WorldWideScience

Sample records for large ion densities

  1. Calculation of large ion densities under HVdc transmission lines by the finite difference method

    International Nuclear Information System (INIS)

    Suda, Tomotaka; Sunaga, Yoshitaka

    1995-01-01

    A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region

  2. Effects of positron density and temperature on large amplitude ion-acoustic waves in an electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1997-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. 12 refs., 6 figs

  3. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  5. Ion density in ionizing beams

    International Nuclear Information System (INIS)

    Knuyt, G.K.; Callebaut, D.K.

    1978-01-01

    The equations defining the ion density in a non-quasineutral plasma (chasma) are derived for a number of particular cases from the general results obtained in paper 1. Explicit calculations are made for a fairly general class of boundaries: all tri-axial ellipsoids, including cylinders with elliptic cross-section and the plane parallel case. The results are very simple. When the ion production and the beam intensity are constant then the steady state ion space charge is also constant in space, it varies over less than 10% for the various geometries, it may exceed the beam density largely for comparatively high pressures (usually still less than about 10 -3 Torr), it is tabulated for a number of interesting cases and moreover it can be calculated precisely and easily by some simple formulae for which also approximations are elaborated. The total potential is U =-ax 2 -by 2 -cz 2 , a, b and c constants which can be calculated immediately from the space charge density and the geometry; the largest coefficient varies at most over a factor four for various geometries; it is tabulated for a number of interesting cases. (author)

  6. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  7. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  9. ALICE A Large Ion Collider Experiment

    CERN Multimedia

    Mager, M; Rohr, D M; Suljic, M; Miskowiec, D C; Donigus, B; Mercado-perez, J; Lohner, D; Bertelsen, H; Kox, S; Cheynis, B; Sambyal, S S; Usai, G; Agnello, M; Toscano, L; Miake, Y; Inaba, M; Maldonado cervantes, I A; Fernandez tellez, A; Kulibaba, V; Zinovjev, G; Martynov, Y; Usenko, E; Pshenichnov, I; Nikolaev, S; Vasiliev, A; Vinogradov, A; Moukhanova, T; Vasilyev, A; Kozlov, Y; Voloshin, K; Kiselev, S; Kirilko, Y; Lyublev, E; Kondratyeva, N; Gameiro munhoz, M; Alarcon do passo suaide, A; Lagana fernandes, C; Carlin filho, N; Yin, Z; Zhu, J; Luo, J; Pikna, M; Bombara, M; Pastircak, B; Marangio, G; Gianotti, P; Muccifora, V; Sputowska, I A; Ilkiv, I; Christiansen, P; Dodokhov, V; Yurevich, V; Fedunov, A; Malakhov, A; Efremov, A; Feofilov, G; Vinogradov, L; Asryan, A; Kovalenko, V; Piyarathna, D; Myers, C J; Martashvili, I; Oh, H; Cherney, M G; D'erasmo, G; Wagner, V; Smakal, R; Sartorelli, G; Xaplanteris karampatsos, L; Mlynarz, J; Murray, C J; Oh, S; Becker, B; Zbroszczyk, H P; Feldkamp, L; Pappalardo, G; Khlebnikov, A; Basmanov, V; Punin, V; Demanov, V; Naseer, M A; Gotovac, S; Zgura, S I; Yang, H; Vernet, R; Son, C; Shtejer diaz, K; Hwang, S; Alfaro molina, J R; Jahnke, C; Richter, M R; Garcia-solis, E J; Hitchcock, T M; Bazo alba, J L; Utrobicic, A; Brun, R; Divia, R; Hillemanns, H; Schukraft, J; Riedler, P; Eulisse, G; Von haller, B; Kushpil, V; Ivanov, M; Malzacher, P; Schweda, K O; Renfordt, R A E; Reygers, K J; Pachmayer, Y C; Gaardhoeje, J J; Bearden, I G; Porteboeuf, S J; Borel, H; Pereira da costa, H D A; Faivre, J; Germain, M; Schutz, Y R; Delagrange, H; Batigne, G; Stocco, D; Estienne, M D; Bergognon, A A E; Zoccarato, Y D; Jones, P G; Levai, P; Bencedi, G; Khan, M M; Mahapatra, D P; Ghosh, P; Das, T K; Cicalo, C; De falco, A; Mazzoni, A M; Cerello, P; De marco, N; Riccati, L; Saavedra san martin, O; Paic, G; Ovchynnyk, V; Karavicheva, T; Kucheryaeva, M; Skuratovskiy, O; Mal kevich, D; Bogdanov, A; Pereira, L G; Cai, X; Zhu, X; Wang, M; Kar, S; Fan, F; Sitar, B; Cerny, V; Aggarwal, M M; Bianchi, N; Torii, H; Hori, Y; Tsuji, T; Herrera corral, G A; Kowalski, M; Rybicki, A; Deloff, A; Petrovici, A; Nomokonov, P; Parfenov, A; Koshurnikov, E; Shahaliyev, E; Rogochaya, E; Kondratev, V; Oreshkina, N; Tarasov, A; Norenberg, M; Bodnya, E; Bogolyubskiy, M; Symons, T; Blanco, F; Madagodahettige don, D M; Umaka, E N; Schaefer, B; De pasquale, S; Fusco girard, M; Kim, J; Jeon, H; Nandi, B K; Kumar, J; Sarkar - sinha, T; Arcelli, S; Scapparone, E; Shevel, A; Nikulin, V; Komkov, B; Voloshin, S; Hille, P T; Kannan, S; Dainese, A; Matynia, R M; Dabala, L B; Zimmermann, M B; Vinogradov, Y; Vikhlyantsev, O; Telnov, A; Tumkin, A; Van leeuwen, M; Erdal, H A; Keidel, R; Rui, R; Yeo, I; Vilakazi, Z; Klay, J L; Boswell, B D; Lindenstruth, V; Tveter, T S; Batzing, P C; Breitner, T G; Sahoo, R; Roy, A; Musa, L; Perini, D; Vande vyvre, P; Fuchs, U; Oberegger, M; Aglieri rinella, G; Salgueiro domingues da silva, R M; Kalweit, A P; Greco, V; Bellini, F; Bond, P M; Mohammadi, N; Marin, A M; Glassel, P; Schicker, R M; Staley, F M; Castillo castellanos, J E; Furget, C; Real, J; Martino, J F; Evans, D; Sahu, P K; Sahu, S K; Ahammed, Z; Saini, J; Bala, R; Gupta, R; Di bari, D; Biasotto, M; Nappi, G; Esumi, S; Sano, M; Roehrich, D; Lonne, P; Drakin, Y; Manko, V; Nikulin, S; Yushmanov, I; Kozlov, K; Kerbikov, B; Stavinskiy, A; Sultanov, R; Raniwala, R; Zhou, D; Zhu, H; Meres, M; Kralik, I; Parmar, S; Rizzi, V; Orlandi, A; Lea, R; Kuijer, P G; Figiel, J; Gorlich, L M; Shabratova, G; Lobanov, V; Zaporozhets, S; Ivanov, A; Iglovikov, V; Ochirov, A; Petrov, V; Jacobs, P M; De gruttola, D; Corsi, F; Varma, R; Nania, R; Wilkinson, J J; Samsonov, V; Pruneau, C A; Caines, H L; Aronsson, T; Adare, A M; Zwick, S M; Fearick, R W; Ostrowski, P K; Kulasinski, K; Heine, N; Wilk, A; Ilkaev, R; Ilkaeva, L; Pavlov, V; Mikhaylyukov, K; Rybin, A; Naumov, N; Mudnic, E; Cortese, P; Listratenko, O; Stan, I; Nooren, G; Song, J; Krawutschke, T; Kim, S Y; Hwang, D S; Lee, S H; Leon monzon, I; Vorobyev, I; Skaali, B; Wikne, J; Dordic, O; Yan, Y; Mazumder, R; Shahoyan, R; Kluge, A; Pellegrino, F; Safarik, K; Tauro, A; Foka, P; Frankenfeld, U M; Masciocchi, S; Schwarz, K E; Bailhache, R M; Anguelov, V; Hansen, A; Vulpescu, B; Baldisseri, A; Aphecetche, L B; Berenyi, D; Sahoo, S; Nayak, T K; Muhuri, S; Patra, R N; Adhya, S P; Potukuchi, B; Masoni, A; Scomparin, E; Beole, S; Mizuno, S; Enyo, H; Cuautle flores, E; Gonzalez zamora, P; Djuvsland, O; Altinpinar, S; Wagner, B; Fehlker, D; Velure, A; Potin, S; Kurepin, A; Ryabinkin, E; Kiselev, I; Pestov, Y; Hayrapetyan, A; Manukyan, N; Lutz, J; Belikov, I; Roy, C S; Takahashi, J; Araujo silva figueredo, M; Tang, S; Szarka, I; Kapusta, S; Hasko, J; Putis, M; Sandor, L; Vrlakova, J; Das, S; Hayashi, S; Van rijn, A J; Siemiarczuk, T; Petrovici, M; Petris, M; Stenlund, E A; Malinina, L; Fateev, O; Kolozhvari, A; Altsybeev, I; Sadovskiy, S; Soloviev, A; Ploskon, M A; Mayes, B W; Sorensen, S P; Mazer, J A; Awes, T; Virgili, T; Pagano, P; Krus, M; Sett, P; Bhatt, H; Sinha, B; Khan, P; Antonioli, P; Scioli, G; Sakaguchi, H; Volkov, S; Khanzadeev, A; Malaev, M; Lisa, M A; Loggins, V R; Schuster, T R; Scharenberg, R P; Turrisi, R; Debski, P R; Oleniacz, J; Westerhoff, U; Yanovskiy, V; Domrachev, S; Smirnova, Y; Zimmermann, S; Veldhoen, M; Van der maarel, J; Kileng, B; Seo, J; Lopez torres, E; Camerini, P; Jang, H J; Buthelezi, E Z; Suleymanov, M K O; Belmont moreno, E; Zhao, C; Perales, M; Kobdaj, C; Spyropoulou-stassinaki, M; Roukoutakis, F; Keil, M; Morsch, A; Rademakers, A; Soos, C; Zampolli, C; Grigoras, C; Chibante barroso, V M; Schuchmann, S; Grigoras, A G; Lafuente mazuecos, A; Wegrzynek, A T; Bielcikova, J; Kushpil, S; Braun-munzinger, P; Andronic, A; Zimmermann, A; Rosnet, P; Ramillien barret, V; Lopez, X B; Arbor, N; Erazmus, B E; Pichot, P; Pillot, P; Grossiord, J; Boldizsar, L; Khan, S; Puddu, G; Marras, D; Siddhanta, S; Costanza, S; Botta, E; Gallio, M; Masera, M; Simonetti, L; Prino, F; Oppedisano, C; Vargas trevino, A D; Nystrand, J I; Ullaland, K; Haaland, O S; Huang, M; Naumov, S; Zinovjev, M; Trubnikov, V; Alkin, A; Ivanytskyi, O; Guber, F; Karavichev, O; Nyanin, A; Sibiryak, Y; Peresunko, D Y; Patarakin, O; Aleksandrov, D; Blau, D; Yasnopolskiy, S; Chumakov, M; Vetlitskiy, I; Nedosekin, A; Selivanov, A; Okorokov, V; Grigoryan, A; Papikyan, V; Kuhn, C C; Wan, R; Cajko, F; Siska, M; Mares, J; Zavada, P; Ceballos sanchez, C; Reolon, A R; Gunji, T; Snellings, R; Mayer, C; Klusek-gawenda, M J; Schiaua, C C; Andrei, C; Herghelegiu, A I; Soegaard, C; Panebrattsev, Y; Penev, V; Efimov, L; Zanevskiy, Y; Vechernin, V; Zarochentsev, A; Kolevatov, R; Agapov, A; Polishchuk, B; Nattrass, C; Anticic, T; Kwon, Y; Kim, M; Moon, T; Seger, J E; Petran, M; Sahoo, B; Das bose, L; Hushnud, H; Hatzifotiadou, D; Shigaki, K; Jha, D M; Murray, S; Badala, A; Putevskoy, S; Shapovalova, E; Haiduc, M; Mitu, C M; Mischke, A; Grelli, A; Hetland, K F; Rachevski, A; Menchaca-rocha, A A; De cuveland, J; Hutter, D; Langhammer, M; Dahms, T; Watkins, E P; Gago medina, A M; Planinic, M; Riegler, W; Telesca, A; Knichel, M L; Lazaridis, L; Ferencei, J; Martin, N A; Appelshaeuser, H; Heckel, S T; Windelband, B S; Nielsen, B S; Chojnacki, M; Baldit, A; Manso, F; Crochet, P; Espagnon, B; Uras, A; Lietava, R; Lemmon, R C; Agocs, A G; Viyogi, Y; Pal, S K; Singhal, V; Khan, S A; Alam, S N; Rodriguez cahuantzi, M; Maslov, M; Kurepin, A; Ippolitov, M; Lebedev, V; Tsvetkov, A; Klimov, A; Agafonov, G; Martemiyanov, A; Loginov, V; Kononov, S; Hnatic, M; Kalinak, P; Trzaska, W H; Raha, S; Canoa roman, V; Cruz albino, R; Botje, M; Gladysz-dziadus, E; Marszal, T; Oskarsson, A N E; Otterlund, I; Tydesjo, H; Ljunggren, H M; Vodopyanov, A; Akichine, P; Kuznetsov, A; Vedeneyev, V; Naumenko, P; Bilov, N; Rogalev, R; Evdokimov, S; Braidot, E; Bellwied, R; De caro, A; Kang, J H; Gorbunov, Y; Lee, J; Pachr, M; Dash, S; Roy, P K; Cifarelli, L; Laurenti, G; Margotti, A; Sugitate, T; Ivanov, V; Zhalov, M; Salzwedel, J S N; Pavlinov, A; Harris, J W; Caballero orduna, D; Fiore, E M; Pluta, J M; Kisiel, A R; Wrobel, D; Klein-boesing, C; Grimaldi, A; Zhitnik, A; Nazarenko, S; Zavyalov, N; Miroshnikov, D; Kuryakin, A; Vyushin, A; Mamonov, A; Vickovic, L; Niculescu, M; Fragiacomo, E; Ahn, S U; Ahn, S; Foertsch, S V; Brown, C R; Lovhoiden, G; Harton, A V; Khosonthongkee, K; Langoy, R; Schmidt, H R; Betev, L; Buncic, P; Di mauro, A; Martinengo, P; Gargiulo, C; Grosse-oetringhaus, J F; Costa, F; Baltasar dos santos pedrosa, F; Laudi, E; Adamova, D; Lippmann, C; Schmidt, C J; Book, J H; Grajcarek, R; Christensen, C H; Dupieux, P; Bastid, N; Rakotozafindrabe, A M; Conesa balbastre, G; Martinez-garcia, G; Suire, C P; Ducroux, L; Tieulent, R N; Jusko, A; Barnafoldi, G G; Pochybova, S; Hussain, T; Dubey, A K; Acharya, S; Gupta, A; Ricci, R A; Meddi, F; Vercellin, E; Chujo, T; Watanabe, K; Onishi, H; Akiba, Y; Vergara limon, S; Tejeda munoz, G; Skjerdal, K; Svistunov, S; Reshetin, A; Maevskaya, A; Antonenko, V; Mishustin, N; Meleshko, E; Korsheninnikov, A; Balygin, K; Zagreev, B; Akindinov, A; Mikhaylov, K; Gushchin, O; Grigoryev, V; Gulkanyan, H; Sanchez castro, X; Peretti pezzi, R; Oliveira da silva, A C; Harmanova, Z; Vokal, S; Beitlerova, A; Rak, J; Ghosh, S K; Bhati, A K; Spiriti, E; Ronchetti, F; Casanova diaz, A O; Kuzmin, N; Melkumov, G; Zinchenko, A; Shklovskaya, A; Bunzarov, Z I; Chernenko, S; Rogachevskiy, O; Toulina, T; Kompaniets, M; Titov, A; Kharlov, Y; Dantsevich, G; Stolpovskiy, M; Porter, R J; Datskova, O V; Kim, D S; Jung, W W; Kim, H; Bielcik, J; Pospisil, V; Cepila, J; Das, D; Williams, C; Pesci, A; Roshchin, E; Grounds, A; Humanic, T; Steinpreis, M D; Yaldo, C G; Smirnov, N; Heinz, M T; Connors, M E; Barile, F; Lunardon, M; Orzan, G; Wielanek, D H; Servais, E L J; Patecki, M; Passfeld, A; Zhelezov, S; Morkin, A; Zabelin, O; Hobbs, D A; Gul, M; Ramello, L; Van den brink, A; Bertens, R A; Lodato, D F; Haque, M R; Kim, E J; Coccetti, F; Margagliotti, G V; Rauf, A W; Sandoval, A; Berger, M E; Munzer, R H; Qvigstad, H; Lindal, S; Cervantes jr, M; Kebschull, U W; Engel, H; Karasu uysal, A; Lien, J A; Hess, B A; Calvo villar, E; Augustinus, A; Carena, W; Chochula, P; Chapeland, S; Dobrin, A F; Reidt, F; Bock, F; Festanti, A; Galdames perez, A; Sumbera, M; Averbeck, R P; Garabatos cuadrado, J; Reichelt, P S; Marquard, M; Stachel, J; Wang, Y; Boggild, H; Gulbrandsen, K H; Hansen, J C; Charvet, J F; Shabetai, A; Hadjidakis, C M; Krivda, M; Vertesi, R; Mitra, J; Altini, V; Ferretti, A; Gagliardi, M; Sakata, D; Niida, T; Martinez hernandez, M I; Yang, S; Karpechev, E; Veselovskiy, A; Konevskikh, A; Finogeev, D; Fokin, S; Karadzhev, K; Kucheryaev, Y; Plotnikov, V; Ryabinin, M; Golubev, A; Kaplin, V; Ter-minasyan, A; Abramyan, A; Raniwala, S; Hippolyte, B; Strmen, P; Krivan, F; Kalliokoski, T E A; Chang, B; De cataldo, G; Paticchio, V; Fantoni, A; Gomez jimenez, R; Christakoglou, P; Cyz, A; Wilk, G A; Kurashvili, P; Pop, A; Arefiev, V; Batyunya, B; Lioubochits, V; Zryuev, V; Sokolov, M; Patalakha, D; Pinsky, L; Timmins, A R; Petracek, V; Krelina, M; Chattopadhyay, S; Basile, M; Falchieri, D; Miftakhov, N; Garner, R M; Konyushikhin, M; Joseph, N; Srivastava, B K; Cleymans, J W A; Dietel, T; Soramel, F; Pawlak, T J; Kucinski, M; Janik, M A; Surma, K D; Wessels, J P; Riggi, F; Ivanov, A; Selin, I; Budnikov, D; Filchagin, S; Sitta, M; Gheata, M; Danu, A; Peitzmann, T; Reicher, M; Helstrup, H; Subasi, M; Mathis, A M; Nilsson, M S; Rist, J A S; Jena, C; Lara martinez, C E; Vasileiou, M

    2002-01-01

    %title\\\\ \\\\ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 750~physicists and $\\sim$70 institutions in 27 countries.\\\\ \\\\The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy~$\\approx$~8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions.\\\\ \\\\ALICE consists of a central part, which measures event-by-event hadrons, electrons and photons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45$^{0} $ to 135$^{0} $ ($\\mid \\eta \\mid $ < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag...

  10. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  11. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  12. Investigation of a large volume negative hydrogen ion source

    International Nuclear Information System (INIS)

    Courteille, C.; Bruneteau, A.M.; Bacal, M.

    1995-01-01

    The electron and negative ion densities and temperatures are reported for a large volume hybrid multicusp negative ion source. Based on the scaling laws an analysis is made of the plasma formation and loss processes. It is shown that the positive ions are predominantly lost to the walls, although the observed scaling law is n + ∝I 0.57 d . However, the total plasma loss scales linearly with the discharge current, in agreement with the theoretical model. The negative ion formation and loss is also discussed. It is shown that at low pressure (1 mTorr) the negative ion wall loss becomes a significant part of the total loss. The dependence of n - /n e versus the electron temperature is reported. When the negative ion wall loss is negligible, all the data on n - /n e versus the electron temperatures fit a single curve. copyright 1995 American Institute of Physics

  13. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  14. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  16. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  17. A combination of permanent magnet and magnetic coil for a large diameter ion source

    International Nuclear Information System (INIS)

    Uramoto, Joshin; Kubota, Yusuke; Miyahara, Akira.

    1980-02-01

    A large diameter ion source for fast neutral beam injection is designed under a magnetic field (we call ''Uramoto Field'') composed of a circular ferrite permanent magnet and a usual coreless magnetic coil. As the magnetic filed is reduced abruptly in a discharge anode, an ion source with a uniform ion current density over a large diameter is produced easily without a ''button'' of ORNL duoPIGatron type ion source (a floating electrode to diffuse an axial plasma flow radially). (author)

  18. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  19. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  20. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  1. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  2. Ball lightning dynamics and stability at moderate ion densities

    International Nuclear Information System (INIS)

    Morrow, R

    2017-01-01

    A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µ s their influence on the ion dynamics is negligible. Further development after 1 µ s is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball

  3. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy

  4. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  5. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    Science.gov (United States)

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  6. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  7. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  8. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  9. Experimental observations of anomalous potential drops over ion density cavities

    International Nuclear Information System (INIS)

    Bohm, M.

    1991-08-01

    Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)

  10. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    International Nuclear Information System (INIS)

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  11. Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments

    International Nuclear Information System (INIS)

    Yugami, Noboru; Nishida, Yasushi

    1997-01-01

    Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)

  12. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  13. The large density electron beam-plasma Buneman instability

    International Nuclear Information System (INIS)

    Mantei, T.D.; Doveil, F.; Gresillon, D.

    1976-01-01

    The threshold conditions and growth rate of the Buneman (electron beam-stationary ion) instability are calculated with kinetic theory, including a stationary electronic population. A criteria on the wave energy sign is used to separate the Buneman hydrodynamic instability from the ion-acoustic kinetic instability. The stationary electron population raises the instability threshold and, for large beam velocities yields a maximum growth rate oblique to the beam. (author)

  14. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  15. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  16. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  17. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  18. Energy density, stopping and flow in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.

    1990-01-01

    The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced

  19. Large-scale density structures in the outer heliosphere

    Science.gov (United States)

    Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.

  20. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  1. Determination of Hydrogen Density by Swift Heavy Ions.

    Science.gov (United States)

    Xu, Ge; Barriga-Carrasco, M D; Blazevic, A; Borovkov, B; Casas, D; Cistakov, K; Gavrilin, R; Iberler, M; Jacoby, J; Loisch, G; Morales, R; Mäder, R; Qin, S-X; Rienecker, T; Rosmej, O; Savin, S; Schönlein, A; Weyrich, K; Wiechula, J; Wieser, J; Xiao, G Q; Zhao, Y T

    2017-11-17

    A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{β} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16}  cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18}  cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652  MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17}  cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04  eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

  2. Density changes in amorphous Pd80Si20 during low temperature ion irradiation

    International Nuclear Information System (INIS)

    Schumacher, G.; Birtcher, R.C.; Rehn, L.E.

    1994-11-01

    Density changes in amorphous Pd 80 Si 20 during ion irradiation below 100K were detected by in situ HVEM measurements of the changes in specimen length as a function of ion fluence. A decrease in mass density as a function of the ion fluence was observed. The saturation value of the change in mass density was determined to be approximately -1.2%

  3. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    Weber, B.V.; Hinshelwood, D.D.; Neri, J.M.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.

    1999-01-01

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to n b L = 3 x 10 13 cm -2 . An equal electron line-density, n e L = n b L, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10 -4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10 -4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 10 13 to 10 16 cm -2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (n e L approximately n b L). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, n e L increases to about 10 n b L. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  4. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  5. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  6. Simplified large African carnivore density estimators from track indices

    Directory of Open Access Journals (Sweden)

    Christiaan W. Winterbach

    2016-12-01

    Full Text Available Background The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. Methods We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. Results The Lion on Clay and Low Density on Sand models with intercept were not significant (P > 0.05. The other four models with intercept and the six models thorough origin were all significant (P < 0.05. The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Discussion Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26

  7. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  8. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  9. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  10. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  11. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  12. A heating mechanism of ions due to large amplitude coherent ion acoustic wave

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.

    1978-05-01

    Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)

  13. Ion transition heights from topside electron density profiles

    International Nuclear Information System (INIS)

    Titheridge, J.E.

    1976-01-01

    Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O + /H + ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy. Values of plasma temperature, temperature gradient and ion transition height hsub(T) were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette 1 ionograms, at latitudes of 75 0 S to 85 0 N near solar minimum. Inside the plasmasphere hsub(T) varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O + in the ionosphere. The approximately constant winter night value of hsub(T) is close to the level for chemical equilibrium. In summer hsub(T) is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hsub(T) is 300 to 600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60 0 at night and 50 0 during the day. (author)

  14. Density limit studies in the large helical device

    International Nuclear Information System (INIS)

    Peterson, B.J.; Miyazawa, J.; Nishimura, K.

