WorldWideScience

Sample records for lanthanide metal complexes

  1. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  2. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  3. Aromatic triamide-lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  4. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Akhtar Hussain; Akhil R Chakravarty

    2012-11-01

    Lanthanide complexes have recently received considerable attention in the field of therapeutic and diagnostic medicines. Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. Macrocyclic texaphyrin-lanthanide complexes are known to show photocytotoxicity with the PDT effect in near-IR light. Very recently, non-macrocyclic lanthanide complexes are reported to show photocytotoxicity in cancer cells. Attempts have been made in this perspective article to review and highlight the photocytotoxic behaviour of various lanthanide complexes for their potential photochemotherapeutic applications.

  5. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    )imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure....... In Chapter 3 we present the results of our work with third row (3d) transition metal ions and their complexes. Specifically, in section 2.1 we report a series of complexes synthesized using a tripodal hexadentate Schiff-base ligand. The ligand demonstrates the ability to form mononuclear or trinuclear...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  6. Characterization of surfactant effects on the visible spectroscopy of lanthanide metal ion-triphenylmethane dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Klopf, G.J.

    1985-01-01

    To better define the mechanism responsible for sensitization, the interactions of representative cationic, anionic, and nonionic surfactants with several lanthanide metal ion-triphenylmethane dye complexes, particularly the gadolinium (Gd/sup +3/)-Chromeazurol S (CAS) complex, were characterized. Only cationic surfactants induced sensitization when added to the Gd/sup +3/-CAS complex. Sensitization induced by cetylpyridinium chloride (CPC) occurred at submicellar concentrations and was attributed to the formation of a 1:2:4 Gd/sup +3/-CAS-CPC ternary complex. Additional ternary complexes evidently form if excess CAS is present. Mechanisms are proposed for the sensitization of the reaction by quaternary compounds and by anionic surfactants. Although both micellar and submicellar concentrations were considered, adding the nonionic surfactant Triton X-100 to the Gd/sup +3/-CAS complex had little effect.

  7. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Science.gov (United States)

    Chen, Jinjie; Edelmann, Kevin; Wulfhekel, Wulf

    2015-01-01

    Summary We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy. PMID:26733215

  8. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Directory of Open Access Journals (Sweden)

    Hironari Isshiki

    2015-12-01

    Full Text Available We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionatoterbium(III, onto metal surfaces of Cu(111, Ag(111 and Au(111 in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy.

  9. Influence of Schiff base and lanthanide metals on the synthesis, stability, and reactivity of monoamido lanthanide complexes bearing two Schiff bases.

    Science.gov (United States)

    Han, Fubin; Teng, Qiaoqiao; Zhang, Yong; Wang, Yaorong; Shen, Qi

    2011-03-21

    The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y metals of Y and Yb, L''(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L''(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.

  10. Thermolysis of lanthanide dithiocarbamate complexes

    Science.gov (United States)

    Boncher, William L.; Regulacio, Michelle D.; Stoll, Sarah L.

    2010-01-01

    Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex. The synthesis temperatures are generally lower than standard solid state preparations, avoid toxic sulfurizing gases and provide a convenient route to prepare lanthanide chalcogenide nanoparticles. Depending on the reaction conditions and oxophilicity of the lanthanide, the sulfide material was formed with oxidized products including oxysulfides, oxysulfates and the oxide.

  11. Salicylamide-lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2002-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  12. Phthalamide-lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2008-10-28

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  13. Phthalamide lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth M.; Xu, Jide

    2003-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  14. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  15. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single-molecule...... and dynamic magnetic properties of these complexes is presented. A number of the reported complexes show single-molecule magnet behaviour in zero or non-zero applied static magnetic field. For these systems a study of their dynamics is presented and the mechanisms behind the relaxation are elucidated...... magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl...

  16. Metal-promoted synthesis, characterization, crystal structure and RNA cleavage ability of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) lanthanide complexes.

    Science.gov (United States)

    Kozłowski, Michał; Kierzek, Ryszard; Kubicki, Maciej; Radecka-Paryzek, Wanda

    2013-09-01

    New 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) lanthanide complexes were formed in the metal-induced one-step [1+2] condensation reaction between 2,6-diacetylpyridine and 2-aminobenzoylhydrazide in the presence of lanthanide (La(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+) or Yb(3+)) nitrates as template agents. The analytical and spectral characterizations of all the compounds were correlated with the single crystal X-ray structural determination of Eu(3+), Gd(3+), Tb(3+), Dy(3+) and Er(3+) nitrate complexes. The Eu(3+), Gd(3+), Tb(3+)and Dy(3+) complexes of pentadentate 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) with the N3O2 set of donor atoms display a high and relatively rare coordination number of 11, whereas the Er(3+) ion complex is 9-coordinated, which is consistent with the lanthanide contraction phenomenon. The scission of 21-mer RNA was assessed for Eu(3+), Gd(3+) and Tb(3+) nitrate complexes. Lanthanide complexes not covalently attached to the oligonucleotide are able to cleave RNA at the target site in a sequence-selective or non-selective manner depending on the presence of protecting 12-mer 2'OMe RNA.

  17. Lanthanide Complexes as a Test for Evidence of Life

    Science.gov (United States)

    Benavides, Jeannette

    1998-01-01

    The objective of this research is to advance the understanding of the interaction of lanthanide metals with biological organic molecules and to develop a technique to detect these compounds in the solid state and in situ in Mars and other planetary bodies. The detection of these complexes should provide evidence of life past or present. In addition, detection of the metals alone will provide important information about the geological history of a planetary body. Lanthanides were chosen as our focus of interest because they form very stable complexes with organic molecules in solution and they produce intense luminescence in the ultraviolet and visible spectra. The rare earth complexes available are mostly synthetic for diverse applications in medicine. There is not much work done on the complexes that form in nature. Lanthanides have many applications and they are mined aR over the world, however, since the interest has been only in the elements, the analytical techniques employed destroy any organic ligands that may be present. In order to determine if and which lanthanide complexes form in nature and their concentration, soil samples have been collected from areas rich in soluble lanthanide compounds like phosphates and also rich in vegetation. The soil samples will be analyzed and the lanthanide complexes if present will be isolated and characterized. A spectrometer to detect the lanthanide complexes in situ and in the solid state will be designed. In this workshop, the research approach and its implications will be discussed.

  18. Thin films of metal oxides grown by chemical vapor deposition from volatile transition metal and lanthanide metal complexes

    Science.gov (United States)

    Pollard, Kimberly Dona

    1998-08-01

    This thesis describes the synthesis and characterization of novel volatile metal-organic complexes for the chemical vapor deposition (CVD) of metal oxides. Monomeric tantalum complexes, lbrack Ta(OEt)sb4(beta-diketonate)) are prepared by the acid-base reaction of lbrack Tasb2(OEt)sb{10}rbrack with a beta-diketone, (RC(O)CHsb2C(O)Rsp' for R = CHsb3, Rsp' = CFsb3; R = Rsp'=C(CHsb3)sb3; R = Csb3Fsb7,\\ Rsp'=C(CHsb3)sb3;\\ R=Rsp'=CFsb3; and R = Rsp' = CHsb3). The products are characterized spectroscopically. Thermal CVD using these complexes as precursors gave good quality Tasb2Osb5 thin films which are characterized by XPS, SEM, electrical measurements, and XRD. Factors affecting the film deposition such as the type of carrier gas and the temperature of the substrate were considered. Catalyst-enhanced CVD reactions with each of the precursors and a palladium catalyst, ((2-methylallyl)Pd(acac)), were studied as a lower temperature route to good quality Tasb2Osb5 films. The decomposition mechanism at the hot substrate surface was studied. Precursors for the formation of yttria by CVD were examined. New complexes of the form (Y(hfac)sb3(glyme)), (hfac = \\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3 for n = 1-4) were synthesized and characterized spectroscopically. X-ray structural determinations of three new complexes were obtained. CVD reaction conditions were determined which give YOF films and, with catalyst-enhanced CVD, reaction conditions which give selective formation of Ysb2Osb3, YOF, or YFsb3. The films were studied by XPS, SEM, and XRD. Decomposition mechanisms which lead to film formation, together with a possible route for fluorine atom transfer from the ligand to the metal resulting in fluorine incorporation, were studied by analysis of exhaust products using GC-MS. Novel precursors of the form lbrack Ce(hfac)sb3(glyme)rbrack,\\ (hfac=\\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3, n = 1-4) for CVD of ceria were

  19. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    . The photophysical properties of these heterotrimetallic complexes were investigated and are discussed by comparison with simpler, but related, heterodimetallic compounds. It was found that an aminonaphthalene unit inhibits the sensitisation of terbium, and that the spatial arrangement of the chromophores......Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques...

  20. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report for period February 1, 1980-January 31, 1981. [none

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W.J.

    1980-10-01

    Investigations are being conducted on two classes of lanthanide compounds: metal vapor co-condensation reactions with unsaturated hydrocarbons and homoleptic and heteroleptic alkyl lanthanide complexes. Three models have been considered for the interaction of erbium atoms with 3-hexyne. The structure of the heteroleptic alkynide ((C/sub 5/H/sub 5/)/sub 2/ErC triple bond CCMe/sub 3/)/sub 2/ was studied. Some new organolanthanides have been prepared. (DLC)

  1. Synthesis, characterization and thermolysis of lanthanide metal nitrate complexes with 1, 10-phenanthroline, Part-95

    Institute of Scientific and Technical Information of China (English)

    Nibha; BP Baranwal; Gurdip Singh; Constantin G. Daniliuc

    2014-01-01

    The nitrate complexes of cerium, praseodymium and neodymium with 1,10-phenanthroline (phen) of general formula [Ln(phen)2(NO3)2(H2O)2]·NO3 (where, Ln=Ce, Pr and Nd) were prepared and characterized by X-ray crystallography. Thermolysis of these complexes was investigated by simultaneous thermogravimetry (TG) and differential thermal analysis (DTA). Isothermal TG was taken to evaluate the kinetic parameters using model fitting as well as model free isoconversional methods. The thermolytic pathways were also suggested, which involves decomposition followed by ignition. All the three complexes had coordination number ten and showed multistep decompositions. In order to evaluate the response of rapid heating, ignition delay (Di) measurements were undertaken. The activation energies for ignition were found to decrease in the order: Nd>Pr>Ce.

  2. Synthesis and Thermal Behaviour of Lanthanide Complexes of 4′-[(Cholesterylox y)Carbonyl]-Benzo-15-Crown-5

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Lanthanide complexes of a steroid-substituted benzocrown ether were synthesised . The metal-to-ligand ratio of all the metal complexes is 1∶1. The ligand 4′ -[(cholesteryloxy)carbonyl]-benzo-15-crown-5 is a monotropic liquid cryst al, displaying a cholesteric mesophase. The lanthanide complexes with nitrate co unter-ions form a highly viscous mesophase, decomposing at the clearing point. The transition temperatures change as a function of the lanthanide ion. The corr esponding lanthanide complexes with dodecylsulphate (DOS) counter-ions do not f orm a mesophase. In both cases, the metal complexes have a much lower melting po int than the parent ligand.

  3. A Ratiometric Luminescent Thermometer Co-doped with Lanthanide and Transition Metals.

    Science.gov (United States)

    Li, Zhiqiang; Hou, Zhaohui; Ha, Denghui; Li, Huanrong

    2015-12-01

    Herein, we report the fabrication of a sensitive ratiometric and colorimetric luminescent thermometer with a wide operating-temperature range, from cryogenic temperatures up to high temperatures, through the combination of lanthanide and transition metal complexes. Benefiting from the transition metal complex as a self-reference, the lanthanide content in the mixed-coordination complex, Eu0.05(Mebip-mim bromine)0.15Zn0.95(Mebip-mim bromine)1.9, was lowered to 5%.

  4. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  5. The synthesis, design and applications of lanthanide cored complexes

    Science.gov (United States)

    Phelan, Gregory David

    Novel luminescent materials based on lanthanide cored complexes have been designed and synthesized. The complexes consist of a beta-diketone ligand chelated to a lanthanide metal such as europium or gadolinium. A series of beta-diketone ligands were designed and synthesized. The ligands consist of a polycyclic aromatic sensitizer, phenanthrene, and a second functional group. The second groups consisted of another unit of phenanthrene, a dendritic structure, or a fluorinated alkyl chain. The europium complexes have been incorporated into organic light emitting devices that have a major emission at 615 nm and a maximum brightness of 300 cd/m2. The gadolinium complexes were used to dope into the resulting organic light emitting devices to help improve the efficiency of the device. The use of the gadolinium complexes results in a 25 fold increase in efficiency.

  6. Energetic lanthanide complexes: coordination chemistry and explosives applications

    Science.gov (United States)

    Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.

    2014-05-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  7. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes.

    Science.gov (United States)

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr

    2014-10-01

    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  8. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  9. Lanthanide Complexes for Oligomerization of Phenyl Isocyanate

    Institute of Scientific and Technical Information of China (English)

    DENG,Ming-Yu; YAO,Ying-Ming; ZHOU,Yu-Fang; ZHANG,Li-Fen; SHEN,Qi

    2003-01-01

    A series of lanthanide complexes including (Ind)3Sm(THF)(1),[(MeCp)2Sm(μ-SPh)(THF)]2(2),[(MeCp)2Y(μ-O-i-Pr)]2(3),(MeCp)3Sm·THF(4),Sm(SPh)3(hmpa)3(5),[(MeCp)2Y-(μ-OCH2CF3)2(6)and (CF3CH2O)3Y(THF)3(7) were synthesized and they have good activity for the oligomerization of phenylisocyanate.Among them 5 shows the highest activity.The conversion is as high as 96.2%,with 1/2500 of the molar ratio of cat./PhNCO.The main components in oligomer were characterized to be a cycdlodimer and a cyclotrimer.The ratio of cyclodimer to cyclotrimer depends on the lanthanide complexes used.7 gave 85.2%cyclotrimer with 1/300 of the molar ratio of cat./PhNCO at 40℃ for 0.5h,while 5 gave 77.6% cyclodimer with 1/300 of the molar ratio of cat./PhNCO at 40℃ for 4h.

  10. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kautenburger, Ralf, E-mail: r.kautenburger@mx.uni-saarland.de [Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125 Saarbrücken (Germany); Hein, Christina; Sander, Jonas M. [Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125 Saarbrücken (Germany); Beck, Horst P. [Institute of Inorganic and Analytical Chemistry and Radiochemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 5, D-66125 Saarbrücken (Germany)

    2014-03-01

    Highlights: • Free and complexed HA-Ln species are separated by CE-ICP-MS. • Weaker and stronger HA-binding sites for Ln-complexation can be detected. • Complexation by original and modified humic acid (HA) with blocked phenolic hydroxyl- and carboxyl-groups is compared. • Stronger HA-binding sites for Ln³⁺ can be assumed as chelating complexes. • Chelates consist of trivalent Ln and a combination of both OH- and COOH-groups. Abstract: The complexation behavior of Aldrich humic acid (AHA) and a modified humic acid (AHA-PB) with blocked phenolic hydroxyl groups for trivalent lanthanides (Ln) is compared, and their influence on the mobility of Ln(III) in an aquifer is analyzed. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For metal loading experiments 25 mg L⁻¹ of AHA and different concentrations (c Ln(Eu+Gd)} = 100–6000 μg L⁻¹) of Eu(III) and Gd(III) in 10 mM NaClO₄ at pH 5 were applied. By CE-ICP-MS, three Ln-fractions, assumed to be uncomplexed, weakly and strongly AHA-complexed metal can be detected. For the used Ln/AHA-ratios conservative complex stability constants log βLnAHA decrease from 6.33 (100 μg L⁻¹ Ln³⁺) to 4.31 (6000 μg L⁻¹ Ln³⁺) with growing Ln-content. In order to verify the postulated weaker and stronger humic acid binding sites for trivalent Eu and Gd, a modified AHA with blocked functional groups was used. For these experiments 500 μg L⁻¹ Eu and 25 mg L⁻¹ AHA and AHA-PB in 10 mM NaClO₄ at pH-values ranging from 3 to 10 have been applied. With AHA-PB, where 84% of the phenolic OH-groups and 40% of the COOH-groups were blocked, Eu complexation was significantly lower, especially at the strong binding sites. The log β-values decrease from 6.11 (pH 10) to 5.61 at pH 3 (AHA) and for AHA-PB from 6.01 (pH 7) to 3.94 at pH 3. As a potential consequence, particularly humic acids with a high amount of

  11. Complexes of light lanthanides with 2,3-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    AGNIESZKA WALKÓW-DZIEWULSKA

    2001-08-01

    Full Text Available The complexes of light lanthanides with 2,3-dimethoxybenzoic acid of the formula: Ln(C9H9O43, where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III and Gd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies, as well as X-ray and magnetic measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd–white, Sm–cream, Pr–green, Nd–violet. The carboxylate group in these complexes is a bidentate, chelating ligand or a tridentate chelating and bridging one. They are crystalline compounds characterized by low symmetry. On heating in air to 1173 K, the 2,3-dimethoxybenzoates of the light lanthanides decompose in various ways. The complexes of Ce(III, Pr(III, Sm(III, Eu(III and Gd(III decompose directly to oxides of the respective metals while those of La(III and Nd(III via the intermediate formation of La2O2CO3 and Nd2O2CO3. The solubilities of the 2,3-dimethoxybenzoates of the light lanthanides in water at 293 K are in the orders of 10-3 – 10-2 mol dm-3. The magnetic moments were determined in the range 4.2–298 K and the complexes are found to obey the Curie-Weiss law.

