

    International Nuclear Information System (INIS)

    Quesada Alpizar, Marco A.; Cortes, Jorge

    2006-01-01

    A review of the existing scientific literature on marine ecosystems in the South Pacific of Costa Rica is presented. Most of the information generated to date concentrates on the Golfo Dulce area, a tropical fiord and only anoxic basin in the American pacific coast. Even thought there is a considerable amount of information available, there are still many aspects of the marine ecosystems of the region that remain unstudied. Among these, those concerning circulation patterns, mangrove dynamics, biodiversity of soft sediments and deep waters, and the ecology of commercially important species of mollusks, crustaceans and fish, stand out. Special attention should be placed on the study of Golfo Dulce, Isla del Cano and the Terraba-Sierpe mangrove system, give their biological importance and unique regional character. Coastal management in the region should be based on the best scientific information available integrating biological, social and economic criteria; and seeking the improvement of inter-institutional coordination in order to achieve integrative solutions to the existing threats to marine resources. (author) [es

  15. A Demonstration Marine Biodiversity Observation Network (MBON): Understanding Marine Life and its Role in Maintaining Ecosystem Services

    Science.gov (United States)

    Muller-Karger, F. E.; Iken, K.; Miller, R. J.; Duffy, J. E.; Chavez, F.; Montes, E.

    2016-02-01

    The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners are laying the foundation for a Marine Biodiversity Observation Network (MBON). The goals of the network are to: 1) Observe and understand life, from microbes to whales, in different coastal and continental shelf habitats; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA), remote sensing, and image analysis methods to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the Ocean Biogeographic Information System (OBIS) sponsored by UNESCO's Intergovernmental Oceanographic Commission (IOC); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within three NOAA National Marine Sanctuaries (Florida Keys, Monterey Bay, and Channel Islands), the wider Santa Barbara Channel, in the Chukchi Sea, and through the Smithsonian's Tennenbaum Marine Observatories Network (TMON) at several sites in the U.S. and collaborating countries. Together, these MBON sites encompass a wide range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The present MBON partners are open to growth of the MBON through additional collaborations. Given these initiatives, GEO BON is proposing an MBON effort that spans from pole to pole, with a pathfinder effort among countries in the Americas. By specializing in coastal ecosystems—where marine biodiversity and people are concentrated and interact most—the MBON and TMON initiatives aim to provide policymakers with the science to

  16. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  17. English sole 2010-2011 - Suitability of somatic growth of English sole as an ecosystem indicator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puget Sound is a large marine ecosystem to which state and federal agencies have initiated an ecosystem-scale management strategy in order to restore and maintain...

  18. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans-Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  19. A double-integration hypothesis to explain ocean ecosystem response to climate forcing

    Science.gov (United States)

    Di Lorenzo, Emanuele; Ohman, Mark D.

    2013-01-01

    Long-term time series of marine ecological indicators often are characterized by large-amplitude state transitions that can persist for decades. Understanding the significance of these variations depends critically on the underlying hypotheses characterizing expected natural variability. Using a linear autoregressive model in combination with long-term zooplankton observations off the California coast, we show that cumulative integrations of white-noise atmospheric forcing can generate marine population responses that are characterized by strong transitions and prolonged apparent state changes. This model provides a baseline hypothesis for explaining ecosystem variability and for interpreting the significance of abrupt responses and climate change signatures in marine ecosystems. PMID:23341628

  20. Assimilation of the Observational Data in the Marine Ecosystem Adaptive Model at the Known Mean Values of the Processes in the Marine Environment

    Directory of Open Access Journals (Sweden)

    I.Е. Тimchenko

    2017-10-01

    Full Text Available Assimilation of observational data in the marine ecosystem adaptive models constructed by the adaptive balance of causes method is considered. It is shown that the feedback balance between the ecosystem variables and the rates of their change used in the method equations, permits to introduce a stationary state of the ecosystem characterized by the observed mean values of the variables. The method for assessing the normalized coefficients of influences based on application of the Euler theorem on homogeneous functions to the functions representing material balances of biochemical reactions of the substance transformation is proposed. It is shown that the normalized ratios of the modeled process mean values can be used as the estimates of the reaction product derivatives obtained on the basis of their resources included in the equations of material balances. One-dimensional adaptive model of the sea upper layer ecosystem is constructed as an example; it is based on the scheme of cause-effect relations of the Fasham, Dacklow and McKelvie model of plankton dynamics and nitrogen cycle It is shown that in such a model, observational data is assimilated by automatic adaptation of the model variables to the assimilated information providing that the substance material balance are preserved in the transformation reactions. The data simulating both observations of the chlorophyll a concentrations and the marine environment dynamics are assimilated in the model. Time scenarios of the biochemical processes are constructed; they confirm applicability of the proposed method for assessing the effect coefficients based on the ratios of the simulated process mean values.

  1. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    OpenAIRE

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Wh...

  2. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    Science.gov (United States)

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. International Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    Human activities have had a far-reaching impact on the aquatic environments - both marine and freshwater systems. The protection of these systems against further deterioration and the promotion of sustainable use are vital. In order to deepen understanding about the main processes affecting the present situation, as well as possible developments in the future, further investigation is required. The oceans play a major role in climate change, for example, and ocean acidification by increased CO2 release is one major threat to the world's oceans. Isotope methods can play a critical role in identifying and quantifying key processes within aquatic environments. Addressing the problems of global water resources has become a matter of urgency. Water resources are subject to multiple pressures for various reasons, including increasing populations, climate change, rising food and energy costs, the global economic crisis and pollutant loading. Isotope hydrology provides the unique and critical tools required to address complex water problems and helps managers and policy makers understand the closely intertwined relationship between water resources and the various pressures affecting them, as well as the issue of sustainability. The symposium will be an important forum for the exchange of knowledge on the present state of marine and freshwater environments, use of isotopes in water resources investigations and management, and climate change studies. The meeting will involve leading scientists in the field of climate change and hydrology, as well as representatives from other United Nations bodies and international organizations that focus on climate change and other important environmental issues. TOPICS: The role of isotopes in understanding and modelling climate change, marine ecosystems and the water cycle; Carbon dioxide sequestration and related aspects of the carbon cycle, such as ocean acidification; Isotopes in groundwater flow modelling for large aquifers

  4. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    Science.gov (United States)

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  5. Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: Case studies of two polar seabirds

    International Nuclear Information System (INIS)

    Brasso, Rebecka L.; Polito, Michael J.

    2013-01-01

    Highlights: • Ecosystem-specific baseline and consumer δ 15 N paired for population-specific trophic level. • Source of population-level variation in mercury exposure identified in two seabirds. • High mercury and trophic position suggests trophic driver of population-level variation. • Trophic similarities, differing mercury reveals geographic differences in bioavailability. -- Abstract: The incorporation of quantitative trophic level analysis in ecotoxicological studies provides explanatory power to identify the factors, trophic or environmental, driving population-level variation in mercury exposure at large geographic scales. In the Antarctic marine ecosystem, mercury concentrations and stable isotope values in Adélie penguins (Pygoscelis adeliae) were compared between the Antarctic Peninsula and the Ross Sea. Correcting tissue δ 15 N values for baseline δ 15 N values revealed population-level differences in trophic position which contributes to differences in mercury. Data from Thick-billed murres (Uria lomvia) were synthesized from published values from Baffin Bay and Svalbard to demonstrate the utility of baseline δ 15 N values in identifying differences in environmental mercury exposure independent of diet. Here, we demonstrate the importance of calculating population-specific trophic level data to uncover the source of variation in mercury concentrations between geographically distinct populations of marine predators

  6. When 1+1 can be >2: Uncertainties compound when simulating climate, fisheries and marine ecosystems

    Science.gov (United States)

    Evans, Karen; Brown, Jaclyn N.; Sen Gupta, Alex; Nicol, Simon J.; Hoyle, Simon; Matear, Richard; Arrizabalaga, Haritz

    2015-03-01

    Multi-disciplinary approaches that combine oceanographic, biogeochemical, ecosystem, fisheries population and socio-economic models are vital tools for modelling whole ecosystems. Interpreting the outputs from such complex models requires an appreciation of the many different types of modelling frameworks being used and their associated limitations and uncertainties. Both users and developers of particular model components will often have little involvement or understanding of other components within such modelling frameworks. Failure to recognise limitations and uncertainties associated with components and how these uncertainties might propagate throughout modelling frameworks can potentially result in poor advice for resource management. Unfortunately, many of the current integrative frameworks do not propagate the uncertainties of their constituent parts. In this review, we outline the major components of a generic whole of ecosystem modelling framework incorporating the external pressures of climate and fishing. We discuss the limitations and uncertainties associated with each component of such a modelling system, along with key research gaps. Major uncertainties in modelling frameworks are broadly categorised into those associated with (i) deficient knowledge in the interactions of climate and ocean dynamics with marine organisms and ecosystems; (ii) lack of observations to assess and advance modelling efforts and (iii) an inability to predict with confidence natural ecosystem variability and longer term changes as a result of external drivers (e.g. greenhouse gases, fishing effort) and the consequences for marine ecosystems. As a result of these uncertainties and intrinsic differences in the structure and parameterisation of models, users are faced with considerable challenges associated with making appropriate choices on which models to use. We suggest research directions required to address these uncertainties, and caution against overconfident predictions

  7. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  8. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  9. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    Science.gov (United States)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    The use of historical fishing records to understand relationships between climatic change and fish abundance is limited by the relatively short duration of these records, and complications due to the strong influence of human activity in addition to climatic change. Sedimentary records containing scales, bones or geochemical proxies of variability in fish populations provide unique insights on long-term ecosystem dynamics and relationships with climatic change. Available records from Holocene sediments are summarized and synthesized. The records are from several widespread locations near or along the continental margins of the South Atlantic and Pacific oceans, including Alaska, USA (Pacific salmon), Saanich and Effingham Inlets, British Columbia, Canada (pelagic fish), Santa Barbara Basin, California, USA (Northern anchovies and Pacific sardines), Gulf of California, Mexico (Pacific sardines, Northern anchovies and Pacific hake), Peru upwelling system (sardines, anchovies and hake), and Benguela Current System, South Africa (sardines, anchovies and hake). These records demonstrate that fish population sizes are not constant, and varied significantly over a range of time scales prior to the advent of large-scale commercial fishing. In addition to the decadal-scale variability commonly observed in historical records, the long-term records reveal substantial variability over centennial and millennial time scales. Shifts in abundance are often, but not always, correlated with regional and/or global climatic changes. The long-term perspective reveals different patterns of variability in fish populations, as well as fish-climate relationships, than suggested by analysis of historical records. Many records suggest prominent changes in fish abundance at ca. 1000-1200 AD, during the Little Ice Age, and during the transition at the end of the Little Ice Age in the 19th century that may be correlative, and that were likely driven by major hemispheric or global

  10. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  11. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    Science.gov (United States)

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to runs. We explored whether low densities (how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  12. Bioremediation in marine ecosystems: a computational study combining ecological modelling and flux balance analysis

    Directory of Open Access Journals (Sweden)

    Marianna eTaffi

    2014-09-01

    Full Text Available The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains.In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746 with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links.The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  13. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  14. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  15. Global change in the trophic functioning of marine food webs.

    Directory of Open Access Journals (Sweden)

    Aurore Maureaud

    Full Text Available The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.

  16. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

    DEFF Research Database (Denmark)

    Weitz, Joshua S.; Stock, Charles A.; Wilhelm, Steven W.

    2015-01-01

    Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities......, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic...

  17. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T N; Gabrielsen, G W; Falk-Petersen, S

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  18. Trophodynamic indicators for an ecosystem approach to fisheries

    DEFF Research Database (Denmark)

    Cury, P. M.; Shannon, L. J.; Roux, J. P.

    2005-01-01

    Acknowledging ecological interactions, such as predation, is key to an ecosystem approach to fisheries. Trophodynamic indicators are needed to measure the strength of the interactions between the different living components, and of structural ecosystem changes resulting from exploitation. We review...... appear to be conservative, because they respond slowly to large structural changes in an ecosystem. Application of the selected indicators to other marine ecosystems is encouraged so as to evaluate fully their usefulness to an ecosystem approach to fisheries, and to establish international comparability......, trophic level of the catch, fishing-in-balance, and mixed trophic impact) were selected because of their ability to reveal ecosystem-level patterns, and because they match published criteria. This suite of indicators is applied to the northern and southern Benguela ecosystems, and their performance...

  19. Efficiency of fisheries is increasing at the ecosystem level

    DEFF Research Database (Denmark)

    Jacobsen, Nis Sand; Burgess, Matthew G; Andersen, Ken Haste

    2017-01-01

    examine the efficiency of North Sea and Baltic Sea fisheries with respect to economic rent and ecosystem impact, finding both to be inefficient but steadily improving. Our results suggest the following: (i) a broad and encouraging trend towards ecosystem-level efficiency of fisheries; (ii) that ecosystem......Managing fisheries presents trade-offs between objectives, for example yields, profits, minimizing ecosystem impact, that have to be weighed against one another. These trade-offs are compounded by interacting species and fisheries at the ecosystem level. Weighing objectives becomes increasingly...... regressing at least one other. We investigate the ecosystem-level efficiency of fisheries in five large marine ecosystems (LMEs) with respect to yield and an aggregate measure of ecosystem impact using a novel calibration of size-based ecosystem models. We estimate that fishing patterns in three LMEs (North...

  20. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.

    Science.gov (United States)

    Brothers, Soren; Vadeboncoeur, Yvonne; Sibley, Paul

    2016-12-01

    Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5-45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near-shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. © 2016 John Wiley & Sons Ltd.

  1. The Bolivar Channel Ecosystem of the Galapagos Marine Reserve: Energy flow structure and role of keystone groups

    Science.gov (United States)

    Ruiz, Diego J.; Wolff, Matthias

    2011-08-01

    The Bolivar Channel Ecosystem (BCE) is among the most productive zones in the Galapagos Marine Reserve (GMR). It is exposed to relatively cool, nutrient-rich waters of the Cromwell current, which are brought to the photic zone through topographic upwelling. The BCE is characterized by a heterogeneous rocky reef habitat covered by dense algae beds and inhabited by numerous invertebrate and fish species, which represent the food for higher predators including seals and sharks and exploited fish species. In addition, plankton and detritus based food chains channel large amounts of energy through the complex food web. Important emblematic species of the Galapagos archipelagos reside in this area such as the flightless cormorant, the Galapagos penguin and the marine iguanas. A trophic model of BCE was constructed for the habitats < 30 m depth that fringe the west coast of Isabela and east coast of Fernandina islands covering 14% of the total BCE area (44 km 2). The model integrates data sets from sub tidal ecological monitoring and marine vertebrate population monitoring (2004 to 2008) programs of the Charles Darwin Foundation and consists of 30 compartments, which are trophically linked through a diet matrix. Results reveal that the BCE is a large system in terms of flows (38 695 t km - 2 yr - 1 ) comparable to Peruvian Bay Systems of the Humboldt upwelling system. A very large proportion of energy flows from the primary producers (phytoplankton and macro-algae) to the second level and to the detritus pool. Catches are high (54.3 t km - 2 yr - 1 ) and are mainly derived from the second and third trophic levels (mean TL of catch = 2.45) making the fisheries gross efficiency high (0.3%). The system's degree of development seems rather low as indicated by a P/R ratio of 4.19, a low ascendency (37.4%) and a very low Finn's cycling index (1.29%). This is explained by the system's exposure to irregular changes in oceanographic conditions as related to the EL Niño Southern

  2. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic

    DEFF Research Database (Denmark)

    Beaugrand, G.; Edwards, M.; Brander, Keith

    2008-01-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt...... ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity...... and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod...

  3. Plastic and marine turtles: a review and call for research

    OpenAIRE

    Nelms, SE; Duncan, EM; Broderick, AC; Galloway, TSG; Godfrey, MH; Hamann, M; Lindeque, PK; Godley, BJ

    2016-01-01

    Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including expos...

  4. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

    Science.gov (United States)

    Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina

    2007-06-19

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.