    2005-01-01

    Steady state densities of up to 1.6 x 10 20 m -3 have been sustained using gas puff fuelling and NBI heating up to 11 MW in the Large Helical Device (LHD). The density limit in LHD is observed to be ∼ 1.6 times the Sudo limit. The density is ultimately limited by radiative collapse which is attributed to the onset of a radiative thermal instability of the light impurities in the edge region of the plasma based on several observations. First of all the onset of the radiative thermal instability is tied to a certain edge temperature threshold. Secondly, the onset of thermal instability occurs first in oxygen and then carbon as expected from their cooling rate temperature dependencies. Finally, radiation profiles show that as the temperature drops and the plasma collapses the radiating zone broadens and moves inward. In addition, comparison with the total radiated power behaviour indicates that Carbon is the dominant radiator. Two dimensional tomographic inversions of AXUVD array data and comparison of modelling with images of radiation brightness from imaging bolometers and indicate that the poloidal asymmetry which accompanies the radiative collapse is toroidally symmetric. Ain addition to the operational density limit where the discharge is terminated by radiative collapse, a confinement limit has been recognized in LHD. This confinement limit appears at lower density than the operational density limit, similar to the saturated ohmic confinement observed in tokamaks. To investigate the physics behind this degradation, the parameter dependence of the thermal diffusivity, χ, has been investigated. While the temperature dependence in ISS95 is as strong as the gyro-Bohm model of χ ∝ T e 1.5 , weaker T e dependence of χ ∝ T e 0.5 appears in the high-density regime. Such weak T e dependence results in the weak density dependence of the global energy confinement as τ E ∝ n e 13 -bar. (author)

  15. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  16. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  17. Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode

    International Nuclear Information System (INIS)

    Zeng, X.C.; Kwok, T.K.; Liu, A.G.; Chu, P.K.; Tang, B.Y.

    1998-01-01

    A model utilizing cold, unmagnetized, and collisionless fluid ions as well as Boltzmann electrons is used to comprehensively investigate the sheath expansion into a translationally invariant large bore in the presence of an auxiliary electrode during plasma immersion ion implantation (PIII) of a cylindrical bore sample. The governing equation of ion continuity, ion motion, and Poisson close-quote s equation are solved by using a numerical finite difference method for different cylindrical bore radii, auxiliary electrode radii, and voltage rise times. The ion density and ion impact energy at the cylindrical inner surface, as well as the ion energy distribution, maximum ion impact energy, and average ion impact energy for the various cases are obtained. Our results show a dramatic improvement in the impact energy when an auxiliary electrode is used and the recommended normalized auxiliary electrode radius is in the range of 0.1 endash 0.3. copyright 1998 American Institute of Physics

  18. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  19. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  20. Investigation of the alpha cluster model and the density matrix expansion in ion-ion collision

    International Nuclear Information System (INIS)

    Rashdan, M.B.M.

    1986-01-01

    This thesis deals with the investigation of the alpha cluster model (ACM) of brink and studies of the accuracy of the density matrix expansion (DME) approximation in deriving the real part of the ion-ion optical potential. the ACM is applied to calculate the inelastic 0 1 + →2 1 + charge form factor for electron scattering by 12 C to investigate the validity of this model for 12 C nucleus. it is found that the experimental curve can be fitted over the entire range of the momentum transfer by a generator - coordinate state for the 2 1 + state that consist of a superposition of two triangular ACM states with two different cluster separations and the same oscillator parameter

  1. Self-consistent-field calculations of atoms and ions using a modified local-density approximation

    International Nuclear Information System (INIS)

    Liberman, D.A.; Albritton, J.R.; Wilson, B.G.; Alley, W.E.

    1994-01-01

    Local-density-approximation calculations of atomic structure are useful for the description of atoms and ions in plasmas. The large number of different atomic configurations that exist in typical plasmas leads one to consider the expression of total energies in terms of a Taylor series in the orbital occupation numbers. Two schemes for computing the second derivative Taylor-series coefficients are given; the second, and better one, uses the linear response method developed by Zangwill and Soven [Phys. Rev. A 21, 1561 (1980)] for the calculation of optical response in atoms. A defect in the local-density approximation causes some second derivatives involving Rydberg orbitals to be infinite. This is corrected by using a modified local-density approximation that had previously been proposed [Phys. Rev. B 2, 244 (1970)

  2. Azimuthal angle correlations at large rapidities. Revisiting density variation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departemento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-11-15

    We discuss the angular correlation present in hadron-hadron collisions at large rapidity difference (anti α{sub S}y{sub 12} >> 1). We find that in the CGC/saturation approach the largest contribution stems from the density variation mechanism. Our principal results are that the odd Fourier harmonics (v{sub 2n+1}) decrease substantially as a function of y{sub 12}, while the even harmonics (v{sub 2n}) increase considerably with the growth of y{sub 12}. (orig.)

  3. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  4. High Energy Density Li-Ion Batteries Designed for Low Temperature Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....

  5. Density-functional theory simulation of large quantum dots

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  6. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  7. Hot-ion Bernstein wave with large kparallel

    International Nuclear Information System (INIS)

    Ignat, D.W.; Ono, M.

    1995-01-01

    The complex roots of the hot plasma dispersion relation in the ion cyclotron range of frequencies have been surveyed. Progressing from low to high values of perpendicular wave number k perpendicular we find first the cold plasma fast wave and then the well-known Bernstein wave, which is characterized by large dispersion, or large changes in k perpendicular for small changes in frequency or magnetic field. At still higher k perpendicular there can be two hot plasma waves with relatively little dispersion. The latter waves exist only for relatively large k parallel, the wave number parallel to the magnetic field, and are strongly damped unless the electron temperature is low compared to the ion temperature. Up to three mode conversions appear to be possible, but two mode conversions are seen consistently

  8. A large-area RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-01-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H - /D - ) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm 2 net extraction area. First results from BATMAN (Bavarian T lowbar est Machine for N lowbar egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm 2 H - (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature T e >2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way

  9. Density and potential measurements in an intense ion-beam-generated plasma

    International Nuclear Information System (INIS)

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented

  10. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  11. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  12. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  13. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  14. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  15. Evaluation of the ion-density measurements by the Indian satellite SROSS-C2

    Science.gov (United States)

    Subrahmanyam, P.; Jain, A. R.; Maini, H. K.; Bahl, M.; Das, Rupesh M.; Garg, S. C.; Niranjan, K.

    2010-12-01

    The ion and electron F region plasma measurements made by the ion and electron Retarding Potential Analyzers (RPAs) onboard the Indian satellite SROSS-C2, have yielded excellent data set over the Indian region for more than half a solar cycle, after the SROSS-C2 launch in May 1994. The absolute ion density, ion temperature, and ion composition parameters are derived from these in situ measurements and used by many workers. In this paper the absolute values of ion density derived from the ion RPA measurements are compared and evaluated with the measurements made by ground-based ionosondes located in the Indian region and close to the SROSS-C2 orbital path. It is shown that a slight adjustment in efficiency factor of the ion RPA sensor brings the in situ measurements much closer to those obtained from the ground-based ionosonde measurements taking into account the model calculations. It may be mentioned that this is a correction to the ion density measurement by SROSS-C2 by a fixed proportion (14-11.4%). The effect of change in efficiency factor on the ion current, which is used to deduce the ion number density, is demonstrated and discussed.

  16. Effects of the instability enhanced friction on relative ion densities in a two-ion species low-temperature plasma

    Science.gov (United States)

    Vukovic, Mirko

    2011-10-01

    The instability enhanced friction theory of Baalrud & Hegna (Phys. Plasmas 18, 023505 (2011)) predicts that for comparable ion densities the ions nearly reach a common velocity near the sheath edge in a low temperature plasma. The theory was experimentally confirmed by Yip, Hershkowitz, & Severn (Phys. Rev. Letters 104, 225003 (2010)). We will explore the effects of the theory on relative ion densities in a numerical simulation of an Ar/Xe plasma. Results for a 0D plasma model (Lieberman, Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2005) will be presented.

  17. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  18. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  19. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  20. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  1. Cybele: a large size ion source of module construction for Tore-Supra injector

    International Nuclear Information System (INIS)

    Simonin, A.; Garibaldi, P.

    2005-01-01

    A 70 keV 40 A hydrogen beam injector has been developed at Cadarache for plasma diagnostic purpose (MSE diagnostic and Charge exchange) on the Tore-Supra Tokamak. This injector daily operates with a large size ions source (called Pagoda) which does not completely fulfill all the requirements necessary for the present experiment. As a consequence, the development of a new ion source (called Cybele) has been underway whose objective is to meet high proton rate (>80%), current density of 160 mA/cm 2 within 5% of uniformity on the whole extraction surface for long shot operation (from 1 to 100 s). Moreover, the main particularity of Cybele is the module construction concept: it is composed of five source modules vertically juxtaposed, with a special orientation which fits the curved extraction surface of the injector; this curvature ensures a geometrical focalization of the neutral beam 7 m downstream in the Tore-Supra chamber. Cybele will be tested first in positive ion production for the Tore-Supra injector, and afterward in negative ion production mode; its modular concept could be advantageous to ensure plasma uniformity on the large extraction surface (about 1 m 2 ) of the ITER neutral beam injector. A module prototype (called the Drift Source) has already been developed in the past and optimized in the laboratory both for positive and negative ion production, where it has met the ITER ion source requirements in terms of D-current density (200 A/m 2 ), source pressure (0.3 Pa), uniformity and arc efficiency (0.015 A D-/kW). (authors)

  2. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  3. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  4. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H; Ide, S; Sakamoto, Y; Fujita, T [Japan Atomic Energy Agency, Naka Ibaraki 311-0193 (Japan)], E-mail: takenaga.hidenobu@jaea.go.jp

    2008-07-15

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  5. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Science.gov (United States)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  6. Power deposition for ion cyclotron heating in large tokamaks

    International Nuclear Information System (INIS)

    Hellsten, T.; Villard, L.

    1988-01-01

    The power deposition profiles during minority ion cyclotron heating are analysed in large tokamaks by using the global, toroidal wave code LION. For tokamaks with large aspect ratio and with circular cross-section, the wave is focused on the magnetic axis and can be absorbed there by cyclotron absorption when the cyclotron resonance passes through the magnetic axis. The power deposition profile is then essentially determined by the Doppler broadening of the ion cyclotron resonance. For equilibria either non-circular or with a small aspect ratio the power deposition profile depends also on the strength of the damping. In this case the power deposition profile can be expressed as a sum of two power deposition profiles. One is related to the power absorbed in a single pass, and its shape is similar to that obtained for large aspect ratio and circular cross-section. The other profile is obtained by calculating the power deposition in the limit of weak damping, in which case the wave electric field is almost constant along the cyclotron resonance layer. A heuristic formula for the power deposition is given. The formula includes a number of calibration curves and functions which has been calculated with the LION code for JET relevant equilibria. The formula enables calculation of the power deposition profile in a simple way when the launched wave spectrum and damping coefficients are known. (author). 7 refs, 11 figs

  7. Swift heavy ion induced single event upsets in high density UV-EPROM's

    Energy Technology Data Exchange (ETDEWEB)

    Dahiwale, S.S. [Department of Physics, University of Pune, Pune 7 (India); Shinde, N.S. [Department of Chemical Engineering, Mie University (Japan); Kanjilal, D. [Inter University Accelerator Center, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 7 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 7 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-04-15

    A few high density UV-EPROM's (32Kb x 8) were irradiated with 5.41 MeV energy {alpha}-particles with fluences from 10{sup 4} to 10{sup 8} alphas/cm{sup 2} and 100 MeV nickel, iodine and silver ions for low fluences between 5 x 10{sup 7} and 10{sup 8} ions/cm{sup 2}. The energy and ion species was selected on the basis of predicted threshold values of linear energy transfer (LET) in silicon. The program which was stored in the memory found to be changed from 0 to 1 and 1 to 0 state, respectively. On the basis of changed states, the cross-sections ({sigma}) were calculated to investigate the single event effects/upsets. No upset was observed in case of {alpha}-particle since it has very low LET, but the SEU cross-section found to be more in case of Iodine i.e. 2.29 x 10{sup -3} cm{sup 2} than that of nickel, 2.12 x 10{sup -3} cm{sup 2} and silver, 2.26 x 10{sup -3}. This mainly attributes that LET for iodine is more as compared to silver and nickel ions, which deposits large amount of energy near the sensitive node of memory cell in the form of electron-hole pairs required to change the state. These measured SEU cross-section were also compared with theoretically predicted values along with the Weibull distribution fit to the ion induced experimental SEU data. The theoretical predicted SEU cross-section 3.27 x 10{sup -3} cm{sup 2} found to be in good agreement with the measured SEU cross-section.

  8. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  9. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  10. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  11. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  12. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  13. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  14. High Energy Density Solid State Li-ion Battery with Enhanced Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  15. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  16. Generation of Ta ions at high laser-power densities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Jungwirth, Karel; Králiková, Božena; Krása, Josef; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.

    2002-01-01

    Roč. 52, Suppl. D (2002), s. D283-D291 ISSN 0011-4626. [Plasma Physics and Technology. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z1010921 Keywords : laser produced plasma * multiple charged Ta ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.311, year: 2002

  17. Large acoustic solitons and double layers in plasmas with two positive ion species

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Saini, Nareshpal Singh; Kourakis, Ioannis

    2011-01-01

    Large nonlinear acoustic waves are discussed in a plasma made up of cold supersonic and adiabatic subsonic positive ions, in the presence of hot isothermal electrons, with the help of Sagdeev pseudopotential theory. In this model, no solitons are found at the acoustic speed, and no compositional parameter ranges exist where solutions of opposite polarities can coexist. All nonlinear modes are thus super-acoustic, but polarity changes are possible. The upper limits on admissible structure velocities come from different physical arguments, in a strict order when the fractional cool ion density is increased: infinite cold ion compression, warm ion sonic point, positive double layers, negative double layers, and finally, positive double layers again. However, not all ranges exist for all mass and temperature ratios. Whereas the cold and warm ion sonic point limitations are always present over a wide range of mass and temperature ratios, and thus positive polarity solutions can easily be obtained, double layers have a more restricted existence range, specially if polarity changes are sought.

  18. Determination of plasma density from data on the ion current to cylindrical and planar probes

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.; Mankelevich, Yu. A.; Rakhimova, T. V. [Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

  19. Predicted precision of ion temperature and impurity fractional density measurements using the JET collective scattering diagnostic

    International Nuclear Information System (INIS)

    Orsitto, F.

    1992-11-01

    In a previous investigation the possibility of measuring the bulk ion temperature was considered in detail, in the context of the proposed Thomson scattering diagnostic for fast ions and alpha particles in the Joint European Torus project. In this report we give an affirmative answer to the question of whether good precision can be obtained in the simultaneous determination of the temperatures and densities of plasma ions from a collective scattering experiment provided some conditions are satisfied. (Author)

  20. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  1. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...

  2. Properties of large Li ion cells using a nickel based mixed oxide

    Science.gov (United States)

    Broussely, M.; Blanchard, Ph; Biensan, Ph; Planchat, J. P.; Nechev, K.; Staniewicz, R. J.

    The possible use of LiNiO 2 similar to LiCoO 2, as a positive material in rechargeable lithium batteries was recognized 20 years ago and starting 10 years later, many research studies led to material improvement through substitution of some of the nickel ions by other metallic ions. These modifications improve the thermal stability at high charge level or overcharge, as well as cycling and storage properties. Commercial material is now available at large industrial scale, which allows its use in big "industrial" Li ion batteries. Using low cost raw material (Ni), it is expected to be cost competitive with the manganese based systems usually mentioned as low cost on the total cell $/Wh basis. Providing higher energy density, and demonstrating excellent behavior on storage and extended cycle life, LiNiO 2 has definite advantages over the manganese system. Thanks to their properties, these batteries have demonstrated their ability to be used in lot of applications, either for transportation or standby. Their light weight makes them attractive for powering satellites. Although safety improvements are always desirable for all non-aqueous batteries using flammable organic electrolytes, suitable battery designs allow the systems to reach the acceptable level of safety required by many users. Beside the largely distributed lead acid and nickel cadmium batteries, Li ion will found its place in the "industrial batteries" market, in a proportion directly linked to its future cost reduction.

  3. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  4. Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code

    DEFF Research Database (Denmark)

    Geiger, B.; Karpushov, A.; Duval, B. P.

    2017-01-01

    Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative......, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from...... a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3–4 keV), combined with low electron densities (about 2 X 1019 m−3) yield long mean free paths of the neutrals which are penetrating from...

  5. Modification of high density polyethylene by gold implantation using different ion energies

    Energy Technology Data Exchange (ETDEWEB)

    Nenadović, M.; Potočnik, J. [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Mitrić, M. [INS Vinca, Condensed Matter Physics Laboratory, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Štrbac, S. [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Rakočević, Z., E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia)

    2013-11-01

    High density polyethylene (HDPE) samples were modified by Au{sup +} ion implantation at a dose of 5 × 10{sup 15} ions cm{sup −2}, using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au{sup +} ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies.

  6. Modification of high density polyethylene by gold implantation using different ion energies

    International Nuclear Information System (INIS)

    Nenadović, M.; Potočnik, J.; Mitrić, M.; Štrbac, S.; Rakočević, Z.

    2013-01-01

    High density polyethylene (HDPE) samples were modified by Au + ion implantation at a dose of 5 × 10 15 ions cm −2 , using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au + ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies

  7. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  8. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  9. Weak coupling large-N transitions at finite baryon density

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Kumar, S. Prem; Myers, Joyce C.

    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks),

  10. VOYAGER 2 OBSERVES A LARGE DENSITY INCREASE IN THE HELIOSHEATH

    International Nuclear Information System (INIS)

    Richardson, J. D.; Wang, C.

    2012-01-01

    Voyager 2 (V2) entered the heliosheath in 2007 August at roughly the same time solar minimum conditions were reaching the outer heliosphere. Soon after crossing the termination shock the solar wind density at Voyager decreased by a factor of two and the temperature decreased by a factor of three. At the beginning of 2011 the plasma density in the heliosheath began to increase and in mid-2012 it was up by more than a factor of two. The temperature rose by about 50% and the speed remained constant, although the flow direction continues to turn tailward. These changes may signal the end of solar minimum conditions at V2 in the heliosheath, although we do not understand why the speed did not decrease. The increased dynamic pressure has lead to an outward movement of the termination shock from its very compressed state at solar minimum.

  11. Simplified local density model for adsorption over large pressure ranges

    International Nuclear Information System (INIS)

    Rangarajan, B.; Lira, C.T.; Subramanian, R.

    1995-01-01

    Physical adsorption of high-pressure fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases; the separation and purification of lower hydrocarbons; solid-phase extractions; adsorbent regenerations using supercritical fluids; supercritical fluid chromatography; and critical point drying. A mean-field model is developed that superimposes the fluid-solid potential on a fluid equation of state to predict adsorption on a flat wall from vapor, liquid, and supercritical phases. A van der Waals-type equation of state is used to represent the fluid phase, and is simplified with a local density approximation for calculating the configurational energy of the inhomogeneous fluid. The simplified local density approximation makes the model tractable for routine calculations over wide pressure ranges. The model is capable of prediction of Type 2 and 3 subcritical isotherms for adsorption on a flat wall, and shows the characteristic cusplike behavior and crossovers seen experimentally near the fluid critical point

  12. Density control problems in large stellarators with neoclassical transport

    International Nuclear Information System (INIS)

    Maassberg, H.; Beidler, C.D.; Simmet, E.E.

    1999-01-01

    With respect to the particle flux, the off-diagonal term in the neoclassical transport matrix becomes crucial in the stellarator long-mean-free-path regime. Central heating with peaked temperature profiles can make an active density profile control by central particle refuelling mandatory. The neoclassical particle confinement can significantly exceed the energy confinement at the outer radii. As a consequence, the required central refuelling may be larger than the neoclassical particle fluxes at outer radii leading to the loss of the global density control. Radiative losses as well as additional 'anomalous' electron heat diffusivities further exacerbate this problem. In addition to the analytical formulation of the neoclassical link of particle and energy fluxes, simplified model simulations as well as time-dependent ASTRA code simulations are described. In particular, the 'low-' and 'high-mirror' W7-X configurations are compared. For the W7-X 'high-mirror' configuration especially, the appearance of the neoclassical particle transport barrier is predicted at higher densities. (author)

  13. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  14. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  15. Destructive role of hot ions in the formation of electrostatic density humps and dips in dusty plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Saleem, H.

    2003-01-01

    It is shown that the ion thermal energy is destructive for the ion acoustic solitons in the presence of dust, and it decreases the value of Mach number for the formation of solitary structures. The regions of ion density humps and dips are produced simultaneously, corresponding to positive and negative values of the electrostatic potential. The nonlinear electron density also behaves in a similar fashion as that of ions. However, the dust density increases in the regions where the ion and electron densities are depleted and vice versa

  16. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  17. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    Science.gov (United States)

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  18. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.

    2003-01-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control

  19. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current-density

  20. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  1. Large amounts of antiproton production by heavy ion collision

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10 41 m/cm 2 , a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values

  2. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  3. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density.

    Science.gov (United States)

    Wang, Faxing; Wang, Xiaowei; Chang, Zheng; Wu, Xiongwei; Liu, Xiang; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Huang, Wei

    2015-11-18

    A quasi-solid-state sodium-ion capacitor is demonstrated with nanoporous disordered carbon and macroporous graphene as the negative and positive electrodes, respectively, using a sodium-ion-conducting gel polymer electrolyte. It can operate at a cell voltage as high as 4.2 V with an energy density of record high 168 W h kg(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode

    International Nuclear Information System (INIS)

    Jiang, Xiong; Wang, Zhenhua; Rooney, David; Zhang, Xiaoxue; Feng, Jie; Qiao, Jinshuo; Sun, Wang; Sun, Kening

    2015-01-01

    Highlights: • Ultrasound-assisted mixing lithium was used to synthesize Lithium-rich layered oxides. • Lithium-rich layered oxides composed of large grain had high capacity and high cycling stability. • This unique large grain overcomes stress-induced structural collapse caused by Li-ion insertion/extraction and reduces dissolution of Mn ions. • A new strategy of large grain could be employed to synthesize the other complex architectures for various applications. - Abstract: Li-rich materials are considered the most promising for Li-ion battery cathodes, as high capacity can be achieved. However, poor cycling stability is a critical drawback that leads to poor capacity retention. Here a strategy is used to synthesize a large-grain lithium-rich layered oxides to overcome this difficulty without sacrificing rate capability. This material is designed with micron scale grain with a width of about 300 nm and length of 1–3 μm. This unique structure has a better ability to overcome stress-induced structural collapse caused by Li-ion insertion/extraction and reduce the dissolution of Mn ions, which enable a reversible and stable capacity. As a result, this cathode material delivered a highest discharge capacity of around 308 mAh g −1 at a current density of 30 mA g −1 with retention of 88.3% (according to the highest discharge capacity) after 100 cycles, 190 mAh g −1 at a current density of 300 mA g −1 and almost no capacity fading after 100 cycles. Therefore, Lithium-rich material of large-grain structure is a promising cathode candidate in Lithium-ion batteries with high capacity and high cycle stability for application. This strategy of large grain may furthermore open the door to synthesize the other complex architectures for various applications

  5. Development of D-region electron and ion densities under various auroral conditions during the Energy Budget Campaign (EBC)

    International Nuclear Information System (INIS)

    Brekke, A.; Holt, O.; Friedrich, M.; Hansen, T.; Stauning, P.; Thrane, E.V.

    1985-01-01

    D-region electron density profiles and time variations were obtained during the Energy Budget Campaign 1980 by a partial reflection radar at Ramfjordmoen, Tromso, located between the rocket ranges at Andoya and Kiruna. The observations were made under various geophysical conditions which are illustrated by riometer observations. The partial reflection measurements indicate that the rockets were launched into a relatively stable D-region on two occasions, while it was somewhat more disturbed on the third. A comparison between the electron density profiles derived by the partial reflection technique and rocket borne probes and Faraday rotation experiments does indicate fair agreement during the quiet conditions, but relatively large discrepancies during disturbed conditions. Simultaneously derived electron density profiles, by use of the Faraday technique, and ion density profiles, by gridded electrostatic spheres mounted on the rocket payload, have made it possible to estimate the negative ion to electron density ratio lambda versus height. These values of lambda are within the range of model calculations. (author)

  6. The ion population of the magnetotail during the 17 April 2002 magnetic storm: Large-scale kinetic simulations and IMAGE/HENA observations

    Science.gov (United States)

    Peroomian, Vahé; El-Alaoui, Mostafa; Brandt, Pontus C.:son

    2011-05-01

    The contribution of solar wind and ionospheric ions to the ion population of the magnetotail during the 17 April 2002 geomagnetic storm was investigated by using large-scale kinetic (LSK) particle tracing calculations. We began our investigation by carrying out a global magnetohydrodynamic simulation of the storm event by using upstream solar wind and interplanetary magnetic field data from the ACE spacecraft. We launched solar wind H+ ions and ionospheric O+ ions beginning at 0900 UT, ˜2 h prior to the sudden storm commencement (SSC), until 2000 UT. We found that during this Dst ˜ -98 nT storm, solar wind ions carried the bulk of the density and energy density in the nightside ring current and plasma sheet, with the notable exception of the 90 min immediately after the SSC when O+ densities in the ring current exceeded those of H+ ions. The LSK simulation did a very good job of reproducing ion densities observed by the Los Alamos National Laboratory spacecraft at geosynchronous orbit and reproduced the changes in the inner magnetosphere and the injection of ions observed by the IMAGE spacecraft during a substorm that occurred at 1900 UT. These comparisons with observations serve to validate our results throughout the magnetotail and allow us to obtain time-dependent maps of H+ and O+ density and energy density where IMAGE cannot make measurements. In essence, this work extends the viewing window of the IMAGE spacecraft far downtail.