  12. Lanthanide Metal-Organic Framework Materials

    Science.gov (United States)

    Hsieh, Ping-Yen; Green, Mark A.; Briber, Robert M.

    2009-03-01

    A series of lanthanide metal-organic framework materials (MOF) with variable organic linkages including benzene-dicarboxylic acid (BDC); 1,3,5-benzene-tricarboxylic acid (BTC); and 1,3,5-tris(4-carboxyphenyl)benzene (BTB) have been synthesized. The low density and high porosity of MOFs make them candidates molecular sieve or hydrogen storage materials. The crystal structures have been determined using a combination of single crystal X-ray diffractometer and synchrotron powder X-ray diffraction work. Holmium with the BDC ligand material (Ho-BDC) crystallizes in a monoclinic C2/c space group, with lattice parameters of a = 17.06 å, b = 10.67 å, c = 10.57 å, b = 96.12^o. The crystal structure of Ho-BTC is in tetragonal P 41 2 2 space group and Ho-BTB is in a triclinic P-1 space group. A comprehensive examination of Ho-MOF with different ligands by x-ray and thermogravimetric analysis shows that there is a stable nanoporous structure for dehydrated Ho-BTC up to 250^oC. The same phenomenon is not observed in the Ho-BDC and Ho-BTB materials. The collapsed structure with BDC and BTB indicates the stability of dehydrated samples is strongly related to the interactions between the metal and the organic linkers.

  13. Interactions Between Metal Ions and Carbohydrates: Coordination Behavior of D-Ribose to Lanthanide Ions

    Institute of Scientific and Technical Information of China (English)

    苏允兰; 杨丽敏; 翁诗甫; 吴瑾光

    2002-01-01

    Lanthanum chloride α-D-ribopyranose pentahydrate complex was prepared and speculated its structure from the similar IR spectra of corresponding praseodymium and neodymium-D-ribose complexes, which reveal the coordination behavior of D-ribose to lanthanide ions and give us a model of the interactions between metal ions and carbohydrates.

  14. Lanthanide(III) complexation with an amide derived pyridinophane.

    Science.gov (United States)

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura

    2015-02-16

    Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

  15. POLYMER-SUPPORTED LANTHANIDE COMPLEXES FOR THE POLYMERIZATION OF BUTADIENE

    Institute of Scientific and Technical Information of China (English)

    YU Guangqian; LI Yuliang; LIU Chongming

    1992-01-01

    The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes(SAAC Ln)(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were described.butadiene, a peak in activity appeared at Nd and Pr, Sm, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1,4 polybutadiene attained was more than 98%.

  16. Thermodynamic and Spectroscopic Studies of Lanthanides(III) Complexation with Polyamines in Dimethyl Sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, Plinio [Univ. of Padova (Italy); Zanonato, Pier Luigi [Univ. of Padova (Italy); Melchior, Andrea [Univ. of Udine (Italy); Portanova, Roberto [Univ. of Udine (Italy); Tolazzi, Marilena [Univ. of Udine (Italy); Choppin, Gregory R. [Florida State Univ., Tallahassee, FL (United States); Wang, Zheming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-01-01

    The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands bound to the lanthanides except in the case of tren, in which only pendant N bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen in order to follow the changes in the primary solvation sphere of lanthanide(III) due to complexation of amine ligands. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from ~8 to ~10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of ΔGj°, ΔHj° and TΔSj° for the complexation of ethylenediamine (en), dien, trien, tren and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed.

  17. Synthesis and Thermal Behaviour of Lanthanide Complexes of 4′[(Cholesteryloxy)Carbonyl]—Benzo—15—Crown—5

    Institute of Scientific and Technical Information of China (English)

    KoenBinnemans; BilgiCuendogan

    2002-01-01

    Lanthanide complexes of a steroid-substituted benzocrown ether were synthesised.The metal-to-ligand ratio of the metal complexes is1:1,The ligand4′[(Cholesteryloxy)Carbonyl]-Benzo-15-Crown-5 is a monotropicliquid crystal,displaying a cholesteric mesophase.The lanethanide complexes with nitate counter-ions form a highly viscous mesophase,decomposing at the clearing point ,The transition temperatures change as a function of the lanthanide ion.The corresponding lanthanide complexes with dodecylsulphate(DOS)counter-ions do not form a mesophase,In both cases ,the metal complexes have a much lower melting point than the parent ligand.

  18. Design of efficient electroluminescent lanthanide(III) complexes

    CERN Document Server

    You, B R; Park, N G; Kim, Y S

    2001-01-01

    The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both single and triplet excitons are involved in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than single levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirec...

  19. Studies on some lanthanide(Ⅲ)complexes with 4-hydroxyantipyrine

    Institute of Scientific and Technical Information of China (English)

    G. Rijulal; P. Indrasenan

    2008-01-01

    Seven new lanthanide(III) complexes with 4-hydroxyantipyrine were synthesized. These complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, FT-IR, electronic and 1HNMR spectra, X-ray powder diffraction, and thermogravimetric studies. The ligand, 4-hydroxyantipyrine (hap), contained carbonyl oxygen and hydroxyl oxygen as potential donor sites. On coordination, deprotonation occurred and as a result, hap acted as a monobasic bidentate ligand. A coordination number 6 was assigned to the lanthanide(III) ions in these complexes with orthorhombic structure. All the complexes were thermally stable~150℃ and underwent decomposition in three stages with the formation of Ln2O3 as the final residues.

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  1. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  2. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  3. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    Science.gov (United States)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  4. Lanthanide Complexes of Substituted -Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities

    OpenAIRE

    Hegazy, W. H.; I. H. Al-Motawaa

    2011-01-01

    A series of β-diketone hydrazone derivatives have been synthesized through condensation of β-diketone with aromatic aldehydes followed by reaction with phenylhydrazine. The structure of the ligands and intermediates are well defined through elemental and spectroscopic analyses. These hydrazones are potential ligands toward lanthanide metal ions. New complexes of trivalent Scandium, Yttrium, Lanthanum, and Cerium have been synthesized. The composition of these complexes is discussed on the bas...

  5. Recent Advances in Organic Reactions Catalyzed by Lanthanide (Ⅲ) Complexes

    Institute of Scientific and Technical Information of China (English)

    CHEN,Rui-Fang(陈瑞芳); QIAN,Chang-Tao(钱长涛)

    2002-01-01

    Lanthanide compounds have been attracting much attention in organic synthesis. Chiral Ln-substituted BINOL have been widely studied in several asymmetric organic reactions. LnCl3 and Ln(OTf)3 have been expected to serve as Lewis acids and have been applied to many important synthetic reactions in a one-pot manner. Ln(O-i-Pr)3 exhibits some basic characters,which also can be utilized in some special organic transformation. This article deals with some lanthanides (Ⅲ) complexes promoted organic reactions, which we have recently developed.

  6. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    The cell parameters of the Nd complex are a = 11.0927(8) Å, b = 17.9926 (13) Å, c = 11.9395(9) Å and ... lanthanide ions and to study their physicochemical proper- ...... 5 R.W. Wen, S.D. Han, G.J. Ren, Z. Chang, Y.W. Li and X.H. Bu, A flexible.

  7. Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays.

    Science.gov (United States)

    Tropiano, Manuel; Kenwright, Alan M; Faulkner, Stephen

    2015-04-07

    Lanthanide complexes of azidophenacyl DO3A are effective substrates for click reactions with ethyne derivatives, giving rise to aryl triazole appended lanthanide complexes, in which the aryl triazole acts as an effective sensitising chromophore for lanthanide luminescence. They also undergo click chemistry with propargylDO3A derivatives, giving rise to heterometallic complexes.

  8. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligands featuring salicylamide arms.

    Science.gov (United States)

    Song, Xue-Qin; Dong, Wen-Kui; Zhang, Yu-Jie; Liu, Wei-Sheng

    2010-01-01

    A series of luminescent lanthanide complexes with a new tripodal ligand featuring salicylamide arms, 2,2',2''-nitrilotris(2-furfurylaminoformylphenoxy)triethylamine (L), were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. Photophysical properties of the complexes were studied by means of UV-vis absorption and steady-state luminescence spectroscopy. Excited-state luminescence lifetimes and quantum yield of the complexes were determined. Luminescence studies demonstrated that the tripodal ligand featuring salicylamide arms exhibits a good antennae effect with respect to the Tb(III) and Dy(III) ion due to efficient intersystem crossing and ligand to metal energy transfer. From a more general perspective, this work offers interesting perspectives for the development of efficient luminescent stains and enlarges the arsenal for developing novel luminescent lanthanide complexes of salicylamide derivatives.

  9. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.

    Science.gov (United States)

    Song, Xue-Qin; Zheng, Qing-Fang; Wang, Li; Liu, Wei-Sheng

    2012-01-01

    To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N-thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV - visible absorption and steady-state luminescence spectroscopy. The results of UV - vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited-state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand - Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Synthesis, characterization and luminescent properties of lanthanide complexes with a novel multipodal ligand.

    Science.gov (United States)

    Yan, Zhen-Zhong; Hou, Na; Wang, Cong-Min

    2015-02-25

    Solid complexes of lanthanide nitrates with an novel multipodal ligand, 1,2,4,5-tetramethyl-3,6-bis{N,N-bis[((2'-furfurylaminoformyl)phenoxyl)ethyl]-aminomethyl}-benzene (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. The lowest triplet state energy level of the ligand indicates that the triplet state energy level (T1) of the ligand matches better the resonance level of Tb(III) than other lanthanide ions.

  11. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  12. Efficient polymerization of acrylonitrile catalyzed by diValent lanthanide complex/sodium phenolate systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four divalent lanthanide complexes Sm(ArO)2(THF)4, Yb(ArO)2(THF)3, Eu(ArO)2(THF)3 (ArO = 2,6-ditert-butyl-4-methylphenolate) and (ButCp)2Sm(THF)2 were synthesized. Their catalytic activities on the polymerization of acrylonitrile were studied. The catalytic activities were influenced by the central metal ions involved. The catalytic activities of these divalent lanthanide complexes can be greatly increased by adding NaOC~H2-2,6-But2-4-Me,NaOC6H4-4-But, or NaOC10H6-2-Me. The amount of additive has apparent effect on the catalytic activity, but the additive has no effect on the tacticity of the resulting polyacrylonitrile

  13. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    Science.gov (United States)

    Thompson, David W.

    1993-01-01

    Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on

  14. Lanthanide Complexes of Substituted β-Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities.

    Science.gov (United States)

    Hegazy, W H; Al-Motawaa, I H

    2011-01-01

    A series of β-diketone hydrazone derivatives have been synthesized through condensation of β-diketone with aromatic aldehydes followed by reaction with phenylhydrazine. The structure of the ligands and intermediates are well defined through elemental and spectroscopic analyses. These hydrazones are potential ligands toward lanthanide metal ions. New complexes of trivalent Scandium, Yttrium, Lanthanum, and Cerium have been synthesized. The composition of these complexes is discussed on the basis of elemental analyses, IR, magnetic moments, and thermal analyses. The prepared complexes were screened for antibacterial and antifungal properties and have exhibited potential activity.

  15. Polarized Emission of Molecular Film With Lanthanide (Ⅲ) Complex

    Institute of Scientific and Technical Information of China (English)

    M.Hasegawa

    2007-01-01

    1 Results In the coordination system by using complexation with organic ligand, the ff emission of lanthanide(Ⅲ) (Ln(Ⅲ)) is induced the excitation energy transfer form the organic chromophore under the light-irradiation. However, there are not so much number of reports to discuss the energy relaxation mechanism in such complexes with Ln(Ⅲ). Recently, we succeeded firstly to estimate the rate constant of the energy transfer between the ligand and Ln(Ⅲ) in Pr(Ⅲ)-phenanthroline analogs[1]. Here, we will di...

  16. Structural rearrangement through lanthanide contraction in dinuclear complexes.

    Science.gov (United States)

    Hutchings, Amy-Jayne; Habib, Fatemah; Holmberg, Rebecca J; Korobkov, Ilia; Murugesu, Muralee

    2014-02-17

    A new series of lanthanide complexes was synthesized, and the geometry and preliminary magnetic measurements of the complexes were explored. The specific ligand used (N'-(2-hydroxy-3-methoxybenzylidene)benzhydrazide) (H2hmb) was synthesized using a Schiff-base approach and was employed due to the presence of a coordination pocket that is able to accommodate magnetically selective lanthanide ions. The series can be divided into two groups that are categorized by a drastic structural rearrangement. The first group, Type I, contains six analogous complexes with the formula [M(III)2(Hhmb)3(NCS)3]·2MeOH·py (M = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Ho 6), while the second group, Type II, contains two dinuclear complexes with formula [M(III)2(Hhmb)2(NCS)4(MeOH)2] (M = Er 7, and Yb 8). Single-crystal X-ray analysis revealed that all M(III) ions in Type I exhibit monocapped distorted square antiprismatic geometries, while those of Type II exhibit distorted dodecahedron geometry. The direct current and alternating current magnetic measurements were carried out on all complexes, with 5, 7, and 8 exhibiting slow relaxation of the magnetization under an applied optimum dc field. Furthermore, complex 8 is the first example of a dinuclear Yb-based single-molecule magnet showing field-dependent multiple relaxation processes.

  17. In vitro studies of lanthanide complexes for the treatment of osteoporosis.

    Science.gov (United States)

    Mawani, Yasmin; Cawthray, Jacqueline F; Chang, Stanley; Sachs-Barrable, Kristina; Weekes, David M; Wasan, Kishor M; Orvig, Chris

    2013-05-07

    Lanthanide ions, Ln(III), are of interest in the treatment of bone density disorders because they are found to accumulate preferentially in bone (in vivo), have a stimulatory effect on bone formation, and exhibit an inhibitory effect on bone degradation (in vitro), altering the homeostasis of the bone cycle. In an effort to develop an orally active lanthanide drug, a series of 3-hydroxy-4-pyridinone ligands were synthesized and eight of these ligands (H1 = 3-hydroxy-2-methyl-1-(2-hydroxyethyl)-4-pyridinone, H2 = 3-hydroxy-2-methyl-1-(3-hydroxypropyl)-4-pyridinone, H3 = 3-hydroxy-2-methyl-1-(4-hydroxybutyl)-4-pyridinone, H4 = 3-hydroxy-2-methyl-1-(2-hydroxypropyl)-4-pyridinone, H5 = 3-hydroxy-2-methyl-1-(1-hydroxy-3-methylbutan-2-yl)-4-pyridinone, H6 = 3-hydroxy-2-methyl-1-(1-hydroxybutan-2-yl)-4-pyridinone, H7 = 1-carboxymethyl-3-hydroxy-2-methyl-4-pyridinone, H8 = 1-carboxyethyl-3-hydroxy-2-methyl-4-pyridinone) were coordinated to Ln(3+) (Ln = La, Eu, Gd, Lu) forming stable tris-ligand complexes (LnL(3), L = 1(-), 2(-), 3(-), 4(-), 5(-), 6(-), 7(-) and 8(-)). The dissociation (pK(an)) and metal ligand stability constants (log β(n)) of the 3-hydroxy-4-pyridinones with La(3+) and Gd(3+) were determined by potentiometric titrations, which demonstrated that the 3-hydroxy-4-pyridinones form stable tris-ligand complexes with the lanthanide ions. One phosphinate-EDTA derivative (H(5)XT = bis[[bis(carboxymethyl)amino]methyl]phosphinate) was also synthesized and coordinated to Ln(3+) (Ln = La, Eu, Lu), forming the potassium salt of [Ln(XT)](2-). Cytotoxicity assays were carried out in MG-63 cells; all the ligands and metal complexes tested were observed to be non-toxic to this cell line. Studies to investigate the toxicity, cellular uptake and apparent permeability (P(app)) of the lanthanide ions were conducted in Caco-2 cells where it was observed that [La(XT)](2-) had the greatest cell uptake. Binding affinities of free lanthanide ions (Ln = La, Gd and Lu), metal

  18. Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes.