  5. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Krokos, George; Hoteit, Ibrahim

    2018-01-01

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  6. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  7. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  8. A Catalogue of marine biodiversity indicators

    Directory of Open Access Journals (Sweden)

    Heliana Teixeira

    2016-11-01

    Full Text Available A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD, this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g. EU policies, research projects and in national and international contexts (e.g. Regional Seas Conventions, and assessments in non-European seas. The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity.The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs.Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat or pressure in a marine area of interest.This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists and any person interested in marine environmental assessment. It allows users to

  9. A Catalogue of Marine Biodiversity Indicators

    KAUST Repository

    Teixeira, Heliana; Berg, Torsten; Uusitalo, Laura; Fü rhaupter, Karin; Heiskanen, Anna Stiina; Mazik, Krysia; Lynam, Christopher P.; Neville, Suzanna; Rodriguez, J. German; Papadopoulou, Nadia; Moncheva, Snejana; Churilova, Tanya; Kryvenko, Olga; Krause-Jensen, Dorte; Zaiko, Anastasija; Verí ssimo, Helena; Pantazi, Maria; Carvalho, Susana; Patrí cio, Joana; Uyarra, Maria C.; Borja, À ngel

    2016-01-01

    A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build

  10. A Catalogue of Marine Biodiversity Indicators

    KAUST Repository

    Teixeira, Heliana

    2016-11-04

    A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build

  11. Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics

    Science.gov (United States)

    Chen, Z.

    2013-12-01

    Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw

  12. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China.

    Science.gov (United States)

    Song, Debin; Gao, Zhiqiang; Zhang, Hua; Xu, Fuxiang; Zheng, Xiangyu; Ai, Jinquan; Hu, Xiaoke; Huang, Guopei; Zhang, Haibo

    2017-12-15

    According to 2014-2016 monitoring data, an assessment index system including water quality, depositional environment and ecosystem was built to evaluate the health statue of marine ecosystem in the Laizhou Bay using analytic hierarchy process (AHP) method. The results, spatialized in ArcGIS software, show: while the comprehensive ecological health index is 0.62, the ecological environmental quality in the Laizhou Bay is in a sub-healthy state; the unhealthy area is mainly concentrated in southwestern inshore region, and impacted by serious environmental problems, such as water eutrophication and heavy metal pollution; the northwestern and southeastern inshore regions are in a sub-healthy state, while the eastern inshore and northern areas are in the healthiest state. The land-based pollutants that discharge into the sea may be the leading factors that are causing ecological environment deterioration in the Laizhou Bay, and the reclamation work ongoing around the port has exacerbated the ecological risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    Science.gov (United States)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  14. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  15. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    Science.gov (United States)

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  16. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    OpenAIRE

    Fabri, Marie-claire; Pedel, Laura; Beuck, L.; Galgani, Francois; Hebbeln, D.; Freiwald, A.

    2014-01-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in...

  17. The stratigraphic distribution of large marine vertebrates and shell beds in the Pliocene of Tuscany

    Science.gov (United States)

    Dominici, Stefano; Benvenuti, Marco; Danise, Silvia

    2015-04-01

    , within an otherwise oligotrophic Mediterranean Sea, sustain a rich and diverse cetacean and shark, epipelagic and mesopelagic community. The modern steep bathymetric gradient was displaced towards the East during the Pliocene, before the latest phases of uplift of the Northern Apennines. An open marine, nutrient-rich ecosystem influenced hinterland basins during major transgressive pulses, leading to a higher productivity and the formation of laterally-continuos accumulations of biogenic hard parts. A comparison with the few available studies on the sequence-stratigraphic distribution of large marine vertebrates and shell beds suggests that a model integrating high-productivity and sea level rise, favouring bone bed and shell bed formation, can be applied at other settings, and other geologic intervals.

  18. Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive

    DEFF Research Database (Denmark)

    Shephard, Samuel; Rindorf, Anna; Dickey-Collas, Mark

    2014-01-01

    Pelagic fish are key elements in marine foodwebs and thus comprise an important part of overall ecosystem health. We develop a suite of ecological indicators that track pelagic fish community state and evaluate state of specific objectives against Good Environmental Status (GES) criteria. Indicator...

  19. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    OpenAIRE

    Erik Olsen; Isaac C. Kaplan; Cameron Ainsworth; Gavin Fay; Sarah Gaichas; Robert Gamble; Raphael Girardin; Cecilie H. Eide; Thomas F. Ihde; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Kelli F. Johnson; Marie Savina-Rolland; Howard Townsend

    2018-01-01

    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the glo...

  20. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1980-31 July 1981

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1981-01-01

    This report summarizes progress from July 1980 through July 1981 on studies dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. While the duration of the research has been slightly over two years, the results of our experiments have substantially extended our understanding of the environmental behavior of Tc

  1. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  2. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  3. The intertidal community in West Greenland: Large-scale patterns and small-scale variation on ecosystem dynamics along a climate gradient

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    are largely unknown. The West Greenland coast is north - south orientated. This provides an ideal setting to study the impact of climate change on marine species population dynamics and distribution. We investigated the latitudinal changes in the rocky intertidal community along 18° latitudes (59-77°N......) in West Greenland. Using cleared quadrats we quantified patterns in abundance, biomass and species richness in the intertidal zone. We use this data to disentangle patterns in Arctic intertidal communities at different scales. We describe the effects of different environmental drivers and species...... interactions on distribution and dynamics of intertidal species. Our results indicate that changes in distribution and abundance of foundation species can have large effects on the ecosystem. We also show that the importance of small-scale variation may be of same magnitude as large- scale variation. Only...

  4. Sessile and mobile components of a benthic ecosystem display mixed trends within a temperate marine reserve.

    Science.gov (United States)

    Howarth, Leigh M; Pickup, Sarah E; Evans, Lowri E; Cross, Tim J; Hawkins, Julie P; Roberts, Callum M; Stewart, Bryce D

    2015-06-01

    Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated the dynamics of both benthic communities and fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km(2)) and young age of the reserve (<5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in

  5. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    Science.gov (United States)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.; Brewin, Robert; Butenschön, Momme; Harle, James; Huse, Geir; Lehodey, Patrick; Lindemann, Christian; Memery, Laurent; Salihoglu, Baris; Senina, Inna; Yool, Andrew

    2014-12-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

  6. Enhanced biodiversity beyond marine reserve boundaries: the cup spillith over.

    Science.gov (United States)

    Russ, Garry R; Alcala, Angel C

    2011-01-01

    Overfishing can have detrimental effects on marine biodiversity and the structure of marine ecosystems. No-take marine reserves (NTMRs) are much advocated as a means of protecting biodiversity and ecosystem structure from overharvest. In contrast to terrestrial protected areas, NTMRs are not only expected to conserve or recover biodiversity and ecosystems within their boundaries, but also to enhance biodiversity beyond their boundaries by exporting species richness and more complex biological communities. Here we show that species richness of large predatory reef fish increased fourfold and 11-fold inside two Philippine no-take marine reserves over 14 and 25 years, respectively. Outside one reserve (Apo) the species richness also increased. This increase beyond the Apo reserve boundary was 78% higher closer to the boundary (200-250 m) than farther from it (250-500 m). The increase in richness beyond the boundary could not be explained by improvements over time in habitat or prey availability. Furthermore, community composition of predatory fish outside but close to (200-250 m) the Apo reserve became very similar to that inside the reserve over time, almost converging with it in multivariate space after 26 years of reserve protection. This is consistent with the suggestion that, as community composition inside Apo reserve increased in complexity, this complexity spilled over the boundary into nearby fished areas. Clearly, the spillover of species richness and community complexity is a direct consequence of the spillover of abundance of multiple species. However, this spillover of species richness and community complexity demonstrates an important benefit of biodiversity and ecosystem export from reserves, and it provides hope that reserves can help to reverse the decline of marine ecosystems and biodiversity.

  7. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    Science.gov (United States)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  8. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    Science.gov (United States)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  9. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  10. Global patterns of extinction risk in marine and non-marine systems.

    Science.gov (United States)

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  12. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    OpenAIRE

    Piacenza, Susan E.; Thurman, Lindsey L.; Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monito...

  13. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  14. Marine Biodiversity, Climate Change, and Governance of the Oceans

    Directory of Open Access Journals (Sweden)

    Robin Kundis Craig

    2012-05-01

    Full Text Available Governance of marine biodiversity has long suffered from lack of adequate information about the ocean’s many species and ecosystems. Nevertheless, even as we are learning much more about the ocean’s biodiversity and the impacts to it from stressors such as overfishing, habitat destruction, and marine pollution, climate change is imposing new threats and exacerbating existing threats to marine species and ecosystems. Coastal nations could vastly improve their fragmented approaches to ocean governance in order to increase the protections for marine biodiversity in the climate change era. Specifically, three key governance improvements would include: (1 incorporation of marine spatial planning as a key organizing principle of marine governance; (2 working to increase the resilience of marine ecosystems be reducing or eliminating existing stressors on those ecosystems; and (3 anticipation of climate change’s future impacts on marine biodiversity through the use of anticipatory zoning and more precautionary regulation.

  15. Concepts and approaches for marine ecosystem research with reference to the tropics

    Directory of Open Access Journals (Sweden)

    Matthias Wolff

    2002-06-01

    Full Text Available The present article gives an overview on the leading concepts and modelling approaches for marine ecosystems’ research including (1 The trophodynamic theory of pelagic ecosystems, (2 Compartment/network models, (3 Mesocosm experiments and (4 Individual based modelling approaches and virtual ecosystems (VE. The main research questions addressed, as well as the potential and limits of each approach, are summarized and discussed and it is shown how the concept of ecosystem has changed over time. Aquatic biomas spectra (derived from the theory of pelagic ecosystems can give insight into the trophic structure of different systems, and can show how organism sizes are distributed within the system and how different size groups participate in the system’s metabolism and production. Compartment/network models allow for a more detailed description of the trophic structure of ecosystems and of the energy/biomass fluxes through the explicit modelling of P/B-and food consumption rates and biomasses for each system compartment. Moreover, system indices for a characterization and comparison with other systems can be obtained such as average trophic efficiency, energy throughput, and degree of connectivity, degree of maturity, and others. Recent dynamic extensions of trophic network models allow for exploring past and future impacts of fishing and environmental disturbances as well as to explore policies such as marine protected areas. Mesocosm experiments address a multitude of questions related to aquatic processes (i.e. primary production, grazing, predation, energy transfer between trophic levels etc. and the behaviour of organisms (i.e. growth, migration, response to contaminants etc. under semi-natural conditions. As processes within mesocosms often differ in rate and magnitude from those occurring in nature, mesocosms should be viewed as large in vitro experiments designed to test selected components of the ecosystem and not as an attempt to enclose

  16. [Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China].

    Science.gov (United States)

    Qin, Chuan-xin; Chen, Pi-mao; Zhang, An-kai; Yuan, Hua; Li, Guo-ying; Shu, Li-ming; Zhou, Yan-bo; Li, Xiao-guo

    2015-06-01

    The method for monetary value and emergy value analysis of ecosystem service was used in this paper to analyze the change in value of marine ecosystem service of Wanshan District, Zhuhai from 2007 to 2012. The result showed that the monetary value and emergy value of marine ecosystem service of Wanshan District, Zhuhai rose to 11512840000 yuan and 1.97 x 10(22) sej from 7721630000 yuan and 1.04 x 10(22) sej, respectively. Both monetary value and emergy value could forecast the change in the value of marine ecosystem service, but they reflected different value structures and ecological energy, which could be used to more objectively evaluate the ecosystem service. Ecological civilization development, as an inherent driving force to impel the development of marine ecosystem service structure, was important for rational exploitation of marine resources and optimization of marine ecosystem service.

  17. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  18. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle.

    Science.gov (United States)

    Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D

    2018-01-01

    Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and

  19. Marine Planning for Potential Wave Energy Facility Placement Amongst a Crowded Sea of Existing Resource Uses

    Science.gov (United States)

    Feist, B. E.; Fuller, E.; Plummer, M. L.

    2016-12-01

    Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs

  20. Study of plutonium cycle in marine ecosystems

    International Nuclear Information System (INIS)

    Merino Pareja, J.; Sanchez Cabeza, J. A.; Molero Savall, J.; Masque Barri, P.

    1998-01-01

    The distribution, transport and accumulation mechanisms of transuranics (and other radionuclides) in the marine environment depend on the source term, biogeochemical cycles, transport with the water masses, sedimentation processes and transfer mechanisms in the trophic chain. The biogeochemical behaviour of plutonium, which has been the focus of our work, was studied using the following approaches: determination of the physico-chemical speciation of plutonium in marine waters, vertical flux in the water column, uptake by marine organisms (phytoplankton and zooplankton) and distribution in dements cores. A preliminary model of the accumulation and distribution of plutonium in the first levels of the marine food chain in the Irish Sea has also been formulated. All this information allowed us to obtain an integrated view of the behaviour of plutonium in the marine environment. (Author) 14 refs

  1. DNA Sequencing as a Tool to Monitor Marine Ecological Status

    Directory of Open Access Journals (Sweden)

    Kelly D. Goodwin

    2017-05-01

    Full Text Available Many ocean policies mandate integrated, ecosystem-based approaches to marine monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological quality. Most traditional methods to assess biological quality rely on specialized expertise to provide visual identification of a limited set of specific taxonomic groups, a time-consuming process that can provide a narrow view of ecological status. In addition, microbial assemblages drive food webs but are not amenable to visual inspection and thus are largely excluded from detailed inventory. Molecular-based assessments of biodiversity and ecosystem function offer advantages over traditional methods and are increasingly being generated for a suite of taxa using a “microbes to mammals” or “barcodes to biomes” approach. Progress in these efforts coupled with continued improvements in high-throughput sequencing and bioinformatics pave the way for sequence data to be employed in formal integrated ecosystem evaluation, including food web assessments, as called for in the European Union Marine Strategy Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic macroinvertebrates, ichthyoplankton and emerging (e.g., microbial assemblages, fish via eDNA, promises to improve assessment of marine biological quality by increasing the breadth, depth, and throughput of information and by reducing costs and reliance on specialized taxonomic expertise.

  2. Towards answering the "so what" question in marine renewables environmental impact assessment.

    Science.gov (United States)

    Degraer, Steven; Birchenough, Silvana N. R.; Braeckman, Ulrike; Coolen, Joop W. P.; Dannheim, Jennifer; De Mesel, Ilse; Grégoire, Marilaure; Kerckhof, Francis; Lacroix, Geneviève; Lindeboom, Han; Moens, Tom; Soetaert, Karline; Vanaverbeke, Jan; Van Hoey, Gert

    2016-04-01

    Marine renewable energy (MRE) projects are increasingly occupying the European North-Atlantic coasts and this is clearly observed in the North Sea. Given the expected impacts on the marine environment, each individual project is accompanied by a legally mandatory, environmental monitoring programme. These programmes are focused on the resultant effects on ecosystem component structure (e.g. species composition, numbers and densities) of single industrial projects. To date, there is a tendency to further narrow down to only a selection of ecosystem components (e.g. marine mammals and birds). While a wide knowledge-based understanding of structural impacts on (a selection of) ecosystem components exists, this evidence is largely lacking when undertaking impact assessments at the ecosystem functioning level (e.g. trophic interactions, dispersal and nutrient cycling). This critical knowledge gap compromises a scientifically-underpinned answer to the "so what" question of environmental impacts, i.e. whether the observed impacts are considered to be good or bad, or acceptable or unacceptable. The importance of ecosystem functioning is further acknowledged in the descriptors 4 and 6 of the Marine Strategy Framework Directive (EU MSFD) and is at the heart of a sustainable use and management of our marine resources. There hence is a fundamental need to focus on ecosystem functioning at the spatial scales at which marine ecosystems function when assessing MRE impacts. Here, we make a plea for an increased investment in a large (spatial) scale impact assessment of MRE projects focused on ecosystem functioning. This presentation will cover a selection of examples from North Sea MRE monitoring programmes, where the current knowledge has limited conclusions on the "so what" question. We will demonstrate how an ecosystem functioning-focused approach at an appropriate spatial scale could advance our current understanding, whilst assessing these issues. These examples will cover

  3. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments

    Directory of Open Access Journals (Sweden)

    Dobson Alan DW

    2008-08-01

    Full Text Available Abstract Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.