  7. Density Estimation and Anomaly Detection in Large Social Networks

    Science.gov (United States)

    2014-07-15

    Time of Single Trial DMD MD (a) Loss curves for proposed dynamic mirror de - scent (DMD) method and mirror descent (MD) against time for a single...curves for DMD and MD against time over 100 trials. Figure 2.2: Simulation results for the experiment in Section 2.4.1. The vertical dashed lines indicate ...landscape, 2012. http: //strata.oreilly.com/2012/01/what-is-big-data.html. [24] A. Gyorgy, T. Linder , and G. Lugosi. Efficient tracking of large classes

  8. Ion-sound emission by Langmuir soliton reflected at density barrier

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1989-07-01

    The emission of ion-sound waves by an accelerated Langmuir soliton is studied. The acceleration of the soliton is due to an inhomogeneous density barrier. On the assumption that the kinetic energy of the Langmuir soliton is smaller than the potential energy created by the barrier. The basic equations describing the dynamic behaviour of the soliton and the emission of the ion-sound waves are formulated. The qualitative spatial distributions of the perturbed concentration in the ion-sound waves are analyzed at different characteristic points of the soliton. The energy lost by the soliton, as a result of the emission, is estimated. (author). 6 refs, 4 figs

  9. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  10. Large fragment production calculations in relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Seixas de Oliveira, L.F.

    1978-12-01

    The abrasion-ablation model is briefly described and then used to calculate cross sections for production of large fragments resulting from target or projectile fragmentation in high-energy heavy-ion collisions. The number of nucleons removed from the colliding nuclei in the abrasion stage and the excitation energy of the remaining fragments (primary products) are calculated with the geometrical picture of two different models: the fireball and the firestreak models. The charge-to-mass dispersion of the primary products is calculated using either a model which assumes no correlations between proton and neutron positions inside the nucleus (hypergeometric distribution) or a model based upon the zero-point oscillations of the giant dipole resonance (NUC-GDR). Standard Weisskopf--Ewing statistical evaporation calculations are used to calculate final product distributions. Results of the pure abrasion-ablation model are compared with a variety of experimental data. The comparisons show the insufficiency of the extra-surface energy term used in the abrasion calculations. A frictional spectator interaction (FSI) is introduced which increases the average excitation energy of the primary products, and improves the results considerably in most cases. Agreements and discrepancies of the results calculated with the different theoretical assumptions and the experimental data are studied. Of particular relevance is the possibility of observing nuclear ground-state correlations.Results of the recently completed experiment of fragmentation of 213 Mev/A 40 Ar projectiles are studied and shown not to be capable of answering that question unambiguously. But predictions for the upcoming 48 Ca fragmentation experiment clearly show the possibility of observing correlation effects. 78 references

  11. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  12. Effects of nonresonant hot ions with large orbits on Alfven cascades and on magnetohydrodynamic instabilities in tokamaks

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Mikhailovskii, A.B.; Huysmans, G.T.A.

    2004-01-01

    The effects of nonresonating hot ions on the spectrum of magnetohydrodynamic (MHD) waves and instabilities in tokamaks are studied in the limit when the width of the hot ion drift orbits is much larger than the radial scale length of the MHD perturbations. Due to the large magnetic drift velocities the hot ions cannot contribute to the MHD perturbations directly, but two main effects of the hot ions, the hot-ion density-dependent effect and the hot-ion pressure-dependent effect, influence the MHD perturbations indirectly. The physics of both effects is elucidated and it is shown that both these effects can be described in MHD approach. A new code, MISHKA-H (MISHKA including the hot-ion indirect effects), is developed as an extension of the ideal MHD code MISHKA-D [Huysmans et al., Phys. Plasmas 8, 4292 (2002)]. Analytical benchmarks for this code are given. Results of the MISHKA-H code on Alfven spectrum in a shear-reversed discharges with ion-cyclotron resonance frequency (ICRF) heating are presented. Modeling of Alfven cascades and their transition into toroidal Alfven eigenmodes in shear-reversed tokamak equilibrium is considered. The hot-ion effect on the unstable branch of the MHD spectrum is studied for the test case of an n=1 ideal MHD internal kink mode, which is relevant to short-period sawteeth in low-density plasmas observed in Joint European Torus (JET) [Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] experiments with high-power ICRF heating

  13. Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan

  14. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  15. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  16. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  17. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  18. Large-amplitude ion-acoustic double layers in a plasma with warm ions

    International Nuclear Information System (INIS)

    Roychoudury, R.K.; Bhattacharyya, S.; Varshni, Y.P.

    1990-01-01

    The conditions for the existence of an ion-acoustic double layer in a plasma with warm ions and two distinct groups of hot electrons have been studied using the Sagdeev potential method. A comparison is made with the published results of Bharuthram and Shukla for cold ions and a two temperature electron population. Numerical studies have been made to find out the effect of a finite ion temperature on the Mach number of the double layers

  19. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  20. Jet Physics with A Large Ion Collider Experiment at the Large Hadron Collider

    CERN Document Server

    Klein, Jochen

    In the presence of the strongly-interacting medium created in relativistic heavy-ion collisions, highly energetic partons from hard interactions lose energy through scattering and radiating. This effect, referred to as jet quenching, is observed as a suppression of particles with large momenta transverse to the beam axis (high-$p_\\perp$). To study the impact of the medium evolution on the energy loss modelling in the Monte Carlo event generator JEWEL, we compare results obtained for different scenarios of Au-Au collisions at $\\sqrt{s_\\mathrm{NN}} = 200~\\mathrm{GeV}$. For this purpose, JEWEL was extended to use the output of relativistic hydrodynamic calculations in the OSCAR2008H format. We find the modelling of common observables, e.g. the nuclear modification factor, to be rather insensitive to the details of the medium evolution, for which the analytically accessible Bjorken expansion can thus be considered adequate. The OSCAR interface now allows further studies also at LHC energies. Jets of large transve...

  1. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  2. Long-time evolution of a low-density ion beam

    International Nuclear Information System (INIS)

    Zachary, A.L.; Cohen, B.I.; Max, C.E.; Arons, J.

    1989-01-01

    With a new, orbit-averaged hybrid computer simulation code, we study a cold, fast low-density ion beam which propagates along the ambient magnetic field as it interacts with a much denser fluid background. We examine the character of the interactions as we vary the ion beam density relative to the background density over the range 1 x 10/sup -5/ to 3 x 10/sup -3/. The low beam density simulations may not be directly observable upstream of the Earth's bow shock, but they are included to help develop an understanding of the results seen in the simulations with high-beam density. However, our highest density simulation falls within the range of solar wind data. All the simulations, regardless of the relative beam density, show three distinct phases: (1) an early or ''linear'' phase; (2) an intermediate or ''trapping'' phase; and (3) a late or ''decorrelation'' phase. In the early phase, the beam excites a nearly monochromatic Alfven wave whose amplitude grows exponentially at a rate given by linear perturbation theory. The wave amplitude saturates when the linear growth rate is of the order of the trapping frequency

  3. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  4. Potential drops supported by ion density cavities in the dynamic response of a plasma diode to an applied field

    International Nuclear Information System (INIS)

    Bohm, M.; Torven, S.

    1990-06-01

    Experiments have shown that an applied voltage drop may either be supported by a cathode sheath or by a quasi-linear variation over the plasma lasting for several electron transit times. In the latter case an ion density cavity existed initially. An analytical model and numerical simulations are used to show that a cavity gives rise to a quasi-linear potential variation for applied voltage drops below a certain critical value. For larger values the drop concentrates to a cathode sheath. The quasi-linear profile steepens to a double layer for large cavity depths. (authors)

  5. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  6. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  7. Beam calorimetry at the large negative ion source test facility ELISE: Experimental setup and latest results

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Bonomo, Federica; Ricci, Marina; Pimazzoni, Antonio; Fantz, Ursel; Heinemann, Bernd; Riedl, Rudolf; Wünderlich, Dirk

    2016-01-01

    Highlights: • ELISE is the first step in the European roadmap for the development of the ITER NBI. • Several beam diagnostic tools have been installed, the latest results are presented. • A gaussian fit procedure has been implemented to characterize the large ion beam. • Average beamlet group inhomogeneity is maximum 13%, close to the ITER target of 10%. • Beam divergence measured by calorimeter agrees with the BES measurements within 30%. - Abstract: The test facility ELISE is the first step within the European roadmap for the development of the ITER NBI system. ELISE is equipped with a 1 × 0.9 m"2 radio frequency negative ion source (half the ITER source size) and an ITER-like 3-grid extraction system which can extract an H"− or D"− beam for 10 s every 3 min (limited by available power supplies) with a total acceleration voltage of up to 60 kV. In the beam line of ELISE several beam diagnostic tools have been installed with the aim to evaluate beam intensity, divergence and uniformity. A copper diagnostic calorimeter gives the possibility to measure the beam power density profile with high resolution. The measurements are performed by an IR micro-bolometer camera and 48 thermocouples embedded in the calorimeter. A gaussian fit procedure has been implemented in order to characterize the large negative ion beam produced by ELISE. The latest results obtained from the beam calorimetry at ELISE show that the average beamlet group inhomogeneity is maximum 13%. The measured beam divergence agrees with the one measured by beam emission spectroscopy within 30%.

  8. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    Science.gov (United States)

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  9. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  10. High dislocation density structures and hardening produced by high fluency pulsed-ion-beam implantation

    International Nuclear Information System (INIS)

    Sharkeev, Yu.P.; Didenko, A.N.; Kozlov, E.V.

    1994-01-01

    The paper presents a review of experimental data on the ''long-range effect'' (a change in dislocation structure and in physicomechanical properties at distances considerably greater than the ion range value in ion-implanted metallic materials and semiconductors). Our results of electron microscopy studies of high density dislocation structure in ion-implanted metallic materials with different initial states are given. It has been shown that the nature of the dislocation structure and its quantitative characteristics in the implanted metals and alloys depend on the target initial state, the ion type and energy and the retained dose. The data obtained by different workers are in good agreement both with our results and with each other as well as with the results of investigation of macroscopic characteristics (wear resistance and microhardness). It has been established that the ''long-range effect'' occurs in metallic materials with a low yield point or high plasticity level and with little dislocation density in their initial state prior to ion implantation. ((orig.))

  11. Analysis and design of ion thruster for large space systems

    Science.gov (United States)

    Poeschel, R. L.; Kami, S.

    1980-01-01

    Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.

  12. Lithium-Ion Textile Batteries with Large Areal Mass Loading

    KAUST Repository

    Hu, Liangbing; La Mantia, Fabio; Wu, Hui; Xie, Xing; McDonough, James; Pasta, Mauro; Cui, Yi

    2011-01-01

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance.

  13. Lithium-Ion Textile Batteries with Large Areal Mass Loading

    KAUST Repository

    Hu, Liangbing

    2011-10-06

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance.

  14. Optimization of the plasma parameters for the high current and uniform large-scale pulse arc ion source of the VEST-NBI system

    International Nuclear Information System (INIS)

    Jung, Bongki; Park, Min; Heo, Sung Ryul; Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2016-01-01

    Highlights: • High power magnetic bucket-type arc plasma source for the VEST NBI system is developed with modifications based on the prototype plasma source for KSTAR. • Plasma parameters in pulse duration are measured to characterize the plasma source. • High plasma density and good uniformity is achieved at the low operating pressure below 1 Pa. • Required ion beam current density is confirmed by analysis of plasma parameters and results of a particle balance model. - Abstract: A large-scale hydrogen arc plasma source was developed at the Korea Atomic Energy Research Institute for a high power pulsed NBI system of VEST which is a compact spherical tokamak at Seoul national university. One of the research target of VEST is to study innovative tokamak operating scenarios. For this purpose, high current density and uniform large-scale pulse plasma source is required to satisfy the target ion beam power efficiently. Therefore, optimizing the plasma parameters of the ion source such as the electron density, temperature, and plasma uniformity is conducted by changing the operating conditions of the plasma source. Furthermore, ion species of the hydrogen plasma source are analyzed using a particle balance model to increase the monatomic fraction which is another essential parameter for increasing the ion beam current density. Conclusively, efficient operating conditions are presented from the results of the optimized plasma parameters and the extractable ion beam current is calculated.

  15. Reflection and absorption of ion-acoustic waves in a plasma density gradient

    International Nuclear Information System (INIS)

    Ishihara, O.

    1977-01-01

    Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma

  16. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  17. 55-68 Impact of Area Enclosures on Density and Diversity of Large ...

    African Journals Online (AJOL)

    1Department of Land Resources Management and Environmental Protection, Mekelle University, ... The enclosures have higher density and diversity of large wild mammals ..... in it. Figure 4 Human interference in enclosures of the study area ...

  18. Comparison of ion temperature and ion density measured during geomagnetically very quiet conditions on board of the geophysical rocket ''Vertical-6'' with the international reference ionosphere

    International Nuclear Information System (INIS)

    Bencze, P.; Kovacs, K.; Apathy, I.; Szemerey, I.; Afonin, V.; Bezrukih, V.; Shutte, N.

    1980-05-01

    Ion temperature and ion density, measured on October 25, 1977 during the flight of the geophyisical rocket ''Vertical-6'' by means of a group of five retarding potential analyzers looking into different directions of space, are compared with the International Reference Ionosphere 1978. The measurements were carried out in a geomagnetically quiet period to a height of 1500 km. The results show that both the ion temperature and the ion density are lower than the values predicted by the Reference Ionosphere, the difference is decreasing with increasing altitude. (author)

  19. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  20. A low emittance and uniform density Cs+ source for heavy ion induction linacs

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.

    1990-01-01

    A heavy-ion induction linac experiment (MBE-4) in progress at LBL is studying the transport and acceleration of space-charge-dominated beams in a long alternate gradient focusing channel. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emittance growth. Phase space and current density distribution measurements of the beam extracted from the injector revealed aberrations and a hollow density profile. Based on EGUN calculations the authors redesigned the 10 mA injector for MBE-4 by modifying the cathode: Pierce electrode and using a curved emitting surface. The simulation predicts an extracted beam with less aberrations and a flat density profile. A test stand was used to check the new design. The density profile has measured and found to be in agreement with the numerical simulation

  1. Lithium-ion textile batteries with large areal mass loading

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liangbing; La Mantia, Fabio; Wu, Hui; Xie, Xing; McDonough, James; Pasta, Mauro; Cui, Yi [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States)

    2011-11-15

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tokuzawa, T., E-mail: tokuzawa@nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tsumori, K.; Osakabe, M.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Kaneko, O. [National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2016-11-15

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  3. Effect of the helically-trapped energetic-ion-driven resistive interchange modes on energetic ion confinement in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.

  4. The new large-scale international facility for antiproton and ion research in Europe, FAIR

    International Nuclear Information System (INIS)

    Rosner, Guenther

    2012-01-01

    Full text: FAIR is currently the largest project in nuclear and particle physics worldwide, with investment costs of 1.6B euro in its first phase. It has been founded by Finland, France, Germany, India, Poland, Romania, Russia, Slovenia and Sweden in Oct. 2010. The facility will provide the international scientific community with a unique and technically innovative particle accelerator system to perform cutting-edge research in the sciences concerned with the basic structure of matter in: nuclear and particle physics, atomic and anti-matter physics, high density plasma physics, and applications in condensed matter physics, biology and the bio-medical sciences. The work horse of FAIR will be a 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, which will be used to produce high intensity secondary beams of anti-protons and very short-lived radioactive ions. A subsequent suite of cooler and storage rings will deliver anti-proton and heavy-ion beams of unprecedented quality regarding intensity and resolution. Large experimental facilities are presently being prototyped by the APPA, CBM, NuSTAR and PANDA Collaborations to be used by a global community of more than 3000 scientists from 2018. (author)

  5. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  6. Achieving high baryon densities in the fragmentation regions in heavy ion collisions at top RHIC energy

    International Nuclear Information System (INIS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    Heavy ion collisions at extremely high energy, such as the top energy at RHIC, exhibit the property of transparency where there is a clear separation between the almost net-baryon-free central rapidity region and the net-baryon-rich fragmentation region. We calculate the net-baryon rapidity loss and the nuclear excitation energy using the energy-momentum tensor obtained from the McLerran-Venugopalan model. Nuclear compression during the collision is further estimated using a simple space-time picture. The results show that extremely high baryon densities, about twenty times larger than the normal nuclear density, can be achieved in the fragmentation regions. (paper)

  7. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  8. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  9. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  10. Measuring the radial density distribution of light emission around the track of fast ions in nitrogen

    International Nuclear Information System (INIS)

    Ibach, T.

    1983-01-01

    For analysing the emission and stopping of ionization electrons (σ-electrons) emitted by fast ions passing through a gas, the radial density distribution of the light emission of the (0,0) transition of two optical bands in nitrogen have been measured. The systems selected for the epxeriments are the 2nd positive system (2.PS) at 337.1 nm primarily excited by low-energy electrons of about 20 eV, and the first negative system (1.NS) at 391.4 nm excited by faster electrons and simultaneous ionization. The equipment developed for the experiments records the light emission with a telescope-type optical arrangement including interference filters, allowing high local resolution and dynamics of the measured range. The measurements have been carried out at pressures between 0.133 and 13.3 mbar, using photons of energies ranging from 270 keV to 2.8 MeV, helium 3 beams of 270 keV/u and 500 keV/u, and neon beams of 270 keV/u. Abel's inversion applied to the distance functions allows calculation of the spatial light emission density which is normalized for a gas density of 1 g/cm 3 . The profiles of the two bands indicate that the σ-electron spectrum gets harder in outward direction. Next to the beam the impact density decreases faster with increasing ion energy than the stopping power (increasing interaction range of the σ-electrons). With photon beams, about half of the whole light emission in the 1. NS, and of the ionization, is induced by primary interactions of the ion beam. This proportion decreases at constant energy per nucleon with increasing atomic number of the ions as compared with the σ-electrons. The primary σ-emission gets harder with higher atomic numbers. (orig./HP) [de

  11. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  12. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  13. Probing neutral density at the plasma edge of Tore Supra with CX excited impurity ions

    International Nuclear Information System (INIS)

    Hess, W.R.; Mattioli, M.; Guirlet, R.

    1993-01-01

    In Tokamak plasma physics renewed interest in visible spectroscopy has grown for two reasons. The use of fiber optics allows observation of local sources of both impurities and of hydrogen by observing radiation of low ionization states. Moreover, charge exchange spectroscopy (CXS) with either auxiliary or heating neutral beams is a standard technique to determine the ion temperature and impurity density profiles. After a short description of the experimental setup and the ergodic divertor of Tore Supra (TS), two discharges in which space-resolved observations of the CVI (8-7) line clearly show the presence of CX-related effects. A well isolated spectral line at 5304.6 A is discussed. Tentative identification as CIII (1s 2 2s, 7-5) is suggested. The conclusion shows the usefulness of the reported results for probing neutral density at the plasma edge by detecting CX excited impurity ions and that highly ionized C 6+ ions exist in the MARFE regions. To the best of our knowledge, only very low ionization C and O ions (such as CIII or OIV) have been previously reported in these regions

  14. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  15. Flexible Aqueous Li-Ion Battery with High Energy and Power Densities.

    Science.gov (United States)

    Yang, Chongyin; Ji, Xiao; Fan, Xiulin; Gao, Tao; Suo, Liumin; Wang, Fei; Sun, Wei; Chen, Ji; Chen, Long; Han, Fudong; Miao, Ling; Xu, Kang; Gerasopoulos, Konstantinos; Wang, Chunsheng

    2017-11-01

    A flexible and wearable aqueous symmetrical lithium-ion battery is developed using a single LiVPO 4 F material as both cathode and anode in a "water-in-salt" gel polymer electrolyte. The symmetric lithium-ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li 2 CO 3 -LiF, which enables fast Li-ion transport. Energy densities of 141 Wh kg -1 , power densities of 20 600 W kg -1 , and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the "water-in-salt" gel polymer electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The study of dynamics of electrons in the presence of large current densities

    International Nuclear Information System (INIS)

    Garcia, G.

    2007-11-01

    The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and

  17. Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2010-04-01

    Full Text Available The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking shows a continuous relationship between frequency and stimulation current (f-I(stim and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking shows a discontinuous f-I(stim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model. In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

  18. Accessible light detection and ranging: estimating large tree density for habitat identification

    Science.gov (United States)

    Heather A. Kramer; Brandon M. Collins; Claire V. Gallagher; John Keane; Scott L. Stephens; Maggi Kelly

    2016-01-01

    Large trees are important to a wide variety of wildlife, including many species of conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging (LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting the LiDAR point cloud into...

  19. Solving large nonlinear generalized eigenvalue problems from Density Functional Theory calculations in parallel

    DEFF Research Database (Denmark)

    Bendtsen, Claus; Nielsen, Ole Holm; Hansen, Lars Bruno

    2001-01-01

    The quantum mechanical ground state of electrons is described by Density Functional Theory, which leads to large minimization problems. An efficient minimization method uses a self-consistent field (SCF) solution of large eigenvalue problems. The iterative Davidson algorithm is often used, and we...

  20. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  1. Observation of large-amplitude ion acoustic solitary waves in a plasma

    International Nuclear Information System (INIS)

    Nakamura, Yoshiharu

    1987-01-01

    Propagation of nonlinear ion acoustic waves in a multi-component plasma with negative ions is investigated in a double-plasma device. When the density of negative ions is larger than a critical value, a broad negative pulse evolves to rarefactive solitons, and a positive pulse whose amplitude is less than a certain threshold value becomes a subsonic wave train. In the same plasma, a positive pulse whose amplitude is larger than the threshold develops into a solitary wave. The critical amplitude is measured as a function of the density of negative ions and compared with predictions of the pseudo-potential method. The energy distribution of electrons in the solitary wave is also measured. (author)

  2. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  3. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  4. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  5. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M., E-mail: dr_msohrabi@yahoo.com; Habibi, M.; Ramezani, V.

    2014-11-14

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz–HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼±60° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies. - Highlights: • Helium iso-ion beam profile and angular distributions were studied in the 4 kJ APF device. • Large-area 1 mm-thick polycarbonate detectors were processed by 50 Hz-HV ECE. • Helium ion beam profile and distributions were observed by unaided eyes in a single detector. • Helium ion profile has ring-shaped distributions with energies lower at the ring location. • Helium iso-ion track density, diameter and energy distributions are estimated.

  6. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    Science.gov (United States)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  7. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  8. Modified Korteweg-deVries soliton evolution at critical density of negative ions in an inhomogeneous magnetized cold plasma

    International Nuclear Information System (INIS)

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-01-01

    Soliton propagation at critical density of negative ions is studied for weakly inhomogeneous magnetized cold plasma having positive ions, negative ions, and electrons. A general phase velocity relation is obtained and possible modes are studied for different cases involving different constituents of the plasma. Two types of modes (fast and slow) are found to propagate for the equal mass of the positive and negative ions. However, a limit on the obliqueness of magnetic field is obtained for the propagation of slow mode. For both types of modes, a variable coefficient modified Korteweg-deVries equation with an additional term arisen due to the density gradient is realized, which admits solutions for compressive solitons and rarefactive solitons of the same amplitudes at critical negative ion density. The propagation characteristics of these solitons are studied under the effect of densities of ions, magnetic field, and its obliqueness. The amplitudes of fast and slow wave solitons show their opposite behavior with the negative ion concentration, which is consistent with the variation of phase velocities with the negative ion density

  9. Heavy-Ion Collimation at the Large Hadron Collider: Simulations and Measurements

    OpenAIRE

    Hermes, Pascal Dominik; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    2017-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets ca...

  10. Large source test stand for H-(D-) ion source

    International Nuclear Information System (INIS)

    Larson, R.; McKenzie-Wilson, R.

    1981-01-01

    The Brookhaven National Laboratory Neutral Beam Group has constructed a large source test stand for testing of the various source modules under development. The first objective of the BNL program is to develop a source module capable of delivering 10A of H - (D - ) at 25 kV operating in the steady state mode with satisfactory gas and power efficiency. The large source test stand contains gas supply and vacuum pumping systems, source cooling systems, magnet power supplies and magnet cooling systems, two arc power supplies rated at 25 kW and 50 kW, a large battery driven power supply and an extractor electrode power supply. Figure 1 is a front view of the vacuum vessel showing the control racks with the 36'' vacuum valves and refrigerated baffles mounted behind. Figure 2 shows the rear view of the vessel with a BNL Mk V magnetron source mounted in the source aperture and also shows the cooled magnet coils. Currently two types of sources are under test: a large magnetron source and a hollow cathode discharge source

  11. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  12. Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness

    International Nuclear Information System (INIS)

    Lamaignere, Laurent; Dupuy, Gabriel; Donval, Thierry; Grua, Pierre; Bercegol, Herve

    2011-01-01

    Pulsed laser damage density measurements obtained with diverse facilities are difficult to compare, due to the interplay of numerous parameters, such as beam area and pulse geometry, which, in operational large beam conditions, are very different from laboratory measurements. This discrepancy could have a significant impact; if so, one could not even pretend that laser damage density control is a real measurement process. In this paper, this concern is addressed. Tests with large beams of centimeter size on a high-power laser facility have beam performed according to a parametric study and are compared to small beam laboratory tests. It is shown that laser damage densities obtained with large and small beams are equal, within calculated error bars.

  13. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Science.gov (United States)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  14. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Science.gov (United States)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  15. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  16. Male density affects large-male advantage in the golden silk spider, Nephila clavipes

    OpenAIRE

    Clare C. Rittschof

    2010-01-01

    Across a variety of animal taxa, the outcome of male--male contests depends on male body size; winners are usually the larger males or the males with bigger weapons. However, high male density can either increase or reverse large-male advantage because density changes the frequency and intensity of male--male interactions. In the golden orb-web spider Nephila clavipes, large males have a competitive advantage in male--male contests. However, this species shows more than 2-fold variation in ma...

  17. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  18. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  19. Formation time of hadrons and density of matter produced in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Pisut, J.; Zavada, P.