    Science.gov (United States)

    Aboshyan-Sorgho, Lilit; Nozary, Homayoun; Aebischer, Annina; Bünzli, Jean-Claude G; Morgantini, Pierre-Yves; Kittilstved, Kevin R; Hauser, Andreas; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2012-08-01

    This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.

  19. Energetic Ionic Liquids Based on Lanthanide Nitrate Complex Anions (Postprint)

    Science.gov (United States)

    2008-01-01

    xH2O (x=27–44) [5a] and lanthanide complexes of the pseudohalide SCN in the hydrolytically unstable [ bmim ]4Ln ACHTUNGTRENNUNG(SCN)7·H2O ( bmim =1-butyl-3...Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim These are not the final page numbers! &1& FULL PAPER cal ionic liquids. The instability of [ bmim ]4Ln... bmim ]4Ln ACHTUNGTRENNUNG(SCN)7·H2O ionic liquids by displacing the isothiocyanate ligand.[5b] In our syntheses, guanidinium ni- trate and lanthanum or

  20. Synthesis, Characterization and Fluorescence of Phenylcarboxymethyl Sulfoxide Complexes with Lanthanide Nitrates

    Institute of Scientific and Technical Information of China (English)

    李文先; 张东凤

    2002-01-01

    Phenylcarboxymethyl Sulfoxide, PhSOCH2COOH(LH), complexes of six lanthanide nitrates: Ln2L2(NO3)4*2LH*nH2O(where Ln=La, Ce, Pr, Nd, Sm, Eu) were synthesized. Elemental analyses, molar conductivities, IR, 1HNMR and TG-DTA measurements were used to characterize the complexes. The results show that the ligand(L) is coordinated to metal ions through two oxygen atoms of the carboxyl group and one oxygen atom of the sulfoxide moieties. Neutral ligang (LH)is coordinated to two metal ions through two oxygen atoms of carboxyl group as an asymmetrical bridging bidentate. The fluorescence spectra of Eu3+ complex indicates that there is no inversion symmetry at the site of Eu3+ ion, but the emission intensity of fluorescence is quite good.The solubility of the complexes is very good in water.

  1. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  2. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  3. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  4. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.

    Science.gov (United States)

    am Ende, Christopher W; Meng, Hai Yun; Ye, Mao; Pandey, Anil K; Zondlo, Neal J

    2010-08-16

    Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide.

  5. Lanthanide amino acid Schiff base complexes: synthesis, spectroscopic characterization, physical properties and in vitro antimicrobial studies

    Institute of Scientific and Technical Information of China (English)

    Samir Alghool; M.Sh.Zoromba; Hanan F.Abd El-Halim

    2013-01-01

    Complexes of La (Ⅲ),Nd(Ⅲ),Gd(Ⅲ),Sm(Ⅲ),and Ce(Ⅳ) were synthesized with Schiff base [(3,5-di-tert-butyl-2-hydroxybenzyl) amino] acetic acid (H3L).The ligand and its complexes were synthesized and characterized based on the following analysis:elemental analyses,FAB-mass,molar conductance measurements,magnetic measurement,UV-visible,IR,and NMR spectral studies.The spectral data revealed that the ligand acted as a neutral tridentate coordinating to metal ion through ONO donor sequence.Thermal degradation studies of the ligand and its complexes showed that the previous lanthanide complexes were more thermally stable than the ligand itself.The Schiff base and its complexes were screened for their antibacterial (Escherichia coli,Staphylococcus aureus) and antifungal (Aspergillus flavus and Candida Albicans).

  6. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials

    Science.gov (United States)

    Dutra, José Diogo L.; Filho, Manoel A. M.; Rocha, Gerd B.; Freire, Ricardo O.; Simas, Alfredo M.; Stewart, James J. P.

    2013-01-01

    The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present Sparkle Model parameters to be used with PM7 that allow the prediction of geometries of metal complexes and materials which contain lanthanide trications. Accordingly, we considered the geometries of 224 high-quality crystallographic structures of complexes for the parameterization set and 395 more for the validation of the parameterization for the whole lanthanide series, from La(III) to Lu(III). The average unsigned error for Sparkle/PM7 for the distances between the metal ion and its coordinating atoms is 0.063Å for all lanthanides, ranging from a minimum of 0.052Å for Tb(III) to 0.088Å for Ce(III), comparable to the equivalent errors in the distances predicted by PM7 for other metals. These distance deviations follow a gamma distribution within a 95% level of confidence, signifying that they appear to be random around a mean, confirming that Sparkle/PM7 is a well-tempered method. We conclude by carrying out a Sparkle/PM7 full geometry optimization of two spatial groups of the same thulium-containing metal organic framework, with unit cells accommodating 376 atoms, of which 16 are Tm(III) cations; the optimized geometries were in good agreement with the crystallographic ones. These results emphasize the capability of the use of the Sparkle Model for the prediction of geometries of compounds containing lanthanide trications within the PM7 semiempirical model, as well as the usefulness of such semiempirical calculations for materials modeling. Sparkle/PM7 is available in the software package MOPAC2012, at no cost for academics and can be obtained from http://openmopac.net. PMID:24163641

  7. Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan; WAN ShiGang; ZHAO Jian; LIN YiJi; XUAN WeiMin; FANG XueMing; ZHANG Hui

    2009-01-01

    Eight-coordinate chiral lanthanide complexes[Eu(dbm)_3L~(RR)](1),[Eu(dbm)_3L~(SS)](2) and[Tb(dbm)_3L~(RR)](3)(L~(RR)/L~(SS)=(-)-1(+)-4,5-pineno-2,2'-bipyridine,Hdbm=dibenzoylmethane) were synthesized stereoselectively,which were characterized by UV-vis,CD spectra and X-ray single-crystal diffraction.The mirrorimage structure features of complexes 1 and 2 were obtained by combination of the solid-state CD spectra and the crystal structure analysis.After further comparison with the solid-state CD spectra of six-coordinate and seven-coordinate metal complexes containing β-diketone ligands,the CD spectraabsolute configuration correlation rule for the eight-coordinate β-diketonate lanthanide complexes was proposed through the exciton chirality method for the first time.The △ or Λ absolute configurations of complexes 1-3 with the distorted square antiprism geometry were confirmed by the X-ray single-crystal analysis.

  8. Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Eight-coordinate chiral lanthanide complexes [Eu(dbm)3LRR](1),[Eu(dbm)3LSS](2) and [Tb(dbm)3LRR](3)(LRR/LSS =(-)-/(+)-4,5-pineno-2,2’-bipyridine,Hdbm = dibenzoylmethane) were synthesized stereoselectively,which were characterized by UV-vis,CD spectra and X-ray single-crystal diffraction.The mirrorimage structure features of complexes 1 and 2 were obtained by combination of the solid-state CD spectra and the crystal structure analysis.After further comparison with the solid-state CD spectra of six-coordinate and seven-coordinate metal complexes containing β-diketone ligands,the CD spectraabsolute configuration correlation rule for the eight-coordinate β-diketonate lanthanide complexes was proposed through the exciton chirality method for the first time.The △ or Λ absolute configurations of complexes 1―3 with the distorted square antiprism geometry were confirmed by the X-ray single-crystal analysis.

  9. Ultrafast magnetization dynamics of lanthanide metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Muhammad

    2012-05-14

    In this study, the laser-induced magnetization dynamics of the lanthanide ferromagnets Gadolinium (Gd), Terbium (Tb) and their alloys is investigated using femtosecond (fs) time-resolved x-ray magnetic circular dichroism (XMCD), the magneto-optical Kerr effect (MOKE) and magnetic second harmonic generation (MSHG). The magnetization dynamics is analyzed from the time scale of a few fs up to several hundred picoseconds (ps). The contributions of electrons, phonons, spin fluctuations, as well as the temporal regimes corresponding to the spin-orbit and exchange interactions are disentangled. In addition to possible applications in magnetic storage devices, understanding magnetization dynamics in lanthanides is also important because of their different magnetic structure compared to well-studied itinerant ferromagnets. Lanthanides are model Heisenberg-ferromagnets with localized 4f magnetic moments and long range magnetic ordering through indirect exchange interaction. By optical excitation of the conduction electrons, which mediate the exchange interaction, and studying the induced dynamics of the localized 4f and delocalized 5d6s magnetic moments, one can obtain insight into the angular momentum transfer at ultrafast time scales. Moreover, lanthanides offer the possibility to tune spin-lattice coupling via the 4f shell occupation and the concomitant changes in the 4f spin and orbital moments due to Hund's rules. Utilizing this fact, the importance of spin-lattice coupling in laser-induced demagnetization is also analyzed by comparing the magnetization dynamics in Gd and Tb. By investigating the magnetization dynamics of localized 4f moments of Gd and Tb using time-resolved XMCD, it is found that the demagnetization proceeds in both metals in two time scales, following fs laser excitation, which are classified as: (i) non-equilibrium (t > 1 ps), with respect to equilibration of electron and phonon temperatures. The

  10. Lanthanide-isophthalate cavity frameworks encapsulated copper(I) complexes

    Science.gov (United States)

    Zhou, Youfu; Yuan, Daqiang; Jiang, Feilong; Xu, Yanqing; Hong, Maochun

    2006-08-01

    The hydrothermal reactions of Ln 2O 3, [Cu(2,2'-bpy) 2](ClO 4) and isophthalic acid (H 2ip) yielded a series of heterometallic coordination frameworks with the empirical formula [{Ln 4(ip) 7(H 2O) 2}{Cu(bpy) 2} 2] n [Ln=Nd ( 1), Sm ( 2), Eu ( 3)]. Single-crystal X-ray diffraction analyses reveal that they are isostructural and possess a 3D cavity framework with two complex cations [Cu(2,2'-bpy) 2] + encapsulated in each cavity. TGA curve shows that they are highly thermally stable. Magnetic studies illustrate weakly antiferromagnetic exchange interactions between lanthanide(III) ions at room temperature in 1- 3. Compound 2 has interesting photoluminescent property owing to the coexistence of host and guest photoluminescent units.

  11. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Standard Enthalpies of Formation of Solid Complexes of Lanthanide Nitrates with Alanine

    Institute of Scientific and Technical Information of China (English)

    杨旭武; 陈三平; 高胜利; 刘晓华; 史启祯

    2002-01-01

    The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δc,coor(s)H°, and standard enthalpies of formation, Δf,coor(s)H°, were calculated for these complexes. The relationship of Δc,coor(s)H° and Δf,coor(s)H° with the atomic numbers of the elements in the lanthanide series were examined. The results show that a certain amount of covalence is present in the chemical bond between the lanthanide cations and alanine.

  13. Crystal Structure and Luminescence Property of Lanthanide Complexes with 2-Fluorobenzoic Acid and 2,2'-Bipyridine

    Institute of Scientific and Technical Information of China (English)

    Li Xia; Zhang Zhuoyong; Song Haibin

    2005-01-01

    The two compounds of [Ln(2-FBA)3·2,2'-bpy]2 (2-FBA=2-fluorobenzoato, 2,2'-bpy=2,2'-bipyridine, Ln=Eu(1), Dy(2)) were synthesized and their structures were determined by X-ray diffraction method. Crystallized complexes 1 and 2 are isomorphous, monoclinic system with P21/n space group. The two complexes are binuclear molecule with an inversion center. The two lanthanide ions are linked by four bridged 2-FBA ligands and each lanthanide ion is further bonded to one chelated bidentate 2-FBA ligand and one 2,2'-bipyridine molecule. The coordination number of metal ion is eight. The europium complex exhibits strong red fluorescence. 5D0→7Fj (j= 1~4) transition emission of Eu3+ ion was observed.

  14. Effect of complexation with lanthanide metal ions on the photochromism of (1,3,3-trimethyl- 5 ′ -hydroxy- 6 ′ -formyl- indoline-spiro2,2 ′ -[2h]chromene in different media

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Complexation of lanthanide ions {Ln(III ions [Tb(III, Eu(III, or Sm(III]} with the spiropyran-derived merocyanine obtained in dark and under steady irradiation of indoline spiropyran (1,3,3-trimethyl- 5 ′ -hydroxy- 6 ′ -formyl-indoline-spiro-2,2 ′ -[2H]chromene induces a noticeable hypsochromic shift of about 10–110 nm of its visible absorption band concomitant with hypochromic effect and influences its thermal bleaching in the dark. The effect of lanthanide ions and medium on photochromic, spectral-and-kinetic, and luminescence properties of the spiropyran and its complexes in solution and polymer matrix of polymethylmethacrylate (PMMA is studied. Efficient energy transfer from the spiropyran moiety results in efficient typical luminescence from the Ln(III ion that becomes more pronounced in polar nonalcoholic solvents and PMMA solid matrix. Moreover, luminescence mappings for pattern recognition analysis have been obtained from which the nature of the solvent and/or the ligand is clearly identified.

  15. Controlled Synthesis of a Novel Heteropolymetallic Complex with Selectively Incorporated Lanthanide(III) Ions

    OpenAIRE

    Debroye, Elke; Ceulemans, Matthias; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N.; Parac-Vogt, Tatjana

    2014-01-01

    A novel synthetic strategy toward a heteropolymetallic lanthanide complex with selectively incorporated gadolinium and europium ions is outlined. Luminescence and relaxometric measurements suggest possible applications in bimodal (magnetic resonance/optical) imaging.

  16. Photo-reactive charge trapping memory based on lanthanide complex.

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L

    2015-10-09

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  17. Prediction of Decomposition Temperature for Lanthanide Complexes Involving Cyclopentadienyl and Benzohydroxamic Acid Ligand by ANNs

    Institute of Scientific and Technical Information of China (English)

    孙益民; 凌青; 万玉宝; 王修然; 宇海银

    2002-01-01

    The decomposition temperatures of the lanthanide organic complexes(η5-C5H5)2Ln(C6H5CONHO)involving cyclopentadienyl and benzohydroxamic acid ligands were calculated and predicted by the model based on ANNs(artificial neural netowrks)method.The comparison was carried out between results from ANNs method and traditinal regression method.It is proved that ANNs could be used more efficiently for the prediction of decomposition temperature of lanthanide organic complexes.

  18. Prediction of Decomposition Temperature for Lanthanide Complexes Involving Cyclopentadienyl and Benzohydroxamic Acid Ligand by ANNs

    Institute of Scientific and Technical Information of China (English)

    SUN,Yi-Min(孙益民); LING,Qing(凌青); WAN,Yu-Bao(万玉宝); WANG,Xiu-Ran(王修然); YU,Hai-Yin(宇海银)

    2002-01-01

    The decomposition temperatures of the lanthanide organic complexes (η5-C5H5)2Ln(C6H5CONHO) involving cyclopentadienyl and benzohydroxamic acid ligands were calculated and predicted by the model based on ANNs (artificial neural networks)method. The comparison was carried out between results from ANNs method and traditional regression method. It is proved that ANNs could be used more efficiently for the prediction of decomposition temperature of lanthanide organic complexes.

  19. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone

    Indian Academy of Sciences (India)

    KARREDDULA RAJA; AKKILI SUSEELAMMA; KATREDDI HUSSAIN REDDY

    2016-08-01

    Lanthanide(III) complexes of general formula [La(BPAH)₂(NO₃)₃] and [Ce(BPAH)₂(NO₃)(H₂O)₂] 2NO₃.H₂O (where, BPAH = 2-benzoylpyridine acetyl hydrazone), were synthesized and characterized by elemental analysis, molar conductance, IR spectroscopy and single crystal X-ray diffraction and Hirschfeld studies. The central metal ion is 12-coordinate in lanthanum complex and 10-coordinated in the cerium complex. The coordination polyhedra around the lanthanum and cerium were found to have distorted icosahedron and distorted bicapped square antiprism respectively. DNA binding and nuclease activity of these complexes were also investigated in the present work.

  20. Employment of methyl 2-pyridyl ketone oxime in 3d/4f-metal chemistry: dinuclear nickel(II)/lanthanide(III) species and complexes containing the metals in separate ions.