  4. Influence of the submarine orography on the distribution of long-lived radionuclides in the Palomares marine ecosystem

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1997-01-01

    To trace the consequences of the Palomares accident which occurred in southeastern Spain in 1966, a number of studies were performed upon sediments collected in the adjacent marine ecosystem in 1985. The research revealed a land-to-sea transport of part of the transuranics residual contamination still remaining in the affected area after the clean-up operations. The transfer routes to the Mediterranean sea (via river flooding and airborne relocation) were elucidated through the reconstruction of the sediment cores' depositional history. Present investigations focus on the distribution of Pu, Am and Cs along the complex system of submarine canyons shaping the orography of the Palomares marine environment. Marine samples were collected in 1991 to evaluate the possible removal of the radionuclides deposited in the continental shelf towards the deep sea, favoured by the strong turbidity currents and/or the topography of the canyon itself. (Author)

  5. Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to

  6. Marine Viruses: Key Players in Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Mathias Middelboe

    2017-10-01

    Full Text Available Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  7. Marine mimivirus relatives are probably large algal viruses

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2008-01-01

    Full Text Available Abstract Background Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2 Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea metagenomic data. Results We now further demonstrate the presence of numerous "mimivirus-like" sequences using a larger marine metagenomic data set. We also show that the DNA polymerase sequences from three algal viruses (CeV01, PpV01, PoV01 infecting different marine algal species (Chrysochromulina ericina, Phaeocystis pouchetii, Pyramimonas orientalis are very closely related to their homolog in mimivirus. Conclusion Our results suggest that the numerous mimivirus-related sequences identified in marine environments are likely to originate from diverse large DNA viruses infecting phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for new species of Mimiviridae.

  8. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  9. Evaluation of mangrove ecosystem service functions of Ximen Island Marine Specially Protected Areas in Yueqing Bay, China

    Science.gov (United States)

    Wang, D. G.; Sun, L.; Tan, Y. H.; Shi, A. Q.; Cheng, J.

    2017-08-01

    Taking the mangrove ecosystem of Ximen Island National Marine Specially Protected Areas as the research object, the ecological service value of the mangrove forest was evaluated and analyzed using a market value method, an ecological value method and a carbon tax method. The results showed that the ecosystem service value of the mangrove forest on Ximen Island is worth a total of 16,104,000 CNY/a. Among the value of individual ecosystem services, the direct value of material production function and leisure function reached 1,385,000 CNY/a, with a ratio of 8.6%. The indirect value of disturbance regulation, gas regulation, water purification, habitat function and culture research reached 14,719,000 CNY/a, with a ratio of 91.4%. Among the above sub-items, the proportion of disturbance regulation value, habitat function value and cultural research function value reached 78.8%, which reflects the important scientific value and ecological value of the Ximen Island mangrove ecosystem, especially its vital importance in providing a habitat for birds and playing a role in disaster prevention and mitigation.

  10. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  11. Ecosystem overfishing in the ocean.

    Science.gov (United States)

    Coll, Marta; Libralato, Simone; Tudela, Sergi; Palomera, Isabel; Pranovi, Fabio

    2008-01-01

    Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing-i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels.

  12. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    Science.gov (United States)

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management

  13. Fate of 14C-labelled compounds in marine environment

    International Nuclear Information System (INIS)

    Kale, S.P.; Raghu, K.; Sherkhane, P.D.; Murthy, N.B.K.

    1999-01-01

    Model ecosystems have played an important role in predicting environmental behavior of agrochemicals. The microcosms used in these studies generally include soil units containing usual biotic components common for that ecosystem. In present studies, scope of two such ecosystems has been extended to study the fate of 14 C-labelled pesticides in marine environment. 14 C-labelled pesticides used in these studies were chlorpyrifos, DDT and HCH. Two systems were developed in laboratory simulating marine environment to study the fate of these pesticides. The first system was developed in an all glass aquarium tank with marine sediments, seawater, clams and algae and is referred to as marine ecosystem. The second system was developed to permit the total 14 C-mass balance studies. It contained marine sediments under moist (60% water holding capacity) or flooded conditions and it is referred to as continuous flow system. Fate of 14 C-DDT was studied in marine ecosystem while degradation of 14 C-chlorpyrifos and 14 C-HCH was studied in continuous flow system. 14 C-DDT did not bioaccumulate in clams while at the end of 60 days 50% of the applied 14 C-activity was present in sediment fraction of marine ecosystem. 14 C-HCH degradation showed about 22-26% mineralization while 45-55% of the applied activity was recovered as organic volatiles. No significant bound residues were formed. 14 C-chorpyrifos underwent considerable degradation in marine environment. TCP was the major degradation product. (author)

  14. Discovery of the oldest .i.Gobius./i. (Teleostei, Gobiiformes) from a marine ecosystem of Early Miocene age

    Czech Academy of Sciences Publication Activity Database

    Reichenbacher, B.; Gregorová, R.; Holcová, K.; Šanda, R.; Vukić, J.; Přikryl, Tomáš

    2018-01-01

    Roč. 16, č. 6 (2018), s. 493-513 ISSN 1477-2019 R&D Projects: GA ČR(CZ) GA16-21523S Institutional support: RVO:67985831 Keywords : Gobiidae * Miocene * comparative anatomy * marine ecosystem * Outer Carpathian flysh zone * Outer Carpathian flysch zone * Ždánice-Hustopeče Formation Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 2.963, year: 2016

  15. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  16. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  17. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Science.gov (United States)

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of

  18. Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

    Directory of Open Access Journals (Sweden)

    Patricia Miloslavich

    2010-08-01

    Full Text Available This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles and the northern coast of South America (Venezuela-Colombia, while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1 highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2 high variability among collecting methods, (3 limited taxonomic expertise for many groups, and (4 differing levels of activity in the study

  19. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  20. Assessing ecological correlates of marine bird declines to inform marine conservation

    Science.gov (United States)

    Vilchis, L Ignacio; Johnson, Christine K; Evenson, Joseph R; Pearson, Scott F; Barry, Karen L; Davidson, Peter; Raphael, Martin G; Gaydos, Joseph K

    2015-01-01

    Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long-range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long-term marine bird monitoring programs conducted throughout the Salish Sea—a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide-ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low-trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long-term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats—information that is paramount for species-specific and ecosystem-wide conservation. Evaluación de las Correlaciones Ecológicas de las Declinaciones de Aves Marinas para Informar a la Conservación Marina Resumen La

  1. Marine Ecosystem Restoration in Changing European Seas

    DEFF Research Database (Denmark)

    Ounanian, Kristen; Delaney, Alyne; Carballo Cárdenas, Eira

    2017-01-01

    and using different narratives of marine restoration, and being confronted with different forms of uncertainties. The paper’s overall contribution is the synthesis of these seemingly disparate components (narratives of restoration, uncertainty in decision making, and governance arrangements) to evaluate...... the impact of existing (maritime and environmental) policies, the governance setting, definitions of restoration and uncertainties on the effectiveness of marine restoration projects. Such a synthesis is a necessary move toward a systematic evaluation of ways to govern and formally institutionalize marine...

  2. Invasions and extinctions reshape coastal marine food webs.

    Directory of Open Access Journals (Sweden)

    Jarrett E Byrnes

    Full Text Available The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions ( approximately 70% occur at high trophic levels (top predators and other carnivores, while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores. These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes.

  3. Global Marine Fisheries with Economic Growth

    OpenAIRE

    Sugiawan, Yogi; Islam, Moinul; Managi, Shunsuke

    2017-01-01

    This study explores the state of global marine fisheries and empirically analyzes its relationship to economic factors. We apply the pooled mean group estimator method to examine 70 fishing countries for the period of 1961-2010. We use both catch and the estimated size of stock as proxies for marine ecosystems. Our results confirm that economic growth initially leads to the deterioration of marine ecosystems. However, for a per capita income level of approximately 3,827 USD for the catch mode...

  4. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  5. Quo vadis NW Black Sea benthic ecosystems?

    Science.gov (United States)

    Traian Gomoiu, Marian

    2016-04-01

    The author briefly presents a general review on the evolution trends of benthic ecosystems at the Romanian Black Sea coast, referring to some recent data from the literature. The Black Sea represents a "unicum hydrobiologicum" by some of its basic characteristics, such as: 1. a large semi-enclosed basin with an intense exchange of waters; 2. a sea receiving a large amount of fresh water, especially in its northwestern sector, brought by the Danube, Dnieper and Dniester Rivers; 3. a large meromictic sea - euxinic-azoic below depths of 150 - 200 m; 4. around the sea there is a large filter-holding belt consisting of bivalves (Mytilus galloprovincialis and Modiolula phaseolina); 5. a sea having in its northwestern sector a large area covered by red algae of the genus Phyllophora; 6. a sea undergoing, in the last 50 years, intense environmental pressures (pollution by large rivers and direct discharges of wastewater from urban areas, the development of maritime traffic, overfishing by bottom trawling, coastal facilities and especially by many defense works of the new port); 7. a sea registering in the last decades of the past century many events of eutrophication; 8. a sea enriching its biodiversity by alien species. After the political and socio-economic changes triggered by the events of 1989 and especially after Romania's accession to EU, the state of the northwestern Black Sea coastal ecosystems, has recorded positive changes: • Decrease in environmental pressures; • Decreasing pollutant / fertilizing discharges into the Danube; • Reduction of domestic sewage quantities from coastal settlements; • Improvement in the quality of the wastewater discharged into the sea; • Reduction of active fishing by bottom trawling; • Adopting and implementing a national / international set of guidelines concerning marine environment; • Adopting regulations on the protection of the marine environment against pollution in marine economy: transport / shipping, tourism

  6. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Truchon

    promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.

  7. The cost and feasibility of marine coastal restoration.

    Science.gov (United States)

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  8. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.

    Science.gov (United States)

    Gobler, Christopher J; Baumann, Hannes

    2016-05-01

    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. © 2016

  9. Management strategies of marine food resources under multiple stressors with particular reference of the Yellow Sea large marine ecosystem

    Directory of Open Access Journals (Sweden)

    Qisheng TANG

    2014-02-01

    Full Text Available In this study two main management strategies are discussed: one is to develop resource conservation-based capture fisheries, and the other is to develop environmentally friendly aquaculture. During the resource recovery period, the development of environmentally friendly aquaculture should be encouraged, especially in integrated multi-trophic aquaculture, which is adaptive, efficient and sustainable. For future development and better understanding the ecosystem, it is necessary to further strengthen basic research.

  10. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes

    International Nuclear Information System (INIS)

    Benner, R.; Moran, M.A.; Hodson, R.E.

    1986-01-01

    The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods - physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments - were used to estimate procaryotic and eucaryotic contributions to the degradation of [ 14 C-lignin]lignocelluloses and [ 13 C-polysaccharide]lignocelluloses in samples of water and decaying plant material from each environment. Both methods yielded similar results; bacteria were the predominant degraders of lignocellulose in each of the aquatic ecosystems. These results indicate a basic difference between the microbial degradation of lignocellulosic material in terrestrial and aquatic environments. Fungi have long been considered the predominant degraders of lignocellulose in terrestrial systems; our results indicate that in aquatic systems bacteria are the predominant degraders of lignocellulose

  11. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    Science.gov (United States)

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  12. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Frederic Bailleul

    Full Text Available The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO. Southern elephant seals (Mirounga leonina proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project. Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  13. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Science.gov (United States)

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  14. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology

    Directory of Open Access Journals (Sweden)

    Millard Andrew D

    2010-10-01

    Full Text Available Abstract From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.

  15. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  16. Effects of exotic fish farms on bird communities in lake and marine ecosystems

    Science.gov (United States)

    Jiménez, Jaime E.; Arriagada, Aldo M.; Fontúrbel, Francisco E.; Camus, Patricio A.; Ávila-Thieme, M. Isidora

    2013-08-01

    Salmon farming is a widespread activity around the world, also known to promote diverse environmental effects on aquatic ecosystems. However, information regarding the impact of salmon farming on bird assemblages is notably scarce. We hypothesize that salmon farming, by providing food subsidies and physical structures to birds, will change their local community structure. To test this hypothesis, we conducted a seasonal monitoring of bird richness, abundance, and composition at paired salmon pen and control plots in two marine and two lake sites in southern Chile, from fall 2002 to summer 2004. Overall, salmon farming had no significant effects on species richness, but bird abundance was significantly and noticeably higher in salmon pens than in controls. Such aggregation was mainly accounted for by the trophic guilds of omnivores, diving piscivores, carrion eaters, and perching piscivores, but not by invertebrate feeders, herbivores, and surface feeders. Species composition was also significantly and persistently different between salmon pens and controls within each lake or marine locality. The patterns described above remained consistent across environment types and seasons indicating that salmon farming is changing the community structure of birds in both lake and marine habitats by promoting functional and aggregation responses, particularly by favoring species with broader niches. Such local patterns may thus anticipate potential threats from the ongoing expansion of the salmon industry to neighboring areas in Chile, resulting in regional changes of bird communities, toward a less diverse one and dominated by opportunistic, common, and generalist species such as gulls, vultures, and cormorants.

  17. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  18. Methods development for cost-effective marine environmental monitoring at offshore wind farms in Norwegian waters

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, Thomas; Schlaeppy, Marie-Lise; Olenin, Sergej; Shashkov, Alexej; Heggoey, Erling; Troedsson, Christofer

    2011-07-01

    Full text: Current understanding of the environmental impact from offshore wind farms and experiences in monitoring practices, are restricted to soft-bottom habitats. Due to the large expansion of this source of energy, and the national and international drive to place large parks offshore, there is at present a strong need to further increase our knowledge of the impact on the marine environment in a wider range of habitats. At a national level, it is of importance to develop monitoring methods that are suitable for Norwegian sites and that are adjusted to impact levels expected from wind parks. Biological data on the impact of offshore wind farms in marine ecosystems are predominantly focused on the southern Baltic and southern North Sea. It is shown that large wind farms do have an impact on the marine ecosystem. The most studied effects relate to the introduction of hard substrate (the turbine foundation and scour protection) in an area made exclusively of soft sediments. This leads to an introduction of a new category of fauna, a higher productivity and a shift in community structure and species composition. In addition, the construction of an offshore wind farm excludes other activities with potentially high negative impacts on the marine ecosystem such as bottom trawling. These findings are not necessary applicable to rocky shorelines such as those bordering the Norwegian coast and the first full-scale offshore wind farm, Havsul 1. The Havsul site borders an open ocean with high average yearly wind-speeds of more than 20 knots. A relatively narrow shelf and steep underwater topography creates waves of substantial heights and a benthic marine ecosystem that is fundamentally different from the shallow water, soft sediment substrates in the southern Baltic and North Seas. Instead, areas in Norway with water depths suitable for today.s design of offshore wind farms (down to a depth of about 30-50 m) have a complex topography and a mosaic of substrate types are

  19. Large Marine Ecosystems and coastal water archetypes implemented in LCIA methods for marine eutrophication and metals ecotoxicity

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Dong, Yan; Hauschild, Michael Zwicky

    LMEs expressing the system’s flushing through local hydrodynamics is required for the parameterisation of the FF term to estimate the loss of N or metals from the LME through advection. The RT was found in literature for 36% of the LMEs, whereas 4 archetypes were built for the remaining, for which...... no data was found (47%) or to settle high variability of found sources (17%). The 4 archetypes were defined by the exposure to currents and regional marine circulation, depth and profile of the continental shelf, and stratification. Archetype 1 (high dynamics and exposure) with estimated RT=3 months......, Archetype 2 (medium dynamics and exposure) with RT=2 yr, Archetype 3 (low dynamics) with RT=25 yr, and Archetype 4 (very low dynamics, embayed, often stratified) with RT=90 yr. It is assumed that the system dynamics is determining the RT of both N and metals in the photic zone in each LME. The LME...