    1994-06-01

    Densities of interacting hadronic matter produced in Oxygen-Lead and Sulphur-Lead collisions at 200 GeV/nucleon are estimated as a function of the formation time of hadrons. Uncertainties in our knowledge of the critical temperature T c and of the formation time of hadrons τ 0 permit at present three scenarios: an optimistic one (QGP has already been produced in collisions of Oxygen and Sulphur with heavy ions and will be copiously in Lead collisions), a pessimistic one (QGP cannot be produced at 200 GeV/nucleon) and an intermediate one (QGP has not been produced in Oxygen and Sulphur Interactions with heavy ions and will be at best produced only marginally in Pb-collisions). The last option is found to be the most probable. (author)

  20. Line profiles of hydrogenic ions from high-temperature and high-density plasmas

    International Nuclear Information System (INIS)

    Hou Qing; Li Jianming

    1991-01-01

    Applying the Hooper's first-order theory, the authors calculate the static micro-electric field distributions in plasmas containing various multiply-charged ions. The influences of the impurity concentrations on the micro electric field distributions and on the Lyman profiles (n→1) from hydrogenic ions are analysed. Based on the optical-thin line profiles, the radiation transfer equation in sphere plasmas with various optical depths is solved. The results confirm that the opacity-broadening of the line profiles has almost no effect on the separation of Lyman β splitted peaks. Such separation is determined by electric field at which the static micro-electric field distribution has a maximum. The separation can be utilized for spatially resolved and temporally resolved density diagnostic of fusion plasmas

  1. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

    Science.gov (United States)

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.

    2018-05-01

    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  2. Dispersion relations of density fluctuations observed by heavy ion beam probe in the TEXT tokamak

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-09-01

    Wave numbers as functions of frequency for density fluctuations in the core of the TEXT tokamak are measured in Heavy Ion Beam Probe experiments by analyzing the relative phases of signals originating from nearby points in the plasma. The adjacent points are typically 2 cm apart, with their relative orientation (δr, δθ) depending on position (r,θ). for angular frequencies ω ≤ 10 6 /s the signals are quite coherent, leading to reasonably well-defined ''dispersion relations.'' These do not correspond to known modes of the drift wave type, i.e., ballooning or slab-like electron drift waves or ion temperature gradient modes. The effect of finite sample volume size does not significantly alter this conclusion. 25 refs., 6 figs., 3 tabs

  3. Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt

    International Nuclear Information System (INIS)

    Tahir, N.A.; Spiller, P.; Deutsch, C.; Fortov, V.E.; Gryaznov, V.; Kulish, M.; Lomonosov, I.V.; Mintsev, V.; Nikolaev, D.; Shilkin, N.; Shutov, A.; Ternovoi, V.; Hoffmann, D.H.H.; Ni, P.; Udrea, S.; Varentsov, D.; Piriz, A.R.; Temporal, M.

    2005-01-01

    The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft fuer Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter

  4. Measurement of the effective plasma ion mass in large tokamaks

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-01-01

    There is not yet a straightforward method for the measurement of the D-T ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not only depend on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. This method has been revised to assess its likely precision for the JET tokamak. The low n GAE modes are sometimes too close to the continuum edge to be detectable and the interpretation of the GAE spectrum is rendered less direct than had been hoped. We present a statistical study on the precision with which the D-T ratio could be estimated from the GAE spectrum on JET. (author) 4 figs., 8 refs

  5. Measurements of Ion Stopping around the Bragg Peak in High-Energy-Density Plasmas

    Science.gov (United States)

    Frenje, Johan

    2015-11-01

    Over the last few decades, ion stopping in weakly- to strongly-coupled High-Energy-Density (HED) plasmas has been subject to extensive analytical and numerical studies, but only a limited set of experimental data exists to check the validity of these theories. Most of these experiments also did not probe the detailed characteristics of the Bragg peak (peak ion stopping) where the ion velocity is similar to the average thermal electron velocity. To the best of our knowledge, only one exploratory attempt to do this was conducted by Hicks et al., who were able to describe qualitatively the behavior of the Bragg peak for one plasma condition. The work described in this presentation makes significant advances over previous experimental efforts by quantitatively assessing the characteristics of the ion stopping, ranging from low-velocity stopping, through the Bragg peak, to high-velocity stopping for different HED plasma conditions. This was achieved by measuring the energy loss of DD-tritons, D3He-alphas, DD-protons and D3He-protons, with distinctly different velocities, and the results indicate that the stopping power varies strongly with Te and ne. This effort represents the first experimental test of state-of-art plasma-stopping-power theories around the Bragg peak, which is an important first step in our efforts of getting a fundamental understanding of DT-alpha stopping in HED plasmas, a prerequisite for understanding ignition margins in various implosion designs with varying hot spot areal density at the National Ignition Facility. The work described here was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE (Grant No. DE-FG03- 03SF22691), LLNL (subcontract Grant No. B504974) and LLE (subcontract Grant No. 412160-001G).

  6. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  7. Studying the applicability of densities mixture unfolding for heavy ion jet spectra in the ALICE experiment

    CERN Document Server

    Hackstock, Philip

    2016-01-01

    The results of a three months summer project from July 4th 2016 to September 23rd are presented in this summer student report.\\\\ The method presented in the paper\\footnote{\\url{http://www.sciencedirect.com/science/article/pii/S0168900215000406}} on densities mixture unfolding by Nikolay Gagunashvili and its software implementation were studied. A mind map flowchart, plotting macros and documentation were produced and while an 18 fold performance boost trough parallelization could be achieved, the verdict on the applicability of this method for heavy ion jet spectra in the ALICE experiment remains inconclusive. This is mainly due to a lack of time and complexity of the method and its implementation.

  8. Densities and temperatures at fragment formation in heavy-ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan)

    1998-07-01

    In order to clarify whether the liquid-gas phase transition is relevant to the multi-fragment formation found in intermediate energy heavy-ion collisions, we estimate the densities and temperatures at fragment formation in Au+Au collisions at incident energies of 150 MeV/A and 400 MeV/A within the Quantum Molecular Dynamics (QMD) model with and without quantum fluctuations implemented according to the Quantal Langevin (QL) model. The calculated results show that the IMFs are mainly produced inside the unstable region of nuclear matter, which supports the idea of the fragment formation from supercooled nuclear matter. (author)

  9. Ion cyclotron modes in a low density plasma cavity. Part I: Theory

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1990-12-01

    Ion cyclotron modes excited in a low density, cylindrical plasma cavity using an external inductive antenna are investigated theoretically. These modes, which have a long parallel wavelength, exhibit a strong electrostatic character and are only weakly coupled to the antenna fields. It is shown that, despite the low frequency considered, electron dynamics play a dominant role via the effects of both Landau damping and electron inertia. The characteristics of the wavefields associated with these modes, relevant to an experimental investigation, are described. (author) 8 figs., 1 tab., 10 refs

  10. Study of the ion density of a radio-frequency plasma using electrostatic probes and focussed microwave interferometers

    International Nuclear Information System (INIS)

    Nguyen Cao, L.; Gagne, R.R.J.

    1976-01-01

    In order to verify experimentally and compare recent ion theories for cylindrical electrostatic probes, the ion density in a radio-frequency plasma was evaluated from V-I curves by means of six different theories. At low pressures, the theories of Bernstein and Rabinowitz, of Lam and Laframboise, give values of density which differ respectively by 20, 25 and 30% compared with the values obtained using a 10GHz focussed microwave interferometer. At the continuum limit, The Schulz and Brown's, and Su and Kiel's theories give density values which disagree respectively by 55 and 20%, compared with the values obtained by microwaves. For pressures varying from 0.05 to 3mmHg, the decrease of ion current, as predicted theorically by Waymouth, was observed. The density perturbation near the probe was found to be a dominant factor affecting the precision of density measurements, for pressures up to 2mmHg at least for our experimental conditions [fr

  11. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery

    Science.gov (United States)

    Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping

    2018-07-01

    Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.

  12. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  13. Kinetic Alfven wave with density variation and loss-cone distribution function of multi-ions in PSBL region

    Science.gov (United States)

    Tamrakar, Radha; Varma, P.; Tiwari, M. S.

    2018-05-01

    Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.

  14. Effect of Ar ion on the surface properties of low density polyethylene

    Science.gov (United States)

    Zaki, M. F.

    2016-04-01

    In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015ions/cm2. The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers.

  15. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  16. Large area smoothing of surfaces by ion bombardment: fundamentals and applications

    International Nuclear Information System (INIS)

    Frost, F; Fechner, R; Ziberi, B; Voellner, J; Flamm, D; Schindler, A

    2009-01-01

    Ion beam erosion can be used as a process for achieving surface smoothing at microscopic length scales and for the preparation of ultrasmooth surfaces, as an alternative to nanostructuring of various surfaces via self-organization. This requires that in the evolution of the surface topography different relaxation mechanisms dominate over the roughening, and smoothing of initially rough surfaces can occur. This contribution focuses on the basic mechanisms as well as potential applications of surface smoothing using low energy ion beams. In the first part, the fundamentals for the smoothing of III/V semiconductors, Si and quartz glass surfaces using low energy ion beams (ion energy: ≤2000 eV) are reviewed using examples. The topography evolution of these surfaces with respect to different process parameters (ion energy, ion incidence angle, erosion time, sample rotation) has been investigated. On the basis of the time evolution of different roughness parameters, the relevant surface relaxation mechanisms responsible for surface smoothing are discussed. In this context, physical constraints as regards the effectiveness of surface smoothing by direct ion bombardment will also be addressed and furthermore ion beam assisted smoothing techniques are introduced. In the second application-orientated part, recent technological developments related to ion beam assisted smoothing of optically relevant surfaces are summarized. It will be demonstrated that smoothing by direct ion bombardment in combination with the use of sacrificial smoothing layers and the utilization of appropriate broad beam ion sources enables the polishing of various technologically important surfaces down to 0.1 nm root mean square roughness level, showing great promise for large area surface processing. Specific examples are given for ion beam smoothing of different optical surfaces, especially for substrates used for advanced optical applications (e.g., in x-ray optics and components for extreme

  17. Low-emittance uniform density Cs+ sources for heavy ion fusion accelerators studies

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Garvey, T.; Johnson, R.; Chupp, W.

    1991-04-01

    Low-emittance (high-brightness) Cs + thermionic sources were developed for the heavy ion induction linac experiment MBE-4 at LBL. The MBE-4 linac accelerates four 10 mA beams from 200 ke V to 900 ke V while amplifying the current up to a factor of nine. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emissions growth. Phase-space and current density distribution measurements of the beam extracted from the injector revealed overfocusing of the outermost rays causing a hollow density profile. We shall report on the performance of a 5 mA scraped beam source (which eliminates the outermost beam rays in the diode) and on the design of an improved 10 mA source. The new source is based on EGUN calculations which indicated that a beam with good emissions and uniform current density could be obtained by modifying the cathode Pierce electrodes and using a spherical emitting surface. The measurements of the beam current density profile on a test stand were found to be in agreement with the numerical simulations. 3 refs., 6 figs

  18. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  19. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  20. Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results

    Directory of Open Access Journals (Sweden)

    Jelle Smekens

    2016-02-01

    Full Text Available Lithium-ion battery (LIB technology further enabled the information revolution by powering smartphones and tablets, allowing these devices an unprecedented performance against reasonable cost. Currently, this battery technology is on the verge of carrying the revolution in road transport and energy storage of renewable energy. However, to fully succeed in the latter, a number of hurdles still need to be taken. Battery performance and lifetime constitute a bottleneck for electric vehicles as well as stationary electric energy storage systems to penetrate the market. Electrochemical battery models are one of the engineering tools which could be used to enhance their performance. These models can help us optimize the cell design and the battery management system. In this study, we evaluate the ability of the Porous Electrode Theory (PET to predict the effect of changing positive electrode density in the overall performance of Li-ion battery cells. It can be concluded that Porous Electrode Theory (PET is capable of predicting the difference in cell performance due to a changing positive electrode density.

  1. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Sabry, R.

    2009-01-01

    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  2. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  3. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  4. Manufacturing of large size RF based -ve ion source with 8 drivers-challenges and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Singh, Mahendrajit; Bandyopadhyay, Mainak; Chakraborty, Arun

    2017-01-01

    Radio Frequency (RF) Ion Source for ITER Diagnostic Neutral Beam (DNB) system, is an 8 driver based ion source, where the desired plasma density is produced by inductive coupling of RF power. The present paper describes the experience of developing a manufacturing design to meet the above mentioned requirements, feasibility assessment, prototyping carried out, parallel experiments in support of manufacturing and realization of sub-components along with their quality inspections activities performed. Additionally, paper also presents to the observations in terms of deviations and non-conformities encountered, as a part of learning for the future components

  5. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  6. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  7. Partial differential equation for the idempotent Dirac density matrix characterized solely by the exact non-relativistic ground-state electron density for spherical atomic ions

    International Nuclear Information System (INIS)

    March, N.H.

    2009-08-01

    In this Journal, March and Suhai have earlier set up a first-order Dirac idempotent density matrix theory for one- and two-level occupancy in which the only input required is the nonrelativistic ground-state electron density. Here, an analytic generalization is provided for the case of spherical electron densities for arbitrary level occupancy. Be-like atomic ions are referred to as an example, but 'almost spherical' molecules like SiH 4 and GeH 4 also become accessible. (author)

  8. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  9. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  10. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    Science.gov (United States)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  11. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    Science.gov (United States)

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  12. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  13. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    International Nuclear Information System (INIS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-01-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals

  14. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  15. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques

  16. Effect of 520 MeV Kr{sup 20+} ion irradiation on the critical current density of Bi-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Takayuki; Ito, Yasuyuki [Tokyo Univ. (Japan). Faculty of Engineering; Kishio, Kouji

    1996-10-01

    Change in magnetic properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} (Bi-2212) single crystals due to Kr{sup 20+} ion irradiation is reported, focused on critical current density and irreversibility magnetic field. The Bi-2212 single crystal specimens (3x3x0.3 mm{sup 3}) were prepared by the floating zone method. Each specimen was irradiated with 520 MeV Kr{sup 20+} ions of 10{sup 10}-10{sup 11} cm{sup -2} in the fluence. Magnetic hysteresis was measured at 4.2K-60K with a vibrating sample magnetometer before and after irradiation. Very large enhancement was observed in critical current density and irreversibility magnetic field above 20K. (author)

  17. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  18. Ion flux nonuniformities in large-area high-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Perret, A.; Chabert, P.; Booth, J.-P.; Jolly, J.; Guillon, J.; Auvray, Ph.

    2003-01-01

    Strong nonuniformities of plasma production are expected in capacitive discharges if the excitation wavelength becomes comparable to the reactor size (standing-wave effect) and/or if the plasma skin depth becomes comparable to the plate separation (skin effect) [M. A. Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)]. Ion flux uniformity measurements were carried out in a large-area square (40 cmx40 cm) capacitive discharge driven at frequencies between 13.56 MHz and 81.36 MHz in argon gas at 150 mTorr. At 13.56 MHz, the ion flux was uniform to ±5%. At 60 MHz (and above) and at low rf power, the standing-wave effect was seen (maximum of the ion flux at the center), in good quantitative agreement with theory. At higher rf power, maxima of the ion flux were observed at the edges, due either to the skin effect or to other edge effects

  19. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  20. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  1. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    Science.gov (United States)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion

  2. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  3. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  4. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  5. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  6. Protons and heavy ions induced stuck bits on large capacity RAMs

    Energy Technology Data Exchange (ETDEWEB)

    Duzellier, S; Falguere, D; Ecoffet, R [Centre National d` Etudes Spatiales (CNES), 31 - Toulouse (France)

    1994-12-31

    A semi-permanent imprint effect has been observed, on large capacity memories (static and dynamic), during heavy ion and proton irradiations. The experimental circumstances of stuck bits occurrence are described and the influence of irradiation conditions discussed. A total dose testing complete the investigation. (author). 10 refs., 5 figs., 3 tabs.

  7. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma

    Institute of Scientific and Technical Information of China (English)

    Q. Haque; H. Saleem

    2004-01-01

    @@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.

  8. Large amplitude solitary waves in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Tsukabayashi, I.; Ludwig, G.O.; Ferreira, J.L.

    1987-09-01

    When the concentration of negative ions is larger than a critical value, a small compressive pulse evolves into a subsonic wave train and a large pulse develops into a solitary wave. The threshold amplitude and velocity of the solitary waves are measured and compared with predictions using the pseudopotential method. (author) [pt

  9. The magnetic g-tensors for ion complexes with large spin-orbit coupling

    International Nuclear Information System (INIS)

    Chang, P.K.L.; Liu, Y.S.

    1977-01-01

    A nonperturbative method for calculating the magnetic g-tensors is presented and discussed for complexes of transition metal ions of large spin-orbit coupling, in the ground term 2 D. A numerical example for CuCl 2 .2H 2 O is given [pt

  10. Effect of thermal contact resistances on fast charging of large format lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Somasundaram, Karthik; Tay, Andrew A.O.

    2014-01-01

    Highlights: • The effect of thermal contact resistance on thermal performance of large format lithium ion batteries. • The effect of temperature gradient on electrochemical performance of large format batteries during fast charging. • The thermal performance of lithium ion battery utilizing pulse charging protocol. • Suggestions on battery geometry design optimization to improve thermal performance. - Abstract: A two dimensional electrochemical thermal model is developed on the cross-plane of a laminate stack plate pouch lithium ion battery to study the thermal performance of large format batteries. The effect of thermal contact resistance is taken into consideration, and is found to greatly increase the maximum temperature and temperature gradient of the battery. The resulting large temperature gradient would induce in-cell non-uniformity of charging-discharging current and state of health. Simply increasing the cooling intensity is inadequate to reduce the maximum temperature and narrow down the temperature difference due to the poor cross-plane thermal conductivity. Pulse charging protocol does not help to mitigate the temperature difference on the bias of same total charging time, because of larger time-averaged heat generation rate than constant current charging. Suggestions on battery geometry optimizations for both prismatic/pouch battery and cylindrical battery are proposed to reduce the maximum temperature and mitigate the temperature gradient within the lithium ion battery

  11. Effect of radical species density and ion bombardment during ashing of extreme ultralow-κ interlevel dielectric materials

    International Nuclear Information System (INIS)

    Worsley, M. A.; Bent, S. F.; Fuller, N. C. M.; Tai, T. L.; Doyle, J.; Rothwell, M.; Dalton, T.

    2007-01-01

    The significance of ion impact and radical species density on ash-induced modification of an extreme ultralow-κ interlevel dielectric (ILD) material (κ 2 and Ar/N 2 dual frequency capacitive discharges is determined by combining plasma diagnostics, modeling of the ion angular distribution function, and material characterization such as angle resolved x-ray photoelectron spectroscopy. Radical species density was determined by optical emission actinometry under the same conditions and in the same reactor in a previous study by the present authors. ILD modification is observed and correlated with changes in the plasma for a range of pressures (5-60 mTorr), bias powers (0-350 W), and percent Ar in the source gas (0%, 85%). For the Ar/O 2 discharge, extensive modification of the ILD sidewall was observed for significant ion scattering conditions, whereas minimal modification of the ILD sidewall was observed under conditions of minimal or no ion scattering. Further, for an identical increase in the O-radical density (∼ an order of magnitude), a different degree of modification was induced at the ILD trench bottom surface depending on whether pressure or percent Ar was used to increase the radical density. The different degrees of modification seemingly correlated with the relative changes in the ion current for increasing pressure or percent Ar. For the Ar/N 2 discharge, reduced damage of the ILD sidewall and trench bottom surfaces was observed for increasing pressure (increasing N-radical density) and decreasing ion current to both surfaces. It is, thus, proposed that the mechanism for modification of the porous ILD is dominated by the creation of reactive sites by ion impact under the present conditions. A detailed discussion of the results which support this proposal is presented

  12. Swift heavy ion irradiation effects on carbonyl and trans-vinylene groups in high and low density polyethylene

    International Nuclear Information System (INIS)

    Grosso, M.F. del; Chappa, V.C.; Arbeitman, C.R.; Garcia Bermudez, G.; Behar, M.

    2009-01-01

    In this work, we have studied the effects of swift heavy ion irradiation on the creation of new functional groups in high and low density polyethylene (HDPE and LDPE). Polymers were irradiated with different ions (6.77 MeV He and 47 MeV Li) and fluences. The induced changes were analyzed by Fourier transform infrared (FTIR) spectroscopy. Creation and damage cross sections for some groups were compared for two different types of PE.

  13. Swift heavy ion irradiation effects on carbonyl and trans-vinylene groups in high and low density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.a [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Chappa, V.C. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); CONICET (Argentina); Arbeitman, C.R. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Garcia Bermudez, G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); CONICET (Argentina); Escuela de Ciencia y Tecnologia, UNSAM (Argentina); Behar, M. [Instituto de Fisica, UFRGS, Porto Alegre (Brazil)

    2009-10-01

    In this work, we have studied the effects of swift heavy ion irradiation on the creation of new functional groups in high and low density polyethylene (HDPE and LDPE). Polymers were irradiated with different ions (6.77 MeV He and 47 MeV Li) and fluences. The induced changes were analyzed by Fourier transform infrared (FTIR) spectroscopy. Creation and damage cross sections for some groups were compared for two different types of PE.

  14. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    International Nuclear Information System (INIS)

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F.

    2003-01-01

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported ∼3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region

  15. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.

    Science.gov (United States)

    Soniat, Marielle; Rogers, David M; Rempe, Susan B

    2015-07-14

    A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.

  16. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  17. Pattern transfer on large samples using a sub-aperture reactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Mill, Agnes; Gerlach, Juergen W.; Arnold, Thomas [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany)

    2011-07-01

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using CF{sub 4} as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot as well as an accumulation of carbon (up to 40 atomic percent) in the beam periphery, respectively. The substitution of CF{sub 4} by NF{sub 3} as reactive gas reveals a lot of benefits: more stable ion beam conditions in combination with a reduction of the beam size down to a diameter of 5 mm and a reduced amount of the Ni, Fe and Cr contaminations. However, a layer formation of silicon nitride handicaps the chemical contribution of the etching process. These negative side effects influence the transfer of trench structures on quartz by changing the selectivity due to altered chemical reaction of the modified resist layer. Concerning this we investigate the pattern transfer on large fused silica plates using NF{sub 3}-sub-aperture RIBE.

  18. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  19. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    Science.gov (United States)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  20. A new trapped-ion instability with large frequency and radial wavenumber

    International Nuclear Information System (INIS)

    Tagger, M.

    1979-01-01

    The need for theoretical previsions concerning anomalous transport in large Tokamaks, as well as the recent results of PLT, ask the question of the process responsible for non-linear saturation of trapped-ion instabilities. This in turn necessitates the knowledge of the linear behaviour of these waves at large frequencies and large radial wavenumbers. We study the linear dispersion relation of these modes, in the radially local approximation, but including a term due to a new physical effect, combining finite banana-width and bounce resonances. Limiting ourselves presently to the first harmonic expansion of the bounce motion of trapped ions, we show that the effect of finite banana-width on the usual trapped-ion mode is complex and quite different from what is generally expected. In addition we show, analytically and numerically, the appearance of a nex branch of this instability. Essentially due to this new effect, it involves large frequencies (ω approximately ωsub(b) and is destabilized by large radial wavelengths (ksub(x) Λ approximately 1, where Λ is the typical banana-width). We discuss the nature of this new mode and its potential relevance of the experiments

  1. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    Science.gov (United States)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  2. Ablative Rayleigh-Taylor instability in the limit of an infinitely large density ratio

    International Nuclear Information System (INIS)

    Clavin, P.; Almarcha, Ch.

    2005-01-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative Rayleigh-Taylor instability in ICF. A few examples are given at the end of the paper. (authors)

  3. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.

    2017-07-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  4. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Morita, S.; Fujii, K.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2015-01-01

    Wavelengths of emission lines from tungsten highly-charged ions have been precisely measured in near UV-visible range (320 - 356 nm and 382 - 402 nm) at Large Helical Device (LHD) by tungsten pellet injection. The tungsten emission lines were assigned based on its line-integrated intensity profiles on a poloidal cross section. The ground-term magnetic-dipole (M1) lines of W 26+,27+ and an M1 line of a metastable excited state of W 28+ , whose wavelengths have been determined by measurements using electron-beam-ion-traps (EBITs), are identified in the LHD spectra. The present results partially compliment wavelength data of tungsten highly-charged ions in the near UV-visible range. (author)

  5. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    International Nuclear Information System (INIS)

    Hermes, Pascal Dominik

    2016-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and 208 Pb 82+ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new tracking

  6. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Pascal Dominik

    2016-12-19

    The CERN Large Hadron Collider (LHC) stores and collides proton and {sup 208}Pb{sup 82+} beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new

  7. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    Science.gov (United States)

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  8. Density-functional theory investigation of Al pitting corrosion in electrolyte containing chloride ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Jin, Ying, E-mail: yjin@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuanhui [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Leygraf, Christofer [Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Wen, Lei [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-12-01

    Highlights: • Cl{sup −} led to the elongation of Al−O bond and the weakened binding between Al layers in scenario i. • Al−O interaction weakened whereas an intensive hybridization peak at −0.18 Ha between Al-3p with Cl-3p showed in scenario ii. • Substructures such as AlCl{sub 3} and Al{sub 2}Cl{sub 5} formed in scenario iii when the Cl{sup −} coverage was larger than 2/3 ML of a monolayer. - Abstract: The behavior of chloride ions (Cl{sup −}) and oxygen species (the oxygen atom, O or molecular oxygen, O{sub 2}) on Al(1 1 1) surface has been studied by density functional theory calculations in order to deepen the molecular understanding of fundamental processes leading to pitting of aluminum (Al). The adsorption behavior of individual species, Cl{sup −}, O atom and O{sub 2} was determined first. Subsequently, three possible scenarios in different pitting stages were modeled exploring the repassivation and dissolution of Al in neutral electrolyte containing Cl{sup −}. In scenario i, it was found that Cl{sup −} can hardly destroy even an O-monolayer on Al(1 1 1) surface, however may lead to the elongation of Al−O bond and the weakened binding between the first Al layer and subsequent Al layers. Both O{sub 2} and Cl{sup −} were simultaneously introduced onto Al(1 1 1) in scenario ii. The result showed a weakened Al−O interaction and an intensive hybridization peak at −0.18 Ha between Al-3p with Cl-3p suggesting insufficient repassivation behavior of Al under this condition. Finally, scenario iii mimicked different local environmental conditions in pits formed on Al. At low coverage of Cl{sup −}, chloride ions had little effect on surface relaxation. The interaction among chloride ions and Al surface became stronger as Cl{sup −} coverage increased. Surface Al atoms dissolved gradually and substructures such as AlCl{sub 3} and Al{sub 2}Cl{sub 5} formed when the coverage was larger than 2/3 ML of a monolayer.