    Science.gov (United States)

    Polyzou, Christina D; Nikolaou, Helen; Papatriantafyllopoulou, Constantina; Psycharis, Vassilis; Terzis, Aris; Raptopoulou, Catherine P; Escuer, Albert; Perlepes, Spyros P

    2012-11-28

    The use of methyl 2-pyridyl ketone oxime (mpkoH) for the synthesis of Ni(II)/Ln(III) (Ln = lanthanide) complexes, using "one-pot" reactions in the absence of an external base, is described. Depending on the reaction and crystallization conditions employed, two families of complexes have been obtained. The first family consists of true heterometallic species and involves complexes [NiLn(mpko)(3)(mpkoH)(3)](ClO(4))(2), where Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er. The second family contains the pseudo heterometallic complexes [Ni(mpkoH)(3)](2)[Ln(NO(3))(6)](ClO(4)), where Ln = La, Ce, Pr, Nd and Sm. The crystal structures of [NiCe(mpko)(3)(mpkoH)(3)](ClO(4))(2) (1), [NiDy(mpko)(3)(mpkoH)(3)](ClO(4))(2) (8) and [Ni(mpkoH)(3)](2)[La(NO(3))(6)](ClO(4)) (11) have been determined by single-crystal, X-ray crystallography. Complexes 1·1.2MeOH·0.6H(2)O and 8·1.2MeOH·0.6H(2)O crystallise in the monoclinic space group P2(1)/a and are isomorphous; there are two crystallographically independent cations in the unit cell, but their interatomic distances and angles differ little. The Ni(II) and Ln(III) ions are bridged by three oximate groups belonging to the η(1):η(1):η(1):μ mpko(-) ligands. The Ni(II) centre is octahedrally coordinated by the six nitrogen atoms of the mpko(-) ligands in a facial arrangement. The Ln(III) centre is bound to an (O(oximate))(3)N(6) set of donor atoms, the nitrogen atoms belonging to the three N,N'-bidentate chelating mpkoH ligands. The stereochemistry of the Ln(III) atoms has been evaluated by means of continuous shape measures (CShM). The two crystallographically independent Ce(III) atoms in 1 have tricapped trigonal prismatic and capped square antiprismatic coordination geometries, while the polyhedra of the Dy(III) atoms in 8 are both close to a tricapped trigonal prism. The octahedral Ni(II) atoms in 11 are both facially bound to a N(6) set of donor atoms from three N,N'-bidentate chelating mpkoH ligands, while the 12-coordinate

  1. Ultrafast magnetization dynamics of lanthanide metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Muhammad

    2012-05-14

    In this study, the laser-induced magnetization dynamics of the lanthanide ferromagnets Gadolinium (Gd), Terbium (Tb) and their alloys is investigated using femtosecond (fs) time-resolved x-ray magnetic circular dichroism (XMCD), the magneto-optical Kerr effect (MOKE) and magnetic second harmonic generation (MSHG). The magnetization dynamics is analyzed from the time scale of a few fs up to several hundred picoseconds (ps). The contributions of electrons, phonons, spin fluctuations, as well as the temporal regimes corresponding to the spin-orbit and exchange interactions are disentangled. In addition to possible applications in magnetic storage devices, understanding magnetization dynamics in lanthanides is also important because of their different magnetic structure compared to well-studied itinerant ferromagnets. Lanthanides are model Heisenberg-ferromagnets with localized 4f magnetic moments and long range magnetic ordering through indirect exchange interaction. By optical excitation of the conduction electrons, which mediate the exchange interaction, and studying the induced dynamics of the localized 4f and delocalized 5d6s magnetic moments, one can obtain insight into the angular momentum transfer at ultrafast time scales. Moreover, lanthanides offer the possibility to tune spin-lattice coupling via the 4f shell occupation and the concomitant changes in the 4f spin and orbital moments due to Hund's rules. Utilizing this fact, the importance of spin-lattice coupling in laser-induced demagnetization is also analyzed by comparing the magnetization dynamics in Gd and Tb. By investigating the magnetization dynamics of localized 4f moments of Gd and Tb using time-resolved XMCD, it is found that the demagnetization proceeds in both metals in two time scales, following fs laser excitation, which are classified as: (i) non-equilibrium (t > 1 ps), with respect to equilibration of electron and phonon temperatures. The

  2. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    Science.gov (United States)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  3. Characteristics of Trivalent Lanthanides in Coordination Chemistry

    Institute of Scientific and Technical Information of China (English)

    Xue Dongfeng(薛冬峰); Zuo Sen(左森); Henryk Ratajczak

    2004-01-01

    Some basic characteristics of lanthanide-oxygen bonds in various trivalent lanthanide metal-organic complexes are quantitatively studied by the bond valence model. Some important relationships among the electronegativity, bond valence parameter, bond length and lanthanide coordination number in these complexes are generally found , which show that for each trivalent lanthanide cation all calculated parameters may well be correlated with its coordination number in their coordination complexes. Specifically,32 new data for the bond valence parameter are first calculated in this work.An approximate linear relationship between the Ln-O bond valence parameter and the coordination number of Ln3+ is obtained.The Ln-O bond length increases with the increase in the lanthanide coordination number.The difference of electronegative values decreases with the increase in the lanthanide coordination number.

  4. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    Science.gov (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  5. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines.

    Science.gov (United States)

    Kapoor, Puja; Fahmi, Nighat; Singh, R V

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  6. Synthesis, Characterization and Properties of Lanthanide Nitrate Complexes with Isonicotinoyl Hydrazone

    Institute of Scientific and Technical Information of China (English)

    卜显和; 高育新; 陈巍; 刘河; 张若桦

    2001-01-01

    Some light-lanthanide nitrate complexes were obtained by the reaction of lanthanide nitrate with isonicotinoyl hydrazone (HL=N,N′-diisonicotinoyl-2-hydroxy-5-methyl-isophthalaldehyde dihydrazone) in methanol. The general formula of the complexes is Ln(L)(NO3)2*nH2O(Ln=La, Ce, Pr, Nd and Sm; n=0, 1). The complexes were characterized by elemental analyses, conductance, thermal analyses, UV and IR spectra. The results show that the lanthanide ion in each complex is coordinated by oxygen and nitrogen atoms of the ligand (L) and the oxygen atoms of the nitrate. The amide-oxygen atoms of L coordinate to the Ln ions in its keto-form. The magnetic susceptibility of the neodymium complex shows that the magnetic data obey Curie-Weiss law in the range of 75K<T<300K.

  7. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II).

    Science.gov (United States)

    Kálmán, Ferenc Krisztián; Végh, Andrea; Regueiro-Figueroa, Martín; Tóth, Éva; Platas-Iglesias, Carlos; Tircsó, Gyula

    2015-03-02

    The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).

  8. Lanthanide complexes derived from hexadentate macrocyclic ligand: synthesis, spectroscopic and thermal investigation.

    Science.gov (United States)

    Chandra, Sulekh; Tyagi, Monika; Rani, Soni; Kumar, Sumit

    2010-02-01

    The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I(1-17)I(7-11)]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X(2).H(2)O]X, where Ln=La(3+), Ce(3+), Nd(3+), Sm(3+) and Eu(3+) and X=NO(3)(-) and Cl(-). The ligand was characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio (beta), covalency factor (b(1/2)), Sinha parameter (delta%) and covalency angular overlap parameter (eta) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal-ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.

  9. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  10. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  11. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    C. Pagis; M. Ferbinteanu; G. Rothenberg; S. Grecea

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the catalysi

  12. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides; Approche calorimetrique de la complexation et de l'extraction des lanthanides (3) par les malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Flandin, J.L

    2001-07-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties ({delta}{sub r}G, {delta}{sub r}H et {delta}{sub r}S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties {delta}{sub r}G et {delta}{sub r}H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  13. Aromatic Lateral Substituents Influence the Excitation Energies of Hexaaza Lanthanide Macrocyclic Complexes: A Wave Function Theory and Density Functional Study.

    Science.gov (United States)

    Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-09-24

    The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.

  14. Preparation and quality control of the [sm]-samarium maltolate complex as a lanthanide mobilization product in rats.

    Science.gov (United States)

    Naseri, Zohreh; Hakimi, Amir; Jalilian, Amir R; Nemati Kharat, Ali; Bahrami-Samani, Ali; Ghannadi-Maragheh, Mohammad

    2011-01-01

    Development of lanthanide detoxification agents and protocols is of great importance in management of overdoses. Due to safety of maltol as a detoxifying agent in metal overloads, it can be used as a lanthanide detoxifying agent. In order to demonstrate the biodistribution of final complex, [(153)Sm]-samarium maltolate was prepared using Sm-153 chloride (radiochemical purity >99.9%; ITLC and specific activity). The stability of the labeled compound was determined in the final solution up to 24h as well as the partition coefficient. Biodistribution studies of Sm-153 chloride, [(153)Sm]-samarium maltolate were carried out in wild-type rats comparing the critical organ uptakes. Comparative study for Sm(3+) cation and the labeled compound was conducted up to 48 h, demonstrating a more rapid wash out for the labeled compound. The effective and biological half lives of 2.3 h and 2.46h were calculated for the complex. The data suggest the detoxification property of maltol formulation for lanthanide overdoses.

  15. Relaxation process and phase transition of lanthanide liquid crystalline complexes by photoacoustic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Junjia; YANG Yuetao; LIU Xiaojun; ZHANG Shuyi; ZHANG Zhongning

    2008-01-01

    Lanthanide-containing liquid crystals exhibiting smectic A phase close to room temperature were obtained. Photoacoustic (PA) spectroscopy was used to study the spectral properties and phase transitions of liquid crystalline metal complexes. It was found that PA intensity of the ligand had a relationship with the probability of nonradiative transitions, which increased in the order of Eu(tta)3L2complexes were studied in depth from two aspects: radiative and non-radiative processes, combining with their fluorescence spectra. Phase transitions of europium(III) and erbium(III) complexes, in the temperature range of 383-358 K, could be clearly monitored by both PA amplitude and PA phase signals. As the temperature crossed the transition point, PA amplitude showed a minimum and PA phase a maximum. The results indicated that PA technique could serve as a new tool for investigating the physicochemical properties of liquid crystals containing metal ions.

  16. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Science.gov (United States)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  17. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  18. Dinitrogen and Related Chemistry of the Lanthanides: A Review of the Reductive Capture of Dinitrogen, As Well As Mono- and Di-aza Containing Ligand Chemistry of Relevance to Known and Postulated Metal Mediated Dinitrogen Derivatives

    Directory of Open Access Journals (Sweden)

    Damien N. Stringer

    2010-02-01

    Full Text Available This paper reviews the current array of complexes of relevance to achieving lanthanide mediated nitrogen fixation. A brief history of nitrogen fixation is described, including a limited discussion of successful transition metal facilitated nitrogen fixation systems. A detailed discussion of the numerous lanthanide-nitrogen species relevant to nitrogen fixation are discussed and are related to the Chatt cycle for nitrogen fixation.

  19. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta.

    Directory of Open Access Journals (Sweden)

    Franz eGoecke

    2015-01-01

    Full Text Available Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations. Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM fluorimeter. We found that nutrient stress reduced parameters of growth and chlorophyll fluorescence, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations, lanthanides enhanced the toxic effect and severely inhibited growth. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the physiological state of the microalgae, raising the possibility of environmental impacts at even low concentrations.

  20. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta).

    Science.gov (United States)

    Goecke, Franz; Jerez, Celia G; Zachleder, Vilém; Figueroa, Félix L; Bišová, Kateřina; Řezanka, Tomáš; Vítová, Milada

    2015-01-01

    Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations.

  1. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)

    Science.gov (United States)

    Goecke, Franz; Jerez, Celia G.; Zachleder, Vilém; Figueroa, Félix L.; Bišová, Kateřina; Řezanka, Tomáš; Vítová, Milada

    2015-01-01

    Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations. PMID:25674079

  2. Synthesis, spectral characterization, thermal and biological studies of lanthanide(III) complexes of oxyphenbutazone

    Institute of Scientific and Technical Information of China (English)

    PS Binil; MR Anoop; KR Jisha; S Suma; MR Sudarsanakumar

    2014-01-01

    Lanthanide(III) complexes of 4-butyl-1-(4-hydroxyphenyl)-2-phenyl-3,5-pyrazolidinedione (OPB) were prepared by ho-mogeneous precipitation. The solid complexes were characterized by elemental analysis, magnetic susceptibility data, molar conduc-tivity measurements and IR, UV-Vis, mass, 1H NMR and 13C NMR spectral methods. The thermal decomposition of the complexes under static air atmosphere was investigated by simultaneous TG/DTG at a heating rate of 10 °C/min. The final decomposition prod-ucts were found to be metal oxides. The spectroscopic data suggested that OPB acted as a bidentate, mono-ionic ligand coordinating through two carbonyl oxygens of the pyrazolidinedione ring. The kinetic and thermodynamic parameters such as activation energy, pre-exponential factor and entropy of activation for each step of the decomposition reactions were evaluated using Coats-Redfern and MacCallum-Tanner equations. The negative entropy values of the complexes indicated that the activated complexes had a more or-dered structure than the reactant and that the reactions were slower than normal. Investigations of antimicrobial activity of the com-pounds were carried out by the disk diffusion technique.

  3. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    Science.gov (United States)

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  4. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  5. Heptanuclear lanthanide [Ln7] clusters: from blue-emitting solution-stable complexes to hybrid clusters.

    Science.gov (United States)

    Canaj, Angelos B; Tsikalas, George K; Philippidis, Aggelos; Spyros, Apostolos; Milios, Constantinos J

    2014-09-07

    The use of LH3 (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) and aibH (2-amino-isobutyric acid) in 4f chemistry has led to the isolation of eight new isostructural lanthanide complexes. More specifically, the reaction of the corresponding lanthanide nitrate salt with LH3 and aibH in MeOH, under solvothermal conditions in the presence of NEt3, led to the isolation and characterization of seven complexes with the general formulae [Ln(III)7(OH)2(L')9(aib)]·4MeOH (Ln = Gd, ·4MeOH; Tb, ·4MeOH; Dy, ·4MeOH; Ho, ·4MeOH; Er, ·4MeOH; Tm, ·4MeOH; Yb, ·4MeOH L' = the dianion of the Schiff base between naphthalene aldehyde and 2-amino-isobutyric acid). Furthermore, the isostructural Y(III) analogue, cluster [Y(III)7(OH)2(L')9(aib)]·4MeOH (·4MeOH), was synthesized in a similar manner to . The structure of all eight clusters describes a distorted [M(III)6] octahedron which encapsulates a seventh M(III) ion in an off-centre fashion. Dc magnetic susceptibility studies in the 5-300 K range for complexes reveal the presence of dominant antiferromagnetic exchange interactions within the metallic clusters as evidenced by the negative Weiss constant, θ, while ac magnetic susceptibility measurements show temperature and frequency dependent out-of-phase signals for the [Dy(III)7] analogue (·4MeOH), suggesting potential single molecule magnetism character. Furthermore, for complex , simulation of its dc magnetic susceptibility data yielded very weak antiferromagnetic interactions within the metallic centres. Solid-state emission studies for all clusters display ligand-based emission, while extended 1D and 2D NMR studies for ·4MeOH reveal that the species retain their structural integrity in solution. In addition, TGA measurements for , and revealed excellent thermal stability up to 340 °C for the clusters.

  6. Introduction to molecular magnetism from transition metals to lanthanides

    CERN Document Server

    Benelli, Cristiano

    2015-01-01

    This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide. Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is one lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems. The result is an excellent textbook from both a scientif

  7. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  8. Synthesis, spectroscopic characterization, DNA cleavage and antibacterial studies of a novel tridentate Schiff base and some lanthanide(III) complexes

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; R. Aswathy; L.P. Nitha; Niecy Elsa Mathews; B. Sindhu Kumari

    2014-01-01

    A novel potential tridentate Schiff base was prepared by condensing equimolar quantities of 2-hydroxyacetophenone and 2-aminopyrimidine in methanol. This ligand was versatile in forming a series of complexes with lanthanide ions such as La(III), Pr(III), Nd(III), Sm(III), Gd(III), Dy(III) and Yb(III). The ligand and the metal complexes were characterized through elemental analysis, molar conductance, UV-Visible, IR, 1H NMR, and mass spectral studies. The spectral studies indicated that the ligand was coordinated to the metal ion in neutral tridentate fashion through the azomethine nitrogen, one of the nitrogen atoms in the pyrimidine ring and the phenolic oxygen without deprotonation. Thermal decomposition and luminescence property of lanthanum(III) complex were also examined. The X-ray diffraction patterns showed the crystalline nature of the ligand and its lanthanum(III) complex. The DNA cleavage studies of the ligand and the metal complexes were carried out and it was observed that the lanthanum(III) and neo-dymium(III) complexes cleaved the pUC19 DNA effectively. The ligand and the metal complexes were screened for their antibacte-rial activities. The metal complexes were found to be more potent bactericides than the ligand.

  9. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  10. Synthesis, EPR and Fluorescence Properties of Quaternary Lanthanide Complexes with Chloroacetate and Phenanthroline Ligands

    Institute of Scientific and Technical Information of China (English)

    朱龙观; 肖洪平

    2002-01-01

    A series of novel quaternary mixed anion complexes of lanthanide containing 1,10-phenanthroline (phen) and chloroacetate ligands were synthesized from the water/ethanol solution with slightly acidic solution and characterized by elemental analysis, IR, UV and thermal analysis. The EPR and fluorescence properties also were studied.