  20. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  1. Global mismatch between fishing dependency and larval supply from marine reserves

    Science.gov (United States)

    Andrello, Marco; Guilhaumon, François; Albouy, Camille; Parravicini, Valeriano; Scholtens, Joeri; Verley, Philippe; Barange, Manuel; Sumaila, U. Rashid; Manel, Stéphanie; Mouillot, David

    2017-07-01

    Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.

  2. Studies on marine ecosystem in particular emphasis on phytoplankton (lecture by the member awarded the oceanographic society of Japan prize for 1992). Shokubutsu plankton wo chushintoshita kaiyo seitaikei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M. (The University of Tokyo, Tokyo (Japan). Faculty of Science)

    1993-06-25

    This paper, while introducing major study results of the author, summarizes his studies on ecosystems in lakes and oceans with respect mainly to phytoplanktons. The studies include the following subjects: A proposal on mathematical model equations to estimate growth of photosynthetic bacterial populations in deep lake beds; evaluation of stimulative effects for photosynthetic production provided by fertilizer application in lakes, and influences of phytoplanktons on population structures; evaluation on effects imposed on ecosystems from dumping chemical substances, as observed in experimental ecosystems that incorporate part of marine ecosystems; correlation between red-tide life absorbing proliferation stimulating substances and red tide generation; growth of high-concentration phytoplankton populations containing algae as a dominant species in local upwelling environments in oceans; and verification on establishment of specific phytoplankton populations containing pico-phytoplankton as a dominant species in oligotrophic environments in open seas. The paper mentions influences of the author's book, Biological Oceanographic Processes under joint authorship with Parsons on marine ecosystem researchers. 66 refs., 8 figs.

  3. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  4. Shellfish Fishery Severely Reduces Condition and Survival of Oystercatchers Despite Creation of Large Marine Protected Areas

    Directory of Open Access Journals (Sweden)

    Simon Verhulst

    2004-06-01

    Full Text Available Fisheries and other human activities pose a global threat to the marine environment. Marine protected areas (MPAs are an emerging tool to cope with such threats. In the Dutch Wadden Sea, large MPAs (covering 31% of all intertidal flats have been created to protect shellfish-eating birds and allow recovery of important habitats. Even though shellfish fishing is prohibited in these areas, populations of shellfish-eating birds in the Wadden Sea have declined sharply. The role of shellfish fisheries in these declines is hotly debated, therefore, we investigated the effectiveness of MPAs for protecting oystercatcher (Haematopus ostralegus populations. Shellfish stocks (cockles, Cerastoderma edule were substantially higher in the MPAs, but surprisingly this has not resulted in a redistribution of wintering oystercatchers. Oystercatchers in unprotected areas had less shellfish in their diet and lower condition (a combined measure of mass and haematological parameters, and their estimated mortality was 43% higher. It is likely, therefore, that shellfish fishing explains at least part of the 40% decline in oystercatcher numbers in recent years. Condition and mortality effects were strongest in males, and the population sex ratio was female biased, in agreement with the fact that males rely more on shellfish. The unprotected areas apparently function as an "ecological trap," because oystercatchers did not respond as anticipated to the artificial spatial heterogeneity in food supply. Consequently, the MPAs are effective on a local scale, but not on a global scale. Similar problems are likely to exist in terrestrial ecosystems, and distribution strategies of target species need to be considered when designing terrestrial and marine protected areas if they are to be effective.

  5. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.

    Science.gov (United States)

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A; Chartrand, Kathryn; York, Paul H; Rasheed, Michael A; Caley, M Julian

    2017-11-02

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.

  6. Marine Ecological Footprint of Italian Mediterranean Fisheries

    Directory of Open Access Journals (Sweden)

    Federica de Leo

    2014-10-01

    Full Text Available The capacity of marine and coastal ecosystems to sustain seafood production and consumption is seldom accounted for and is not included in the signals that guide economic development. In this article, we review estimates of marine and coastal areas aimed at sustaining catches for seafood consumption. The aim of this paper is the assessment of the interactions between the environment, intended as a set of ecological subsystems in natural equilibrium, including the marine ecosystem, and the process of fisheries systems. In particular we analyze fisheries in Italy, which is the third biggest economy and the greatest consumer of seafood in the Eurozone, conducting an in-depth analysis of the Marine Ecological Footprint (MEF that evaluates the marine ecosystem area exploited by human populations to supply seafood and other marine products and services. The positioning of Italian fisheries shows a level of sustainability next to the threshold value. The analysis in the present study highlights the importance of absolute indicators in providing rough estimates about human dependence on ecological systems and recognizes the importance of those indicators, such as the Marine Footprint (expressed in % of Primary Production Required/Primary Production, in ensuring a high level of precision and accuracy in quantifying human activity impact on the environment.

  7. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs

    Science.gov (United States)

    Arimitsu, Mayumi L.; Hobson, Keith A.; Webber, D'Arcy N.; Piatt, John F.; Hood, Eran W.; Fellman, Jason B.

    2018-01-01

    Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate-driven changes

  8. Evidence That Marine Reserves Enhance Resilience to Climatic Impacts

    Science.gov (United States)

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A.

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection. PMID:22855690

  9. Evidence that marine reserves enhance resilience to climatic impacts.

    Directory of Open Access Journals (Sweden)

    Fiorenza Micheli

    Full Text Available Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.

  10. Culture fishery resources of the tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    The exploited marine living resources, through capture fisheries, have their own limitations of resource potential, marine pollution and ever increasing operational cost. A plausible way to fulfil the increasing demand of seafood is through...

  11. A proposed ecosystem-based management system for marine waters: linking the theory of environmental policy to the practice of environmental management

    Directory of Open Access Journals (Sweden)

    Rafael Sardà

    2014-12-01

    Full Text Available New coastal and marine management strategies have recently been developed in many countries and regions. From an ecosystem approach perspective, the aim of such strategies is the maintenance of ecosystem integrity while enabling the sustainable use of ecosystem goods and services. There is, however, a need for harmonized definitions and standardized processes to deal not only with the interjurisdictional and multidisciplinary complexities that are associated with such strategies but also with the extensive timelines and resources implicated in the planning and implementation of these strategies. The ecosystem-based management system proposed here is based on three pillars that facilitate the integration of an ecosystem approach to coastal and oceans policy development, regardless of the ecosystem or administrative scales. The managerial pillar is based on classical risk-management systems that incorporate environmental considerations and objectives within a continuous improvement cycle of adaptive management. The managerial pillar is supported by governance structures that provide oversight and thereby ensure that planning and implementation activities adhere to modern environmental principles. The information pillar ensures that data and scientific advice are based on current knowledge, and the participation pillar brings together communication and consultation requirements as indicated by the principles of the ecosystem approach.

  12. 52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems

    Science.gov (United States)

    Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.

    2016-12-01

    We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will

  13. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling

    International Nuclear Information System (INIS)

    Green, Dannielle Senga; Boots, Bas; Sigwart, Julia; Jiang, Shan; Rocha, Carlos

    2016-01-01

    Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats. - Highlights: • Effects of conventional and biodegradable microplastics on lugworm habitats. • 0.2–2% microplastics (by weight) reduced microalgal biomass of sediment. • Biodegradable (PLA) and conventional (HDPE, PVC) microplastics had similar effects. • High doses (2% by sediment weight) of PVC altered metabolism of lugworms. • Microplastics altered burrowing activity of lugworms measured as casts. - Biodegradable and conventional microplastics altered activities of a key marine ecosystem engineer and reduced primary productivity of sandy sediments.

  14. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  15. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    Directory of Open Access Journals (Sweden)

    Pamela L Reynolds

    Full Text Available Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs, while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms generally emerged in communities with greater predator to prey richness (the more top-rich food webs. These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  16. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of Arsenic in a marine ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J S; Francesconi, K A

    1981-02-12

    The high concentration (relative to seawater) of arsenic in many marine animals eaten as human food has stimulated interest in the cycling of arsenic in the marine environment. Although arsenic is present in arsenobetaine ((CH/sub 3/)/sub 3/As/sup +/CH/sub 2/COO/sup -/) in the wester rock lobster (Panulirus cygnus), the dusky shark (Carcharhinus obscurus) and the school whiting (Sillago bassensis) it is not clear what intermediate stages are involved in the biosynthesis of this compound from arsenate, the major form of arsnenic in seawater. We now report the isolation of the two main arsenical constituents of the brown kelp, Ecklonia radiata, and their identification as a 2-hydroxy-3-sulphopropyl-5-deoxy-5-(dimethylarsenoso)furanoside and a 2,3-dihydroxypropyl-5-deoxy-5-(dimethylarsenoso)furanoside. A ..beta..-ribo structure for the sugar system is strongly indicated in each case. Ecklonia is the major organisms that concentrates arsenic in the coastal ecosystem to which the western rock lobster and school whiting belong. It is clear that the compounds described here could readily be further metabolized to arsenobetaine and may well be the source of arsenobetaine in marine fauna associated with the region.

  17. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Science.gov (United States)

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  18. Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode

    Science.gov (United States)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.

  19. Fish mitigate trophic depletion in marine cave ecosystems.

    Science.gov (United States)

    Bussotti, Simona; Di Franco, Antonio; Bianchi, Carlo Nike; Chevaldonné, Pierre; Egea, Lea; Fanelli, Emanuela; Lejeusne, Christophe; Musco, Luigi; Navarro-Barranco, Carlos; Pey, Alexis; Planes, Serge; Vieux-Ingrassia, Jean Vincent; Guidetti, Paolo

    2018-06-15

    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.

  20. Fukushima Daiichi - delivery of contaminated water into the Pacific ocean and possible consequences for the marine ecosystem

    International Nuclear Information System (INIS)

    Nies, Hartmut

    2015-01-01

    The nuclear power plant Fukushima Daiichi is sited at the coast of the Japanese island Honshu. Most of the cooling water for the three destroyed reactors units 1-3 and the nuclear fuel in the spent fuel pool of unit-4 were uncontrolled delivered into the groundwater and the Pacific Ocean. As a consequence high concentrations of I-131, Cs-134 and Cs-137 in the coastal waters have to be assumed. The contribution analyzed the possible consequences for the marine ecosystem. A drift time of 5 to 7 years toward the coast of North America is expected. The planning of the marine monitoring program MEXT is described. Radiation measurements in the coastal water up to 200 km distance from Daiichi were performed. The highest radionuclide concentrations of Cs-137 and Cs-134 were found in the fine grained sediments. No increased radioactivity in seafood is expected.

  1. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  2. Marine Biodiversity, Climate Change, and Governance of the Oceans

    OpenAIRE

    Craig, Robin Kundis

    2012-01-01

    Governance of marine biodiversity has long suffered from lack of adequate information about the ocean’s many species and ecosystems. Nevertheless, even as we are learning much more about the ocean’s biodiversity and the impacts to it from stressors such as overfishing, habitat destruction, and marine pollution, climate change is imposing new threats and exacerbating existing threats to marine species and ecosystems. Coastal nations could vastly improve their fragmented approaches to ocean gov...

  3. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Marie Savina

    Full Text Available We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia. The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure, and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.

  4. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  5. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  6. Addressing Criticisms of Large-Scale Marine Protected Areas

    Science.gov (United States)

    Ban, Natalie C; Fernandez, Miriam; Friedlander, Alan M; García-Borboroglu, Pablo; Golbuu, Yimnang; Guidetti, Paolo; Harris, Jean M; Hawkins, Julie P; Langlois, Tim; McCauley, Douglas J; Pikitch, Ellen K; Richmond, Robert H; Roberts, Callum M

    2018-01-01

    Abstract Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans. PMID:29731514

  7. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Digital Still Images (NODC Accession 0052882)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  8. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Science.gov (United States)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  9. Infection of phytoplankton by aerosolized marine viruses

    Science.gov (United States)

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  10. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  11. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  12. Exploring the co-evolution of marine ecology and environment in silico

    Science.gov (United States)

    Ridgwell, A.

    2015-12-01

    Species do not live in isolation, but adapt and ultimately, evolve, in relationship with other species as well as with their chemical and physical environment. In the marine environment, this interaction is intimately two-way - the surface biogeochemical environment modulates the makeup of the pelagic ecosystem, yet at the same time, the ecosystem assemblage, by setting the strength of the biological pump and ultimately, in regulating the carbon and nutrient inventory of the ocean and atmospheric pCO2, influences the surface geochemical environment. Feedbacks, both negative and positive, must therefore exist between plankton ecology and global biogeochemical cycles. This has implications for understanding the geological record and particularly the response and recovery of marine ecosystems following major environmental perturbation, but also complicates making projections of future ocean changes. To address a coupled system such as this, new numerical tools are needed as traditional 'functional type' marine ecosystem models are generally incapable of accounting for short-term adaptation, let alone long-term evolution. What is needed is the combination of a plankton model able to simulate a highly diverse ecology plus 'genetic' mutation (changes in trait value(s)) and extinction, *and* an Earth system model capable of simulating long-term evolution of the climatology and geochemistry of the ocean. The Earth system model 'cGENIE' - http://mycgenie.seao2.org generally fills the second criteria, so for this presentation I will focus on the structure of the ecosystem model, the associated methodology, and numerical techniques for dealing with what will turn out to be an exceptionally large number of ocean tracers. If you are really lucky, there may even be some preliminary results :)

  13. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    Science.gov (United States)

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  15. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.

    Science.gov (United States)

    Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani

    2011-12-01

    Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.

  16. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  17. Extraordinary aggressive behavior from the giant coral reef fish, Bolbometopon muricatum, in a remote marine reserve.

    Directory of Open Access Journals (Sweden)

    Roldan C Muñoz

    Full Text Available Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large-bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non-predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world's largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. Our observations of aggressive headbutting by Bolbometopon underscore that remote locations and marine reserves, by inhibiting negative responses to human observers and by allowing the persistence of historical conditions, can provide valuable opportunities to study ecosystems in their natural state, thereby facilitating the discovery, conservation, and interpretation of a range of sometimes remarkable behavioral and ecological processes.

  18. Extraordinary aggressive behavior from the giant coral reef fish, Bolbometopon muricatum, in a remote marine reserve.

    Science.gov (United States)

    Muñoz, Roldan C; Zgliczynski, Brian J; Laughlin, Joseph L; Teer, Bradford Z

    2012-01-01

    Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large-bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non-predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum) has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world's largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. Our observations of aggressive headbutting by Bolbometopon underscore that remote locations and marine reserves, by inhibiting negative responses to human observers and by allowing the persistence of historical conditions, can provide valuable opportunities to study ecosystems in their natural state, thereby facilitating the discovery, conservation, and interpretation of a range of sometimes remarkable behavioral and ecological processes.

  19. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities.

    Science.gov (United States)

    Gilbert, Jack A; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian

    2008-08-22

    Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities. We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, approximately 91% of which were novel. This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities--if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.

  20. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    Science.gov (United States)

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.

  1. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  2. Monitoring and evaluation of spatially managed areas: A generic framework for implementation of ecosystem based marine management and its application

    DEFF Research Database (Denmark)

    Stelzenmüller, Vanessa; Breen, Patricia; Stamford, Tammy

    2013-01-01

    This study introduces a framework for the monitoring and evaluation of spatially managed areas (SMAs), which is currently being tested by nine European case studies. The framework provides guidance on the selection, mapping, and assessment of ecosystem components and human pressures, the evaluati...... on qualitative information are addressed. The lessons learned will provide a better insight into the full range of methods and approaches required to support the implementation of the ecosystem approach to marine spatial management in Europe and elsewhere.......This study introduces a framework for the monitoring and evaluation of spatially managed areas (SMAs), which is currently being tested by nine European case studies. The framework provides guidance on the selection, mapping, and assessment of ecosystem components and human pressures, the evaluation...... of management effectiveness and potential adaptations to management. Moreover, it provides a structured approach with advice on spatially explicit tools for practical tasks like the assessment of cumulative impacts of human pressures or pressure-state relationships. The case studies revealed emerging challenges...