  9. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  10. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

    International Nuclear Information System (INIS)

    Eisenberg, S.

    1985-01-01

    The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [ 3 H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [ 3 H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [ 3 H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles

  11. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  12. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  13. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  14. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  15. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  16. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Science.gov (United States)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  17. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Morita, S.; Goto, M.; Murakami, I.; Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T.; Hasuo, M.; Koike, F.; Nakamura, N.; Sasaki, A.; Wang, E. H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 , measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×10 10 cm −3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W 26+ ) at 3893.7Å is identified as the ground-term fine-structure transition of 4f 23 H 5 - 3 H 4 . The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  18. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities

    Science.gov (United States)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2013-08-01

    Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤ϕ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061302 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and

  19. Ion temperature gradient driven transport in a density modification experiment on the TFTR tokamak

    International Nuclear Information System (INIS)

    Horton, W.; Lindberg, D.; Kim, J.Y.; Dong, J.Q.; Hammett, G.W.; Scott, S.D.; Zarnstorff, M.C.; Hamaguchi, S.

    1991-07-01

    TFTR profiles from a supershot density-modification experiment are analyzed for their local and ballooning stability to toroidal η i -modes in order to understand the initially puzzling results showing no increase in X i when a pellet is used to produce an abrupt and large increase in the η i parameter. The local stability analysis assumes that k parallel = 1/qR and ignores the effects of shear, but makes no assumption on the magnitude of k parallel v ti /ω. The ballooning stability analysis determines a self-consistent linear spectrum of k parallel's including the effect of shear and toroidicity, but it expands in k parallel v ti /ω ≤ 1, which is a marginal assumption for this experiment. Nevertheless, the two approaches agree well and show that the mixing length estimate of the transport rate does not change appreciably during the density-modification and has a value close to or less than the observed X i , in contrast to most previous theories which predicted X i 's which were over an order-of-magnitude too large. However, we are still unable to explain the observed increase X i (r) with minor radius by adding the effects of the finite beta drift - MHD mode coupling, the slab-like mode, or the trapped electron response. The experimental tracking 0.2 e /X i i and trapped-electron driving mechanisms are operating. 4 refs., 5 figs., 5 tabs

  20. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows

    Science.gov (United States)

    Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang

    2018-03-01

    In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.

  1. Accurate density-functional calculations on large systems: Fullerenes and magnetic clusters

    International Nuclear Information System (INIS)

    Dunlap, B.I.

    1996-01-01

    Efforts to accurately compute all-electron density-functional energies for large molecules and clusters using Gaussian basis sets will be reviewed. The foundation of this effort, variational fitting, will be described and followed by three applications of the method. The first application concerns fullerenes. When first discovered, C 60 is quite unstable relative to the higher fullerenes. In addition, to raising questions about the relative abundance of the various fullerenes, this work conflicted with the then state-of-the art density-funcitonal calculations on crystalline graphite. Now high accuracy molecular and band structure calculations are in fairly good agreement. Second, we have used these methods to design transition metal clusters having the highest magnetic moment by maximizing the symmetry-required degeneracy of the one-electron orbitals. Most recently, we have developed accurate, variational generalized-gradient approximation (GGA) forces for use in geometry optimization of clusters and in molecular-dynamics simulations of friction. The GGA optimized geometries of a number of large clusters will be given

  2. Inelastic energy loss in large angle scattering of Ar9+ ions from Au(1 1 1) crystal

    International Nuclear Information System (INIS)

    Pesic, Z.D.; Anton, J.; Bremer, J.H.; Hoffmann, V.; Stolterfoht, N.; Vikor, Gy.; Schuch, R.

    2003-01-01

    The azimuthal angle dependence of the energy loss in large-angle scattering of slow (v∼0.06 a.u.) Ar 9+ ions from a Au(1 1 1) single crystal was investigated. Regarding the kinematics of quasi-single collisions, the smallest energy loss is expected for the azimuthal orientations which correspond to the closest packed atomic row of the crystal. This agrees with the prediction of a trajectory simulation (Marlowe code), but the experimental results don't show such dependence. Thus, we discuss possible inelastic processes as image charge energy gain, electronic energy loss in close collision and the electronic energy loss in the interaction with the electron gas. The observed azimuthal dependence is explained by the change of the electronic stopping power due to the variation of effective electron density sampled by the projectile

  3. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    Directory of Open Access Journals (Sweden)

    Mathieu Basille

    Full Text Available Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  4. Experiments on the indirect heating of low density aerogels for applications in heavy ion stopping in plasma

    International Nuclear Information System (INIS)

    Rosmej, O.N.; Blazevic, A.; Suslov, N.; Kunin, A.; Pinegin, A.; Schaefer, D.; Nisius, Th.; Zhao, Y.; Rinecker, T.; Wiechula, J.

    2010-01-01

    Complete text of publication follows. The unique combination of a Petawatt High-Energy Laser System for Ion beam eXperiments - 'Phelix' (Nd:glass, 1053 nm, 300-500 J, 1-15 ns) and intense heavy ion beams of the UNILAC accelerator at GSI-Darmstadt allow creating and probing of hot plasma with a density of some percentage of solid-state density. The experimental program aims at the investigation of fundamental features of heavy ion stopping in ionized matter in view of promising applications for the Heavy Ion Fusion and astrophysics. For combined experiments on the interaction of heavy ion beams with ionized matter (GSI) a high density plasma target with homogeneous in time (∼ 5 ns) and space (∼ 1 mm) plasma parameters in required. For these purposes we are developing the combined target which consists on the Gold hohlraum (converter) and low Z foam target heated by the hohlraum radiation before probed by an ion bunch. Foam targets are rather promising due to the effective conversion of the deposited radiation energy into the internal plasma energy and slow hydrodynamic response on the heating. Direct irradiation of the Gold converter walls with a nanosecond pulse delivered by the PHELIX-laser system (GSI) leads to hohlraum radiation spectra in the photon energy range of 50-500 eV. Expected temperatures of the foam targets heated by this radiation amount to 20-30 eV at electron densities of 10 21 cm -3 . The results of the last hohlraum experiments carried out at PHELIX-laser energies of 200-250 J will be presented. In experiments the hohlraum radiation field, the conversion efficiency of the laser energy into soft X-rays, duration of the soft X-ray pulse, and parameters of the heated with X-rays foam targets have been measured. Acknowledgements. This work is supported by ISTC 2264 grant.

  5. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  6. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  7. Hg+ ion density in low-pressure Ar-Hg discharge plasma used for liquid crystal display back-lighting

    International Nuclear Information System (INIS)

    Goto, Miki; Arai, Toshihiko

    1995-01-01

    The positive column of a low-pressure Ar-Hg discharge has been applied as a fluorescent light source for illumination. Many studies on the diagnostics and fundamental mechanisms have been carried out on both the classical fluorescent lamp (d=36 mm) and the compact fluorescent lamp (d=12 mm). On the other hand, a lamp of extremely narrow diameter (usually below 6 mm) has been recently developed for liquid crystal display (LCD) back-lighting and its importance is undoubtedly increasing. Some characteristics or mechanisms of the narrow-diameter lamp may be similar to those of the 36 mm one; however the similarity rule does not hold between them due to the contributions from a stepwise ionization process. Therefore, in order to clarify the excitation mechanism in the narrow-diameter lamp quantitatively, various parameters must be measured directly and some analysis must be done. The Hg + ion density and electron density are important parameters for the purpose of clarifying the excitation mechanism quantitatively. In this work, we have measured the Hg + ion density using the modified absorption method, and the electron density using the probe method in the Ar-Hg discharge of the 4 mm bore tube on bath temperature. Moreover, with combining the modified absorption method and the probe method, the Hg 2 + molecular ion density has been determined

  8. Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms.

    Science.gov (United States)

    Wu, Ziping; Liu, Kaixi; Lv, Chao; Zhong, Shengwen; Wang, Qinghui; Liu, Ting; Liu, Xianbin; Yin, Yanhong; Hu, Yingyan; Wei, Di; Liu, Zhongfan

    2018-05-01

    Moore's law predicts the performance of integrated circuit doubles every two years, lasting for more than five decades. However, the improvements of the performance of energy density in batteries lag far behind that. In addition, the poor flexibility, insufficient-energy density, and complexity of incorporation into wearable electronics remain considerable challenges for current battery technology. Herein, a lithium-ion cable battery is invented, which is insensitive to deformation due to its use of carbon nanotube (CNT) woven macrofilms as the charge collectors. An ultrahigh-tap density of 10 mg cm -2 of the electrodes can be obtained, which leads to an extremely high-energy density of 215 mWh cm -3 . The value is approximately seven times than that of the highest performance reported previously. In addition, the battery displays very stable rate performance and lower internal resistance than conventional lithium-ion batteries using metal charge collectors. Moreover, it demonstrates excellent convenience for connecting electronics as a new strategy is applied, in which both electrodes can be integrated into one end by a CNT macrorope. Such an ultrahigh-energy density lithium-ion cable battery provides a feasible way to power wearable electronics with commercial viability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  10. On the Distribution of Ion Density Depletion Along Magnetic Field Lines as Deduced Using C-NOFS

    Science.gov (United States)

    Dao, E.; Kelley, M. C.; Hysell, D. L.; Retterer, J. M.; Su, Y.-J.; Pfaff, Robert F.; Roddy, P. A.; Ballenthin, J. O.

    2012-01-01

    To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, (Delta)n/n(sub 0), near the apex may be far less than at other points on the same field line. We argue that the distribution of (Delta)n/n(sub 0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments.

  11. Ionization of liquid argon by x-rays: effect of density on electron thermalization and free ion yields

    International Nuclear Information System (INIS)

    Huang, S.S.-S.; Gee, N.; Freeman, G.R.

    1991-01-01

    Free ion yields were measured in liquid argon as a function of electric field strength at densities 736-1343 kg/m 3 (temperatures 149-95 K). The field dependence of the yields was parametrized using the extended Onsager and box models. Over the present density range the total ion yield was constant within 1% and was taken as 4.4, the average of earlier values at 87-91 K. The absence of internal vibrational modes in argon makes its electron thermalizing ability smaller than that of methane. The electron thermalization distance b GP in liquid argon is 3-5 times longer than that in liquid methane at a given d/d c (d c = critical fluid density). (author)

  12. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  13. Towards large and powerful radio frequency driven negative ion sources for fusion

    International Nuclear Information System (INIS)

    Heinemann, B; Fantz, U; Kraus, W; Schiesko, L; Wimmer, C; Wünderlich, D; Bonomo, F; Fröschle, M; Nocentini, R; Riedl, R

    2017-01-01

    The ITER neutral beam system will be equipped with radio-frequency (RF) negative ion sources, based on the IPP Garching prototype source design. Up to 100 kW at 1 MHz is coupled to the RF driver, out of which the plasma expands into the main source chamber. Compared to arc driven sources, RF sources are maintenance free and without evaporation of tungsten. The modularity of the driver concept permits to supply large source volumes. The prototype source (one driver) demonstrated operation in hydrogen and deuterium up to one hour with ITER relevant parameters. The ELISE test facility is operating with a source of half the ITER size (four drivers) in order to validate the modular source concept and to gain early operational experience at ITER relevant dimensions. A large variety of diagnostics allows improving the understanding of the relevant physics and its link to the source performance. Most of the negative ions are produced on a caesiated surface by conversion of hydrogen atoms. Cs conditioning and distribution have been optimized in order to achieve high ion currents which are stable in time. A magnetic filter field is needed to reduce the electron temperature and co-extracted electron current. The influence of different field topologies and strengths on the source performance, plasma and beam properties is being investigated. The results achieved in short pulse operation are close to or even exceed the ITER requirements with respect to the extracted ion currents. However, the extracted negative ion current for long pulse operation (up to 1 h) is limited by the increase of the co-extracted electron current, especially in deuterium operation. (paper)

  14. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  15. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    International Nuclear Information System (INIS)

    Burke, Aoife M.; Hanrahan, John P.; Healy, David A.; Sodeau, John R.; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 μmol g -1 for Cr, 340 μmol g -1 for Ni, 358 μmol g -1 for Fe, 364 μmol g -1 for Mn and 188 μmol g -1 for Pd

  16. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Aoife M.; Hanrahan, John P. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Healy, David A.; Sodeau, John R. [Department of Chemistry, Centre of Research in Atmospheric Chemistry, University College Cork, Cork (Ireland); Holmes, Justin D. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Morris, Michael A. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)], E-mail: m.morris@ucc.ie

    2009-05-15

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 {mu}mol g{sup -1} for Cr, 340 {mu}mol g{sup -1} for Ni, 358 {mu}mol g{sup -1} for Fe, 364 {mu}mol g{sup -1} for Mn and 188 {mu}mol g{sup -1} for Pd.

  17. Isolation of low density lipoprotein (LDL with its modification by Copper ion and Malondialdehyde (MDA

    Directory of Open Access Journals (Sweden)

    Doosty M

    1999-06-01

    Full Text Available Oxidation of low density lipoproteins (LDLs is belived to be an important step in the pathogenesis of atherosclerosis. During oxidation, LDL particle undergoes a large number of structural changes that alters its biological properties, so it becomes atherogenic. To study atherogenic proteins, usually two forms of modified LDLs, including Cu2+-oxidized LDL (ox-LDL and malondialdehyde (MDA modified LDL (mal-LDL are used. In this study, LDL was isolated from 72 ml freshly prepared plasma by sequential Floatation Ultracentrifugation (SFU, which resulted in separation of 12.5 mg LDL protein. LDL oxidation was accomplished in Phosphate Buffered Saline (PBS with 2µM cupric sulfate, and mal-LDL was prepared by incubating LDL in PBS with 0.5 M solution of freshly prepared MDA. These modifications were evaluated by measuring optical density at 234 nm, Thiobarbitoric Acid Reactive Substances (TBARS, and electrophoretic mobility at pH 8.6. The increase of 234 nm absorption reflected initiation of LDL oxidation. TBARS of ox-LDL and mal-LDL was 80 Nm MAD/mg LDL protein and 400 nm MDA/mg LDL protein, respectively. Electrophoretic mobility of ox-LDL and mal-LDL, in respect to native LDL (n-LDL, were increased.

  18. A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios

    KAUST Repository

    Xie, Yu; Wodo, Olga; Ganapathysubramanian, Baskar

    2016-01-01

    In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.

  19. DGDFT: A massively parallel method for large scale density functional theory calculations.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  20. A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios

    KAUST Repository

    Xie, Yu

    2016-10-04

    In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.

  1. DGDFT: A massively parallel method for large scale density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  2. DGDFT: A massively parallel method for large scale density functional theory calculations

    International Nuclear Information System (INIS)

    Hu, Wei; Yang, Chao; Lin, Lin

    2015-01-01

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10 −4 Hartree/atom in terms of the error of energy and 6.2 × 10 −4 Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail

  3. Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians

    International Nuclear Information System (INIS)

    Kirsch, W.; Martinelli, F.

    1983-01-01

    We consider the integrated density of states (IDS) rhosub(infinite)(lambda) of random Hamiltonian Hsub#betta#=-δ+Vsub#betta#, Vsub#betta# being a random field on Rsup(d) which satisfies a mixing condition. We prove that the probability of large fluctuations of the finite volume IDSvertical stroke#betta#vertical stroke - 1 rho(lambda,Hsub(lambda)(#betta#)), #betta#is contained inRsup(d), around the thermodynamic limit rhosub(infinite)(lambda) is bounded from above by exp[-kvertical stroke#betta#vertical stroke], k>0. In this case rhosub(infinite)(lambda) can be recovered from a variational principle. Furthermore we show the existence of a Lifshitz-type of singularity of rhosub(infinite)(lambda) as lambda->0 + in the case where Vsub#betta# is non-negative. More precisely we prove the following bound: rhosub(infinite)(lambda) 0 + k>0. This last result is then discussed in some examples. (orig.)

  4. Ablative Rayleigh Taylor instability in the limit of an infinitely large density ratio

    Science.gov (United States)

    Clavin, Paul; Almarcha, Christophe

    2005-05-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative RT instability in ICF. A few examples are given at the end of the Note. To cite this article: P. Clavin, C. Almarcha, C. R. Mecanique 333 (2005).

  5. Large thermoelectric efficiency of doped polythiophene junction: A density functional study

    Science.gov (United States)

    Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid

    2018-06-01

    The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.

  6. Generation of pyroclastic density currents from pyroclastic fountaining or transient explosions: insights from large scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto; Dellino, Pierfrancesco; Mele, Daniela; La Volpe, Luigi [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    Pyroclastic density currents (PDCs) are among the most amazing, complex and dangerous volcanic phenomena. They are moving mixtures of particles and gas that flow across the ground, and originate in different ways and from various sources, during explosive eruptions or gravity-driven collapse of domes. We present results from experimental work to investigate the generation of large-scale, multiphase, gravity-driven currents. The experiments described here are particularly devoted to understanding the inception and development of PDCs under impulsive injection conditions by means of the fast application of a finite stress to a finite mass of pyroclastic particles via expansion of compressed gas. We find that, in summary, PDC generation from collapse of pressure-adjusted or overpressurised pyroclastic jets critically depends on behaviour of injection into the atmosphere, which controls the collapsing mechanisms and then the physical parameters of the initiating current.

  7. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  8. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  9. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    Science.gov (United States)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  10. Large model-space calculation of the nuclear level density parameter

    International Nuclear Information System (INIS)

    Agrawal, B.K.; Samaddar, S.K.; De, J.N.; Shlomo, S.

    1998-01-01

    Recently, several attempts have been made to obtain nuclear level density (ρ) and level density parameter (α) within the microscopic approaches based on path integral representation of the partition function. The results for the inverse level density parameter K es and the level density as a function of excitation energy are presented

  11. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Seidl, P.A.

    2007-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D 'slice' e-cloud code POSINST [M. Furman, this workshop, paper TUAX05], as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX) [experimental results discussed by A. Molvik, this workshop, paper THAW02]. We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). (author)

  12. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory

    2006-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D ''slice'' e-cloud code POSINST [M. Furman, this workshop, paper TUAX05], as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX) [experimental results discussed by A. Molvik, this workshop, paper THAW02]. We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC)

  13. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Vay, J.L.; Furman, M.A.; Seidl, P.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff-Covo, M.; Molvik, A.W.; Stoltz, P.H.; Veitzer, S.; Verboncoeur, J.P.

    2006-01-01

    The authors have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D ''slice'' e-cloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). They describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC)

  14. High energy density layered-spinel hybrid cathodes for lithium ion rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S., E-mail: sbasumajumder@yahoo.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Dahiya, P.P.; Akhtar, Mainul [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Ray, S.K. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Chang, J.K. [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Majumder, S.B. [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-11-15

    Highlights: • Structural integration of layered domains in spinel matrix of the composite particles. • Highest discharge capacity (275 mAh g{sup −1}) in composite with 30.0 mole% Li{sub 2}MnO{sub 3}. • Reasonably good rate capability of layered-spinel composite cathode. • Capacity fading with cycling is related to cubic to tetragonal structural phase transition. - Abstract: High energy density Li{sub 2}MnO{sub 3} (layered)–LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (spinel) composite cathodes have been synthesized using auto-combustion route. Rietveld refinements together with the analyses of high resolution transmission electron micrographs confirm the structural integration of Li{sub 2}MnO{sub 3} nano-domains into the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} matrix of the composite cathodes. The discharge capacity of the composite cathodes are due to the intercalation of Li{sup +} ion in the tetrahedral (8a) and octahedral (16c) sites of the spinel component and also the insertion of Li{sup +} in the freshly prepared MnO{sub 2} lattice, formed after Li{sub 2}O extraction from the Li{sub 2}MnO{sub 3} domains. The capacity fading of the composite cathodes are explained to be due to the layered to spinel transition of the Li{sub 2}MnO{sub 3} component and Li{sup +} insertion into the octahedral site of the spinel lattices which trigger cubic to tetragonal phase transition resulting volume expansion which eventually retard the Li{sup +} intercalation with cycling.

  15. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    Science.gov (United States)

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  16. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Sinyukov, Yu.M.

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions

  17. Characterization of low density carbon foams by x-ray computed tomography (CT) and ion microtomography (IMF)

    International Nuclear Information System (INIS)

    Moddeman, W.E.; Kramer, D.P.; Firsich, D.W.; Trainer, P.D.; Yancy, R.N.; Weirup, D.L.; Logan, C.M.; Pontau, A.E.; Antolak, A.J.; Morse, D.H.

    1990-01-01

    Two NDT techniques were used to characterize low-density, microcellular, carbon foams fabricated from a salt replica process. In this paper the two techniques are x-ray computed tomography (CT) and ion microtomography (IMT); data are presented on carbon foams that contain high-density regions. The data show that densities which differ by 3 ) materials. The data reveal that the carbon foams produced by this replica process have small density variations; the density being ∼30% greater at the outer edges than when compared to the interior of the foam. In addition, the density gradient is found to be rather sharp, that is the density drops-off rapidly from the outer edges to a uniform one in the interior of the foam. This edge build-up in carbon density was explained in terms of polymer concentrating on the foam exterior during drying which immediately followed a polymer infusion processing step. Supporting analytical data from other techniques show the foam material to be >88.8% carbon

  18. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode

    International Nuclear Information System (INIS)

    Hussey, T.W.; Payne, S.S.

    1987-04-01

    The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small

  19. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Rizzoli, R. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); CNR–Istituto per la Microelettronica ed i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L. [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy)

    2016-02-15

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  20. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    Science.gov (United States)

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  1. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  2. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  3. RAYIC - a numerical code for the study of ion cyclotron heating of large Tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1984-02-01

    The code RAYIC models coupling, propagation and absorption of e.m. waves in large axisymmetric plasmas in the ion cyclotron frequency domain. It can be used both to investigate the waves behaviour, and as a source of the power deposition profiles for use in transport codes. The present user manual, after a brief summary of the physical model, presents the structure of RAYIC, the complete list of input-output variables (calling sequence), and some examples of the output which can be obtained from the code. (orig.)

  4. Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de

    2008-08-06

    In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.

  5. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries

    Directory of Open Access Journals (Sweden)

    Sascha Koch

    2018-03-01

    Full Text Available Thermal runaway of single cells within a large scale lithium-ion battery is a well-known risk that can lead to critical situations if no counter measures are taken in today’s lithium-ion traction batteries for battery electric vehicles (BEVs, plug-in hybrid electric vehicles (PHEV and hybrid electric vehicles (HEVs. The United Nations have published a draft global technical regulation on electric vehicle safety (GTR EVS describing a safety feature to warn passengers in case of a thermal runaway. Fast and reliable detection of faulty cells undergoing thermal runaway within the lithium-ion battery is therefore a key factor in battery designs for comprehensive passenger safety. A set of various possible sensors has been chosen based on the determined cell thermal runaway impact. These sensors have been tested in different sized battery setups and compared with respect to their ability of fast and reliable thermal runaway detection and their feasibility for traction batteries.

  6. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  7. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  8. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    Science.gov (United States)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  9. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  10. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    Science.gov (United States)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  11. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  12. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    Science.gov (United States)

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  13. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    Science.gov (United States)

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  14. S-matrix description of anomalous large-angle heavy-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Frahn, W E; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica; Canto, L F; Donangelo, R [Rio de Janeiro Univ. (Brazil). Inst. de Fisica

    1981-10-12

    We present a quantitative description of the well-known anomalous features observed in the large-angle scattering of n..cap alpha.. type heavy ions, in particular of the pronounced structures in the backangle excitation function for /sup 16/O + /sup 28/Si. Our treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement.

  15. S-matrix description of anomalus large-angle heavy-ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hussein, M.S.; Canto, L.F.; Donangelo, R.J.

    1981-01-01

    A quantitative description of the well-known anomalous features observed in the large-angle scattering of n.α type heavy ions, in particular of the pronounced structures in the backangle excitation function or 16 O + 28 Si is presented. This treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement. (Author) [pt

  16. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  17. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  18. High density nitrogen-vacancy sensing surface created via He{sup +} ion implantation of {sup 12}C diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsasser, Ed E., E-mail: edklein@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Stanfield, Matthew M.; Banks, Jannel K. Q. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Zhu, Zhouyang; Li, Wen-Di [HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000 (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Acosta, Victor M. [Department of Physics and Astronomy, Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Fu, Kai-Mei C., E-mail: kaimeifu@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2016-05-16

    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.

  19. Calculation of emission from hydrogenic ions in super liquid density plasmas

    International Nuclear Information System (INIS)

    Bailey, D.S.; Valeo, E.J.

    1976-01-01

    Previous calculations of line emission were extended to higher density, lower temperature plasmas, typical of those expected in early ablative compression experiments. Emission from Ne-seeded fuel was analyzed in order to diagnose the density and temperature of the compressed core. The Stark/Doppler broadened emission profile is calculated for the H-like Ne resonance line. The observable lineshape is then obtained by time-averaging over expected density and temperature profiles and by including the effects of radiative transfer

  20. High density lower hybrid current drive and Ion Bernstein Waves heating experiments on FTU

    International Nuclear Information System (INIS)

    Pericoli-Ridolfini, V.; Panaccione, L.; Podda, S.