  11. A general method for preparing lanthanide oxide nanoparticles via thermal decomposition of lanthanide(III) complexes with 1-hydroxy-2-naphthoic acid and hydrazine ligands

    Science.gov (United States)

    Parimalagandhi, Karuppannan; Premkumar, Thathan; Vairam, Sundararajan

    2016-09-01

    Six new lanthanide(III) complexes (i.e., [Ln(L)2(NA)1.5]·3H2O, where Ln=La(III), Pr(III), Nd(III), Sm(III), Gd(III), and Ce(III) and L and NA indicate N2H4 and C10H6(1-O)(2-COO), respectively) with 1-hydroxy-2-naphthoic acid [C10H6(1-O)(2-COOH)] and hydrazine (N2H4) as co-ligands were characterized by elemental, FTIR, UV-visible, and XRD techniques. In the FT-IR spectra, the N-N stretching frequency in the range of 981-949 cm-1 demonstrates evidence of the presence of coordinated N2H4, indicating the bidentate bridging nature of hydrazine in the complexes. These complexes show symmetric and asymmetric COO- stretching from 1444 to 1441 cm-1 and 1582 to 1557 cm-1, respectively, indicating bidentate coordination. TG-DTA studies revealed that the compounds underwent endothermic dehydration from 98 to 110 °C. This was followed by the exothermic decomposition of oxalate intermediates to yield the respective metal oxides as the end products. From SEM images, the average size of the metal oxide particles prepared by thermal decomposition of the complexes was determined to be 39-42 nm. The powder X-ray and SEM coupled with energy dispersive X-ray (EDX) studies revealed the presence of the respective nano-sized metal oxides. The kinetic parameters of the decomposition of the complexes were calculated using the Coats-Redfern equation.

  12. Molecular spectrum of lanthanide complexes with 2,3-dichlorobenzoic acid and 2,2-bipyridine.

    Science.gov (United States)

    He, Shu-Mei; Sun, Shu-Jing; Zheng, Jun-Ru; Zhang, Jian-Jun

    2014-04-05

    With 2,3-dichlorobenzoic acid as the first ligands and 2,2'-bipyridine as the second ligands, the lanthanide complexes [Ln(2,3-DClBA)3bipy]2 [Ln=Nd(a), Sm(b), Eu(c), Tb(d), Dy(e), Ho(f)] have been synthesized. By using Infrared (IR) and Raman (R) spectra, the characteristics of the groups can be identified. The bands of lanthanide complexes have been analyzed and attributed, and clearly demonstrated with the use of the complementarity of IR and R. The experiment reveals that the bands of complexes are affected by lanthanide elements (Ln). The frequency of stretching vibration and breathing vibration of ring, together with the stretching vibration of the carbonyl group (νCO), tends to be rising as the atomic number of lanthanide increasing. Meanwhile, crystallography data demonstrate that the six carbonyl groups have different bond length and bond angle, which can lead to different vibration frequency. The second derivatives of IR show that there are multiple vibration frequencies existing in the symmetrical stretching vibration of the carbonyl group (νsCO). Therefore the second derivative of IR spectrum is a characteristic band of different coordination modes of carbonyl group.

  13. Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions.

    Science.gov (United States)

    Jamali, Abbas; Tehrani, Alireza Azhdari; Shemirani, Farzaneh; Morsali, Ali

    2016-06-14

    Four microporous lanthanide metal-organic frameworks (MOFs), namely Ln(BTC)(H2O)(DMF)1.1 (Ln = Tb, Dy, Er and Yb, DMF = dimethylformamide, H3BTC = benzene-1,3,5-tricarboxylic acid), have been used for selective adsorption of Pb(ii) and Cu(ii). Among these MOFs, the Dy-based MOF shows better adsorption property and selectivity toward Pb(ii) and Cu(ii) ions. Adsorption isotherms indicate that sorption of Pb(ii) and Cu(ii) on MOFs is via monolayer coverage. Preconcentration is based on solid-phase extraction in which MOFs were rapidly injected into water samples and adsorption of metal ions was rapid because of good contact with analyte; then adsorbed Pb(ii) and Cu(ii) ions were analyzed by FAAS. The optimized methodology represents good linearity between 1 and 120 μg L(-1) and detection limit of 0.4 and 0.26 μg L(-1) for Pb(ii) and Cu(ii), respectively. Subsequently the method was evaluated for preconcentration of target metal ions in some environmental water samples.

  14. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  15. Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid

    Institute of Scientific and Technical Information of China (English)

    T. F. Abbs Fen Reji; A. Jeena Pearl; Bojaxa A. Rosy

    2013-01-01

    Lanthanide complexes of Eu(III), Gd(III), Nd(III), Sm(III), and Tb(III) with phenylthioacetic acid were synthesized and characterized by elemental analysis, mass, infrared radiation (IR), electronic spectra, molar conductance, thermogravimetric analysis (TGA), and powder X-ray diffraction (XRD). The results showed that the lanthanide complexes were homodinuclear in nature. The two lanthanide ions were bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles were consis-tent with the proposed formulations. Powder XRD studies showed that all the complexes were amorphous in nature. Antimicrobial studies indicated that these complexes exhibited more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The result showed that the Eu(III) and Nd(III) complexes completely cleaved the DNA. The anticancer activities of the complexes were also studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the Eu(III) and Nd(III) complexes were more active than the corresponding Gd(III), Sm(III), Tb(III) complexes and the free ligand on both the cancer cells.

  16. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    Science.gov (United States)

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  17. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  18. Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole.

    Science.gov (United States)

    Ahmed, Zubair; Iftikhar, K

    2013-11-07

    A series of highly volatile eight-coordinate air and moisture stable lanthanide complexes of the type [Ln(hfaa)3(L)2] (Ln = Pr (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Tm (9), and Yb (10); hfaa = anion of hexafluoroacetylacetone and L = pyrazole) have been synthesized and characterized by elemental analysis, IR, ESI-MS(+), and NMR studies. Single-crystal X-ray structures have been determined for the Eu(III) and Dy(III) complexes. These complexes crystallize in the monoclinic space group P2(1)/c. The lanthanide ion in each of these complexes is eight-coordinate with six oxygen atoms from three hfaa and two N-atoms from two pyrazole units, forming a coordination polyhedron best describable as a distorted square antiprism. The NMR spectra reveal that both the pyrazole units remain attached to the metal in solution and the β-diketonate and pyrazole protons are shifted in opposite directions in the case of paramagnetic complexes. The lanthanide-induced chemical shifts are dipolar in nature. The hypersensitive transitions of Nd(III), Ho(III), and Er(III) are sensitive to the environment (solvent), which is reflected by the oscillator strength and band shape of these transitions. The band shape due to the hypersensitive transition of Nd(III) in noncoordinating chloroform and dichloromethane is similar to those of the typical eight-coordinate Nd(III) β-diketonate complexes. The quantum yield and lifetime of Pr(III), Eu(III), Tb(III), Dy(III), and Tm(III) in visible and Pr(III), Nd(III), Dy(III), Ho(III), Er(III) Tm(III), and Yb(III) in the NIR region are sizable. The environment around these metal ions is asymmetric, which leads to increased radiative rates and luminescence efficiencies. The quantum yield of the complexes reveal that ligand-to-metal energy transfer follows the order Eu(III) > Tb(III) ≫ Pr(III) > Dy(III) > Tm(III). Both ligands (hfaa and pyrazole) are good sensitizers for all the visible and NIR emitters effectively, except for Tb

  19. A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Matuszek, Żaneta; Liu, Juewen

    2015-01-01

    In vitro selection of RNA-cleaving DNAzymes was performed using three heavy lanthanide ions (Ln(3+)): Ho(3+), Er(3+) and Tm(3+). The resulting sequences were aligned together and about half of the library contained a new family of DNAzyme. These DNAzymes have a simple loop structure, and they are active only with the seven heavy Ln(3+). Among the tested non-lanthanide ions, only Y(3+) induced cleavage and even Pb(2+) failed to cleave, suggesting a very high specificity. A representative DNAzyme, Tm7, has a sigmoidal metal binding curve with a Hill coefficient of 3, indicating that three metal ions are involved in the catalytic step. Its pH-rate profile has a slope of 1, suggesting a single deprotonation step is involved in the rate-limiting step. Tm7 has a cleavage rate of 1.6 min(-1) at pH 7.8 with 10 μM Er(3+). Phosphorothioate substitution at the cleavage junction completely inhibits the activity, which cannot be rescued by Cd(2+) alone, or by a mixture of Er(3+) and Cd(2+), suggesting that two interacting metal ions are involved in direct bonding to both non-bridging oxygen atoms. A new model involving three lanthanide ions is proposed based on this study. A biosensor is engineered using Tm7 to detect Dy(3+) down to 14 nM.

  20. Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding: study of their luminescence, relaxivity properties of Gd(iii) complexes, and PM3 theoretical calculations.

    Science.gov (United States)

    Maffeo, Davide; Lampropoulou, Maria; Fardis, Michael; Lazarou, Yannis G; Mavridis, Irene M; Mavridou, Despoina A I; Urso, Elena; Pratsinis, Harris; Kletsas, Dimitris; Yannakopoulou, Konstantina

    2010-04-21

    Novel -type cyclodextrin (CD) derivatives, , and , bearing 6, 7 and 8 bis(carboxymethyl)amino (iminodiacetic acid) groups, respectively, were prepared, and their complexation with Eu(iii), Tb(iii) and Gd(iii) ions was studied. Luminescence titrations and mass spectrometry showed formation of multimetal complexes ( 2 to 3, mainly 3 and exactly 4 metal ions), whereas luminescence lifetime measurements revealed the presence of exchangeable water molecules. Semiempirical quantum mechanical calculations, performed by the PM3 method and assessed by DFT calculations on model ligands, indicated efficient multi-metal complexation, in agreement with the experiment. The structures showed coordination of the metal ions in the outer primary side of the CDs via 4 carboxylate O atoms, 2 N atoms and a glucopyranose O atom per metal ion. Coordination of water molecules was also predicted, in accordance with experimental results. Calculated bond lengths and angles were in agreement with literature experimental values of lanthanide complexes. Calculated energies showed that complex stability decreases in the order > > . (1)H NMR molecular relaxivity measurements for the Gd(iii) complexes of , or in water afforded values 4 to 10 times higher than the relaxivity of a commercial contrast agent at 12 MHz, and 6 to 20 times higher at 100 MHz. Solutions of and Gd(iii) complexes in human blood plasma displayed relaxivity values at 100 MHz 7 and 12 times, respectively, higher than the commercial agent. MTT tests of the Gd(iii) complexes using human skin fibroblasts did not show toxicity. Attempts to supramolecularly sensitize the luminescence of the lanthanide complexes using various aromatic CD guests were ineffective, evidently due to large guest-metal distances and inefficient inclusion. The described lanthanide complexes, could be useful as contrast agents in MRI.

  1. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    Science.gov (United States)

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-04-28

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  2. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    Science.gov (United States)

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil.

  3. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2015-10-15

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H{sub 2}TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved. - Graphical abstract: Lanthanide metal-organic frameworks (LnMOFs) with tunable luminescence were synthesized using an azole-containing carboxylic acid as ligand. - Highlights: • A series of isostructural LnMOFs serving as phosphor is reported. • We model the GdTIPA: Tb{sup 3+}, Eu{sup 3+} which can tune color and emit white light. • The scheme and mechanism of luminescent LnMOFs are also presented and discussed.

  4. Cyanomethylene-bis(phosphonate)-based lanthanide complexes: structural, photophysical, and magnetic investigations.

    Science.gov (United States)

    Maxim, Catalin; Branzea, Diana G; Tiseanu, Carmen; Rouzières, Mathieu; Clérac, Rodolphe; Andruh, Marius; Avarvari, Narcis

    2014-03-01

    The syntheses, structural investigations, magnetic and photophysical properties of a series of 10 lanthanide mononuclear complexes, containing the heteroditopic ligand cyanomethylene-bis(5,5-dimethyl-2-oxo-1,3,2λ(5)-dioxa-phosphorinane) (L), are described. The crystallographic analyses indicate two structural types: in the first one, [Ln(III)(L)3(H2O)2]·H2O (Ln = La, Pr, Nd), the metal ions are eight-coordinated within a square antiprism geometry, while the second one, [Ln(III)(L)3(H2O)]·8H2O (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er), contains seven-coordinated Ln(III) ions within distorted monocapped trigonal prisms. Intermolecular hydrogen bonding between nitrogen atoms of the cyano groups, crystallization, and coordination water molecules leads to the formation of extended supramolecular networks. Solid-state photophysical investigations demonstrate that Eu(III) and Tb(III) complexes possess intense luminescence with relatively long excited-state lifetimes of 530 and 1370 μs, respectively, while Pr(III), Dy(III), and Ho(III) complexes have weak intensity luminescence characterized by short lifetimes ranging between a few nanoseconds to microseconds. The magnetic properties for Pr(III), Gd(III), Tb(III), Dy(III), and Ho(III) complexes are in agreement with isolated Ln(III) ions in the solid state, as suggested by the single-crystal X-ray analyses. Alternating current (ac) susceptibility measurements up to 10 kHz reveal that only the Ho(III) complex shows a frequency-dependent ac response, with a relaxation mode clearly observed at 1.85 K around 4500 Hz.

  5. Fluorescent dialdehyde ligand for the encapsulation of dinuclear luminescent lanthanide complexes.

    Science.gov (United States)

    Lin, Po-Heng; Leclère, Mathieu; Long, Jérôme; Burchell, Tara J; Korobkov, Ilia; Clérac, Rodolphe; Murugesu, Muralee

    2010-06-28

    Five dinuclear lanthanide complexes [Ln(III)(2)(hpd)(6)].solvent, Ln(III) = Eu(III) (1.2MeCN), Gd(III) (2.2MeCN), Tb(III) (3.MeCN.MeOH), Dy(III) (4.2MeCN), Ho(III) (5.2MeCN) and Hhpd (2-Hydroxyisophthaldehyde) were synthesised and structurally and magnetically characterised. X-Ray structural analysis shows all complexes are isostructural and crystallise in the triclinic P1 space group. The dinuclear complexes are composed of eight-coordinate lanthanide ions linked by two phenoxide bridges from two hpd(-) ligands. Complex 1 exhibits characteristic fluorescence in the visible region.

  6. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  7. Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna.

    Science.gov (United States)

    Wartenberg, Nicolas; Raccurt, Olivier; Bourgeat-Lami, Elodie; Imbert, Daniel; Mazzanti, Marinella

    2013-03-04

    The bis-tetrazolate-pyridine ligand H(2)pytz sensitises efficiently the visible and/or near-IR luminescence emission of ten lanthanide cations (Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). The Ln(III) complexes present sizeable quantum yields in both domains with a single excitation source. The wide range of possible colour combinations in water, organic solvents and the solid state makes the complexes very attractive for labelling and encoding.

  8. Structural, luminescence and biological studies of trivalent lanthanide complexes with N,N Prime -bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Al Momani, Waleed [Department of Allied Medical Sciences, Al Balqa Applied University (Jordan)

    2012-11-15

    New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis ({sup 1}H NMR, FT-IR, UV-vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate L{sub III} ligand. Tb-L{sub III} and Sm-L{sub III} complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The L{sub III} and Ln-L{sub III} complexes showed antibacterial activity against a number of pathogenic bacteria. - Highlights: Black-Right-Pointing-Pointer Ln(III) ion adopts an eight-coordinate geometry. Black-Right-Pointing-Pointer Luminescence spectra of Sm-L{sub III} and Tb-L{sub III} complexes display the metal centered line emission. Black-Right-Pointing-Pointer Energy transfer process from L{sub III} to Sm in Sm-L{sub III} complex is more efficient than to Tb in Tb-L{sub III} complex. Black-Right-Pointing-Pointer Ln(III) complexes may serve as models for biologically important species.

  9. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  10. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  11. On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vlaisavljevich, Bess; Miro, P.; Cramer, C. J.; Gagliardi, Laura; Infante, I.; Liddle, S. T.

    2011-06-28

    Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η⁵-C₅H₅)₂(THF)LuRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅Me₅)₂(I)ThRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅H₅)₂YRe(η⁵-C₅H₅)₂], [{N(CH₂CH₂NSiMe₃)₃}URe(η⁵-C₅H₅)₂], [Y{Ga(NArCh)₂}{C(PPh₂NSiH₃)₂}(CH₃OCH₃)₂], [{N(CH₂CH₂NSiMe₃)₃}U{Ga(NArCH)₂}(THF)], [(η⁵-C₅H₅)₃UGa(η⁵-C₅Me₅)], [Yb(η⁵-C₅H₅){Si(SiMe₃)₃(THF)₂}], [(η⁵-C₅H₅)₃U(SnPh₃)], [(η⁵-C₅H₅)₃U(SiPh₃)], and (Ph[Me]N)₃USi(SiMe₃)₃. Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide–metal (or metal–metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.