  3. The importance of high-level predators in marine protected area management: Consequences of their decline and their potential recovery in the Mediterranean context

    Directory of Open Access Journals (Sweden)

    Giulia Prato

    2013-11-01

    Full Text Available High-level predators have been depleted in the oceans worldwide following centuries of selective fishing. There is widespread evidence that high-level predators’ extirpation may trigger trophic cascades leading to the degradation of marine ecosystems. Restoration of large carnivores to former levels of abundance might lead to ecosystem recovery, but very few pristine ecosystems are left as baselines for comparison. Marine protected areas (MPAs can trigger initial rapid increases of high-level predator abundance and biomass. Nevertheless, long term protection is needed before the ecosystem's carrying capacity for large carnivores is approached and indirect effects on lower trophic levels are observed. The Mediterranean is probably very far from its pristine condition, due to a long history of fishing. Today small to medium-sized consumers (e.g. sea breams are the most abundant predators shaping coastal benthic communities, while historical reconstructions depict abundant populations of large piscivores and sharks inhabiting coastal areas. Mediterranean MPAs are following a promising trajectory of ecosystem recovery, as suggested by a strong gradient of fish biomass increase. Consistent monitoring methods to assess relative variations of high-level predators, together with food-web models aimed at disentangling the indirect effects of their recovery, could be useful tools to help set up appropriate management strategies of MPAs.

  4. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  5. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    KAUST Repository

    Dreano, Denis

    2017-05-24

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  6. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    KAUST Repository

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-01-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  7. Towards a management perspective for coastal upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.O.; Walsh, J.J.

    1976-01-01

    Data are reviewed from studies on the general distribution of upwelling of coastal waters, associated current patterns, and first order biological effects. Field observations and theory are discussed. Recent research has shown that variability and dynamism are the predominant characteristic features of these regions. Populations related by nonlinear interactions occur in constantly moving patches and swirls subjected to variability in the winds, currents, water chemistry, and solar insolation. Gross stationary features of upwelling communities have been described, but the responses of critical components and their relationships to human or natural perturbations remain poorly defined in this and other types of coastal ecosystems. Large scale research programs recognize that the continental shelf ecosystems are complex event-oriented phenomena. It is postulated that assessment of living resources in an environmental vacuum may lead to mismanagement and hindcasting rather than prescient management. A growing data base encourages the development of computer simulation models of ecosystem relationships and responses will lead to better understanding and management of these and other marine ecosystems in the future. 80 references.

  8. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  9. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    Science.gov (United States)

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  10. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    Science.gov (United States)

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  11. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  12. Location, Location, Location: Management Uses of Marine Benthic Biogeographical Information in Coastal Waters of the Northeastern USA

    Science.gov (United States)

    Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...

  13. Temporal and spatial differences between taxonomic and trait biodiversity in a large marine ecosystem: Causes and consequences

    DEFF Research Database (Denmark)

    Dencker, Tim Spaanheden; Pécuchet, Lauréne; Beukhof, Esther

    2017-01-01

    Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recogniti...

  14. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  15. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    Science.gov (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  16. Resilience and stability of a pelagic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been...

  17. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  18. Assessing trade-offs in large marine protected areas.

    Science.gov (United States)

    Davies, Tammy E; Epstein, Graham; Aguilera, Stacy E; Brooks, Cassandra M; Cox, Michael; Evans, Louisa S; Maxwell, Sara M; Nenadovic, Mateja; Ban, Natalie C

    2018-01-01

    Large marine protected areas (LMPAs) are increasingly being established and have a high profile in marine conservation. LMPAs are expected to achieve multiple objectives, and because of their size are postulated to avoid trade-offs that are common in smaller MPAs. However, evaluations across multiple outcomes are lacking. We used a systematic approach to code several social and ecological outcomes of 12 LMPAs. We found evidence of three types of trade-offs: trade-offs between different ecological resources (supply trade-offs); trade-offs between ecological resource conditions and the well-being of resource users (supply-demand trade-offs); and trade-offs between the well-being outcomes of different resource users (demand trade-offs). We also found several divergent outcomes that were attributed to influences beyond the scope of the LMPA. We suggest that despite their size, trade-offs can develop in LMPAs and should be considered in planning and design. LMPAs may improve their performance across multiple social and ecological objectives if integrated with larger-scale conservation efforts.

  19. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H S; Johnsen, I [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1998-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  20. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    International Nuclear Information System (INIS)

    Heide-Joergensen, H.S.; Johnsen, I.

    1997-01-01

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  1. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H.S.; Johnsen, I. [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1997-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  2. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.

    Directory of Open Access Journals (Sweden)

    Harvey J Walsh

    Full Text Available Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf. Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf

  3. Global patterns in marine predatory fish

    DEFF Research Database (Denmark)

    van Denderen, Pieter Daniël; Lindegren, Martin; MacKenzie, Brian

    2017-01-01

    known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal......Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur...... in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly...

  4. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  5. On the ecological role of Copepoda in the Suez Canal marine ...

    African Journals Online (AJOL)

    Moreover, the importance of copepods in the marine food web and secondary productivity in the canal water, as well as their response to environmental variations in the Suez Canal ecosystem were discussed. KEY WORDS: Zooplankton, Copepoda, food web, marine ecosystem, Suez Canal Egyptian Journal of Biology ...

  6. Large benefits to marine fisheries of meeting the 1.5°C global warming target.

    Science.gov (United States)

    Cheung, William W L; Reygondeau, Gabriel; Frölicher, Thomas L

    2016-12-23

    Translating the Paris Agreement to limit global warming to 1.5°C above preindustrial level into impact-related targets facilitates communication of the benefits of mitigating climate change to policy-makers and stakeholders. Developing ecologically relevant impact-related targets for marine ecosystem services, such as fisheries, is an important step. Here, we use maximum catch potential and species turnover as climate-risk indicators for fisheries. We project that potential catches will decrease by more than 3 million metric tons per degree Celsius of warming. Species turnover is more than halved when warming is lowered from 3.5° to 1.5°C above the preindustrial level. Regionally, changes in maximum catch potential and species turnover vary across ecosystems, with the biggest risk reduction in the Indo-Pacific and Arctic regions when the Paris Agreement target is achieved. Copyright © 2016, American Association for the Advancement of Science.

  7. Temporal Evolution of the Yellow Sea Ecosystem Services (1980–2010

    Directory of Open Access Journals (Sweden)

    Qixiang Wang

    2016-03-01

    Full Text Available Marine ecosystem services refer to benefits that people obtain from marine ecosystem. Understanding temporal evolution of these services is a fundamental challenge of natural resource management in marine ecosystems. Yellow Sea is one of the most intensely exploited shallow seas in the Northwest Pacific Ocean. In this study, we analyzed the value of the four classes services (provisioning services, regulating services, cultural services and supporting services, including 14 individual services of the Yellow Sea on temporal scales. From 1980 to 2010, the total value of the four classes of services was between 297 and 2,232 billion RMB yuan. Only the proportion of cultural services as a percentage of the total value continued to increase for the entire period, from 0.9% in 1980 to 9.4% in 2010. Provisioning services reached their highest point at 18.4% in 2000, and then fell to 10.1% in 2010. Meanwhile, the percentage of regulating services and supporting services declined, falling from 14.4% and 79.4% in 1980 to 10.1% and 70.4% in 2010, respectively. This study represents the first attempt to analyze the temporal evolution of Yellow Sea ecosystem services. It will provide the theoretical basis for further study of the ecological mechanisms of marine ecosystem services.

  8. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  9. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  10. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  11. A Bayesian-Based Approach to Marine Spatial Planning: Evaluating Spatial and Temporal Variance in the Provision of Ecosystem Services Before and After the Establishment Oregon's Marine Protected Areas

    Science.gov (United States)

    Black, B.; Harte, M.; Goldfinger, C.

    2017-12-01

    Participating in a ten-year monitoring project to assess the ecological, social, and socioeconomic impacts of Oregon's Marine Protected Areas (MPAs), we have worked in partnership with the Oregon Department of Fish and Wildlife (ODFW) to develop a Bayesian geospatial method to evaluate the spatial and temporal variance in the provision of ecosystem services produced by Oregon's MPAs. Probabilistic (Bayesian) approaches to Marine Spatial Planning (MSP) show considerable potential for addressing issues such as uncertainty, cumulative effects, and the need to integrate stakeholder-held information and preferences into decision making processes. To that end, we have created a Bayesian-based geospatial approach to MSP capable of modelling the evolution of the provision of ecosystem services before and after the establishment of Oregon's MPAs. Our approach permits both planners and stakeholders to view expected impacts of differing policies, behaviors, or choices made concerning Oregon's MPAs and surrounding areas in a geospatial (map) format while simultaneously considering multiple parties' beliefs on the policies or uses in question. We quantify the influence of the MPAs as the shift in the spatial distribution of ecosystem services, both inside and outside the protected areas, over time. Once the MPAs' influence on the provision of coastal ecosystem services has been evaluated, it is possible to view these impacts through geovisualization techniques. As a specific example of model use and output, a user could investigate the effects of altering the habitat preferences of a rockfish species over a prescribed period of time (5, 10, 20 years post-harvesting restrictions, etc.) on the relative intensity of spillover from nearby reserves (please see submitted figure). Particular strengths of our Bayesian-based approach include its ability to integrate highly disparate input types (qualitative or quantitative), to accommodate data gaps, address uncertainty, and to

  12. Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.

    Science.gov (United States)

    McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K

    2016-06-20

    Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.

    Science.gov (United States)

    Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J

    2016-06-01

    Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future

  14. Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon

    Science.gov (United States)

    Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.

    2011-01-01

    Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal

  15. Ecosystem Model Skill Assessment. Yes We Can!

    Science.gov (United States)

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable

  16. Demonstrating the Effects of Ocean Acidification on Marine Organisms to Support Climate Change Understanding

    Science.gov (United States)

    Kelley, Amanda L.; Hanson, Paul R.; Kelley, Stephanie A.

    2015-01-01

    Ocean acidification, a product of CO[subscript 2] absorption by the world's oceans, is largely driven by the anthropogenic combustion of fossil fuels and has already lowered the pH of marine ecosystems. Organisms with calcium carbonate shells and skeletons are especially susceptible to increasing environmental acidity due to reduction in the…

  17. New Possibilities for High-Resolution, Large-Scale Ecosystem Assessment of the World's Semi-Arid Regions

    Science.gov (United States)

    Burney, J. A.; Goldblatt, R.

    2016-12-01

    Understanding drivers of land use change - and in particular, levels of ecosystem degradation - in semi-arid regions is of critical importance because these agroecosystems (1) are home to the world's poorest populations, almost all of whom depend on agriculture for their livelihoods, (2) play a critical role in the global carbon and climate cycles, and (3) have in many cases seen dramatic changes in temperature and precipitation, relative to global averages, over the past several decades. However, assessing ecosystem health (or, conversely, degradation) presents a difficult measurement problem. Established methods are very labor intensive and rest on detailed questionnaires and field assessments. High-resolution satellite imagery has a unique role semi-arid ecosystem assessment in that it can be used for rapid (or repeated) and very simple measurements of tree and shrub density, an excellent overall indicator for dryland ecosystem health. Because trees and large shrubs are more sparse in semi-arid regions, sub-meter resolution imagery in conjunction with automated image analysis can be used to assess density differences at high spatial resolution without expensive and time-consuming ground-truthing. This could be used down to the farm level, for example, to better assess the larger-scale ecosystem impacts of different management practices, to assess compliance with REDD+ carbon offset protocols, or to evaluate implementation of conservation goals. Here we present results comparing spatial and spectral remote sensing methods for semi-arid ecosystem assessment across new data sources, using the Brazilian Sertão as an example, and the implications for large-scale use in semi-arid ecosystem science.

  18. Comparison of contaminants from different trophic levels and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Riget, F. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Cleemann, M. [Department of Environmental Chemistry, Ministry of Environment and Energy, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Aarkrog, A. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Johansen, P. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Hansen, J.C. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2000-01-17

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (137Cs) are compared from the terrestrial, freshwater and marine ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, {sigma}PCB, {sigma}DDT, {sigma}HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine biota were higher than found in the freshwater and terrestrial ecosystems probably due to the presence of longer food chains. Pb and 137Cs showed the reverse pattern compared with the other compounds. The concentrations in soil and aquatic sediments decreased in the order terrestrial, freshwater and marine ecosystems, which was reflected in the biota as well. Reindeer had similar or lower levels of Pb and 137Cs than lichens. Levels of Pb and 137Cs in marine biota did not show the same clear increase towards higher trophic as found for the other analysed compounds. Greenland Inuit contains considerably less mercury but higher levels of {sigma}PCB, {sigma}DDT and HCB than other Arctic marine top consumers.

  19. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  20. Ecosystem Management. A Management View

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    The need for management of the marine ecosystem using a broad perspective has been recommended under a variety of names. This paper uses the term Ecosystem Management, which is seen as a convergence between the ecological idea of an organisational hierarchy and the idea of strategic planning...... with a planning hierarchy---with the ecosystem being the strategic planning level. Management planning requires, in order to establish a quantifiable means and ends chain, that the goals at the ecosystem level can be linked to operational levels; ecosystem properties must therefore be reducible to lower...... organisational levels. Emergence caused by constraints at both the component and system levels gives rise to phenomena that can create links between the ecosystem and operational levels. To create these links, the ecosystem's functional elements must be grouped according to their functionality, ignoring any...

  1. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Vol. 2. Proceedings of the International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by the Water Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the Principality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  2. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies. Vol. I. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by theWater Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the P rincipality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  3. Effects of Pollution on Marine Organisms.

    Science.gov (United States)

    Mearns, Alan J; Reish, Donald J; Oshida, Philip S; Morrison, Ann Michelle; Rempel-Hester, Mary Ann; Arthur, Courtney; Rutherford, Nicolle; Pryor, Rachel

    2017-10-01

    This review covers selected 2016 articles on the biological effects of pollutants and human physical disturbances on marine and estuarine plants, animals, ecosystems and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, dredging and disposal etc. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico. Several topical areas reviewed in the past (ballast water and ocean acidification) were dropped this year. The focus of this review is on effects, not pollutant fate and transport. There is considerable overlap across subject areas (e.g.some bioaccumulation papers may be cited in other topical categories). Please use keyword searching of the text to locate related but distributed papers. Use this review only as a guide and please consult the original papers before citing them.

  4. RAF 7015: Strengthening Regional Capacities for Marine Risk Assessment Using Nuclear and Related Techniques

    International Nuclear Information System (INIS)

    Okuku, E.; Mwangi, S.

    2017-01-01

    To develop and implement harmonized and integrated regional sea food safety monitoring in the MS through the application of nuclear techniques for enhanced sustainability of marine resource. Rapid urbanization and industrialization are causing alterations of the characteristics of marine environment thus threatening the ecosystem health and sustainability of marine environment and Affects public health, recreational water quality and economic viability.Threats to marine ecosystem include Over-exploitation, habitat destruction, Global warming- rise in SST, HABs and invasive species, Ocean acidification and Marine pollution

  5. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Benthic Data from Digital Still Images (NODC Accession 0000881)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  6. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia.

    Directory of Open Access Journals (Sweden)

    Vincent Nijman

    Full Text Available Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes.We collected data on species composition, origins, volumes and prices at two large open markets (2013, collected data from wholesale traders (2013, and compiled seizure data by the Indonesian authorities (2008-2013. All twelve protected species were observed in trade. Smaller species were traded for 32,000 shells valued at USD500,000, chambered nautilus (Nautilus pompilius (>3,000 shells, USD60,000 and giant clams (Tridacna spp. (>2,000 shells, USD45,000 were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region.We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries.

  7. How models can support ecosystem-based management of coral reefs

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Janssen, A.B.G.; Kuiper, J.J.; Leemans, R.; Leemput, van de I.A.; Mooij, W.M.

    2015-01-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic

  8. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Directory of Open Access Journals (Sweden)

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  9. Predicting Human Mobility Patterns in Marine Ecosystems: Entropy and Home Range Calculations Based on High-Resolution Fishing Vessel Tracking Data

    Science.gov (United States)

    Murawski, S. A.