    1999-01-01

    An investigation of the efficiency of CD in the LH range of frequency on FTU was performed up to densities above 1x10 20 m -3 . The dependence on temperature, density, magnetic field was elucidated. Preliminary results on IBW are reported. (author)

  1. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

    International Nuclear Information System (INIS)

    Zhao, H.; University of Colorado, Boulder, CO; Li, X.; University of Colorado, Boulder, CO; Baker, D. N.

    2015-01-01

    Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute more significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O + . This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.

  2. A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2012-05-15

    A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

  3. A large area diamond-based beam tagging hodoscope for ion therapy monitoring

    Science.gov (United States)

    Gallin-Martel, M.-L.; Abbassi, L.; Bes, A.; Bosson, G.; Collot, J.; Crozes, T.; Curtoni, S.; Dauvergne, D.; De Nolf, W.; Fontana, M.; Gallin-Martel, L.; Hostachy, J.-Y.; Krimmer, J.; Lacoste, A.; Marcatili, S.; Morse, J.; Motte, J.-F.; Muraz, J.-F.; Rarbi, F. E.; Rossetto, O.; Salomé, M.; Testa, É.; Vuiart, R.; Yamouni, M.

    2018-01-01

    The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l'hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused ( 1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.

  4. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  5. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Mehlhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one-dimensional analysis of the diamagnetic compression of magnetic streamlines and the self-consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one-dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments. (author). 8 figs., 15 refs

  6. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Melhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one dimensional analysis of the diamagnetic compression of magnetic streamlines and the self consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments

  7. Uniform current density and divergence control in high power extraction ion diodes

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, M P; Coats, R S; Lockner, T R; Pointon, T D; Johnson, D J; Slutz, S A; Lemke, R W; Cuneo, M E; Mehlhorn, T A [Sandia Labs., Albuquerque, NM (United States)

    1997-12-31

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one-dimensional analysis of the diamagnetic compression of magnetic streamlines and the self-consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one-dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments. (author). 8 figs., 15 refs.

  8. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  9. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  10. Density of uranium ions in the 4I0/sub 9/2/ ground state in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Bouchard, P.; Saint-Dizier, J.P.; Gagne, J.M.

    1983-01-01

    A hollow-cathode type discharge cell as generator of uranium ions is investigated. The 4 I 0 /sub 9/2/ ground-state ion density has been obtained by absorption spectroscopy at 5493 and 4244 A. The absorption measurements have been performed using two identical hollow-cathode lamps: one acting as a light source, the other as a reservoir of free ions. Neon and xenon have been used as discharge sustaining gases. In our experimental conditions the measured ion ground-state density is of the order of 10 12 ions cm -3 . Absorption measurements performed at 5915 and 4246 A of U i give a density of the order of 10 12 atoms cm -3 . This latter value is in excellent agreement with a previously measured value obtained by laser-absorption spectroscopy

  11. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    Science.gov (United States)

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  12. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    Science.gov (United States)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  13. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Glowacz, S.; Jablonski, S.; Parys, P.; Wolowski, J.; Hora, H.; Krása, Josef; Láska, Leoš; Rohlena, Karel

    2005-01-01

    Roč. 46, Suppl. 12B (2005), B541-B555 ISSN 0741-3335 Grant - others:International Atomic Energy Agency in Vienna(XE) 11535/RO; State Committee for Scientific Research (KBN)(PL) 1 PO3B 043 26 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-intensity laser * multiply-charged ions * thin foil targets * picosecond laser * iodine laser * proton acceleration * energetic protons * Ag ions * generation * pulses Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.902, year: 2005

  14. A 3D thermal runaway propagation model for a large format lithium ion battery module

    International Nuclear Information System (INIS)

    Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming

    2016-01-01

    In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.

  15. NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules

    CERN Document Server

    Ens, Werner

    1991-01-01

    A NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules was held at Minaki Lodge, Minaki, Ontario, Canada, from 24 to 28 June 1990. The workshop was hosted by the time-of-flight group of the Department of Physics at the University of Manitoba, and was attended by 64 invited participants from around the world. Twenty-nine invited talks were given and 19 papers were presented as posters. Of the 48 contributions, 38 are included in these proceedings. The conference was organized to study the rapidly changing field of mass spectrometry of biomolecules. Particle-induced desorption (especially with MeV particles) has been the most effective method of producing molecular ions from biomolecules. An important part of the workshop was devoted to recent developments in this field, particularly to progress in understanding the fundamentals of the desorption process. In this respect, the meeting was similar to previous conferences in Marburg, FRG (1978); Paris, F (1980); Uppsala...

  16. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    Science.gov (United States)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  17. Quasi-periodic variations of cometary ion fluxes at large distances from comet Halley

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.K.; Daly, P.W.; Verigin, M.I.; Gringauz, K.I.; Erdos, G.; Kecskemety, K.; Somogyi, A.J.; Szego, K.; Varga, A.; McKenna-Lawlor, S.

    1989-04-01

    Large variations, with a period of about 4 h, in the energetic ion fluxes have been observed far upstream (between 2 and 10 million kilometers) of comet Halley on both the Vega-1 and Giotto spacecraft. We have fitted the cometocentric distances of the occurrences to a simple model of expanding shells of neutral particles, the production of which is modulated by the spin of the comet nucleus, and have achieved excellent agreement between the two spacecraft. We derive an expansion speed for the neutrals of 6.18 +- 0.14 km s/sup -1/. Possible candidates for the neutrals are hydrogen atoms, created by the photo-dissociation of OH with a speed of 8 km s/sup -1/, or oxygen atoms, produced from the photo-dissociation of CO/sub 2/ with a speed of 6.5 km s/sup -1/.

  18. High energy density physics studies at the facility for antiprotons and ion research: the HEDgeHOB collaboration

    International Nuclear Information System (INIS)

    Tahir, N.A.; Stoehlker, T.; Geissel, H.; Shutov, A.; Lomonosov, I.V.; Fortov, V.E.; Piriz, A.R.; Redmer, R.; Deutsch, C.

    2011-01-01

    The forthcoming Facility for Antiprotons and Ion Research (FAIR) at Darmstadt, is going to be a unique accelerator facility that will deliver high quality, strongly bunched, well focused, intense beams of heavy ions that will lead to unprecedented specific power deposition in solid matter. This will generate macroscopic samples of High Energy Density (HED) matter with fairly uniform physical conditions. These samples can be used to study the thermophysical and transport properties of HED matter. Extensive theoretical work has been carried out over the past decade to design numerous dedicated experiments to study HED physics at the FAIR, which has provided the basis for the HEDgeHOB (High Energy Density Matter Generated by Heavy Ion Beams) scientific proposal. This work is still in progress as the feasibility studies for more experimental schemes are being carried out. Another, very important research area that will benefit tremendously from the FAIR facility, is the production of radioactive beams. A superconducting fragment separator, Super-FRS is being designed for the production and separation of rare radioactive isotopes. Unlike the HED targets, the Super-FRS production target should not be destroyed or damaged by the beam, but should remain intact during the long experimental campaign. However, the high level of specific power deposited in the production target by the high intensity ion beam at FAIR, could cause serious problems to the target survival. These HED issues related to the Super-FRS production target are also discussed in the present paper (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Multicomponent ion transport in a mono and bilayer cation-exchange membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    2017-01-01

    This work describes a model for bilayer cation-exchange membranes used in the chlor-alkali process. The ion transport inside the membrane is modeled with the Nernst–Planck equation. A logistic function is used at the boundary between the two layers of the bilayer membrane to describe the change in

  20. Short bunch length detector for ion beam with high bunch density

    International Nuclear Information System (INIS)

    Tron, A.M.; Shako, V.V.

    1993-01-01

    The secondary electron rf monitors for short ion bunch phase distribution measurements are presented. Construction particularities of the monitors, influence of space charge of both the primary and the secondary electron beams on the phase resolution, thermal regime of the target during beam-target interaction are considered

  1. Large geometry secondary ion mass spectrometry (LG-SIMS) for the enhancement of nuclear safeguards applications

    International Nuclear Information System (INIS)

    Helberg, P.M.L.; Wallenius, M.; Vincent, C.; Albert, N.; Peres, P.; Truyens, J.

    2013-01-01

    A new LG-SIMS (Large Geometry Secondary Ion Mass Spectrometry) laboratory is currently being established at the Joint Research Centre, the Institute of Transuranium Elements for the purpose of improving the analytical capabilities within the European Commission. The laboratory will mainly be used for analysing uranium bearing aerosol particles collected on cotton swipes from nuclear Safeguards inspections but it will also be used for Nuclear Forensics and other Safeguards related applications. Until recently, this type of analysis has predominantly been performed using the small geometry CAMECA IMS 3F-7F instrument series. These instruments provide both particle screening and isotope ratio capabilities. The performance of these instruments was however limited by the occurrence of isobaric interferences, in particular for the minor isotopes ( 234 U, 236 U), that could not be resolved without compromising the transmission of the instrument. A recent breakthrough to solve this problem has been the implementation of Large Geometry SIMS, the CAMECA 1270 / 1280 / 1280-HR models, for this type of analysis. This instrument has originally been developed for geosciences applications requiring both high transmission and high mass resolution capabilities. This came out to be a key instrumental advantage also for uranium particle analyses, as it allows efficient removal of common molecular interferences with minimum loss in transmission. Furthermore an electrostatic ion optical device has been added for increasing the mass dispersion which allows the simultaneous detection of all uranium isotopes. The Automated Particle Measurement (APM) software has been developed to perform screening measurement in an automated mode. Combined with the APM screening software, LG-SIMS instruments greatly improve the overall performance and throughput of isotopic analyses of U particles for nuclear Safeguards purposes. The paper is followed by the slides of the presentation. (A.C.)

  2. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, Keith [Farasis Energy Inc; Slater, Michael [Farasis Energy Inc

    2018-03-14

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The major technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.

  3. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa [Hunter College City University of New York, New York, NY (United States)

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  4. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  5. Magnesium plasma immersion ion implantation in a large straight magnetic duct

    International Nuclear Information System (INIS)

    Tan, Ing Hwie; Ueda, Mario; Dallaqua, Renato S; Rossi, Jose O; Beloto, Antonio F; Abramof, Eduardo; Inoue, Y; Takai, Osamu

    2002-01-01

    Magnesium ions were implanted on silicon wafers using a vacuum arc plasma system with a straight 1 m long magnetic duct, 0.22 m in diameter. Good macroparticle filtering was obtained in samples positioned facing the plasma stream and complete filtering was achieved in samples with surfaces parallel to the plasma stream and magnetic field. Deposition is also minimized by placing sample surfaces parallel to the plasma stream. High resolution x-ray diffraction rocking curves of implanted samples show that the changes in lattice constant are due to compressive strain, and the distortion is larger for higher voltages. Without magnetic field the implantation was a few hundred angstroms deep, as expected, but with magnetic field the depth profile was surprisingly extended to over 0.1 μm, a fact for which we do not yet have a convincing explanation, but could be related to radiation enhanced segregation. The presence of a magnetic field increases substantially the retained implantation dose due to the increase in plasma density by two orders of magnitude

  6. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  7. Measurements of energetic helium-3 minority distributions during ion cyclotron radiofrequency heating in the Princeton large torus

    International Nuclear Information System (INIS)

    Hammett, G.W.; Kaita, R.; Wilson, J.R.

    1988-01-01

    Ion cyclotron radiofrequency heating experiments were performed with a 3 He minority ion species in a 4 He majority plasma in the Princeton Large Torus. The energetic 3 He ion 'tail' was measured directly with a charge exchange neutral analyser for the first time. Comparisons with bounce averaged quasi-linear calculations suggest a modestly peaked radiofrequency power deposition profile. The double charge exchange process 3 He ++ + 4 He o -> 3 He o + 4 He ++ demonstrated in these measurements may be useful as part of an alpha particle diagnostic in a fusion reactor experiment. (author). 21 refs, 4 figs

  8. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  9. Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling

    International Nuclear Information System (INIS)

    Samba, Ahmadou; Omar, Noshin; Gualous, Hamid; Capron, Odile; Van den Bossche, Peter; Van Mierlo, Joeri

    2014-01-01

    This paper presents extensive three-dimensional (3D) simulations of large LiFPO 4 pouch cells. 3D simulations of the Li-ion battery behavior are highly nonlinear and computationally demanding. Coupling electrochemical modeling to thermal models represents an important step towards accurate simulation of the Li-ion battery. Non-uniform temperature, potential and current density through the battery induce non-uniform use of the active material and can have a negative impact on cell performance and lifetime. Different pouch cell designs, with different tab locations, have been investigated in term of performance, current density, potential and heat distributions. The model is first validated with experimental data at different current discharge rates. Afterwards, the electrochemical, thermal and electrical behaviors over each cell design under high discharge rate (4 I t ) are compared between configurations. It has been shown that the designs with symmetrical configurations show uniform potential and current density gradient, which minimize the ohmic heat and lead to more uniform active material utilization and temperature distributions across the cell surface.Introduction

  10. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  11. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  12. Comparative studies of the laser Thomson scattering and Langmuir probe methods for measurements of negative ion density in a glow discharge plasma

    International Nuclear Information System (INIS)

    Noguchi, M; Hirao, T; Shindo, M; Sakurauchi, K; Yamagata, Y; Uchino, K; Kawai, Y; Muraoka, K

    2003-01-01

    The newly developed method of the negative ion density measurement in a plasma by laser Thomson scattering (LTS) was checked by comparing the obtained results against an independent technique, namely the Langmuir probe method. Both measurements were performed at the same position of the same inductively coupled plasma. The results agree quite well with each other and this has given confidence in the LTS method of negative ion density measurement. At the same time, both methods are complementary to each other, because the Langmuir probe measurement requires knowledge of the positive ion mass number

  13. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  14. The deduction of low-Z ion temperature and densities in the JET tokamak using charge exchange recombination spectroscopy

    International Nuclear Information System (INIS)

    Boileau, A.; Hellermann, M. von; Horton, L.D.; Spence, J.; Summers, H.P.

    1989-01-01

    A charge exchange recombination spectroscopy (CXRS) diagnostic has been established on JET to study fully stripped low-Z species. Ion temperature in the plasma centre is measured from visible lines of helium, carbon and oxygen excited by charge exchange with heating neutral beam particles. Coincident cold components produced at the plasma edge are apparent on helium and carbon spectra and most spectra are subject to accidental blending from other species' edge plasma emission. The charge exchange feature can be isolated from the various composite lines and all three impurities agree on the same temperature within experimental error. Observed column emissivities are converted into absolute impurity densities using a neutral beam attenuation code and charge exchange effective rate coefficients. Comprehensive new calculations have been performed to obtain the effective rate coefficients. The models take detailed account of cascading and the influence of the plasma environment in causing l-mixing, and allow the n-dependence of the rate coefficients to be addressed experimentally. The effective ion charge reconstructed from simultaneous measurements of the densities of dominant impurities shows good agreement with the value inferred from visible Bremsstrahlung. Some illustrative results are shown for helium (helium discharge or minority r.f.. heating), carbon and oxygen concentrations monitored during characteristic operating regimes. (author)

  15. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    Science.gov (United States)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  16. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  17. Efficient synthesis of large-scale thinned arrays using a density-taper initialised genetic algorithm

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-09-01

    Full Text Available The use of the density-taper approach to initialise a genetic algorithm is shown to give excellent results in the synthesis of thinned arrays. This approach is shown to give better SLL values more consistently than using random values and difference...

  18. Macular pigment optical density in the elderly: findings in a large biracial Midsouth population sample

    NARCIS (Netherlands)

    Iannaccone, Alessandro; Mura, Marco; Gallaher, Kevin T.; Johnson, Elizabeth J.; Todd, William Andrew; Kenyon, Emily; Harris, Tarsha L.; Harris, Tamara; Satterfield, Suzanne; Johnson, Karen C.; Kritchevsky, Stephen B.

    2007-01-01

    PURPOSE: To report the macular pigment optical density (MPOD) findings at 0.5 degrees of eccentricity from the fovea in elderly subjects participating in ARMA, a study of aging and age-related maculopathy (ARM) ancillary to the Health, Aging, and Body Composition (Health ABC) Study. METHODS: MPOD

  19. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  20. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  1. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  2. The effect of random matter density perturbations on the large mixing angle solution to the solar neutrino problem

    Science.gov (United States)

    Guzzo, M. M.; Holanda, P. C.; Reggiani, N.

    2003-08-01

    The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.

  3. Critical current densities and flux creep rate in Co-doped BaFe2As2 with columnar defects introduced by heavy-Ion irradiation

    International Nuclear Information System (INIS)

    Nakajima, Y.; Tsuchiya, Y.; Taen, T.; Yagyuda, H.; Tamegai, T.; Okayasu, S.; Sasase, M.; Kitamura, H.; Murakami, T.

    2010-01-01

    We report the formation of columnar defects in Co-doped BaFe 2 As 2 single crystals with different heavy-ion irradiations. The formation of columnar defects by 200 MeV Au ion irradiation is confirmed by transmission electron microscopy and their density is about 40% of the irradiation dose. Magneto-optical imaging and bulk magnetization measurements reveal that the critical current density J c is enhanced in the 200 MeV Au and 800 MeV Xe ion irradiated samples while J c is unchanged in the 200 MeV Ni ion irradiated sample. We also find that vortex creep rates are strongly suppressed by the columnar defects. We compare the effect of heavy-ion irradiation into Co-doped BaFe 2 As 2 and cuprate superconductors.

  4. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  5. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Doyle, S. [Synchrotron Light Source ANKA, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviations from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.

  6. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  7. The dawn–dusk asymmetry of ion density in the dayside magnetosheath and its annual variability measured by THEMIS

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2016-05-01

    Full Text Available The local and global plasma properties in the magnetosheath play a fundamental role in regulating solar wind–magnetosphere coupling processes. However, the magnetosheath is a complex region to characterise as it has been shown theoretically, observationally and through simulations that plasma properties are inhomogeneous, non-isotropic and asymmetric about the Sun-Earth line. To complicate matters, dawn–dusk asymmetries are sensitive to various changes in the upstream conditions on an array of timescales. The present paper focuses exclusively on dawn–dusk asymmetries, in particularly that of ion density. We present a statistical study using THEMIS data of the dawn–dusk asymmetry of ion density in the dayside magnetosheath and its long-term variations between 2009 and 2015. Our data suggest that, in general, the dawn-side densities are higher, and the asymmetry grows from noon towards the terminator. This trend was only observed close to the magnetopause and not in the central magnetosheath. In addition, between 2009 and 2015, the largest asymmetry occurred around 2009 decreasing thereafter. We also concluded that no single parameter such as the Alfvén Mach number, plasma velocity, or the interplanetary magnetic field strength could exclusively account for the observed asymmetry. Interestingly, the dependence on Alfvén Mach number differed between data sets from different time periods. The asymmetry obtained in the THEMIS data set is consistent with previous studies, but the solar cycle dependence was opposite to an analysis based on IMP-8 data. We discuss the physical mechanisms for this asymmetry and its temporal variation. We also put the current results into context with the existing literature in order to relate THEMIS era measurements to those made during earlier solar cycles.

  8. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Tang, W.M.

    1989-09-01

    Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs

  9. Density and field effect on electron-ion collision cross-sections in hot dense plasma

    International Nuclear Information System (INIS)

    Gaufridy de Dortan, F. de

    2003-03-01

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening

  10. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  11. Implosion measurements in a high voltage, large diameter, medium density theta pinch

    International Nuclear Information System (INIS)

    Henins, I.; Hammel, J.E.; Jarboe, T.E.; Marshall, J.; Sherwood, A.R.

    1975-01-01

    Extensive sets of density measurements were obtained for two preionization levels with other parameters held constant (B = 0.5 T, n 0 = 4.8 x 10 14 cm -3 , E/sub theta/ = 1 kV/cm). The gross features of the implosion are similar in the two cases, but the density front is double-peaked for the higher preionization case. Generally, the particles move ahead of the driving magnetic field front, but some are also within this front. After reaching the axis the imploding plasma is observed to move outward again through the magnetic field in a manner suggesting anomalous transport. The particles stop at the outer radii. The total number of particles increases during the implosion and thereafter remains about constant. (auth)

  12. Computation of the current density in nonlinear materials subjected to large current pulses

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.

    1991-01-01

    This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments

  13. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  14. A test of the mean density approximation for Lennard-Jones mixtures with large size ratios

    International Nuclear Information System (INIS)

    Ely, J.F.

    1986-01-01

    The mean density approximation for mixture radial distribution functions plays a central role in modern corresponding-states theories. This approximation is reasonably accurate for systems that do not differ widely in size and energy ratios and which are nearly equimolar. As the size ratio increases, however, or if one approaches an infinite dilution of one of the components, the approximation becomes progressively worse, especially for the small molecule pair. In an attempt to better understand and improve this approximation, isothermal molecular dynamics simulations have been performed on a series of Lennard-Jones mixtures. Thermodynamic properties, including the mixture radial distribution functions, have been obtained at seven compositions ranging from 5 to 95 mol%. In all cases the size ratio was fixed at two and three energy ratios were investigated, 22 / 11 =0.5, 1.0, and 1.5. The results of the simulations are compared with the mean density approximation and a modification to integrals evaluated with the mean density approximation is proposed

  15. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  16. Optimum electron temperature and density for short-wavelength plasma-lasing from nickel-like ions

    International Nuclear Information System (INIS)

    Masoudnia, Leili; Bleiner, Davide

    2014-01-01

    Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the 3d 9 4d 1 (J=0)→3d 9 4p 1 (J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at λ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω pumping

  17. Path integral effects in heavy ion beam probe density measurements: A comparison of simulation results and experimental data

    International Nuclear Information System (INIS)

    Heard, J.W.; Crowley, T.P.; Ross, D.W.; Schoch, P.M.; Hickok, R.L. Jr.; Zhang, B.Z.

    1993-01-01

    The heavy ion beam probe (HIBP) signal used to measure local density fluctuations in a plasma is also sensitive to modulation due to density fluctuations along the entire beam trajectory. A modulation model of the HIBP experiment on the Texas experimental tokamak (TEXT) is presented. The model includes profile information for equilibrium and fluctuating parameters, allows for differences in the radial and poloidal characteristics of the fluctuations, and uses realistic beam trajectories. It is shown that profile effects are important in understanding HIBP modulation and that modulation does not simply increase with line average density in TEXT. In addition, calculations of the modulation effects show that only the terms which correspond to in-phase signals at the two sample volumes are significant. Therefore, the modulation effects can be approximated with a real parameter. Under these assumptions, it is shown that only long correlation length, low wave number modes will contribute significantly to the corruption of the measured signal. The calculation of the modulation effects are consistent with the experiment. It is illustrated herein how the measured data can be used to set limits on the modulation signal without doing extensive model calculations. These limits show that there must be long wavelength fluctuations in the plasma

  18. SiLix-C Nanocomposites for High Energy Density Li-ion Battery Anodes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project Superior Graphite Co. (Chicago, IL, USA), the leading worldwide industrial carbon manufacturer and the only large scale battery grade graphitic...

  19. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  20. Interference fringes in synchrotron section topography of implanted silicon with a very large ion range

    International Nuclear Information System (INIS)

    Wieteska, K.; Dluzewska, K.; Wierzchowski, W.; Graeff, W.

    1997-01-01

    Silicon crystals implanted with 9 MeV protons to the dose of 5x10 17 cm -2 were studied with X-ray topographic methods using both conventional and synchrotron radiation sources. After the implantation the crystals were thermally and electron annealed. The implantation produced large 600 μm thick shot-through layer while the total thickness of the samples was 1.6 mm. It was confirmed by means of double crystal topography that the whole crystal was elastically bent. The transmission section patterns revealed both parts of the implanted crystal separated by strong contrasts coming from the most damaged layer and distinct interference fringes which appeared on one side of the topograph only. The locations of the fringes changed when the beam entered the other side of the sample. The mechanism of fringe formation was studied with numerical integration of the Takagi-Taupin equations, especially studying the intensity distribution in the diffraction plane. The simulations reproduced the location of the fringes in different geometries and indicate that they can be caused both by variable crystal curvature and variable ion dose. (author)

  1. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    Science.gov (United States)

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  2. Life Prediction of Large Lithium-Ion Battery Packs with Active and Passive Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zane, Regan [Utah State University; Anderson, Dyche [Ford Motor Company

    2017-07-03

    Lithium-ion battery packs take a major part of large-scale stationary energy storage systems. One challenge in reducing battery pack cost is to reduce pack size without compromising pack service performance and lifespan. Prognostic life model can be a powerful tool to handle the state of health (SOH) estimate and enable active life balancing strategy to reduce cell imbalance and extend pack life. This work proposed a life model using both empirical and physical-based approaches. The life model described the compounding effect of different degradations on the entire cell with an empirical model. Then its lower-level submodels considered the complex physical links between testing statistics (state of charge level, C-rate level, duty cycles, etc.) and the degradation reaction rates with respect to specific aging mechanisms. The hybrid approach made the life model generic, robust and stable regardless of battery chemistry and application usage. The model was validated with a custom pack with both passive and active balancing systems implemented, which created four different aging paths in the pack. The life model successfully captured the aging trajectories of all four paths. The life model prediction errors on capacity fade and resistance growth were within +/-3% and +/-5% of the experiment measurements.

  3. Large aperture contact ionized Cs+1 ion source for an induction linac

    International Nuclear Information System (INIS)

    Abbott, S.; Chupp, W.; Faltens, A.; Herrmannsfeldt, W.; Hoyer, E.; Keefe, D.; Kim, C.H.; Rosenblum, S.; Shiloh, J.