  12. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A., E-mail: fsigoli@iqm.unicamp.br

    2014-10-15

    The lanthanides(III) complexes [Ln(bza){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O, [Ln(ppa){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O and [Ln(abse){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O where Ln=Eu{sup 3+}, Gd{sup 3+} or Tb{sup 3+} were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm{sup −1} between them. The [Eu(abse){sub 3}(H{sub 2}O)] complex shows the higher degree of covalence which was verified by the centroid of {sup 5}D{sub 0}→{sup 7}F{sub 0} transition (17,248 cm{sup −1}). On the other hand the [Ln(abse){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa){sub 3}] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza){sub 3}(H{sub 2}O){sub 2}]·3/2(H{sub 2}O) and [Eu(abse){sub 3}(H{sub 2}O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by

  13. Highly luminescent bis-diketone lanthanide complexes with triple-stranded dinuclear structure.

    Science.gov (United States)

    Li, Hong-Feng; Yan, Peng-Fei; Chen, Peng; Wang, Yan; Xu, Hui; Li, Guang-Ming

    2012-01-21

    A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.

  14. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction.

    Science.gov (United States)

    Antonio, Mark R; McAlister, Daniel R; Horwitz, E Philip

    2015-01-14

    The synthesis, stoichiometry, and structural characterization of a homoleptic, cationic europium(III) complex with three neutral tetraalkyldiglycolamide ligands are reported. The tri(bismuth tetrachloride)tris(N,N,N',N'-tetra-n-octyldiglycolamide)Eu salt, [Eu(TODGA)3][(BiCl4)3] obtained from methanol was examined by Eu L3-edge X-ray absorption spectroscopy (XAS) to reveal an inner-sphere coordination of Eu(3+) that arises from 9 O atoms and two next-nearest coordination spheres that arise from 6 carbon atoms each. A structural model is proposed in which each TODGA ligand with its O=Ca-Cb-O-Cb-Ca=O backbone acts as a tridentate O donor, where the two carbonyl O atoms and the one ether O atom bond to Eu(3+). Given the structural rigidity of the tridentate coordination motif in [Eu(TODGA)3](3+) with six 5-membered chelate rings, the six Eu-Ca and six Eu-Cb interactions are readily resolved in the EXAFS (extended X-ray absorption fine structure) spectrum. The three charge balancing [BiCl4](-) anions are beyond the cationic [Eu(TODGA)3](3+) cluster in an outer sphere environment that is too distant to be detected by XAS. Despite their sizeable length and propensity for entanglement, the four n-octyl groups of each TODGA (for a total of twelve) do not perturb the Eu(3+) coordination environment over that seen from previously reported single-crystal structures of tripositive lanthanide (Ln(3+)) complexes with tetraalkyldiglycolamide ligands (of the same 1:3 metal-to-ligand ratio stoichiometry) but having shorter i-propyl and i-butyl groups. The present results set the foundation for understanding advanced solvent extraction processes for the separation of the minor, tripositive actinides (Am, Cm) from the Ln(3+) ions in terms of the local structure of Eu(3+) in a solid state coordination complex with TODGA.

  15. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties.

    Science.gov (United States)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln(2)(BPB)(3) (Ln=Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln(2)(BPB)(3) and Ln(DBM)(3) on their photoluminescent properties.

  16. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: Synthesis, characterization and photoluminescent properties

    Science.gov (United States)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln2(BPB)3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln2(BPB)3 and Ln(DBM)3 on their photoluminescent properties.

  17. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    Science.gov (United States)

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  18. Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks.

    Science.gov (United States)

    Foucault-Collet, Alexandra; Gogick, Kristy A; White, Kiley A; Villette, Sandrine; Pallier, Agnès; Collet, Guillaume; Kieda, Claudine; Li, Tao; Geib, Steven J; Rosi, Nathaniel L; Petoud, Stéphane

    2013-10-22

    We have created unique near-infrared (NIR)-emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb(3+) lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb(3+) NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 μg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.

  19. THE BIMODAL MOLECULAR WEIGHT DISTRIBUTION OF cis-POLYBUTADIENE POLYMERIZED WITH LANTHANIDE COMPLEX CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    CHENG Rongshi; HU Huizhen; JIANG Liansheng

    1987-01-01

    The variation of the molecular weight and molecular weight distribution of cis-polybutadiene in the course of polymerization catalyzed by lanthanide complex composed of triisobutyl aluminium or diisobutyl aluminium hydride was investigated by osmometry, viscometry and size exclusion chromatography. By analyzing the experimental data, the reasons of the appearance of bimodal molecular weight distribution were elucidated and the possible mechanisms of polymerization were discussed.

  20. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Polly, R.; Schimmelpfennig, B.; Rabung, T.; Kupcik, T.; Klenze, R.; Geckeis, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung (INE); Floersheimer, M. [Hochschule RheinMain, Ruesselsheim (Germany). Fachbereich Ingenieurwissenschaften

    2013-11-01

    Sorption plays a major role in the safety assessment of nuclear waste disposal. In the present theoretical study we focused on understanding the interaction of trivalent lanthanides and actinides (La{sup 3+}, Eu{sup 3+} and Cm{sup 3+}) with the corundum (110) surface. Optimization of the structures were carried out using density functional theory with different basis sets. Additionally, Moeller-Plesset perturbation theory of second order was used for single point energy calculations. We studied the structure of different inner-sphere complexes depending on the surface deprotonation and the number of water molecules in the first coordination shell. The most likely structure of the inner-sphere complex (tri- or tetradentate) was predicted. For the calculations we used a cluster model for the surface. By deprotonating the cluster a chemical environment at elevated pH values was mimicked. Our calculations predict the highest stability for a tetradentate inner-sphere surface complexes with five water molecules remaining in the first coordination sphere of the metal ions. The formation of the inner-sphere complexes is favored when a coordination takes place with at most one deprotonated surface aluminol group located beneath the inner-sphere complex. The mutual interaction between sorbing metal ions at the surface is studied as well. The minimal possible distance between two inner-sphere sorbed metal ions at the surface was determined to be 530 pm. (orig.)

  1. Enantiomeric self-recognition in homo- and heterodinuclear macrocyclic lanthanide(III) complexes.

    Science.gov (United States)

    Lisowski, Jerzy

    2011-06-20

    The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no

  2. Novel lanthanide complexes constructed from 3, 4-dimethoxybenzoic acid: crystal structures, spectrum and thermochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Xia; Wu, Jun-Chen [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning, E-mail: ningren9@163.com [College of Chemical engineering & Material, Handan College, Handan 056005 (China); Zhao, Chun-Li [Raoyang High School of Hebei, Raoyang 053900 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zong, Guang-Cai; Gao, Jie [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-09-10

    Graphical abstract: Four novel lanthanide coordination polymers [Ln(3,4-DMOBA){sub 3}(H{sub 2}O){sub 2}]·H{sub 2}O·C{sub 2}H{sub 5}OH (Ln = Sm(1), Tb(2), Dy(3), Ho(4); 3,4-DMOBA = 3, 4-dimethoxybenzoate) have been hydrothermal synthesized and characterized. Single crystal structures indicates 1 D stucture of the title complexes are linked by hydrogen bonds to form a three-dimensional (3-D) structure. Complex 2 exhibits the characteristic emission of Tb{sup 3+} ion({sup 5}D{sub 4} → {sup 7}F{sub 6-3}). The investigation of TG-FTIR and IR spectra of the evolved gases shows uncoordinated water and ethanol molecules tend to lose firstly, and then 3,4-DMOBA ligands begin to decompose. - Highlights: • Four lanthanide coordination polymers were synthesized and characterized. • 1-D chain structures of the title complexes are are linked by hydrogen bonds to form a 3-D structures. • Thermal decomposition processes of the title complexes were studied using TG-FTIR techniques. • IR spectra of evolved gases in thermal decomposition process were obtained and analyzed. - Abstract: Four novel lanthanide complexes [Ln(3,4-DMOBA){sub 3}(H{sub 2}O){sub 2}]·H{sub 2}O·C{sub 2}H{sub 5}OH (Ln = Sm(1), Tb(2), Dy(3), Ho(4); 3,4-DMOBA = 3, 4-dimethoxybenzoate) have been hydrothermal synthesized and characterized. Structural analyses reveal that adjacent lanthanide ions are connected by 3,4-DMOBA ligands adopting bridging bidentate mode to generate one-dimensional (1-D) structure with the uncoordinated water and ethanol molecules. 1-D structures are linked by hydrogen bonds to form a three-dimensional (3-D) structure, which is rarely observed in lanthanide carboxylic acids complexes. Under the radiation of UV light, complex 2 exhibits the characteristic emission of Tb{sup 3+} ion ({sup 5}D{sub 4} → {sup 7}F{sub 6-3}). The thermal decomposition mechanism is investigated by TG-FTIR technology. IR spectra of the evolved gases show that the uncoordinated water and ethanol

  3. Lanthanide(III and Yttrium(III Complexes of Benzimidazole-2-Acetic Acid: Synthesis, Characterisation and Effect of La(III Complex on Germination of Wheat

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The synthesis and characterisation of lanthanide(III and yttrium(III nitrate complexes of benzimidazole-2-acetic acid (HBIA are reported. The complexes have been characterised by elemental analysis, molar conductance, magnetic studies, IR, 1 H NMR, UV-visible, EPR, and TG/DTA studies. They have the stoichiometry [ Ln 3 ( BIA 2 ( NO 3 7 ( H 2 O 4 ]⋅3 H 2 O where Ln=La(III, Pr(III, Nd(II, Sm(III, Eu(III, Gd(III, Tb(III, Dy(III, and Y(III. The effect of La(III complex on germination, coleoptile, and root length of two local varieties of wheat DWR-195 and GW-349 for different treatment periods has been investigated. The complex was found to exhibit enhanced activity, compared to HBIA or metal salt alone at lower treatment periods.

  4. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  5. Lanthanides: new metallic cathode materials for organic photovoltaic cells.

    Science.gov (United States)

    Nikiforov, Maxim P; Strzalka, Joseph; Jiang, Zhang; Darling, Seth B

    2013-08-21

    Organic photovoltaics (OPVs) are compliant with inexpensive, scalable, and environmentally benign manufacturing technologies. While substantial attention has been focused on optimization of active layer chemistry, morphology, and processing, far less research has been directed to understanding charge transport at the interfaces between the electrodes and the active layer. Electrical properties of these interfaces not only impact efficiency, but also play a central role in stability of organic solar cells. Low work function metals are the most widely used materials for the electron transport layer with Ca being the most common material. In bulk heterojunction OPV devices, low work function metals are believed to mirror the role they play in OLEDs, where such metals are used to control carrier selectivity, transport, extraction, and blocking, as well as interface band bending. Despite their advantages, low work function materials are generally prone to reactions with water, oxygen, nitrogen, and carbon dioxide from air leading to rapid device degradation. Here we discuss the search for a new metallic cathode interlayer material that increases device stability and still provides device efficiency similar to that achieved with a Ca interlayer.

  6. Microwave assisted synthesis, spectroscopic, thermal, and antifungal studies of some lanthanide(Ⅲ) complexes with a heterocyclic bishydrazone

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; B. Sindhu Kumari; G. Rijulal

    2008-01-01

    A bishydrazone formed by the condensation of isatinmonohydrazone and salicylaldehyde reacted with lanthanide(Ⅲ) chloride to form complexes of the type [Ln(HISA)2Cl3], where, Ln=La(Ⅲ), ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sin(Ⅲ), Eu(Ⅲ), or Gd(Ⅲ) and HISA=[(2-hydroxybenzaldehyde)-3-isatin]bishydrazone. Both reactions were carried out under microwave conditions. The ligand and the metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV visible, infrared, far infrared, and proton NMR spectral data. The ligand acted as neutral tridentate, coordinating through the carbonyl oxygen, azomethine nitrogen, and phenolic oxygen without deprotonation. The ligand and lanthanum(Ⅲ) complex were subjected to X-ray diffraction studies. The X-ray diffraction pattern of ligand exhibited its crystalline nature and that of the lanthanum(Ⅲ) complex indicated its amorphous character. The thermal decomposition behaviour of the complex, [La(HISA)2Cl3], was examined in the temperature range of 40-800 ℃ using TG, DTG, and DTA. The ligand and the metal complexes were screened for their antifungal activities.

  7. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.;

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  8. Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy.

    Science.gov (United States)

    Trivedi, Evan R; Eliseeva, Svetlana V; Jankolovits, Joseph; Olmstead, Marilyn M; Petoud, Stéphane; Pecoraro, Vincent L

    2014-01-29

    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+ [12-MC(Zn(II),quinHA)-4]2[24-MC(Zn(II),quinHA)-8] (Ln3+ [Zn(II)MC(quinHA)]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+ [Zn(II)MC(quinHA)] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLn(L) = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLn(L) = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLn(L) = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.

  9. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Highly selective recovery of phosphopeptides using trypsin-assisted digestion of precipitated lanthanide-phosphoprotein complexes.

    Science.gov (United States)

    Güzel, Yüksel; Rainer, Matthias; Mirza, Munazza R; Messner, Christoph B; Bonn, Günther K

    2013-05-21

    The basic idea of this study was to recover phosphopeptides after trypsin-assisted digestion of precipitated phosphoproteins using trivalent lanthanide ions. In the first step, phosphoproteins were extracted from the protein solution by precipitation with La(3+) and Ce(3+) ions, forming stable pellets. Additionally, the precipitated lanthanide-phosphoprotein complexes were suspended and directly digested on-pellet using trypsin. Non-phosphorylated peptides were released into the supernatants by enzymatic cleavage and phosphopeptides remained bound on the precipitated pellet. Further washing steps improved the removal of non-phosphorylated peptides. For the recovery of phosphopeptides the precipitated pellets were dissolved in 3.7% hydrochloric acid. The performance of this method was evaluated by several experiments using MALDI-TOF MS measurements and delivered the highest selectivity for phosphopeptides. This can be explained by the overwhelming preference of lanthanides for binding to oxygen-containing anions such as phosphates. The developed enrichment method was evaluated with several types of biological samples, including fresh milk and egg white. The uniqueness and the main advantages of the presented approach are the enrichment on the protein-level and the recovery of phosphopeptides on the peptide-level. This allows much easier handling, as the number of molecules on the peptide level is unavoidably higher, by complicating every enrichment strategy.

  11. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes

    Science.gov (United States)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al-Hassan, Khader A.; Hijazi, Ahmed K.; Faiq, Ari B.

    2011-10-01

    Eight new lanthanide metal complexes [Ln L(NO 3) 2]NO 3 {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ( 1H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.

  12. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review

    Science.gov (United States)

    Dramićanin, Miroslav D.

    2016-12-01

    Temperature is important because it has an effect on even the tiniest elements of daily life and is involved in a broad spectrum of human activities. That is why it is the most commonly measured physical quantity. Traditional temperature measurements encounter difficulties when used in some emerging technologies and environments, such as nanotechnology and biomedicine. The problem may be alleviated using optical techniques, one of which is luminescence thermometry. This paper reviews the state of luminescence thermometry and presents different temperature read-out schemes with an emphasis on those utilizing the downshifting emission of lanthanide-doped metal oxides and salts. The read-out schemes for temperature include those based on measurements of spectral characteristics of luminescence (band positions and shapes, emission intensity and ratio of emission intensities), and those based on measurements of the temporal behavior of luminescence (lifetimes and rise times). This review (with 140 references) gives the basics of the fundamental principles and theory that underlie the methods presented, and describes the methodology for the estimation of their performance. The major part of the text is devoted to those lanthanide-doped metal oxides and salts that are used as temperature probes, and to the comparison of their performance and characteristics.

  13. Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography.