    2016-02-01

    A number of recent studies have developed metrics of human mobility patterns based on georeferenced cell phone records. The studies generally indicate a high degree of predictability in human location and relatively narrow home ranges for most people. In marine ecosystems there are a number of important uses for such calculations including marine spatial planning and predicting the impacts of marine management options such as establishing marine protected areas (MPAs). In this study we use individual fishing vessel satellite tracking (VMS) records ( 30 million records) obtained from commercial reef fish fishing vessels in the Gulf of Mexico during 2006-2014. This period witnessed the establishment of a variety of new regulations including individual fishing quotas (IFQs) for snapper, grouper, and tilefish, establishment of spatial-area closures, and the temporary closure of as much as 85,000 nautical miles of productive fishing grounds associated with the Deepwater Horizon oil spill accident. Vessel positions were obtained, with a location frequency of one hour. From these VMS data we calculated three measures of entropy (degree of repeatability in spatial use), as well as calculated the axis of gyration (home range) for each vessel in the data set. These calculations were related to a variety of descriptor variables including vessel size, distance from home port to predominant fishing grounds, revenue generated on fishing trips, and fishing regulations. The applicability of these calculations to marine resource management applications is discussed.

  10. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  11. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    Science.gov (United States)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  12. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-09-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research.

  13. The origins of tropical marine biodiversity.

    Science.gov (United States)

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  15. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia.

    Science.gov (United States)

    Nijman, Vincent; Spaan, Denise; Nekaris, K Anne-Isola

    2015-01-01

    Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes. We collected data on species composition, origins, volumes and prices at two large open markets (2013), collected data from wholesale traders (2013), and compiled seizure data by the Indonesian authorities (2008-2013). All twelve protected species were observed in trade. Smaller species were traded for Java and Bali, but the trade involves networks stretching hundreds of kilometres throughout Indonesia. Wholesale traders offer protected marine mollusc shells for the export market by the container or by the metric ton. Data from 20 confiscated shipments show an on-going trade in these molluscs. Over 42,000 shells were seized over a 5-year period, with a retail value of USD700,000 within Indonesia; horned helmet (Cassis cornuta) (>32,000 shells valued at USD500,000), chambered nautilus (Nautilus pompilius) (>3,000 shells, USD60,000) and giant clams (Tridacna spp.) (>2,000 shells, USD45,000) were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region. We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries.

  16. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia

    Science.gov (United States)

    Nijman, Vincent; Spaan, Denise; Nekaris, K. Anne-Isola

    2015-01-01

    Background Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes. Methodology/Principal Findings We collected data on species composition, origins, volumes and prices at two large open markets (2013), collected data from wholesale traders (2013), and compiled seizure data by the Indonesian authorities (2008–2013). All twelve protected species were observed in trade. Smaller species were traded for trade involves networks stretching hundreds of kilometres throughout Indonesia. Wholesale traders offer protected marine mollusc shells for the export market by the container or by the metric ton. Data from 20 confiscated shipments show an on-going trade in these molluscs. Over 42,000 shells were seized over a 5-year period, with a retail value of USD700,000 within Indonesia; horned helmet (Cassis cornuta) (>32,000 shells valued at USD500,000), chambered nautilus (Nautilus pompilius) (>3,000 shells, USD60,000) and giant clams (Tridacna spp.) (>2,000 shells, USD45,000) were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region. Conclusions/Significance We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries. PMID:26717021

  17. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  18. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  19. Methods for Marine Ecosystems Research through the Use of PDAs with Preservice Teachers

    Directory of Open Access Journals (Sweden)

    Antoinette Bruciati

    2005-10-01

    Full Text Available Science teachers are charged with the task of providing students in grades K-12 with opportunities that will enable them to make sense of science and develop habits of mind. One goal of science education is to prepare well-rounded citizens who are scientifically literate. Through inquiry-based learning, students formulate questions, perform investigations, and construct new understandings. It is important for preservice science teachers to be introduced to current techniques, discoveries, and debates in the field of science. The use of personal digital assistants (PDAs can provide K-12 students with increased opportunities for exploring and learning through scientific investigations. In order for these devices to be successfully integrated into classroom instruction, changes in teaching methodologies must be adopted. This paper presents a model lesson that can be used to guide preservice teachers in the use of PDAs for studying a marine ecosystem. The field experience takes place on the shoreline of Long Island Sound at Stratford Point, in Stratford Connecticut.

  20. Sampling frequency of ciliated protozoan microfauna for seasonal distribution research in marine ecosystems.

    Science.gov (United States)

    Xu, Henglong; Yong, Jiang; Xu, Guangjian

    2015-12-30

    Sampling frequency is important to obtain sufficient information for temporal research of microfauna. To determine an optimal strategy for exploring the seasonal variation in ciliated protozoa, a dataset from the Yellow Sea, northern China was studied. Samples were collected with 24 (biweekly), 12 (monthly), 8 (bimonthly per season) and 4 (seasonally) sampling events. Compared to the 24 samplings (100%), the 12-, 8- and 4-samplings recovered 94%, 94%, and 78% of the total species, respectively. To reveal the seasonal distribution, the 8-sampling regime may result in >75% information of the seasonal variance, while the traditional 4-sampling may only explain sampling frequency, the biotic data showed stronger correlations with seasonal variables (e.g., temperature, salinity) in combination with nutrients. It is suggested that the 8-sampling events per year may be an optimal sampling strategy for ciliated protozoan seasonal research in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    Directory of Open Access Journals (Sweden)

    Michelle E Portman

    Full Text Available Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  2. Towards an ecosystem-based approach of Guam's coral reefs

    NARCIS (Netherlands)

    Weijerman, M.; Grace-McCaskey, Cynthia; Grafeld, Shanna L.; Kotowicz, Dawn M.; Oleson, Kirsten L.L.; Putten, van Ingrid E.

    2016-01-01

    Management of tropical reef ecosystems under pressure from terrestrial and extractive marine activities is not straightforward, especially when the interests of extractive and non-extractive marine resource sectors compete. Before implementing management actions, potential outcomes of alternative

  3. Methane Production by Seagrass Ecosystems in the Red Sea

    KAUST Repository

    Garcias Bonet, Neus; Duarte, Carlos M.

    2017-01-01

    Atmospheric methane (CH) is the second strongest greenhouse gas and it is emitted to the atmosphere naturally by different sources. It is crucial to define the dimension of these natural emissions in order to forecast changes in atmospheric CH mixing ratio in future scenarios. However, CH emissions by seagrass ecosystems in shallow marine coastal systems have been neglected although their global extension. Here we quantify the CH production rates of seagrass ecosystems in the Red Sea. We measured changes in CH concentration and its isotopic signature by cavity ring-down spectroscopy on chambers containing sediment and plants. We detected CH production in all the seagrass stations with an average rate of 85.09 ± 27.80 μmol CH m d. Our results show that there is no seasonal or daily pattern in the CH production rates by seagrass ecosystems in the Red Sea. Taking in account the range of global estimates for seagrass coverage and the average seagrass CH production, the global CH production and emission by seagrass ecosystems could range from 0.09 to 2.7 Tg yr. Because CH emission by seagrass ecosystems had not been included in previous global CH budgets, our estimate would increase the contribution of marine global emissions, hitherto estimated at 9.1 Tg yr, by about 30%. Thus, the potential contribution of seagrass ecosystems to marine CH emissions provides sufficient evidence of the relevance of these fluxes as to include seagrass ecosystems in future assessments of the global CH budgets.

  4. Methane Production by Seagrass Ecosystems in the Red Sea

    KAUST Repository

    Garcias Bonet, Neus

    2017-11-07

    Atmospheric methane (CH) is the second strongest greenhouse gas and it is emitted to the atmosphere naturally by different sources. It is crucial to define the dimension of these natural emissions in order to forecast changes in atmospheric CH mixing ratio in future scenarios. However, CH emissions by seagrass ecosystems in shallow marine coastal systems have been neglected although their global extension. Here we quantify the CH production rates of seagrass ecosystems in the Red Sea. We measured changes in CH concentration and its isotopic signature by cavity ring-down spectroscopy on chambers containing sediment and plants. We detected CH production in all the seagrass stations with an average rate of 85.09 ± 27.80 μmol CH m d. Our results show that there is no seasonal or daily pattern in the CH production rates by seagrass ecosystems in the Red Sea. Taking in account the range of global estimates for seagrass coverage and the average seagrass CH production, the global CH production and emission by seagrass ecosystems could range from 0.09 to 2.7 Tg yr. Because CH emission by seagrass ecosystems had not been included in previous global CH budgets, our estimate would increase the contribution of marine global emissions, hitherto estimated at 9.1 Tg yr, by about 30%. Thus, the potential contribution of seagrass ecosystems to marine CH emissions provides sufficient evidence of the relevance of these fluxes as to include seagrass ecosystems in future assessments of the global CH budgets.

  5. Weak Compliance Undermines the Success of No-Take Zones in a Large Government-Controlled Marine Protected Area

    KAUST Repository

    Campbell, Stuart J.; Hoey, Andrew; Maynard, Jeffrey; Kartawijaya, Tasrif; Cinner, Joshua; Graham, Nicholas A. J.; Baird, Andrew H.

    2012-01-01

    The effectiveness of marine protected areas depends largely on whether people comply with the rules. We quantified temporal changes in benthic composition, reef fish biomass, and fishing effort among marine park zones (including no-take areas

  6. Relative invasion risk for plankton across marine and freshwater systems: examining efficacy of proposed international ballast water discharge standards.

    Directory of Open Access Journals (Sweden)

    Oscar Casas-Monroy

    Full Text Available Understanding the implications of different management strategies is necessary to identify best conservation trajectories for ecosystems exposed to anthropogenic stressors. For example, science-based risk assessments at large scales are needed to understand efficacy of different vector management approaches aimed at preventing biological invasions associated with commercial shipping. We conducted a landscape-scale analysis to examine the relative invasion risk of ballast water discharges among different shipping pathways (e.g., Transoceanic, Coastal or Domestic, ecosystems (e.g., freshwater, brackish and marine, and timescales (annual and per discharge event under current and future management regimes. The arrival and survival potential of nonindigenous species (NIS was estimated based on directional shipping networks and their associated propagule pressure, environmental similarity between donor-recipient ecosystems (based on salinity and temperature, and effects of current and future management strategies (i.e., ballast water exchange and treatment to meet proposed international biological discharge standards. Our findings show that current requirements for ballast water exchange effectively reduce invasion risk to freshwater ecosystems but are less protective of marine ecosystems because of greater environmental mismatch between source (oceanic and recipient (freshwater ecoregions. Future requirements for ballast water treatment are expected to reduce risk of zooplankton NIS introductions across ecosystem types but are expected to be less effective in reducing risk of phytoplankton NIS. This large-scale risk assessment across heterogeneous ecosystems represents a major step towards understanding the likelihood of invasion in relation to shipping networks, the relative efficacy of different invasion management regimes and seizing opportunities to reduce the ecological and economic implications of biological invasions.

  7. An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    NARCIS (Netherlands)

    Knights, A.M.; Piet, G.J.; Jongbloed, R.H.; Tamis, J.E.; Robinson, L.A.

    2015-01-01

    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build

  8. Global change in the trophic functioning of marine food webs

    DEFF Research Database (Denmark)

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu

    2017-01-01

    and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI......The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches......) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950...

  9. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past.

    Directory of Open Access Journals (Sweden)

    Fabiana Saporiti

    Full Text Available The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.

  10. Nutrient reduction and climate change cause a potential shift from pelagic to benthic pathways in a eutrophic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Blenckner, T.; Stenseth, N.C.

    2012-01-01

    The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger...... variables across all trophic levels, we here propose a potential regime shift from pelagic to benthic regulatory pathways; a possible first sign of recovery from eutrophication likely triggered by drastic nutrient reductions (involving both nitrogen and phosphorus), in combination with climate...

  11. The global susceptibility of coastal forage fish to competition by large jellyfish

    DEFF Research Database (Denmark)

    Schnedler-Meyer, Nicolas Azaña; Mariani, Patrizio; Kiørboe, Thomas

    2016-01-01

    dominance at low primary production, and a shift towards jellyfish with increasing productivity, turbidity and fishing. We present an index of global ecosystem susceptibility to shifts in fish–jellyfish dominance that compares well with data on jellyfish distributions and trends. The results are a step......Competition between large jellyfish and forage fish for zooplankton prey is both a possible cause of jellyfish increases and a concern for the management of marine ecosystems and fisheries. Identifying principal factors affecting this competition is therefore important for marine management......, but the lack of both good quality data and a robust theoretical framework have prevented general global analyses. Here, we present a general mechanistic food web model that considers fundamental differences in feeding modes and predation pressure between fish and jellyfish. The model predicts forage fish...

  12. A Size-based Ecosystem Model

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

     Ecosystem Management requires models that can link the ecosystem level to the operation level. This link can be created by an ecosystem production model. Because the function of the individual fish in the marine ecosystem, seen in trophic context, is closely related to its size, the model groups...... fish according to size. The model summarises individual predation events into ecosystem level properties, and thereby uses the law of conversation of mass as a framework. This paper provides the background, the conceptual model, basic assumptions, integration of fishing activities, mathematical...... the predator--prey interaction, (ii) mass balance in the predator--prey allocation, and (iii) mortality and somatic growth as a consequence of the predator--prey allocation. By incorporating additional assumptions, the model can be extended to other dimensions of the ecosystem, for example, space or species...

  13. Assessment of coastal management options by means of multilayered ecosystem models

    Science.gov (United States)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  14. Distribution of transuranic nuclides in Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ballestra, S.; Thein, M.; Fukai, R.

    1982-01-01

    For the comprehensive understanding of the behaviour of transuranic elements in the marine environment, the knowledge on the distribution of these elements in various components of marine ecosystems is essential. Since the Mediterranean Sea is considered a sufficiently self-contained system, our approach for studying the processes controlling the transuranic cycling in the sea has been to follow, step by step, the redistribution of plutonium and americium in different components of the marine environment, taking Mediterranean ecosystems as examples. While the studies in the past years have supplied quantitative information on the inputs of plutonium and americium into the Mediterranean from atmospheric fallout and rivers as well as on their behaviour in the Mediterranean water column, only scattered data have been made available so far on the occurrence of the transuranic nuclides in the Mediterranean marine biota or sediments. In order to fill up this information gap, biological and sediment samples were collected from the northwestern Mediterranean region during 1975-1978 for the transuranic measurements. The results of these determinations are given in the present report

  15. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  16. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    Science.gov (United States)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626

  17. Options in dealing with marine alien species

    NARCIS (Netherlands)

    Pelt-Heerschap, van H.M.L.; Sneekes, A.C.; Foekema, E.M.

    2015-01-01

    Invasive species can have strong impact on the local ecosystem, not only substantial impact on the local ecosystem, but also on economy and human health. This review on marine alien species outlines aspects of prevention, eradication and control strategies. When managing invasive species, prevention

  18. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  19. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    Science.gov (United States)

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  20. Identifying thresholds for ecosystem-based management.

    Directory of Open Access Journals (Sweden)

    Jameal F Samhouri

    Full Text Available BACKGROUND: One of the greatest obstacles to moving ecosystem-based management (EBM from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. METHODOLOGY/PRINCIPAL FINDINGS: To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity and functional (e.g., resilience attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1 fishing and (2 nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. CONCLUSIONS/SIGNIFICANCE: For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management.

  1. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability

    Science.gov (United States)

    Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.

    2018-02-01

    Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.

  2. Parasites in marine food webs

    Science.gov (United States)

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  3. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  4. Exploring methods for predicting multiple pressures on ecosystem recovery: A case study on marine eutrophication and fisheries

    DEFF Research Database (Denmark)

    Uusitalo, Laura; Korpinen, Samuli; Andersen, Jesper H.

    2016-01-01

    found that a large uncertainty existed regarding the ecosystem response to the management scenarios, and that the three different modelling approaches complemented each other. The models indicated that in order to reach an improved overall state of the ecosystem nutrient reductions are the more...... effective of the two management variables explored, and that cumulative effects of the management of nutrient inputs and fishing mortality are likely to exist....