    1979-03-01

    A 500 KeV one-ampere Cs +1 ion beam has been generated by contact ionization with a 30 cm dia. iridium hot plate. Reproducibility of space charge limited ion current wave forms at repetition rates up to 1 Hz has been verified. The beam is characterized to be very bright and suitable as an ion source for the induction linac based heavy ion fusion scheme. The hot anode plate was found to be reliable and self-cleaning during the operation

  4. Density effects in heavy ion charge-exchange processes in gaseous and solid targets

    International Nuclear Information System (INIS)

    Teplova, Ya.A.; Dmitriev, I.S.; Belkova, Yu.A.

    2000-01-01

    Experimental results on the pre-equilibrium and equilibrium charge distributions in celluloid films for incident Be, B, C, N, O ions are analyzed in order to obtain charge-exchange cross-sections. The determined 'effective' cross-sections of electron capture and loss in celluloid together with earlier measured analogous cross-sections in nitrogen allow us to calculate charge fractions F i (t) depending on the target thickness in solid (celluloid) and gaseous (nitrogen) matter. The absolute values and the ratios A cap =σ g i,i-1 /σ s i,i-1 and A loss =σ g i-1,i /σ s i-1,i of electron capture and loss cross-sections in {s} solids (celluloid, carbon) and {g} gases (nitrogen) are under consideration

  5. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  6. Measurement of the radial density distribution of the light emissions near the trajectory of fast ions in nitrogen

    International Nuclear Information System (INIS)

    Ibach, T.

    1983-11-01

    For the analysis of the emission and deceleration mechanisms of ionisation-electrons (delta-electrons) during the passage of fast ions through gases, the radial density distribution of the light emission has been measured, which is related with the (0,0)-transitions of two optical bands in nitrogen. These measurements have been made using a small aperture limited ion beam. The first band under study is the 2. positive system at 337.1 nm excited mainly by low energy electrons around 20 eV, and the second band is the 1. negative system at 391.4 nm excited by fast electrons with simultaneous ionisation. For these measurements an experimental setup has been developed with a telescope-like optical system and interference filters to detect the emitted light with a high spacial resolution (4x10 -4 of profile width) and a high dynamic range (10 6 ). The experiments have been performed using proton beams of different energies between 270 keV and 2.8 MeV, He-3 beams with 270 keV/u and 500 keV/u and a Ne beam with 270 keV/u with gas pressures in the range between 0.133 to 13.3 mbar. Based on the method of Abel inversion the spacial light emission density is deduced from the experimental distance functions and normalized to a gas density of 1 g/cm 3 . The results show that approximately half of the total light emission in the 1. negative system and the ionisation is caused by the primary interaction of the ion beam. For the same energy per nucleon this contribution decreases relative to the contribution of the delta-electrons with increasing atomic number. In addition the delta-radiation becomes harder with increasing atomic number. Good agreement is obtained by comparison with the results of other authors, which are based on probe techniques and Monte-Carlo-calculations. (orig./HP) [de

  7. Evaluating of electronic structure of Lanthanum chromite under doping of divalent ion using density functional theory

    International Nuclear Information System (INIS)

    Saievar, E.; Gharleghi, A.

    2006-01-01

    Doping Calcium in Lanthanum site of LaCrO 3 compound increasing the density of states in valance band and decreasing the band gap width because of increases of S electrons in valance band and variety of interaction energies from Cr +3 -Cr +4 couple in valance band. We have used Wien2k software for evaluating this mechanisms. Using of 0.25 percent of dopant and a kind of the space group of cell, let us to use one cell in calculations. We have used GGA approximation in this calculations.

  8. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional

    OpenAIRE

    Su, Julius T.; Xu, Xin; Goddard, William A., III

    2004-01-01

    We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE)...

  9. Self-interaction error in density functional theory: a mean-field correction for molecules and large systems

    International Nuclear Information System (INIS)

    Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry

    2005-01-01

    Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems

  10. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  11. Measurement of liquid mixing characteristics in large-sized ion exchange column for isotope separation by stepwise response method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Iwamoto, Kazumi; Itoi, Toshiaki.

    1981-07-01

    Liquid mixing in a large-sized ion exchange column for isotope separation was measured by the step-wise response method, using NaCl solution as tracer. A 50 cm diameter column was packed with an ion exchange resin of 200 μm in mean diameter. Experiments were carried out for several types of distributor and collector, which were attached to each end of the column. The smallest mixing was observed for the perforated plate type of the collector, coupled with a minimum stagnant volume above the ion exchange resin bed. The 50 cm diameter column exhibited the better characteristics of liquid mixing than the 2 cm diameter column for which the good performance of lithium isotope separation had already been confirmed. These results indicate that a large increment of throughput is attainable by the scale-up of column diameter with the same performance of isotope separation as for the 2 cm diameter column. (author)

  12. Body mass of prefledging Emperor Geese Chen canagica: Large-scale effects of interspecific densities and food availability

    Science.gov (United States)

    Lake, B.C.; Schmutz, J.A.; Lindberg, M.S.; Ely, Craig R.; Eldridge, W.D.; Broerman, F.J.

    2008-01-01

    We studied body mass of prefledging Emperor Geese Chen canagica at three locations across the Yukon-Kuskokwim Delta, Alaska, during 1990-2004 to investigate whether large-scale variation in body mass was related to interspecific competition for food. From 1990 to 2004, densities of Cackling Geese Branta hutchinsii minima more than doubled and were c. 2-5?? greater than densities of Emperor Geese, which were relatively constant over time. Body mass of prefledging Emperor Geese was strongly related (negatively) to interspecific densities of geese (combined density of Cackling and Emperor Geese) and positively related to measures of food availability (grazing lawn extent and net above-ground primary productivity (NAPP)). Grazing by geese resulted in consumption of ??? 90% of the NAPP that occurred in grazing lawns during the brood-rearing period, suggesting that density-dependent interspecific competition was from exploitation of common food resources. Efforts to increase the population size of Emperor Geese would benefit from considering competitive interactions among goose species and with forage plants. ?? 2008 The Authors.

  13. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome.

    Science.gov (United States)

    El-Salhy, Magdy; Patcharatrakul, Tanisa; Hatlebakk, Jan Gunnar; Hausken, Trygve; Gilja, Odd Helge; Gonlachanvit, Sutep

    Patients with irritable bowel syndrome (IBS) in Asia show distinctive differences from those in the western world. The gastrointestinal endocrine cells appear to play an important role in the pathophysiology of IBS. The present study aimed at studying the density of chromogranin A (CgA) cells in the large intestine of Thai and Norwegian IBS patients. Thirty Thai IBS patients and 20 control subjects, and 47 Norwegian IBS patients and 20 control subjects were included. A standard colonoscopy was performed in both the patients and controls, and biopsy samples were taken from the colon and the rectum. The biopsy samples were stained with hematoxylin-eosin and immunostained for CgA. The density of CgA cells was determined by computerized image analysis. In the colon and rectum, the CgA cell densities were far higher in both IBS and healthy Thai subjects than in Norwegians. The colonic CgA cell density was lower in Norwegian IBS patients than in controls, but did not differ between Thai IBS patients and controls. In the rectum, the CgA cell densities in both Thai and Norwegian patients did not differ from those of controls. The higher densities of CgA cells in Thai subjects than Norwegians may be explained by a higher exposure to infections at childhood and the development of a broad immune tolerance, by differences in the intestinal microbiota, and/or differing diet habits. The normal CgA cell density in Thai IBS patients in contrast to that of Norwegians may be due to differences in pathophysiology.

  14. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    Science.gov (United States)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  15. Increased Chromogranin A Cell Density in the Large Intestine of Patients with Irritable Bowel Syndrome after Receiving Dietary Guidance

    Directory of Open Access Journals (Sweden)

    Tarek Mazzawi

    2015-01-01

    Full Text Available The large intestine contains five types of endocrine cells that regulate its functions by sensing its luminal contents and releasing specific hormones. Chromogranin A (CgA is a common marker for the gastrointestinal endocrine cells, and it is abnormal in irritable bowel syndrome (IBS patients. Most IBS patients relate their symptoms to certain food elements. The present study investigated the effect of dietary guidance on the total endocrine cells of the large intestine as detected by CgA in 13 IBS patients. Thirteen control subjects were also included. Each patient received three sessions of dietary guidance. Colonoscopies were performed on controls and patients (at baseline and at 3–9 months after receiving guidance. Biopsy samples from the colon and rectum were immunostained for CgA and quantified by computerized image analysis. The densities of CgA cells in the total colon (mean ± SEM among the controls and the IBS patients before and after receiving dietary guidance were 83.3±10.1, 38.6±3.7, and 64.7±4.2 cells/mm2, respectively (P=0.0004, and were unchanged in the rectum. In conclusion, the increase in CgA cell density after receiving dietary guidance may reflect a change in the densities of the large intestinal endocrine cells causing an improvement in the IBS symptoms.

  16. Quark-gluon plasma at finite baryons density and in limit of large Nc

    International Nuclear Information System (INIS)

    Azakov, S.I.

    1987-01-01

    Study of thermodynamics of ideal colourless quark-gluon (QG) gas in limit of large N C is carried out. Consideration of this limit much simplifies the problem on calculation of such system statsum. Unlike the papers where the properties of ideal colourless QG-gas were defined in approximation valid at large V volumes, in the given calculations the volume may be arbitrary. The ideal QG gas is considered in a final volume. Phase transition is shown to be absent in the problem more relativistic from the physical view point, when conservation of the baryon charge is taken into account

  17. Construction of the High-Density Genetic Linkage Map and Chromosome Map of Large Yellow Croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Jingqun Ao

    2015-11-01

    Full Text Available High-density genetic maps are essential for genome assembly, comparative genomic analysis and fine mapping of complex traits. In this study, 31,191 single nucleotide polymorphisms (SNPs evenly distributed across the large yellow croaker (Larimichthys crocea genome were identified using restriction-site associated DNA sequencing (RAD-seq. Among them, 10,150 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs. The total length of the genetic linkage map was 5451.3 cM with an average distance of 0.54 cM between loci. This represents the densest genetic map currently reported for large yellow croaker. Using 2889 SNPs to target specific scaffolds, we assigned 533 scaffolds, comprising 421.44 Mb (62.04% of the large yellow croaker assembled sequence, to the 24 linkage groups. The mapped assembly scaffolds in large yellow croaker were used for genome synteny analyses against the stickleback (Gasterosteus aculeatus and medaka (Oryzias latipes. Greater synteny was observed between large yellow croaker and stickleback. This supports the hypothesis that large yellow croaker is more closely related to stickleback than to medaka. Moreover, 1274 immunity-related genes and 195 hypoxia-related genes were mapped to the 24 chromosomes of large yellow croaker. The integration of the high-resolution genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits in large yellow croaker.

  18. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    National Research Council Canada - National Science Library

    Rovey, Joshua L; Walker, Mitchell L. R; Gallimore, Alec D; Peterson, Peter Y

    2006-01-01

    .../s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4 x 10(-4) Pa Xe (3.3 x 10(-6) Torr Xe) to 1.1 10(-3) Pa Xe (8.4 x 10(-6) Torr Xe...

  19. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...... layer was 3.3 due to a substantial temperature difference of 1600K between jet and wall. Results are presented which indicate very high heat flux levels and it is demonstrated that the jet inlet turbulence intensity significantly influences the heat transfer results, especially in the stagnation region....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  20. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    International Nuclear Information System (INIS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-01-01

    Highlights: • We study the interaction between Si clusters with pristine and defective graphene. • We find that the binding strength of Si clusters on graphene can be enhanced to different degrees after introducing various defects. • It is found that both graphene and Si cluster in the Si/graphene composites can preserve their Li uptake ability. - Abstract: Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<−0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li

  1. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    Science.gov (United States)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  2. Super high energy density of Li3V2(PO4)3 as cathode materials for lithium ion batteries

    Science.gov (United States)

    Noerochim, Lukman; Amin, Mochammad Karim Al; Susanti, Diah; Triwibowo, Joko

    2018-04-01

    Lithium ion batteries have many advantages such as high energy density, no memory effect, long time cycleability and friendly environment. One type of cathode material that can be developed is Li3V2(PO4)3. In this study has been carried out the synthesis of Li3V2(PO4)3 with a hydrothermal temperature variation of 140, 160 and 180 °C and calcination temperature at 800 °C. SEM images show that the morphology of Li3V2(PO4)3 has irregular flakes with a size between 1-10 µm. CV results show redox reaction occurs in the range between 3 V to 4.8 V with the highest specific discharge capacity of 136 mAh/g for specimen with temperature hydrothermal and calcination are 180 °C and 800 °C. This result demonstrates that Li3V2(PO4)3 has a great potential as cathode material for lithium ion battery.

  3. Re-entering fast ion effects on NBI heating power in high-beta plasmas of the Large Helical Device

    International Nuclear Information System (INIS)

    Seki, Ryosuke; Watanabe, Kiyomasa; Funaba, Hisamichi; Suzuki, Yasuhiro; Sakakibara, Satoru; Ohdachi, Satoshi; Matsumoto, Yutaka; Hamamatsu, Kiyotaka

    2011-10-01

    We calculate the heating power of the neutral beam injection (NBI) in the = 4.8% high-beta discharge achieved in the Large Helical Device (LHD). We investigate the difference of the heating efficiency and the heating power profile between with and without the re-entering fast ion effects. When the re-entering fast ion effects are taken into account, the heating efficiency in the co injection of the NBI (co-NBI case) is improved and it is about 1.8 times larger than that without the re-entering effects. In contrast, the heating efficiency with the re-entering effects in the counter injection of the NBI (ctr-NBI case) rarely differs from that without the re-entering ones. We also study the re-entering fast ion effects on the transport properties in the LHD high beta discharges. It is found that the tendency of the thermal conductivities on the beta value is not so much sensitive with and without the re-entering effects. In addition, we investigate the difference in the re-entering fast ion effects caused by the field strength and the magnetic configuration. In the co-NBI case, the re-entering fast ion effects on the heating efficiency increases with the decrease of the field strength. In the contrast, the re-entering fast ion effects in the ctr-NBI case rarely differs by changing the field strength. (author)

  4. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Feng, Xuning; Han, Xuebing; Lu, Languang; Li, Zhe; He, Xiangming

    2016-01-01

    Highlights: • A dynamic capacity degradation model for large format Li-ion battery is proposed. • The change of the model parameters directly link with the degradation mechanisms. • The model can simulate the fading behavior of Li-ion battery under varying loads. • The model can help evaluate the longevity of a battery system under specific load. • The model can help predict the evolution of cell variations within a battery pack. - Abstract: The capacity degradation of the lithium ion battery should be well predicted during battery system design. Therefore, high-fidelity capacity degradation models that are suitable for the task of capacity prediction are required. This paper proposes a novel capacity degradation model that can simulate the degradation dynamics under varying working conditions for large-format lithium ion batteries. The degradation model is built based on a mechanistic and prognostic model (MPM) whose parameters are closely linked with the degradation mechanisms of lithium ion batteries. Chemical kinetics was set to drive the parameters of the MPM to change as capacity degradation continues. With the dynamic parameters of the MPM, the capacity predicted by the degradation model decreases as the cycle continues. Accelerated aging tests were conducted on three types of commercial lithium ion batteries to calibrate the capacity degradation model. The good fit with the experimental data indicates that the model can capture the degradation mechanisms well for different types of commercial lithium ion batteries. Furthermore, the calibrated model can be used to (1) evaluate the longevity of a battery system under a specific working load and (2) predict the evolution of cell variations within a battery pack when different cell works at different conditions. Correlated applications are discussed using the calibrated degradation model.

  5. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  6. Conductivity of ion dielectrics during the mean flux-density electron- and X-ray pulse radiation

    International Nuclear Information System (INIS)

    Vajsburd, D.I.; Mesyats, G.A.; Naminov, V.L.; Tavanov, Eh.G.

    1982-01-01

    Conductivity of ion dielectrics under electron and X-ray pulse radiation is investigated. Investigations have been conducted in the range of average beam densities in which extinction of low-energy conductivity takes place. Thin plates of alkali-halogen crystals have been used as samples. Small-dimensional accelerator with controlled beam parameters: 1-20 ns, 0.1-2000 A/cm 2 , 0.3-0.5 MeV has been used for radiation. Temperature dependence of conductivity current pulse is determined. Time resolution of 10 - 10 s is achieved. In the 70-300 K range it practically coincides with radiation pulse. An essential inertial constituent is observed below 300 K. It is shown that at average beam densities a comparable contribution into fast conductivity is made by intracentre conductivity independent of temperature and high-temperature conductivity which decreases with temperature with activation energy equal to the energy of short-wave background. That is why amplitude of fast constituent decreases with temperature slower than high-energy conductivity

  7. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    International Nuclear Information System (INIS)

    Malagoli, A; Bernini, C; Braccini, V; Romano, G; Putti, M; Chaud, X; Debray, F

    2013-01-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density J C and on the microstructure. In particular, groove-rolled multifilamentary wires show a J C increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper. (paper)

  8. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms

    Science.gov (United States)

    Cancio, Antonio C.; Redd, Jeremy J.

    2017-03-01

    The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.

  9. Development of Large Li-Ion Batteries for Aircraft and Spacecraft Applications

    National Research Council Canada - National Science Library

    Bruce, Gregg

    1998-01-01

    .... Concurrent was a chemical direction which changed the emphasis of the program from the rechargeable Li/SO2 chemistry to that of the family of cell chemistries which are collectively referred to as lithium ion...

  10. Derivation of the threshold condition for the ion temperature gradient mode with an inverted density profile from a simple physics picture

    Science.gov (United States)

    Jhang, Hogun

    2018-05-01

    We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.

  11. Application and further development of ion implantation for very large scale integration. Pt. 2

    International Nuclear Information System (INIS)

    Haberger, K.; Ryssel, H.; Hoffmann, K.

    1982-08-01

    Ion implantation, used as a dopant technology, provides very well-controlled doping but is dependent on the usual masking techniques. For purposes of pattern generation, it would be desirable to utilize the digital controllability of a finely-focused ion beam. In this report, the suitability of a finely-focused ion beam for the purpose of direct writing implantation has been investigated. For this study, an ion accelerator was equipped with a computer-controlled fine-focusing system. Using this system it was possible to implant Van-der-Pauw test structures, resistors, and bipolar transistors, which were then electrically measured. The smallest line width was approx. 1 μm. A disadvantage is represented by the long implantation times resulting with present ion sources. Another VLSI-relevant area of application for this finely-focused ion-beam-writing system is photoresist exposure, as an alternative to electron-beam lithography, making possible the realization of very small structures without proximity effects and with a significantly higher resist sensitivity. (orig.) [de

  12. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings

    Science.gov (United States)

    Díaz-Cabañas, M. J.; Jiang, J.; Afeworki, M.; Dorset, D. L.; Soled, S. L.; Strohmaier, K. G.

    2010-01-01

    The first zeolite structure (ITQ-40) that contains double four (D4) and double three (D3) member ring secondary building units has been synthesized by introducing Ge and NH4F and working in concentrated synthesis gels. It is the first time that D3-Rs have been observed in a zeolite structure. As was previously analyzed [Brunner GO, Meier, WM (1989) Nature 337:146–147], such a structure has a very low framework density (10.1 T/1,000 Å3). Indeed, ITQ-40 has the lowest framework density ever achieved in oxygen-containing zeolites. Furthermore, it contains large pore openings, i.e., 15-member rings parallel to the [001] hexagonal axis and 16-member ring channels perpendicular to this axis. The results presented here push ahead the possibilities of zeolites for uses in electronics, control delivery of drugs and chemicals, as well as for catalysis. PMID:20660773

  13. Decentralized State-Observer-Based Traffic Density Estimation of Large-Scale Urban Freeway Network by Dynamic Model

    Directory of Open Access Journals (Sweden)

    Yuqi Guo

    2017-08-01

    Full Text Available In order to estimate traffic densities in a large-scale urban freeway network in an accurate and timely fashion when traffic sensors do not cover the freeway network completely and thus only local measurement data can be utilized, this paper proposes a decentralized state observer approach based on a macroscopic traffic flow model. Firstly, by using the well-known cell transmission model (CTM, the urban freeway network is modeled in the way of distributed systems. Secondly, based on the model, a decentralized observer is designed. With the help of the Lyapunov function and S-procedure theory, the observer gains are computed by using linear matrix inequality (LMI technique. So, the traffic densities of the whole road network can be estimated by the designed observer. Finally, this method is applied to the outer ring of the Beijing’s second ring road and experimental results demonstrate the effectiveness and applicability of the proposed approach.

  14. Mechanical analysis and optimisation of large and highly-loaded bearing rollers For the "Riesenrad" Ion Gantry

    CERN Document Server

    Reimoser, S A

    2000-01-01

    A carbon ion gantry would allow the irradiation of cancer patients with carbon ions from any direction in space best suited for therapy. Till today, such a machine has not been built due to the expected size, mass and cost. A novel design, called "Riesenrad" ion gantry, promises to provide a competitive solution. The central part of the Riesenrad, which can rotate ± 90°, is supported (statically determinate) on pendular bearing units with two rollers each. High precision requirements for the structure rule out any plastic deformations in the area of contact. The present report describes the design of the highly-loaded rollers. In order to achieve a large contact area and a uniform distribution of contact stresses, a "barrel shape" for the rollers is proposed. An analysis using the finite element method (FEM) was performed to optimise the roller design, namely to establish the required crown roll (camber radius).

  15. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.

    Science.gov (United States)

    bai, Zhongchao; Ju, Zhicheng; Guo, Chunli; Qian, Yitai; Tang, Bin; Xiong, Shenglin

    2014-03-21

    Hierarchically porous materials are an ideal material platform for constructing high performance Li-ion batteries (LIBs), offering great advantages such as large contact area between the electrode and the electrolyte, fast and flexible transport pathways for the electrolyte ions and the space for buffering the strain caused by repeated Li insertion/extraction. In this work, NiO microspheres with hierarchically porous structures have been synthesized via a facile thermal decomposition method by only using a simple precursor. The superstructures are composed of nanocrystals with high specific surface area, large pore volume, and broad pore size distribution. The electrochemical properties of 3D hierarchical mesoporous NiO microspheres were examined by cyclic voltammetry and galvanostatic charge-discharge studies. The results demonstrate that the as-prepared NiO nanospheres are excellent electrode materials in LIBs with high specific capacity, good retention and rate performance. The 3D hierarchical mesoporous NiO microspheres can retain a reversible capacity of 800.2 mA h g(-1) after 100 cycles at a high current density of 500 mA g(-1).

  16. Relative Contribution of Matrix Structure, Patch Resources and Management to the Local Densities of Two Large Blue Butterfly Species.

    Science.gov (United States)

    Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal

    2016-01-01

    The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.

  17. Relative Contribution of Matrix Structure, Patch Resources and Management to the Local Densities of Two Large Blue Butterfly Species

    Science.gov (United States)

    Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal

    2016-01-01

    The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942

  18. A very large Paul trap system for in-line capture of high-energy DC radioactive ion beams

    International Nuclear Information System (INIS)

    Dezfuli, A.M. Ghalambor; Moore, R.B.; Varfalvy, P.; Schwarz, S.

    2002-01-01

    A very large Paul trap (VLPTRAP) has built to test in-flight collection of DC ion beams. An iterative design process led to a Paul trap that was basically a cylindrical electrode of internal diameter 120 mm with two symmetrically placed coaxial end electrodes that approximated hyperboloids of revolution separated by 106 mm. The trap was operated at up to 20 kV pp at 1 MHz on the ring cylindrical electrode relative to the end electrodes with buffer gas pressures up to 40 mPa. Ions were delivered to the trap from a 60 keV + Cs ion gun and electrostatically decelerated to about 100 eV for entrance. After a cooling time of the order of 1 ms, the ions were extracted by biasing the end electrodes. Beam pulses of less than 1 s could be extracted, at repetition rates down to 1 Hz. An overall bunching efficiency of about 0.4% was obtained, resulting from a collection efficiency of 2% and an extraction efficiency of 20%. The trap could hold up to 10 7 ions at a temperature of 1000 K

  19. Ionospheric Electron/Ion Densities Temperatures on CD-ROM and WWW

    Science.gov (United States)

    Bilitza, Dieter; Papitashvili, Natasha; Schar, Bill; Grebowsky, Joseph

    2002-01-01

    As part of this project a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties were made accessible online in ASCII format for public use. This includes 14 data sets from the BE-B, Alouette 2, DME-A, AE-B, ISIS-1, ISIS-2, OGO-6, DE-2, AEROS-A, AE-C, AE-D, AE-E, and Hinotori satellites. The original data existed in various machine-specific, highly compressed, binary encoding on 7-, or 9-track magnetic tapes. The data were decoded and converted to a common ASCII data format, solar and magnetic indices were added, and some quality control measures were taken. The original intent of producing CD-ROMs with these data was overtaken by the rapid development of the Internet. Most users now prefer to obtain the data directly online and greatly value WWW-interfaces to browse, plot and subset the data. Accordingly the data were made available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on NSSDC's ATMOWeb (http://nssdc.gsfc.nasa.gov/atmoweb/), a WWW-interface for plotting, subsetting, and downloading the data. Several new features were implemented into ATMOWeb as part of this project including a filtering and scatter plot capability. The availability of this new database and WWW system was announced through several electronic mailer (AGU, CEDAR, IRI, etc) and through talks and posters during scientific meetings.

  20. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  1. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes.