    Science.gov (United States)

    Zhang, Li-Shun; Du, Pei-Yao; Gu, Wen; Zhao, Qing-Li; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-08-26

    A new lanthanide metal-organic frameworks NKU-1 have successfully incorporated into poly (BMA-co-EDMA) monolith and evaluated by capillary electrochromatography (CEC). Lanthanide metal-organic frameworks [Eu2(ABTC)1.5(H2O)3(DMA)] (NKU-1) were synthesized by self-assembly of Eu(III) ions and 3,3',5,5'-azo benzene tetracarboxylic acid ligands have been fabricated into poly(BMA-co-EDMA) monoliths. 1-Butyl-3-methylimidazolium tetrafluoroborate and N,N-dimethylformamide were developed as binary porogen obtaining homogeneous dispersibility for NKU-1 and high permeability for monolithic column. The successful incorporation of NKU-1 into poly(BMA-co-EDMA) was confirmed and characterized by FT-IR spectra, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer area scanning, and transmission electron microscopy. Separation ability of the NKU-1-poly (BMA-co-EDMA) monoliths was demonstrated by separating four groups of analytes in CEC, including alkylbenzenes, polycyclic aromatic hydrocarbon, aniline series and naphthyl substitutes. Compared with bare monolithic (column efficiency of 100,000plates/m), the NKU-1-poly (BMA-co-EDMA) monoliths have displayed greater column efficiency (maximum 210,000plates/m) and higher permeability, as well as less peak tailing. The results showed that the NKU-1-poly (BMA-co-EDMA) monoliths are promising stationary phases for CEC separations.

  14. Rational composition control of mixed-lanthanide metal-organic frameworks by an interfacial reaction with metal ion-doped polymer substrates

    Science.gov (United States)

    Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2017-09-01

    A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.

  15. Synthesis, spectroscopic characterization and thermal studies of some lanthanide(Ⅲ) nitrate complexes with a hydrazo derivative of 4-aminoantipyrine

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; C.J. Athira; Y. Sindhu; M.S. Sujamol

    2009-01-01

    A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NO3)3] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), or Gd(Ⅲ) and HAAP=3-{[2-(N-1-pheny1-2,3-dimethylpyrazol-3-in-5-on-4-yl)]hydrazone}pent-2,3,4-trione. The ligand and metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, infrared, far infrared and proton NMR spectral data. The spectral data revealed that the ligand existed in the hydrazo form and coordinated to the metal ion without deproto-nation in a neutral tridentate manner, through carbonyl oxygen of pyrazolone ring, hydrazo nitrogen and carbonyl oxygen of the acetylace-tone moiety. The molar conductance values adequately supported their non-electrolytic nature. The ligand and the praseodymium(Ⅲ) com-plex were subjected to X-ray diffraction studies. Thermal decomposition behavior of the lanthanum(Ⅲ) complex was also examined.moiety.

  16. Luminescent lanthanide chelates and methods of use

    Science.gov (United States)

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  17. Lanthanide complexes of tritopic bis(hydrazone) ligands: single-molecule magnet behavior in a linear Dy(III)3 complex.

    Science.gov (United States)

    Anwar, Muhammad U; Tandon, Santokh S; Dawe, Louise N; Habib, Fatemah; Murugesu, Muralee; Thompson, Laurence K

    2012-01-16

    Tritopic pyridinebis(hydrazone)-based ligands typically produce square M(9) [3 × 3] grid complexes with first-row transition-metal ions (e.g., M = Mn, Fe, Co, Cu, Zn), but with larger lanthanide ions, such coordination motifs are not produced, and instead linear trinuclear complexes appear to be a preferred option. The reaction of 2pomp [derived from pyridine-2,6-bis(hydrazone) and 2-acetylpyridine] with La(III), Gd(III), and Dy(III) salts produces helical linear trinuclear [Ln(3)(2pomp)(2)]-based complexes, where each metal ion occupies one of the three tridentate ligand pockets. Two ligands encompass the three metal ions, and internal connections between metal ions occur through μ-O(hydrazone) bridges. Coligands include benzoate, nitrate, and N,N-dimethylformamide. The linear Dy(III)(3) complex exhibits single-molecule magnet behavior, demonstrated through alternating-current susceptibility measurements. Slow thermal magnetic relaxation was detected in an external field of 1800 Oe, where quantum-tunneling effects were suppressed (U(eff) = 14 K).

  18. 3,4,3-LI(1,2-HOPO): In Vitro Formation of Highly Stable Lanthanide Complexes Translates into Efficacious In Vivo Europium Decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Sturzbecher-Hoehne, Manuel; Ng Pak Leung, Clara; Daleo, Anthony; Kullgren, Birgitta; Prigent, Anne-Laure; Shuh, David K.; Raymond, Kenneth N.; Abergel, Rebecca J.

    2011-07-13

    The spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) was investigated for its ability to act as an antennae that sensitizes the emission of Sm{sup III}, Eu{sup III}, and Tb{sup III} in the Visible range (Φ{sub tot} = 0.2 - 7%) and the emission of Pr{sup III}, Nd{sup III}, Sm{sup III}, and Yb{sup III} in the Near Infra-Red range, with decay times varying from 1.78 μs to 805 μs at room temperature. The particular luminescence spectroscopic properties of these lanthanide complexes formed with 3,4,3-LI(1,2-HOPO) were used to characterize their respective solution thermodynamic stabilities as well as those of the corresponding La{sup III}, Gd{sup III}, Dy{sup III}, Ho{sup III}, Er{sup III}, Tm{sup III}, and Lu{sup III} complexes. The remarkably high affinity of 3,4,3-LI(1,2-HOPO) for lanthanide metal ions and the resulting high complex stabilities (pM values ranging from 17.2 for La{sup III} to 23.1 for Yb{sup III}) constitute a necessary but not sufficient criteria to consider this octadentate ligand an optimal candidate for in vivo metal decorporation. The in vivo lanthanide complex stability and decorporation capacity of the ligand were assessed, using the radioactive isotope {sup 152}Eu as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic metal chelating agent.

  19. Temperature-dependent luminescence properties of lanthanide(III) β-diketonate complex-doped LAPONITE®.

    Science.gov (United States)

    Xu, Qianqian; Li, Zhiqiang; Wang, Yige; Li, Huanrong

    2016-03-01

    In this work, by doping the lanthanide(III)-hexafluoroacetylacetone complex into LAPONITE®, we obtained a lanthanide-based organic-inorganic hybrid material. The resulting hybrid materials were fully characterized with elementary analysis, scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) techniques. The Ln(3+) and HFA loadings were experimentally determined to be roughly 0.3 per u.c. and 0.72 per u.c. by analyzing the supernatant (titration against EDTA) and elemental analysis, respectively. XRD patterns suggest that at least partial complexes are intercalated within the interlayers of the LAPONITE®. The in situ formation of luminescent Ln(3+) complexes is confirmed by the luminescence data. Furthermore, the emission intensity ratio of the (5)D4→(7)F5 transition (Tb(3+)) to the (5)D0→(7)F2 transition (Eu(3+)) of the hybrid material containing both Eu(3+) and Tb(3+) can be linearly related to temperature in the range from 197 K to 287 K (temperature sensitivity: 1.107% per K), which will be an appealing alternative for in situ and real time detection of temperature in many special areas. This strategy presents new opportunities for the development of highly sensitive and stable thermo sensors.

  20. A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection.

    Science.gov (United States)

    Zeng, Hui-Hui; Zhang, Li; Rong, Lian-Qing; Liang, Ru-Ping; Qiu, Jian-Ding

    2017-03-15

    A bimetal lanthanide coordination polymer nanoparticle (ATP-Ce/Tb-Tris CPNs) with good biocompatibility was synthesized in Tris-HCl buffer using adenosine triphosphate (ATP) molecules as the bridge ligands. The large absorption cross section and suitable emission energy of Ce(3+) matching to the adsorption energy of Tb(3+)((4)fn) results in the efficient energy transfer from Ce(3+) to Tb(3+), thus the synthesized ATP-Ce/Tb-Tris CPNs exhibit the characteristic green emission of Tb(3+). Such energy transfer from metal to metal in fluorescent lanthanide coordination polymer nanoparticles (Ln-CPNs) has been demonstrated. It is found that the oxidation of Ce(3+) in ATP-Ce/Tb-Tris CNPs to Ce(4+) would interrupt the energy transfer from Ce(3+) to Tb(3+), leading to fluorescence quenching of Tb(3+). On the basis of this quenching mechanism, ATP-Ce/Tb-Tris CPNs has been successfully used to detect reactive oxygen H2O2 with detection limit as low as 2nM. If glucose oxidase is present in the system, glucose can be determined using the ATP-Ce/Tb-Tris CNPs nanosensor.

  1. Calix[4]arene-triacids as receptors for lanthanides; synthesis and luminescence of neutral Eu3+ and Tb3+ complexes

    NARCIS (Netherlands)

    Rudkevich, Dmitry M.; Verboom, Willem; Tol, van der Erik B.; Staveren, van Catharina J.; Kaspersen, Frans M.; Verhoeven, Jan W.; Reinhoudt, David N.

    1995-01-01

    Calix[4]arene triacids (3a–d) have been prepared that are able to form neutral complexes with lanthanides. Complexes of 3a–d with Eu3+ and Tb3+ have been studied with respect to their luminescent properties in a protic solvent (methanol). In all cases it was found that the luminescent lifetime of th

  2. Lanthanide Complexes with Acetylacetonate and 5,10,15,20-Tetra[para-(4-chlorobenzoyloxy)phenyl]porphyrin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The lanthanide complexes of acetylacetonate and 5,10,15,20-tetra[para-(chlorobenzoyloxy)phenyl]porphyrin having a general formula Ln[(cbop)4p]acac(where Ln=Tb,Ho,Er,Tm;cbop=(4-chlorobenzoyloxy)phenyl;Hacac=acetylacetone;p=porphyrin) were prepared and characterized.The structure of the complexs was proposed.

  3. Metallic complexes with glyphosate: a review; Complexos metalicos com o herbicida glifosato: revisao

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: claudiabreda@iqsc.usp.br

    2005-11-15

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  4. Lanthanide(III) di- and tetra-nuclear complexes supported by a chelating tripodal tris(amidate) ligand.

    Science.gov (United States)

    Brown, Jessie L; Jones, Matthew B; Gaunt, Andrew J; Scott, Brian L; MacBeth, Cora E; Gordon, John C

    2015-04-20

    Syntheses, structural, and spectroscopic characterization of multinuclear tris(amidate) lanthanide complexes is described. Addition of K3[N(o-PhNC(O)(t)Bu)3] to LnX3 (LnX3 = LaBr3, CeI3, and NdCl3) in N,N-dimethylformamide (DMF) results in the generation of dinuclear complexes, [Ln(N(o-PhNC(O)(t)Bu)3)(DMF)]2(μ-DMF) (Ln = La (1), Ce (2), Nd(3)), in good yields. Syntheses of tetranuclear complexes, [Ln(N(o-PhNC(O)(t)Bu)3)]4 (Ln = Ce (4), Nd(5)), resulted from protonolysis of Ln[N(SiMe3)2]3 (Ln = Ce, Nd) with N(o-PhNCH(O)(t)Bu)3. In the solid-state, complexes 1-5 exhibit coordination modes of the tripodal tris(amidate) ligand that are unique to the 4f elements and have not been previously observed in transition metal systems.

  5. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. (Bates College, Lewiston, ME (United States))

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

  6. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with α-hydroxyisobutyric acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Ewing, William C; Scott, Brian L; Runde, Wolfgang

    2012-12-17

    Despite the wide range of applications of α-hydroxyisobutyric acid (HIBA) in biochemical processes, pharmaceutical formulations, and group and elemental separations of lanthanides and actinides, the structures and geometries of lanthanide-HIBA complexes are still not well understood. We reacted HIBA with lanthanides in aqueous solution at pH = 5 and synthesized 14 lanthanide-HIBA complexes of the formula [Ln(HIBA)(2)(H(2)O)(2)](NO(3))·H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14)), isolating single crystals (1-7, 10, and 11) and powders (8, 9, and 12-14). Both single-crystal and powder X-ray diffraction studies reveal a two-dimensional extended structure across the entire lanthanide series. The environment around the eight-coordinated Ln(III) atom is best described as a distorted dodecahedron, where HIBA acts as a monoanionic tridentate ligand with one carboxylato oxygen atom and one hydroxyl oxygen atom chelating to one Ln(III) center. The carboxylato oxygen atom from a second HIBA ligand bridges to a neighboring Ln(III) atom to form a two-dimensional extended structure. While the coordination mode for HIBA is identical across the lanthanide series, three different structure types are found for La, Ce-Ho, and Er-Lu. Solution characterization using (13)C NMR further confirmed a single solution complex under the crystallization conditions. Raman and UV-vis-NIR absorbance and diffuse reflectance spectra of HIBA-Ln(III) complexes were also measured.

  7. A series of three-dimensional architectures constructed from lanthanide-substituted polyoxometalosilicates and lanthanide cations or lanthanide-organic complexes as linkers.

    Science.gov (United States)

    An, Haiyan; Zhang, Hua; Chen, Zhaofei; Li, Yangguang; Liu, Xuan; Chen, Hao

    2012-07-21

    Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.

  8. Synthesis and Characterization of Lanthanide(III Nitrate Complexes with Terdentate ONO Donor Hydrazone Derived from 2-Benzimidazolyl Mercaptoaceto Hydrazide and o-Hydroxy Aromatic Aldehyde

    Directory of Open Access Journals (Sweden)

    Vinayak M. Naik

    2011-01-01

    Full Text Available A few eight coordinated complexes of lanthanide(III nitrate with 2-benzimidazolyl mercaptoaceto hydrazone ligand (LH2 with the general formula [Ln(LH2NO2]H2O (where Ln = La, Pr, Nd, Sm and Gd have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, UV-Visible, IR and 1H NMR spectral studies. The experimental data sustain stoichiometry of 1:2 (metal/ligand for the complexes. The spectral data shows that the ligand reacts in keto form and behaves as monobasic terdentate in nature. The nitrate appears to coordinate in the bidentate fashion to the metal ion. The thermal stabilities of the complexes have been studied by TGA and their kinetic parameters were calculated using Coats-Redfern and MKN methods. The antimicrobial activity studies have been under taken and results are discussed.

  9. Impact of the Kohn-Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes.

    Science.gov (United States)

    Duignan, Thomas J; Autschbach, Jochen

    2016-07-12

    The extent of ligand to metal donation bonding and mixing of 4f (and 5d) orbitals with ligand orbitals is studied by Kohn-Sham (KS) calculations for LaX3 (X = F, Cl, Br, I), GdX3, and LuX3 model complexes, CeCl6(2-), YbCp3, and selected lanthanide complexes with larger ligands. The KS delocalization error (DE) is quantified via the curvature of the energy for noninteger electron numbers. The extent of donation bonding and 4f-ligand mixing correlates well with the DE. For Lu complexes, the DE also correlates with the extent of mixing of ligand and 4f orbitals in the canonical molecular orbitals (MOs). However, the localized set of MOs and population analyses indicate that the closed 4f shell is localized. Attempts to create situations where mixing of 4f and ligand orbitals occurs due to a degeneracy of fragment orbitals were unsuccessful. For La(III) and, in particular, for Ce(IV), Hartree-Fock, KS, and coupled cluster singles and doubles calculations are in agreement in that excess 4f populations arise from ligand donation, along with donation into the 5d shell. Likewise, KS calculations for all systems with incompletely filled 4f shells, even those with "optimally tuned" functionals affording a small DE, produce varying degrees of excess 4f populations which may be only partially attributed to 5d polarization.

  10. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    Science.gov (United States)

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2- pyridinylmethylene)hydrazide] Schiff bases ligand

    Institute of Scientific and Technical Information of China (English)

    Abdulaziz M Ajlouni; Qutaiba Abu-Salem; Ziyad A Taha; Ahmed K Hijazi; Waleed Al Momani

    2016-01-01

    A Schiff baseL[2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexeswas synthesized. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis (NMR, FT-IR, and UV-Vis), luminescence and thermal gravimetric analysis. The Schiff base ligandwas a tridentate chelate and coordinates to the central lanthanide ion with 1:2 metal:ligand ratio. The conductivity data showeda1:1 electrolytic nature with a general formula [LnL2(NO3)2]NO3. The luminescence emission properties for Sm,Tb, and Eu complexeswere observed and showedthat the ligandL couldabsorb and transfer energy to Sm(III), Tb(III) and Eu(III)ions. The complexes possesseda good antibacterial activity against different bacterial strains. In addition,the scavenging activity of the Ln(III) complexes on DPPHwas concentration dependant and the complexeswere significantly more efficient in quenching DPPH than the free Schiff base ligand.

  12. Linear analysis on the stability of lanthanide vapor complexes LnAl3Cli2(Ln = La to Lu)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The reactions LnCl3 (s) + (3/2)Al2Cl6 (g) = LnAl3Cl12 (g) for Ln = La to Lu were studied by quenching experi-ments in roughly the same temperature and pressure ranges (588-851 K and 0.01-0.22 MPa). Stability constants Kθ oflanthanide complexes LnAl3Cl12 were calculated from the measurements. The values of lg Kθ change linearly with theionpotential (Z+/r) of lanthanide(Ⅲ) from La to Gd and from Tb to Lu, respectively, indicating the Gd break. There exist in-clined W effect between lg Kθ and the total angular momentum L of lanthanide(Ⅲ). And hereby lanthanide elements aredivided into four segments, La-Nd, Pm-Gd, Tb-Ho, and Er-Lu. In each segment, the linearity is maintained.