  5. Implementation of an Ecosystem Approach to Fisheries is being ...

    African Journals Online (AJOL)

    contributing to development of a more integrative ap- ... spatial distribution of the species are compiled from published literature. ... marine ecosystem models are still difficult to perform. ... Marine & Coastal Management, Department of Environmental Affairs and Tourism, Private Bag X2 .... This coefficient is determined as the.

  6. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    Science.gov (United States)

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  7. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine Ecosystems

    Science.gov (United States)

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented

  8. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1979-30 June 1980

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1980-01-01

    Progress is reported in research dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. Studies were planned to elaborate the biokinetic behavior of Tc as TcO 4 - in selected marine and estuarine organisms and to determine the affinity of TcO 4 - for different marine sediments under oxygenated conditions. It is concluded that concentration factors for TcO 4 - in bivalve molluscs (oysters and mussels) do not exceed 2 when calculated for whole animals and when uptake is directly from water. Direct uptake from water by limpets (archeogastropod) are very much lower than have been reported for red abalone (archeogastropod). Whole body concentration factors for TcO 4 - in the plaice, Pleuronectes platessa, where uptake is directly from labeled seawater, do not exceed 10 at equilibrium. Both the lobster, Homarus gammaris and the polychaete, Nereis diversicolor appear to concentrate Tc efficiently from water labelled intially with TcO 4 - . Both plaice and rays (Raja clavata) fed /sup 95m/Tc labeled Nereis show an initial rapid loss of the isotope for approximately five days. Thereafter, loss is much reduced. Shrimp (Palaemon elegans), Cragnon sp.) and Crab (Cancer pagurus) show concentration factors similar to plaice (C.F. is less than 10). Isopods, however, have concentration factors of only 3 following four weeks exposure to labeled seawater. Uptake of TcO 4 - by phytoplankton is extremely low, which precludes experiments in which TcO 4 - labeled phytoplankton can be fed to either bivalve molluscs or microzooplankton. Sediment distribution coefficients for TcO 4 - are essentially zero and are independent of sediment type in well oxygenated seawater. Experiments to date have shown that it is not possible to make generalizations concerning the bioavailability of TcO 4 - to marine organisms

  9. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Directory of Open Access Journals (Sweden)

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  10. An evaluation of semi-automated methods for collecting ecosystem-level data in temperate marine systems.

    Science.gov (United States)

    Griffin, Kingsley J; Hedge, Luke H; González-Rivero, Manuel; Hoegh-Guldberg, Ove I; Johnston, Emma L

    2017-07-01

    Historically, marine ecologists have lacked efficient tools that are capable of capturing detailed species distribution data over large areas. Emerging technologies such as high-resolution imaging and associated machine-learning image-scoring software are providing new tools to map species over large areas in the ocean. Here, we combine a novel diver propulsion vehicle (DPV) imaging system with free-to-use machine-learning software to semi-automatically generate dense and widespread abundance records of a habitat-forming algae over ~5,000 m 2 of temperate reef. We employ replicable spatial techniques to test the effectiveness of traditional diver-based sampling, and better understand the distribution and spatial arrangement of one key algal species. We found that the effectiveness of a traditional survey depended on the level of spatial structuring, and generally 10-20 transects (50 × 1 m) were required to obtain reliable results. This represents 2-20 times greater replication than have been collected in previous studies. Furthermore, we demonstrate the usefulness of fine-resolution distribution modeling for understanding patterns in canopy algae cover at multiple spatial scales, and discuss applications to other marine habitats. Our analyses demonstrate that semi-automated methods of data gathering and processing provide more accurate results than traditional methods for describing habitat structure at seascape scales, and therefore represent vastly improved techniques for understanding and managing marine seascapes.

  11. Marine environmental monitoring programmes in South Africa: a review

    Directory of Open Access Journals (Sweden)

    H. M. Verheye

    2010-01-01

    Full Text Available South Africa uniquely lies at the junction of two major currents, the Agulhas and the Benguela. The waters overlying the continental shelf exhibit exceptionally high short-, medium- and long-term (days to inter-decadal variability compared with most other shelf areas, and strongly contrasting oceanographic conditions are observed on the east and west coasts. South Africa is rich in fisheries resources and associated environmental data collected over more than a century. The South African marine scientific community has a history of multidisciplinary studies of marine foodwebs, from the driving forces such as wind, currents and solar heating, to the top predators, with the development of kelp bed, sub-tidal reefs and estuarine ecosystem studies in the 1970s; the Benguela Ecology Programme, which ran through four successive five-year stages, focused on the pelagic marine resources. Various approaches have been used to observe the continental shelf at different time and space scales, including: macroscale but frequent satellite imagery, mesoscale environmental and fishery surveys, dedicated crossshelf transects in key areas, measurements of dynamic processes, use of moored buoys and coastal weather stations, and integrated monitoring approaches, including modelling and simulation studies. Between 30 and 50 years of comprehensive marine data now exist, which are proving useful in the application of an ecosystem approach to fisheries monitoring and management, as decadal changes become discernible. These observations need to continue; even though the single-species stock assessment and operational management procedures have not yet formally used environmental factors for fisheries management advice, they help us to understand the factors affecting fish population fluctuations and early life histories and to identify large-scale regime shifts where marine trophic structure and functioning alter to a new state.

  12. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  13. Preface: Biogeochemistry–ecosystem interaction on changing continental margins in the Anthropocene

    Digital Repository Service at National Institute of Oceanography (India)

    Liu, K-K.; Emeis, K.-C.; Levin, L.A.; Naqvi, S.W.A.; Roman, M.

    and hypercapnia in upwelling systems • Interactions between natural and social sciences for better steward- ship of continental margins. It has long been acknowledged (e.g., Doney, 2010; Liu et al., 2010) that marine ecosystems on continental margins, including... and possibly manage margin ecosystems in a changing world. Effective governance of social–ecological systems on continental margins is key to reducing the pervasive over- exploitation, depletion and destruction of marine resources and http://dx.doi.org/10...

  14. Radiochronology of marine sediments and its application to the knowledge of the process of environmental pollution in coastal Cuban ecosystems

    International Nuclear Information System (INIS)

    Alonso-Hernández, Carlos M.; Díaz-Asencio, Misael; Gómez-Batista, Miguel; Bolaños-Alvares, Yoelvis; Muñoz-Caravaca, Alain; Morera-Gómez, Yasser

    2016-01-01

    The results achieved in the implementation of the radiochronology of marine sediments for the reconstruction of databases and knowledge of the evolution of environmental pollution in four coastal ecosystems of national significance are presented in this paper Fluxes of selected heavy metals and persistent organic compounds are discussed for the Cienfuegos and Havana bays and Sagua and La Coloma estuaries. Finally, is showed the effectiveness of radiochronology of sediments as a useful tool for environmental management and knowledge of temporal processes of pollution in the aquatic environment. (author)

  15. A high-speed transmission method for large-scale marine seismic prospecting systems

    International Nuclear Information System (INIS)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-01-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems. (paper)

  16. A high-speed transmission method for large-scale marine seismic prospecting systems

    Science.gov (United States)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-12-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems.

  17. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  18. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  19. Chemical ecology of the marine plankton.

    Science.gov (United States)

    Roy, Jessie S; Poulson-Ellestad, Kelsey L; Drew Sieg, R; Poulin, Remington X; Kubanek, Julia

    2013-10-11

    This review summarizes recent work in the chemical ecology of pelagic marine ecosystems. In order to provide a comprehensive overview of advances in the field over the period covered, we have organized this review by ecological interaction type beginning with intraspecific interactions, then interspecific interactions (including mutualism, parasitism, competition, and predation), and finally community- and ecosystem-wide interactions.

  20. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  1. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  2. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  3. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores.

    Science.gov (United States)

    Williams, Terrie M; Fuiman, Lee A; Davis, Randall W

    2015-10-01

    Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. The assessment of marine reserve networks: guidelines for ecological evaluation: Chapter 11

    Science.gov (United States)

    Grorud-Colvert, Kirsten; Claudet, Joachim; Carr, Mark; Caselle, Jennifer; Day, Jon; Friedlander, Alan M.; Lester, Sarah E.; Lison de Loma, Thierry; Tissot, Brian; Malone, Dan; Claudet, Joachim

    2011-01-01

    As marine ecosystems are plagued by an ever-increasing suite of threats including climate change, pollution, habitat degradation, and fisheries impacts (Roessig et al., 2004; Lotze et al., 2006; Jackson, 2008), there are now no ocean areas that are exempt from anthropogenic impacts (Halpern et al., 2008). In order to preserve marine biodiversity, ecosystem function, and the goods and services provided by resistant and/or resilient systems, marine reserves have been increasingly recommended as part of an ecosystem-based approach to management (Browman and Stergiou, 2004; Levin et al., 2009). Marine reserves are defined as “areas of the ocean completely protected from all extractive and destructive activities” (Lubchenco et al., 2003) and can be experimental controls for evaluating the impact of these activities on marine ecosystems. Growing scientific information has shown consistent increases in species density, biomass, size, and diversity in response to full protection inside reserves of varying sizes and ages located in diverse regions (Claudet et al., 2008; Lester et al., 2009; Molloy et al., 2009). However, most of these data are from individual marine reserves and therefore have inherently limited transferability to networks of marine reserves, which when properly designed can outperform single marine reserves for a variety of ecological, economic, and social management goals (Roberts et al., 2003; Almany et al., 2009; Gaines et al., 2010).The concept of marine reserve networks grew out of a desire to achieve both conservation and fishery management goals by minimizing the potential negative economic, social, and cultural impacts of a single large reserve while still producing similar or even greater ecological and economic returns (Murray et al., 1999; Gaines et al., 2010). In addition, reserves networks can provide insurance by protecting areas across a region and spreading the risk that these sites may be impacted by localized catastrophes such as

  5. Seventy-One Important Questions for the Conservation of Marine Biodiversity

    Science.gov (United States)

    PARSONS, E C M; FAVARO, BRETT; AGUIRRE, A ALONSO; BAUER, AMY L; BLIGHT, LOUISE K; CIGLIANO, JOHN A; COLEMAN, MELINDA A; CÔTÉ, ISABELLE M; DRAHEIM, MEGAN; FLETCHER, STEPHEN; FOLEY, MELISSA M; JEFFERSON, REBECCA; JONES, MIRANDA C; KELAHER, BRENDAN P; LUNDQUIST, CAROLYN J; MCCARTHY, JULIE-BETH; NELSON, ANNE; PATTERSON, KATHERYN; WALSH, LESLIE; WRIGHT, ANDREW J; SUTHERLAND, WILLIAM J

    2014-01-01

    The ocean provides food, economic activity, and cultural value for a large proportion of humanity. Our knowledge of marine ecosystems lags behind that of terrestrial ecosystems, limiting effective protection of marine resources. We describe the outcome of 2 workshops in 2011 and 2012 to establish a list of important questions, which, if answered, would substantially improve our ability to conserve and manage the world’s marine resources. Participants included individuals from academia, government, and nongovernment organizations with broad experience across disciplines, marine ecosystems, and countries that vary in levels of development. Contributors from the fields of science, conservation, industry, and government submitted questions to our workshops, which we distilled into a list of priority research questions. Through this process, we identified 71 key questions. We grouped these into 8 subject categories, each pertaining to a broad component of marine conservation: fisheries, climate change, other anthropogenic threats, ecosystems, marine citizenship, policy, societal and cultural considerations, and scientific enterprise. Our questions address many issues that are specific to marine conservation, and will serve as a road map to funders and researchers to develop programs that can greatly benefit marine conservation. Setenta y Un Preguntas Importantes para la Conservación de la Biodiversidad Marina Resumen Los océanos proporcionan alimento, actividad económica y valor cultural para una gran porción de la humanidad. Nuestro conocimiento de los ecosistemas marinos está atrasado con respecto al que tenemos de los ecosistemas terrestres, lo que limita la protección efectiva de los recursos naturales. Describimos el resultado de dos talleres en 2011 y 2012 para establecer una lista de preguntas importantes, las cuales al ser respondidas, mejorarían sustancialmente nuestra habilidad de conservar y manejar los recursos marinos del mundo. Entre los

  6. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    Science.gov (United States)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  7. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Science.gov (United States)

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  8. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Directory of Open Access Journals (Sweden)

    Xiao-hong Chen

    Full Text Available Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  9. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit...

  10. MicroEcos: Micro-Scale Explorations of Large-Scale Late Pleistocene Ecosystems

    Science.gov (United States)

    Gellis, B. S.

    2017-12-01

    Pollen data can inform the reconstruction of early-floral environments by providing data for artistic representations of what early-terrestrial ecosystems looked like, and how existing terrestrial landscapes have evolved. For example, what did the Bighorn Basin look like when large ice sheets covered modern Canada, the Yellowstone Plateau had an ice cap, and the Bighorn Mountains were mantled with alpine glaciers? MicroEcos is an immersive, multimedia project that aims to strengthen human-nature connections through the understanding and appreciation of biological ecosystems. Collected pollen data elucidates flora that are visible in the fossil record - associated with the Late-Pleistocene - and have been illustrated and described in botanical literature. It aims to make scientific data accessible and interesting to all audiences through a series of interactive-digital sculptures, large-scale photography and field-based videography. While this project is driven by scientific data, it is rooted in deeply artistic and outreach-based practices, which include broad artistic practices, e.g.: digital design, illustration, photography, video and sound design. Using 3D modeling and printing technology MicroEcos centers around a series of 3D-printed models of the Last Canyon rock shelter on the Wyoming and Montana border, Little Windy Hill pond site in Wyoming's Medicine Bow National Forest, and Natural Trap Cave site in Wyoming's Big Horn Basin. These digital, interactive-3D sculpture provide audiences with glimpses of three-dimensional Late-Pleistocene environments, and helps create dialogue of how grass, sagebrush, and spruce based ecosystems form. To help audiences better contextualize how MicroEcos bridges notions of time, space, and place, modern photography and videography of the Last Canyon, Little Windy Hill and Natural Trap Cave sites surround these 3D-digital reconstructions.

  11. The origins of intensive marine fishing in medieval Europe: the English evidence.

    Science.gov (United States)

    Barrett, James H.; Locker, Alison M.; Roberts, Callum M.

    2004-01-01

    The catastrophic impact of fishing pressure on species such as cod and herring is well documented. However, the antiquity of their intensive exploitation has not been established. Systematic catch statistics are only available for ca.100 years, but large-scale fishing industries existed in medieval Europe and the expansion of cod fishing from the fourteenth century (first in Iceland, then in Newfoundland) played an important role in the European colonization of the Northwest Atlantic. History has demonstrated the scale of these late medieval and post-medieval fisheries, but only archaeology can illuminate earlier practices. Zooarchaeological evidence shows that the clearest changes in marine fishing in England between AD 600 and 1600 occurred rapidly around AD 1000 and involved large increases in catches of herring and cod. Surprisingly, this revolution predated the documented post-medieval expansion of England's sea fisheries and coincided with the Medieval Warm Period--when natural herring and cod productivity was probably low in the North Sea. This counterintuitive discovery can be explained by the concurrent rise of urbanism and human impacts on freshwater ecosystems. The search for 'pristine' baselines regarding marine ecosystems will thus need to employ medieval palaeoecological proxies in addition to recent fisheries data and early modern historical records. PMID:15590590

  12. Role of marine pollutants in impairment of DNA integrity.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarker, S.; Sarkar, A.

    In this article, we present an overview on the role of marine pollutants in impairment of DNA integrity in marine gastropods exposed to xenobiotics released from various sources into the coastal ecosystem. We provide an insight into the impact...

  13. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    Science.gov (United States)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  14. Antimicrobial peptides in marine invertebrate health and disease

    OpenAIRE

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-01-01

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as ‘marine invertebrates’. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remark...