    Science.gov (United States)

    Risthaus, Tobias; Grimme, Stefan

    2013-03-12

    A new test set (S12L) containing 12 supramolecular noncovalently bound complexes is presented and used to evaluate seven different methods to account for dispersion in DFT (DFT-D3, DFT-D2, DFT-NL, XDM, dDsC, TS-vdW, M06-L) at different basis set levels against experimental, back-corrected reference energies. This allows conclusions about the performance of each method in an explorative research setting on "real-life" problems. Most DFT methods show satisfactory performance but, due to the largeness of the complexes, almost always require an explicit correction for the nonadditive Axilrod-Teller-Muto three-body dispersion interaction to get accurate results. The necessity of using a method capable of accounting for dispersion is clearly demonstrated in that the two-body dispersion contributions are on the order of 20-150% of the total interaction energy. MP2 and some variants thereof are shown to be insufficient for this while a few tested D3-corrected semiempirical MO methods perform reasonably well. Overall, we suggest the use of this benchmark set as a "sanity check" against overfitting to too small molecular cases.

  2. A High Density Low Cost Digital Signal Processing Module for Large Scale Radiation Detectors

    International Nuclear Information System (INIS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson T.; Grudberg, Peter M.; Warburton, William K.

    2013-06-01

    A 32-channel digital spectrometer PIXIE-32 is being developed for nuclear physics or other radiation detection applications requiring digital signal processing with large number of channels at relatively low cost. A single PIXIE-32 provides spectrometry and waveform acquisition for 32 input signals per module whereas multiple modules can be combined into larger systems. It is based on the PCI Express standard which allows data transfer rates to the host computer of up to 800 MB/s. Each of the 32 channels in a PIXIE-32 module accepts signals directly from a detector preamplifier or photomultiplier. Digitally controlled offsets can be individually adjusted for each channel. Signals are digitized in 12-bit, 50 MHz multi-channel ADCs. Triggering, pile-up inspection and filtering of the data stream are performed in real time, and pulse heights and other event data are calculated on an event-by event basis. The hardware architecture, internal and external triggering features, and the spectrometry and waveform acquisition capability of the PIXIE- 32 as well as its capability to distribute clock and triggers among multiple modules, are presented. (authors)

  3. Large-scale production of paper-based Li-ion cells

    CERN Document Server

    Zolin, Lorenzo

    2017-01-01

    This book describes in detail the use of natural cellulose fibers for the production of innovative, low-cost, and easily recyclable lithium-ion (Li-ion) cells by means of fast and reliable papermaking procedures that employ water as a solvent. In addition, it proposes specific methods to optimize the safety features of these paper-based cells and to improve the electronic conductivity of the electrodes by means of a carbonization process– an interesting novel technology that enables higher current rate capabilities to be achieved. The in-depth descriptions of materials, methods, and techniques are complemented by the inclusion of a general overview of electrochemical devices and, in particular, of different Li-ion battery configurations. Presenting the outcomes of this important research, the work is of wide interest to electrochemical engineers in both research institutions and industry.

  4. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    Science.gov (United States)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  5. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    Directory of Open Access Journals (Sweden)

    Vashishta P.

    2011-05-01

    Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  6. Activity pattern of medium and large sized mammals and density estimates of Cuniculus paca (Rodentia: Cuniculidae in the Brazilian Pampa

    Directory of Open Access Journals (Sweden)

    C. Leuchtenberger

    2018-02-01

    Full Text Available Abstract Between July 2014 and April 2015, we conducted weekly inventories of the circadian activity patterns of mammals in Passo Novo locality, municipality of Alegrete, southern Brazil. The vegetation is comprised by a grassy-woody steppe (grassland. We used two camera traps alternately located on one of four 1 km transects, each separated by 1 km. We classified the activity pattern of species by the percentage of photographic records taken in each daily period. We identify Cuniculus paca individuals by differences in the patterns of flank spots. We then estimate the density 1 considering the area of riparian forest present in the sampling area, and 2 through capture/recapture analysis. Cuniculus paca, Conepatus chinga and Hydrochoerus hydrochaeris were nocturnal, Cerdocyon thous had a crepuscular/nocturnal pattern, while Mazama gouazoubira was cathemeral. The patterns of circadian activity observed for medium and large mammals in this Pampa region (southern grasslands may reflect not only evolutionary, biological and ecological affects, but also human impacts not assessed in this study. We identified ten individuals of C. paca through skin spot patterns during the study period, which were recorded in different transects and months. The minimum population density of C. paca was 3.5 individuals per km2 (resident animals only and the total density estimates varied from 7.1 to 11.8 individuals per km2, when considering all individuals recorded or the result of the capture/recapture analysis, respectively.

  7. Activity pattern of medium and large sized mammals and density estimates of Cuniculus paca (Rodentia: Cuniculidae) in the Brazilian Pampa.

    Science.gov (United States)

    Leuchtenberger, C; de Oliveira, Ê S; Cariolatto, L P; Kasper, C B

    2018-02-22

    Between July 2014 and April 2015, we conducted weekly inventories of the circadian activity patterns of mammals in Passo Novo locality, municipality of Alegrete, southern Brazil. The vegetation is comprised by a grassy-woody steppe (grassland). We used two camera traps alternately located on one of four 1 km transects, each separated by 1 km. We classified the activity pattern of species by the percentage of photographic records taken in each daily period. We identify Cuniculus paca individuals by differences in the patterns of flank spots. We then estimate the density 1) considering the area of riparian forest present in the sampling area, and 2) through capture/recapture analysis. Cuniculus paca, Conepatus chinga and Hydrochoerus hydrochaeris were nocturnal, Cerdocyon thous had a crepuscular/nocturnal pattern, while Mazama gouazoubira was cathemeral. The patterns of circadian activity observed for medium and large mammals in this Pampa region (southern grasslands) may reflect not only evolutionary, biological and ecological affects, but also human impacts not assessed in this study. We identified ten individuals of C. paca through skin spot patterns during the study period, which were recorded in different transects and months. The minimum population density of C. paca was 3.5 individuals per km2 (resident animals only) and the total density estimates varied from 7.1 to 11.8 individuals per km2, when considering all individuals recorded or the result of the capture/recapture analysis, respectively.

  8. A multicomponent multiphase lattice Boltzmann model with large liquid–gas density ratios for simulations of wetting phenomena

    International Nuclear Information System (INIS)

    Zhang Qing-Yu; Zhu Ming-Fang; Sun Dong-Ke

    2017-01-01

    A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young’s equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie’s law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to

  9. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  10. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

    Science.gov (United States)

    Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

    2015-02-01

    Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

  11. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    Science.gov (United States)

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  12. Spatial distribution of ion energy related on electron density in a plasma channel generated in gas clusters by a femtosecond laser

    International Nuclear Information System (INIS)

    Nam, S. M.; Han, J. M.; Cha, Y. H.; Lee, Y. W.; Rhee, Y. J.; Cha, H. K.

    2008-01-01

    Neutron generation through Coulomb explosion of deuterium contained gas clusters is known as one of the very effective methods to produce fusion neutrons using a table top terawatt laser. The energy of ions produced through Coulomb explosions is very important factor to generate neutrons efficiently. Until the ion energy reaches around∼MeV level, the D D fusion reaction probability increases exponentially. The understanding of laser beam propagation and laser energy deposition in clusters is very important to improve neutron yields. As the laser beam propagates through clusters medium, laser energy is absorbed in clusters by ionization of molecules consisting clusters. When the backing pressure of gas increases, the average size of clusters increases and which results in higher energy absorption and earlier termination of laser propagation. We first installed a Michelson interferometer to view laser beam traces in a cluster plume and to measure spatial electron density profiles of a plasma channel which was produced by a laser beam. And then we measured the energy of ions distributed along the plasma channel with a translating slit to select ions from narrow parts of a plasma channel. In our experiments, methane gas was used to produce gas clusters at a room temperature and the energy distribution of proton ions for different gas backing pressure were measured by the time of flight method using dual micro channel plates. By comparing the distribution of ion energies and electron densities, we could understand the condition for effective laser energy delivery to clusters

  13. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  14. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  15. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  16. Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.; Leung, C.M.; Rensselaer Polytechnic Institute, Troy, NY)

    1986-01-01

    Pseudo-time-dependent models of the gas phase chemistry of dense interstellar clouds have been run with large rate coefficients for reactions between ions and polar neutral species, as advocated by Adams, Smith, and Clary. The higher rate coefficients normally lead to a reduction in both the peak and steady state abundances of polar neutrals, which can be as large as an order of magnitude but is more often smaller. Other differences between the results of these models and previous results are also discussed. 38 references

  17. Variations in pollinator density and impacts on large cardamom (Amomum subulatum Roxb. crop yield in Sikkim Himalaya, India

    Directory of Open Access Journals (Sweden)

    Kailash S. Gaira

    2016-03-01

    Full Text Available Large cardamom (Amomum subulatum Roxb., a perennial cash crop, cultivated under an agroforestry system in the eastern Himalaya of India, is well recognized as a pollination-dependent crop. Observations on pollinator abundance in Mamlay watershed of Sikkim Himalaya were collected during the blooming season to evaluate the pollinator abundance across sites and time frames, and impact of pollinator abundance on crop yield from 2010 to 2012. The results revealed that the bumblebees and honeybees are most frequent visitors of large cardamom flowers. The abundance of honeybees, however, varied between sites for the years 2010–2012, while that of bumblebees varied for the years 2011 and 2012. The abundance of honeybees resulted in a variation within time frames for 2010 and 2011, while that of bumblebees varied for 2010 and 2012 (p<0.01. The density of pollinators correlated positively with the number of flowers of the target crop. The impact of pollinator abundance revealed that the increasing bumblebee visitation resulted in a higher yield of the crop (i.e. 17–41 g/plant and the increasing abundance of all bees (21–41 g/plant was significant (p<0.03. Therefore, the study concluded that the large cardamom yield is sensitive to pollinator abundance and there is a need for adopting the best pollinator conservation and management practices toward sustaining the yield of large cardamom.

  18. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    Science.gov (United States)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  19. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  20. Atomic processes, cross sections, and reaction rates necessary for modelling hydrogen-negative-ion sources and identification of optimum H- current densities

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two-chamber hydrogen negative-ion-source system subject to the beam-line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first-chamber asymptote, there exists a spatially-dependent maximum negative-ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen-based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications

  1. Reduction of ion thermal diffusivity associated with the transition of the radial electric field in neutral-beam-heated plasmas in the large helical device.

    Science.gov (United States)

    Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M

    2001-06-04

    Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

  2. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  3. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  4. Effect of 50 and 80 MeV phosphorous ions on the contribution of interface and oxide state density in n-channel MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S.; Dhole, S.D.; Kanjilal, D.; Bhoraskar, V.N. E-mail: vnb@physics.unipune.ernet.in

    1999-07-02

    n-channel depletion MOS devices were irradiated with 50 and 80 MeV phosphorous ions, with different fluences varying in the range from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. The pre and post irradiation I-V characteristics were measured and the corresponding threshold shift {delta}V{sub TH} was estimated. In both the cases, the drain current I{sub D} and the threshold voltage V{sub TH} were found to decrease with the ion fluence. The increase in the threshold voltage shift {delta}V{sub TH} with the ion fluence, was greater for the devices irradiated with 80 MeV ions than those irradiated with 50 MeV ions. The interface and oxide state densities were determined through the subthreshold voltage measurements. To separate the contributions of oxide and interface states towards the threshold voltage shift, the ion irradiated MOS devices were annealed at 150 deg. C. The threshold shift during annealing initially decreased and later increased with increasing annealing period. The rate of change of the interface states during annealing was higher than that of the oxide states. It was also found that depletion mode (normally ON) MOSFETs switched operation to enhancement mode (normally OFF)

  5. Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2013-06-01

    Full Text Available Purpose: Polarization voltage of the lithium-ion battery is an important parameter that has direct influence on battery performance. The paper aims to analyze the impedance characteristics of the lithium-ion battery based on EIS data. Design/methodology/approach: The effects of currents, initial SOC of the battery on charge polarization voltage are investigated, which is approximately linear function of charge current. The change of charge polarization voltage is also analyzed with the gradient analytical method in the SOC domain. The charge polarization model with two RC networks is presented, and parts of model parameters like Ohmic resistance and charge transfer impedance are estimated by both EIS method and battery constant current testing method. Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery total polarization compared to charge transfer impedance. Practical implications: Experimental results demonstrate the efficacy of the model with the proposed identification method, which provides the foundation for battery charging optimization. Originality/value: The paper analyzed the impedance characteristics of the lithium-ion battery based on EIS data, presented a charge polarization model with two RC networks, and estimated parameters like Ohmic resistance and charge transfer impedance.

  6. Fast-wave ion cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-01-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the RF power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approximately 3eVx10 13 cm -3 .kW for H and approximately 6eVx10 13 cm -3 .kW for 3 He minorities. Neutron fluxes of approximately 3x10 11 s -1 corresponding to a Tsub(d) approximately 2keV (ΔTsub(d) approximately 1.2keV) have been produced with Psub(RF) approximately 620kW at anti nsub(e) approximately 2.9x10 13 cm -3 . Neutron energy spectra and mass-sensitive charge-exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates approximately >10 12 s -1 have been produced by the energetic 3 He ions. For the second-harmonic regime, initial heating results for an H plasma at Psub(RF) approximately 140kW are consistent with the Fokker-Planck theory, and the bulk heating rate is comparable with that of D-heating in the D-H minority regime. (author)

  7. Fast-wave ion-cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-02-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the rf power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approx. 3 eV x 10 13 cm -3 /kW for H and approx. 6 eV x 10 13 cm -3 /kW for 3 He minorities. Neutron fluxes of approx. 3 x 10 11 sec -1 corresponding to a T/sub d/ approx. 2 keV (ΔT/sub d/ approx. 1.2 keV) have been produced with P/sub rf/ approx. = 620 kW at anti n/sub e/ approx. = 2.9 x 10 13 cm -3 . Neutron energy spectra and mass sensitive charge exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates greater than or equal to 10 12 sec -1 have been produced by the energetic 3 He ions. For the second harmonic regime, initial heating results for an H plasma at P/sub rf/ approx. = 140 kW are consistent with the Fokker-Planck theory and the bulk heating rate is comparable to that of D heating in the D-H minority regime

  8. Enhancement of phase space density by increasing trap anisotropy in a magneto-optical trap with a large number of atoms

    International Nuclear Information System (INIS)

    Vengalattore, M.; Conroy, R.S.; Prentiss, M.G.

    2004-01-01

    The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10 8 ), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2x10 -4 has been achieved in a magneto-optic trap containing 2x10 8 atoms

  9. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  10. Comprehending particle production in proton+proton and heavy-ion collisions at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2017-01-01

    In the extreme conditions of temperature and energy density, nuclear matter undergoes a transition to a new phase, which is governed by partonic degrees of freedom. This phase is called Quark-Gluon Plasma (QGP). The transition to QGP phase was conjectured to take place in central nucleus-nucleus collisions. With the advent of unprecedented collision energy at the Large Hadron Collider (LHC), at CERN, it has been possible to create energy densities higher than that was predicted by lattice QCD for a deconfinement transition

  11. Optical emission spectroscopy at the large RF driven negative ion test facility ELISE: Instrumental setup and first results

    International Nuclear Information System (INIS)

    Wünderlich, D.; Fantz, U.; Franzen, P.; Riedl, R.; Bonomo, F.

    2013-01-01

    One of the main topics to be investigated at the recently launched large (A source = 1.0 × 0.9 m 2 ) ITER relevant RF driven negative ion test facility ELISE (Extraction from a Large Ion Source Experiment) is the connection between the homogeneity of the plasma parameters close to the extraction system and the homogeneity of the extracted negative hydrogen ion beam. While several diagnostics techniques are available for measuring the beam homogeneity, the plasma parameters are determined by optical emission spectroscopy (OES) solely. First OES measurements close to the extraction system show that without magnetic filter field the vertical profile of the plasma emission is more or less symmetric, with maxima of the emission representing the projection of the plasma generation volumes, and a distinct minimum in between. The profile changes with the strength of the magnetic filter field but under all circumstances the plasma emission in ELISE is much more homogeneous compared to the smaller IPP prototype sources. Planned after this successful demonstration of the ELISE OES system is to combine OES with tomography in order to determine locally resolved values for the plasma parameters

  12. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    An, Yonghao; Jiang, Hanqing

    2013-01-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)

  13. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    Science.gov (United States)

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  14. Q fever and pneumonia in an area with a high livestock density: a large population-based study.

    Directory of Open Access Journals (Sweden)

    Lidwien A M Smit

    Full Text Available Concerns about public health risks of intensive animal production in The Netherlands continue to rise, in particular related to outbreaks of infectious diseases. The aim was to investigate associations between the presence of farm animals around the home address and Q fever and pneumonia.Electronic medical record data for the year 2009 of all patients of 27 general practitioners (GPs in a region with a high density of animal farms were used. Density of farm animals around the home address was calculated using a Geographic Information System. During the study period, a large Q fever outbreak occurred in this region. Associations between farm exposure variables and pneumonia or 'other infectious disease', the diagnosis code used by GPs for registration of Q fever, were analyzed in 22,406 children (0-17 y and 70,142 adults (18-70 y, and adjusted for age and sex. In adults, clear exposure-response relationships between the number of goats within 5 km of the home address and pneumonia and 'other infectious disease' were observed. The association with 'other infectious disease' was particularly strong, with an OR [95%CI] of 12.03 [8.79-16.46] for the fourth quartile (>17,190 goats compared with the first quartile (<2,251 goats. The presence of poultry within 1 km was associated with an increased incidence of pneumonia among adults (OR [95%CI] 1.25 [1.06-1.47].A high density of goats in a densely populated region was associated with human Q fever. The use of GP records combined with individual exposure estimates using a Geographic Information System is a powerful approach to assess environmental health risks.

  15. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    Science.gov (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  16. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  17. Beam losses from ultraperipheral nuclear collisions between ^{208}Pb^{82+} ions in the Large Hadron Collider and their alleviation

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2009-07-01

    Full Text Available Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of ^{208}Pb^{82+} ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal ^{208}Pb^{82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  18. Large-eddy-simulation approach in understanding flow structures of 2D turbulent density currents over sloping surfaces

    Science.gov (United States)

    Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran

    2018-04-01

    A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.

  19. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  20. Non-leaky vesiculation of large unilamellar vesicles (LUV) induced by plasma high density lipoproteins (HDL): Detection by HPLC

    International Nuclear Information System (INIS)

    Tischler, U.; Rueckert, D.S.; Schubert, R.; Jaroni, H.W.; Schmidt, K.H.

    1989-01-01

    Interaction of large unilamellar phosphatidylcholine vesicles (LUV, 75nm) and plasma high density lipoproteins (HDL) resulted in a non-leaky vesiculation of LUV. This vesiculation was detected by a HPLC-system consisting of a combination of three TSK-gel columns (6000PW, 5000PW, 3000SW). With increasing incubation time liposomal [ 14 C]PC, entrapped [ 3 H]inulin, and apoprotein of HDL origin decreased. The decrease was accompanied by a formation of new particles, consisting of liposomal PC and apoprotein. These particles also enclosed [3H]inulin, reflecting a hydrophilic inner space. The formation of the particles reached a maximum after one day of incubation. Retention time was 21 minutes for LUV, 28 minutes for the new particles, and 36 minutes for HDL. In vesicles with membranes consisting of phosphatidylcholine and 30% cholesterol no interactions were observed

  1. Fast Time-Dependent Density Functional Theory Calculations of the X-ray Absorption Spectroscopy of Large Systems.

    Science.gov (United States)

    Besley, Nicholas A

    2016-10-11

    The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .

  2. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.; Poukey, J.W.; Savage, M.E.

    1994-01-01

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, and beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( ∼ 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models

  3. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  4. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    Science.gov (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  5. Effect of small in-plane anisotropy in the large-D phase systems based on Ni{sup 2+} (S=1) ions in Heisenberg antiferromagnetic chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl

    2014-03-01

    Heisenberg antiferromagnetic chains based on Ni{sup 2+} ions with integer spin S=1 exhibit intriguing behavior, e.g. the Haldane gap phase and the large-D phase. The predicted transitions between the two phases and the Neel phase has generated search for real candidate systems. Crucial to this search is the interplay between the ‘in-plane anisotropy’, i.e. the rhombic zero-field splitting (ZFS) E-term, and the ‘planar anisotropy’, i.e. the axial ZFS D-term. This paper clarifies intricate properties of orthorhombic ZFS Hamiltonians (H{sub ZFS}) and inconsistencies revealed by critical survey of pertinent studies. Reporting the non-standard (D, E) sets with λ=E/D out of the standard range (0, 1/3) alongside the standard sets with λ∝(0, 1/3) indicates that these properties are not recognized. We show that direct comparisons of the non-standard and standard sets are meaningless and lead to incorrect conclusions on the strength of the ‘in-plane anisotropy’ (E) as compared with the ‘planar anisotropy’ (D). To remedy such problems, the ZFSP sets reported for the large-D phase candidate systems are reanalyzed using orthorhombic standardization. The six physically equivalent ZFSP sets are determined in the conventional (D, E) and Stevens (b{sub 2}{sup 0}, b{sub 2}{sup 2}) notation. These considerations help understanding intricacies inherent in orthorhombic H{sub ZFS} and provide consistent data for future modeling of ZFS parameters in the large-D phase and Haldane gap systems.

  6. Thermal management for high-capacity large format Li-ion batteries

    Science.gov (United States)

    Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth

    2017-05-30

    A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.

  7. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  8. Selection for Unequal Densities of Sigma70 Promoter-like Signalsin Different Regions of Large Bacterial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, Araceli M.; Francino, M. Pilar; Morett, Enrique; Collado-Vides, Julio

    2006-03-01

    The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that are recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently-transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to investigate the generality of this pattern, we have used position weight matrices describing the -35 and -10 promoter boxes of E. coli to search for these motifs in 43 additional genomes belonging to most established bacterial phyla, after specific calibration of the matrices according to the base composition of the noncoding regions of each genome. We have found that all bacterial species analyzed contain similar promoter-like motifs, and that, in most cases, these motifs follow the same genomic distribution observed in E. coli. Differential densities between regulatory and nonregulatory regions are detectable in most bacterial genomes, with the exception of those that have experienced evolutionary extreme genome reduction. Thus, the phylogenetic distribution of this pattern mirrors that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is the outcome of a process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential

  9. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  10. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi

    2012-01-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))

  11. Ejecting intact large molecular structures by C{sub 60} ion impact upon bio-organic solids; Ejection de tres grandes structures moleculaires intactes par impact de C{sub 60} sur des solides bioorganiques

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della Negra, S.; Deprun, C.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, N. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Haakansson, P. [Division of Ion Physics, Angstrom Laboratory, Uppsala Univ. Uppsala (Sweden)

    1999-11-01

    C{sub 60} molecules accelerated to MeV energies (20 MeV) have been used to induce the desorption-ionization of large bio-molecules from solid samples. In the case of the trypsin molecules, the secondary molecular ion emission yield is about two orders of magnitude larger than with MeV atomic ions. This is a consequence of the very high energy density deposited in solids by 20 MeV C{sub 60} projectiles that gives rise to a large amount of matter ejected after each impact. Although time-of-flight mass spectra can be recorded within a few seconds, it is more the mechanistic aspects in comparison with other particle induced desorption methods, which are the objective of these first results with energetic fullerenes. (authors) 1 fig.

  12. Elemental mapping of large samples by external ion beam analysis with sub-millimeter resolution and its applications

    Science.gov (United States)

    Silva, T. F.; Rodrigues, C. L.; Added, N.; Rizzutto, M. A.; Tabacniks, M. H.; Mangiarotti, A.; Curado, J. F.; Aguirre, F. R.; Aguero, N. F.; Allegro, P. R. P.; Campos, P. H. O. V.; Restrepo, J. M.; Trindade, G. F.; Antonio, M. R.; Assis, R. F.; Leite, A. R.

    2018-05-01

    The elemental mapping of large areas using ion beam techniques is a desired capability for several scientific communities, involved on topics ranging from geoscience to cultural heritage. Usually, the constraints for large-area mapping are not met in setups employing micro- and nano-probes implemented all over the world. A novel setup for mapping large sized samples in an external beam was recently built at the University of São Paulo employing a broad MeV-proton probe with sub-millimeter dimension, coupled to a high-precision large range XYZ robotic stage (60 cm range in all axis and precision of 5 μ m ensured by optical sensors). An important issue on large area mapping is how to deal with the irregularities of the sample's surface, that may introduce artifacts in the images due to the variation of the measuring conditions. In our setup, we implemented an automatic system based on machine vision to correct the position of the sample to compensate for its surface irregularities. As an additional benefit, a 3D digital reconstruction of the scanned surface can also be obtained. Using this new and unique setup, we have produced large-area elemental maps of ceramics, stones, fossils, and other sort of samples.

  13. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.

    1988-01-01

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of ∼2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of ∼25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs

  14. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.

    Science.gov (United States)

    Qiu, Bao; Yin, Chong; Xia, Yonggao; Liu, Zhaoping

    2017-02-01

    As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 , directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm -3 but also exhibits excellent rate capability (197.6 mA h g -1 at 1250 mA g -1 ) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li + diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.

  15. On the electron extraction in a large RF-driven negative hydrogen ion source for the ITER NBI system

    International Nuclear Information System (INIS)

    Franzen, P; Wünderlich, D; Fantz, U

    2014-01-01

    The test facility ELISE, equipped with a large RF-driven ion source (1 × 0.9 m 2 ) of half the size of the ion source for the ITER neutral beam injection (NBI) system, has been constructed over the last three years at the Max-Planck-Institut für Plasmaphysik (IPP), Garching, and is now operational. The first measurements of the dependence of the co-extracted electron currents on various operational parameters have been performed. ELISE has the unique feature that the electron currents can be measured individually on both extraction grid segments, leading to vertical spatial resolution. Although performed in volume operation, where the negative hydrogen ions are created in the plasma volume solely, the results are very encouraging for operation with caesium, this being necessary in order to achieve the relevant negative ion currents for the ITER NBI injectors. The amount of co-extracted electrons could be suppressed sufficiently with moderate magnetic filter fields and by plasma grid bias. Furthermore, the ele