  15. Book Review: Marine Protected Areas in International Law: an Arctic Perspective

    Directory of Open Access Journals (Sweden)

    Davina Oktivana

    2017-10-01

    Full Text Available Marine biodiversity has always become an interesting topic in the development of the law of the sea subject. Despite of human dependence on marine resources, human intervention has been proven as the major threats to the sustainability of marine biodiversity and marine environment protection. Human activities, such an over-exploitation, shipping pollution, the use endangered fishing tools and above all, climate change, have changes the ecosystems extensively. One of the significant measures to prevent broaden the catastrophe is the establishment of Marine Protected Areas (MPAs, which has been accepted as a tool for protection and conservation of marine biodiversity. The book provides a comprehensive observation and analysis of the MPAs' concept and its implementation, specifically in the Arctic. This book is based on Ingvild Ulrikke Jakobsen's PhD thesis at the University of Tromsø, Norwegia. Her concerned particularly based on the development of human activities in the Arctic, that will definitely affect the fragile marine environment and there is an increasing need to ensure environmental protection and conservation of marine biodiversity and ecosystems in Arctic.

  16. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.

    Science.gov (United States)

    Coen, Loren D; Bishop, Melanie J

    2015-10-01

    Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to

  17. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  18. "And DPSIR begat DAPSI(W)R(M)!" - A unifying framework for marine environmental management.

    Science.gov (United States)

    Elliott, M; Burdon, D; Atkins, J P; Borja, A; Cormier, R; de Jonge, V N; Turner, R K

    2017-05-15

    The marine environment is a complex system formed by interactions between ecological structure and functioning, physico-chemical processes and socio-economic systems. An increase in competing marine uses and users requires a holistic approach to marine management which considers the environmental, economic and societal impacts of all activities. If managed sustainably, the marine environment will deliver a range of ecosystem services which lead to benefits for society. In order to understand the complexity of the system, the DPSIR (Driver-Pressure-State-Impact-Response) approach has long been a valuable problem-structuring framework used to assess the causes, consequences and responses to change in a holistic way. Despite DPSIR being used for a long time, there is still confusion over the definition of its terms and so to be appropriate for current marine management, we contend that this confusion needs to be addressed. Our viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures. The Pressures are the mechanisms of State change on the natural system which then leads to Impacts (on human Welfare). Those then require Responses (as Measures). Furthermore, because of the complexity of any managed sea area in terms of multiple Activities, there is the need for a linked-DAPSI(W)R(M) framework, and then the connectivity between marine ecosystems and ecosystems in the catchment and further at sea, requires an interlinked, nested-DAPSI(W)R(M) framework to reflect the continuum between adjacent ecosystems. Finally, the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits. Hence, DAPSI(W)R(M) links the socio-ecological system of the effects of changes to the natural system on the human uses and benefits of the marine system. However, to deliver these

  19. An ecosystem-based approach to assess the status of a Mediterranean ecosystem, the Posidonia oceanica seagrass meadow.

    Directory of Open Access Journals (Sweden)

    Sébastien Personnic

    Full Text Available Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD. The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition.

  20. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.

    Science.gov (United States)

    Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël

    2018-02-01

    Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms

  1. Gulf of Mexico Ecosystem Status Report

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic...

  2. A Carapace-Like Bony ‘Body Tube’ in an Early Triassic Marine Reptile and the Onset of Marine Tetrapod Predation

    Science.gov (United States)

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan’an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan’an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan’an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles. PMID:24718682

  3. The Marine Food Chain in Relation to Biodiversity

    Directory of Open Access Journals (Sweden)

    Andrew R.G. Price

    2001-01-01

    Full Text Available Biodiversity provides “raw materials” for the food chain and seafood production, and also influences the capacity of ecosystems to perform these and other services. Harvested marine seafood species now exceed 100 million t y -1 and provide about 6% of all protein and 17% of animal protein consumed by humans. These resources include representatives from about nine biologically diverse groups of plants and animals. Fish account for most of the world’s marine catches, of which only 40 species are taken in abundance. Highest primary productivity and the richest fisheries are found within Exclusive Economic Zones (EEZ. This narrow strip (200 nautical mile/370 km wide is not only the site of coastal “food factories” but also the area associated with heaviest perturbation to the marine environment. Structural redundancy is evident in marine ecosystems, in that many species are interchangeable in the way they characterise assemblage composition. While there is probably functional redundancy within groups, the effects of species loss on ecosystem performance cannot be easily predicted. In particular, the degree to which biodiversity per se is needed for ecosystem services, including seafood/fishery production, is poorly understood. Many human activities, including unsustainable fishing and mariculture, lead to erosion of marine biodiversity. This can undermine the biophysical cornerstones of fisheries and have other undesirable environmental side effects. Of direct concern are “species effects”, in particular the removal of target and non-target fishery species, as well as conservationally important fauna. Equally disrupting but less immediate are “ecosystem effects”, such as fishing down the food web, following a shift from harvested species of high to low trophic level. Physical and biological disturbances from trawl nets and dynamite fishing on coral reefs can also severely impact ecosystem structure and function.

  4. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived.

    Science.gov (United States)

    Rochman, Chelsea M; Browne, Mark Anthony; Underwood, A J; van Franeker, Jan A; Thompson, Richard C; Amaral-Zettler, Linda A

    2016-02-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological impacts of marine debris. We quantified perceived and demonstrated impacts across several levels of biological organization that make up the ecosystem and found 366 perceived threats of debris across all levels. Two hundred and ninety-six of these perceived threats were tested, 83% of which were demonstrated. The majority (82%) of demonstrated impacts were due to plastic, relative to other materials (e.g., metals, glass) and largely (89%) at suborganismal levels (e.g., molecular, cellular, tissue). The remaining impacts, demonstrated at higher levels of organization (i.e., death to individual organisms, changes in assemblages), were largely due to plastic marine debris (> 1 mm; e.g., rope, straws, and fragments). Thus, we show evidence of ecological impacts from marine debris, but conclude that the quantity and quality of research requires improvement to allow the risk of ecological impacts of marine debris to be determined with precision. Still, our systematic review suggests that sufficient evidence exists for decision makers to begin to mitigate problematic plastic debris now, to avoid risk of irreversible harm.

  5. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... zone to the surface. At the same time, cooling of the piston crown is relatively complicated. This can cause large thermal stresses in the piston crown and weakening of the material strength, which may be critical as it can lead to formation of cracks. Information about the piston surface heat transfer...... is thus important for the engine manufactures. The piston surface heat transfer was studied in the event of impingement of hot combustion products on the piston during combustion, and an estimate was obtained of the peak heat flux level experienced on the piston surface. The investigation was carried out...

  6. Specimen banking of marine organisms in the United States: Current status and long-term prospective

    Science.gov (United States)

    Becker, P.R.; Wise, S.A.; Thorsteinson, L.; Koster, B.J.; Rowles, T.

    1997-01-01

    A major part of the activities conducted over the last decade by the National Biomonitoring Specimen Bank (NBSB) has involved the archival of marine specimens collected by ongoing environmental monitoring programs. These archived specimens include bivalves, marine sediments, and fish tissues collected by the National Status and Trends and the Exxon Valdez Oil Spill Damage Assessment programs, and marine mammal tissues collected by the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project. In addition to supporting these programs, the specimens have been used to investigate circumpolar patterns of chlorinated hydrocarbon concentrations, genetic separation of marine animal stocks, baseline levels of essential and nonessential elements in marine mammals, and the potential risk to human consumers in the Arctic from anthropogenic contaminants found in local subsistence foods. The NBSB specimens represent a resource that has the potential for addressing future issues of marine environmental quality and ecosystem changes through retrospective analysis; however, an ecosystem-based food web approach would maximize this potential. The current status of the NBSB activities related to the banking of marine organisms is presented and discussed, the long-term prospective of these activities is presented, and the importance of an ecosystem-based food web monitoring approach to the value of specimen banking is discussed.

  7. Early Triassic marine biotic recovery: the predators' perspective.

    Science.gov (United States)

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  8. Early Triassic marine biotic recovery: the predators' perspective.

    Directory of Open Access Journals (Sweden)

    Torsten M Scheyer

    Full Text Available Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became

  9. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    OpenAIRE

    M. Marghany

    2015-01-01

    Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more v...

  10. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    Science.gov (United States)

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  11. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    DEFF Research Database (Denmark)

    Griffiths, Jennifer R.; Kadin, Martina; Nascimento, Francisco J. A.

    2017-01-01

    and function is strongly affected by anthropogenic pressures, however there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling...... processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study, and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic......Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure...

  12. Radioecological studies in marine ecosystems

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Kanisch, G.

    1999-01-01

    The bioconcentration factor shows the ratio between concentration of a substance in water or in fish. It is a calculation quantity, used for assessing the possible concentration in fish in proportion to the known concentration in water. Although the element cesium discussed in this report is primarily ingested via the food chain (biomagnification) and not via direct uptake through the gills, but the bioconcentration factor model is nevertheless applicable, because there is a relation between the element's concentration in water and in food. One has to consider, however, the influence on cesium uptake through the quantity of food and species-dependent accumulation. Experimental results obtained for various ecosystems are reported and illustrate the mechanisms involved. (orig./CB) [de

  13. A General Business Model for Marine Reserves

    Science.gov (United States)

    Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H.; Rosenberg, Andrew A.; Sumaila, Rashid

    2013-01-01

    Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models. PMID:23573192

  14. Predation and Ecology in Deep-Time: How Modern Marine Ecosystems Develop and Deteriorate

    Science.gov (United States)

    Tackett, L.

    2017-12-01

    Anti-predator adaptations in shelly prey and specialized feeding-capture structures in predators can be observed nearly everywhere in modern oceans. The conditions in which these adaptive "arms-races" between predators and prey developed in the oceans can yield important insights to predict how these relationships are affected by environmental change. However, in the fossil record it can be difficult to determine if an adaptation in a shelly animal is related to predation, or some other factor, such as competition for nutrients or space. To address (1) the problem of interpreting the function of shelly invertebrate adaptations, and (2) to identify environmental factors in the development of modern predator-prey interactions, I carefully study the relative abundances of shelly prey animals and microfossil remains of their predators in marine sediments. In the Late Triassic (220-204 million years ago), a dramatic paleoecological shift occurred among shelly marine animals—immobile surface-dwelling animals that had been abundant in the oceans for 300 million years became rare, and were replaced by burrowing clams, swimming scallops, cementing oysters, and many other new taxa with surprising adaptations. This proliferation of adaptive strategies seems to be synchronous with the appearance of many predator taxa specialized for shell-crushing that mainly moved along the seafloor. To test this hypothesis, I examine microfossils of these predators in the sediments containing macrofossils of their shelly prey, to find teeth or claw features that can exhibit specializations for shell-crushing or other predation modes. With the development of this very modern system of predator-prey interactions, we can better understand how these food-webs were disrupted by climatic perturbations later in the Triassic, and make meaningful comparisons to modern ocean ecosystems.

  15. Multiscale analysis of restoration priorities for marine shoreline planning.

    Science.gov (United States)

    Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K

    2009-10-01

    Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.

  16. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  17. Indicator-based assessment of marine biological diversity – lessons from 10 case studies across the European Seas

    Directory of Open Access Journals (Sweden)

    Laura Uusitalo

    2016-09-01

    Full Text Available The Marine Strategy Framework Directive requires the environmental status of European marine waters to be assessed using biodiversity as one out of 11 descriptors, but the complexity of marine biodiversity and its large span across latitudinal and salinity gradients have been a challenge to the scientific community aiming to produce approaches for integrating information from a broad range of indicators. The Nested Environmental status Assessment Tool (NEAT, developed for the integrated assessment of the status of marine waters, was applied to ten marine ecosystems to test its applicability and compare biodiversity assessments across the four European regional seas. We evaluate the assessment results as well as the assessment designs of the ten cases, and how the assessment design, particularly the choices made regarding the area and indicator selection, affected the results. The results show that only 2 out of the 10 case study areas show more than 50 % probability of being in good status in respect of biodiversity. No strong pattern among the ecosystem components across the case study areas could be detected, but marine mammals, birds, and benthic vegetation indicators tended to indicate poor status while zooplankton indicators indicated good status when included into the assessment. The analysis shows that the assessment design, including the selection of indicators, their target values, geographical resolution and habitats to be assessed, has potentially a high impact on the result, and the assessment structure needs to be understood in order to make an informed assessment. Moreover, recommendations are provided for the best practice of using NEAT for marine status assessments.

  18. Willingness to Pay for Marine Turtle Conservation in Asia: A Cross-Country Perspective

    OpenAIRE

    Jin Jiangjun; Rodelio Subade; Orapan Nabangchang; Truong Dang Thuy; Anabeth L. Indab

    2009-01-01

    Marine turtles are important, not only for their economic and intrinsic value, but because an adequate population of marine turtles is often an indicator of healthy marine ecosystem. Of the seven species of marine turtles, four are critically endangered, while two are in the next-highest risk category.

  19. A review on marine based nanoparticles and their potential ...

    African Journals Online (AJOL)

    Infonet

    2015-05-06

    May 6, 2015 ... potential applications (Table 1) and current information about research on ... easily available source for nanoparticle synthesis with broad variability of ... of marine ecosystem and characterization of marine plants are extremely different ... to develop non-toxic and environment friendly methods to synthesize ...

  20. Hazardous chemicals in marine mammals from the western North Pacific

    International Nuclear Information System (INIS)

    Miyazaki, N.; Tanabe, S.

    1999-01-01

    Marine mammals have long-term life and occupy the highest ecological niche in the marine ecosystem. Thus, higher concentration of hazardous chemicals are expected in marine mammals. In the present study, we review contamination of organochlorine compounds (DDTs, PCBs, HCHs, etc.), heavy metals (Hg, Cd, Pb, etc.) and butyltin (TBT, DBT and MBT) in marine mammals collected from the western North Pacific, and discuss the worldwide contamination of these chemicals

  1. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests

    Science.gov (United States)

    Richard C. Cobb; Joao A.N. Filipe; Ross K. Meentemeyer; Christopher A. Gilligan; David M. Rizzo

    2012-01-01

    1. Few pathogens are the sole or primary cause of species extinctions, but forest disease has caused spectacular declines in North American overstorey trees and restructured forest ecosystems at large spatial scales over the past 100 years. These events threaten biodiversity associated with impacted host trees and other resources valued by human societies even when...

  2. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  3. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  4. A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Science.gov (United States)

    Ardron, Jeff A.; Clark, Malcolm R.; Penney, Andrew J.; Hourigan, Thomas F.; Rowden, Ashley A.; Dunstan, Piers K.; Watling, Les; Shank, Timothy M.; Tracey, Di M.; Dunn, Matthew R.; Parker, Steven J.

    2014-01-01

    The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: (1) Comparatively assess potential VME indicator taxa and habitats in a region; (2) determine VME thresholds; (3) consider areas already known for their ecological importance; (4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; (5) develop predictive distribution models for VME indicator taxa and habitats; (6) compile known or likely fishing impacts; (7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); (8) identify areas of higher value to user groups; (9) conduct management strategy evaluations to produce trade-off scenarios; (10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.

  5. Antimicrobial peptides in marine invertebrate health and disease.

    Science.gov (United States)

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  6. TROPHIC PORTFOLIOS IN MARINE FISHERIES: A STEP TOWARDS ECOSYSTEM MANAGEMENT

    OpenAIRE

    Sanchirico, James N.; Smith, Martin D.

    2003-01-01

    Marine ecologists warn that humans are "fishing down marine food webs." To explore the economic implications of this phenomenon, this paper applies portfolio theory to aggregate fisheries data. It poses two definitions of a sustainable mean-variance catch frontier. It computes a mean-variance frontier for catch using UNFAO historical fisheries data. Finally, the paper discusses the historical trend in inefficiency.

  7. A review on marine based nanoparticles and their potential ...

    African Journals Online (AJOL)

    The increasing demands on nanoparticles have wide pertinent in almost all the fields. Marine ecosystem has variety of living resources, which includes prokaryotes like microorganism to eukaryotic organism like higher plants and animals. The present review dealt with the application of marine organisms in nanotechnology ...

  8. Development of a decision support system to manage contamination in marine ecosystems.

    Science.gov (United States)

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  9. Large scale afforestation projects mitigate degradation and increase the stability of the karst ecosystems in southwest China

    Science.gov (United States)

    Yue, Y.; Tong, X.; Wang, K.; Fensholt, R.; Brandt, M.

    2017-12-01

    With the aim to com