  13. Synthesis, mechanism and NMR spectra of lanthanide complexes with a novel unsymmetrical Schiff base

    Institute of Scientific and Technical Information of China (English)

    姚克敏; 周文; 鲁桂; 沈联芳

    1999-01-01

    Owing to its two unsymmetrical-NH2 groups sited on different terminals, 2, 6-diaminocaproic acid (lysine) was used as a reactant for synthesizing a novel unsymmetrical Schiff base with salicylaldehyde on one side and ovanillin on the other for the first time. It is a new way to synthesize such a special unsymmetrical Schiff base. It is named "hetero bis-Schiff base" for distinguishing it from others. The synthesis method, formation mechanism as well as twelve new lanthanide complexes with the above ligand are reported and discussed herein. They were characterized by elementary analysis, molar conductivity, IR-spectra and especially by 1H and 13C NMR spectra. The results obtained may provide a new promising method for synthesizing similar unsymmetrical Schiff bases and their complexes.

  14. Magnetic anisotropy in surface-supported single-ion lanthanide complexes

    CERN Document Server

    Stoll, Paul; Rolf, Daniela; Nickel, Fabian; Xu, Qingyu; Hartmann, Claudia; Umbach, Tobias R; Kopprasch, Jens; Ladenthin, Janina N; Schierle, Enrico; Weschke, Eugen; Czekelius, Constantin; Kuch, Wolfgang; Franke, Katharina J

    2016-01-01

    Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray absorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.

  15. Evidence of Different Stoichiometries for the Limiting Carbonate Complexes across the Lanthanide(III) Series

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V.; Vercouter, T.; Vitorge, P. [CEA Saclay, DEN DPC SECR Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Vitorge, P. [Univ Evry Val Essonne, CNRS, Lab Anal and Modelisat Biol and Environm, UMR 8587, F-91025 Evry (France)

    2010-07-01

    The stoichiometries of limiting carbonate complexes of lanthanide(III) ions were investigated by solubility measurements of hydrated NaLn(CO{sub 3}){sub 2} solid compounds (Ln = La, Nd, Eu and Dy) at room temperature in aqueous solutions of high ionic strength (3. 5 mol. kg{sup -1}) NaClO{sub 4}) and high CO{sub 3}{sup 2-} concentrations (0. 1 to 1. 5 mol. kg{sup -1}). The results were interpreted by considering the stability of carbonate complexes, with limiting species found to be La(CO{sub 3}){sub 4}{sup 5-}, Nd(CO{sub 3}){sub 4}{sup 5-}, Eu(CO{sub 3}){sub 3}{sup 3-} and Dy(CO{sub 3}){sub 3}{sup 3-}. TRLFS measurements on the Eu and Dy solutions confirmed the predominance of a single aqueous complex in all the samples. Equilibrium constants were determined for the reaction Ln(CO{sub 3}){sub 3}{sup 3-} + CO{sub 3}{sup 2-} reversible arrow Ln(CO{sub 3}){sub 4}{sup 5-}: log(10) K{sub 4,} {sub L}a{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4} = 0. 7 {+-} 0. 3, log(10) K{sub 4,} {sub N}d{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4} = 1. 3 {+-} 0. 3, and for Ln = Eu and Dy, log(10) K{sub 4,} {sub L}n{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4}) {<=} -0. 4. These results suggest that tetra-carbonato complexes are stable only for the light lanthanide ions in up to 1. 5 molal CO{sub 3}{sup 2-} aqueous solutions, in agreement with our recent capillary electrophoresis study. Comparison with literature results indicates that analogies between actinide(III) and lanthanide(III) ions of similar ionic radii do not hold in concentrated carbonate solutions. Am(CO{sub 3}){sub 3}{sup 3-} was previously evidenced by solubility measurements, whereas we have observed that Nd(CO{sub 3}){sub 4}{sup 5-} predominates in similar conditions. We may speculate that small chemical differences between Ln(III) and An(III) could result in macroscopic differences when their coordination sphere is complete. (authors)

  16. Polymerization of Dimethylaminoethyl Methacrylate Catalyzed by Substituted Indenyl Lanthanide(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymerization of dimethylaminoethyl methacrylate (DMAEMA) catalyzed by the 1-cyclopentylindenyl lanthanide (Ⅱ) complex (1-C5H9C9H6)2Yb (THF)2 was investigated.The results indicated that the complex (1-C5H9C9H6)2Yb (THF)2 as a single component catalyst showed high activity.The conversion of the polymerization and the molecular weight of the polymer were affected by temperature, time, amount of catalyst and solvent in the polymerization process.The catalytic activity of (1-C5H9C9H6)2Yb (THF)2 enhanced significantly when a small amount of polar solvent THF was added into the polymerization system in which toluene was selected as the solvent.The optimal temperature of polymerization was about 0 ℃.Other modified substituted indenyl lanthanide (Ⅱ) complexes also showed good catalytic activity.The order of catalytic activity of the complexes was as follows: (1-C5H9C9H6)2Sm(THF)≈(1-C2H5C9H6)2Sm(THF)2>(1-C5H9C9H6)2Yb(THF)2>(1-PhCH2C9H6)2Sm(THF)2.The steric regularity of poly (dimethylaminoethyl methacrylate) (PDMAEMA) was characterized by 1H NMR spectra.The polymerization provided syndiotacticity-rich PDMAEMA.The molecular weight and the molecular weight distribution of PDMAEMA were measured by gel permeation chromatography.

  17. Revealing and tuning the core, structure, properties and function of polymer micelles with lanthanide-coordination complexes

    NARCIS (Netherlands)

    Wang, J.; Groeneveld, A.; Oikonomou, M.E.; Prusova, A.; As, van H.; Lent, van J.W.M.; Velders, A.H.

    2016-01-01

    Controlling self-assembly processes is of great interest in various fields where multifunctional and tunable materials are designed. We here present the versatility of lanthanide-complex-based micelles (Ln-C3Ms) with tunable coordination structures and corresponding functions (e.g. luminescence and

  18. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications.

  19. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.

    Science.gov (United States)

    Caillé, Fabien; Bonnet, Célia S; Buron, Frédéric; Villette, Sandrine; Helm, Lothar; Petoud, Stéphane; Suzenet, Franck; Tóth, Eva

    2012-02-20

    In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the

  20. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand

    Institute of Scientific and Technical Information of China (English)

    Waleed Mahmoud Al Momani; Ziyad Ahmed Taha; Abdulaziz Mahmoud Ajlouni; Qasem Mohammad Abu Shaqra; Muaz Al Zouby

    2013-01-01

    Objective: To establish the antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand L. Methods: (N, N'-bis (1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. The antimicrobial activity of the resultant Ln (III) complexes was investigated using agar well diffusion and micro-broth dilution techniques; the latter was used to establish the minimum inhibitory concentrations for each compound investigated. Results: Most of Ln (III) complexes were found to exhibit antibacterial activities against a number of pathogenic bacteria with MICs ranging between 1.95-250.00 μg/mL. Staphylococcus aureus was the most susceptible bacterial species to [LaL(NO3)2(H2O)](NO3) complex while Shigella dysenteriae andEscherichia coli required a relatively higher MIC (250 μg/mL). The complexes La (III) and Pr (III) were effective inhibitors against Staphylococcus aureus, whereas Sm (III) complex was effective against Serratia marcescens. On the other hand, Gd (III), La (III) and Nd (III) were found to be more potent inhibitors against Pseudomonas aeruginosa than two of commonly used antibiotics. The remaining Ln (III) complexes showed no remarkable activity as compared to the two standard drugs used. Conclusions: Tetradentate Schiff base ligand L and its complexes could be a potential antibacterial compounds after further investigation.

  1. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  2. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  3. Increasing the luminescence of lanthanide(III) macrocyclic complexes by the use of polymers and lanthanide enhanced luminescence

    Science.gov (United States)

    Leif, Robert C.; Becker, Margie C.; Bromm, Alfred J., Jr.; Vallarino, Lidia M.; Williams, Steven A.; Yang, Sean

    2001-05-01

    A Eu (III)-macrocycle-isothiocyanate, Quantum DyeTM, has been reacted with lysine homo- and hetero-peptides to give polymers with multiple luminescent side chains. Contrary to the concentration quenching that occurs with conventional organic fluorophores, the attachment of multiple Quantum Dyes to a polymer results in a concomitant increase in luminescence. The emission intensity of the peptide-bound Quantum Dye units is approximately linearly related to their number. The attachment of peptides containing multiple lanthanide (III) macrocycles to analyte-binding species is facilitated by employing solid-phase technology. Bead-bound peptides are first labeled with multiple Quantum Dye units, then conjugated to an antibody, and finally released from the bead by specific cleavage with Proteinase K unedr physiological conditions. Since the luminescence of lanthanide(III) macrocycles is enhanced by the presence of GD(III) or Y(III) ions in a micellar system, a significant increase in signal can be achieved by attaching a polymer labeled with multiple Quantum Dye units to an analyte- binding species, such as a monoclonal antibody, or by taking advantage of the luminescence enhancing effects of Gd(III) or Y(III), or by both approaches concomitantly. A comparison between the integrated intensity and lifetime measurements of the Eu(III)-macrocycle under a variety of conditions show that the signal increase caused by Gd(III) can not be explained solely by the increase in lifetime, and must result in significant part from an energy transfer process invloving donors not directly bound to the Eu(III).

  4. 六齿双Schiff碱稀土配合物的结构及发光%Structure and luminescence of hexa-bis-Schiff base lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    闫鹏飞; 杨帆; 李光明

    2011-01-01

    A large variety of multidentate ligands have been designed and synthesized for the preparation of lantha-nide complexes with desired functions. Hexa-bis-Schiff base, as one of the most known ligands with N2O4 cavity has been modified to various derivatives in respective to the expected functions. Correspondingly, a large number of Hexa-bis-Schiff base 3d- and/or 4f- metals complexes have been isolated, some of which exhibit intriguing luminescent properties. Especially, hexa-bis-Schiff base polynuclear lanthanide complexes with distinct luminescent properties are currently of interest because of their potential applications in the fabrication of novel materials and as probes in biological systems. In this paper, structure and luminescence of Hexa-bis-Schiff base lanthanide complexes are briefly summarized for those who are interested in this field.%稀土有机配合物作为重要的分子功能材料,由于具有光敏性强、发光效率高等特点,在生产生活的很多领域都具有广阔的应用前景.作为以分子发光材料和分子磁性材料为研究热点的Schiff碱稀土配合物,其合成、结构及其性能的研究吸引了大量国内外化学工作者的广泛关注.结合六齿Schiff碱稀土配合物结构及其性能的最新研究进展,对其新颖结构以及光学方面的性能研究进行概要介绍.

  5. DISTRIBUTION OF LANTHANIDE AND ACTINIDE ELEMENTS BETWEEN BIS-(2-ETHYLHEXYL)PHOSPHORIC ACID AND BUFFERED LACTATE SOLUTIONS CONTAINING SELECTED COMPLEXANTS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, Tracy S.; Diprete, David P.; Thompson, Major C.

    2013-04-15

    With the renewed interest in the closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, an efficient separation requires tight control of the pH which likely will be difficult to achieve on a large scale. To address this issue, we measured the distribution of lanthanide and actinide elements between aqueous and organic phases in the presence of complexants which were potentially less sensitive to pH control than the diethylenetriaminepentaacetic (DTPA) used in the process. To perform the extractions, a rapid and accurate method was developed for measuring distribution coefficients based on the preparation of lanthanide tracers in the Savannah River National Laboratory neutron activation analysis facility. The complexants tested included aceto-, benzo-, and salicylhydroxamic acids, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and ammonium thiocyanate (NH{sub 4}SCN). The hydroxamic acids were the least effective of the complexants tested. The separation factors for TPEN and NH{sub 4}SCN were higher, especially for the heaviest lanthanides in the series; however, no conditions were identified which resulted in separations factors which consistently approached those measured for the use of DTPA.

  6. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: kellie.tuck@monash.edu [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: bim.graham@monash.edu [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: amy.barrios@utah.edu [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  7. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  8. The lanthanide tetrad effect in granitoid of the Alvand Intrusive Complex, Hamedan

    Directory of Open Access Journals (Sweden)

    Farhad Aliani

    2016-12-01

    Full Text Available The Alvand Intrusive Complex (AIC is located in an area between Hamedan and Tuyserkan cities, and crops out over an area 400 km2 intruding the Sanandaj-Sirjan plutono-metamorphic belt. The emplacement age of the AIC is constrained to Upper to Middle Jurassic, based on U–Pb zircon geochronogic data. Lanthanide tetrad effects are often observed in REE patterns in the granites of the Alvand. The degree of the tetrad effect (TE1,3 is estimated and plotted vs. K/Rb, Sr/Eu, Eu/Eu*,Y/Ho, and Zr/Hf. The diagrams reveal that the tetrad effect develops parallel to granite evolution, and significant tetrad effects are strictly confined to highly differentiated samples. The strong decrease of Eu concentrations in highly evolved rocks suggests that Eu fractionates between the residual melt and a coexisting aqueous high-temperature fluid.

  9. From Metal String Complexes to Metal Wires

    Institute of Scientific and Technical Information of China (English)

    PENG SheMing

    2001-01-01

    @@ Our efforts to extend the metal number from dinuclear metal complexes to linear oligonuclear metal complexes with all-syn form of oligo-( α-pyridyl)amido ligands are successful. The oligonuclear complexes are divided into two systems according their MM bond strength, one is the oligonickel( Ⅱ ) complexes without M-M bond, the other is the oligochromium(Ⅱ) and cobalt(H) complexes with a strong M-M bond. Their structures and magnetic behaviors for various metal complexes with specific metal numbers are summarized. The potential application of these metal complexes as a molecular metal wire is discussed by the band structures of hypothetical onedinensional metal strings based on the polynuclear Cr, Co and Ni complexes. Moreover, self-assembled monolayers of n-alkanethiols are employed as a two-dinensional matrix to isolate the metal string complexes, which exhibit protrusions under the measurements of scanning tunneling microscopy (STM) imaging. The topographic STM images reveal that the protruding features for tricobalt and trichromium complexes are, respectively, 0.3 nm and 0.6 nm higher than that of trinickel complex. The increasing trend in conductivity is consistent with their bond orders, obtained from qualitative EHMO calculations.

  10. From Metal String Complexes to Metal Wires

    Institute of Scientific and Technical Information of China (English)

    PENG; SheMing

    2001-01-01

    Our efforts to extend the metal number from dinuclear metal complexes to linear oligonuclear metal complexes with all-syn form of oligo-( α-pyridyl)amido ligands are successful. The oligonuclear complexes are divided into two systems according their MM bond strength, one is the oligonickel( Ⅱ ) complexes without M-M bond, the other is the oligochromium(Ⅱ) and cobalt(H) complexes with a strong M-M bond. Their structures and magnetic behaviors for various metal complexes with specific metal numbers are summarized. The potential application of these metal complexes as a molecular metal wire is discussed by the band structures of hypothetical onedinensional metal strings based on the polynuclear Cr, Co and Ni complexes. Moreover, self-assembled monolayers of n-alkanethiols are employed as a two-dinensional matrix to isolate the metal string complexes, which exhibit protrusions under the measurements of scanning tunneling microscopy (STM) imaging. The topographic STM images reveal that the protruding features for tricobalt and trichromium complexes are, respectively, 0.3 nm and 0.6 nm higher than that of trinickel complex. The increasing trend in conductivity is consistent with their bond orders, obtained from qualitative EHMO calculations.  ……

  11. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Science.gov (United States)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  12. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  13. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  14. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I

    Directory of Open Access Journals (Sweden)

    Jill R. Hanna

    2017-05-01

    Full Text Available The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I. This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I.

  15. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    Science.gov (United States)

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  16. Metal-ligand interaction of lanthanides with coumarin derivatives. Part I. Complexation of 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione with La(III), Ce(III), Nd(III) and Ho(III).

    Science.gov (United States)

    Swiatek, Mirosława; Kufelnicki, Aleksander

    2012-01-01

    Solutions of lanthanum(III), cerium(III), neodymium(III) and holmium(III) nitrates with 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione (1) in 10% v/v dioxane-water medium were used. Coordination modes of 1 with the selected lanthanides have been examined. Hydroxo-complexes with deprotonated water molecules from the inner coordination sphere have been stated in basic medium. Stability constants of the forming complex species were determined by potentiometric titrations using Superquad and Hyperquad2003 programs. The most stable complexes are formed with La(III). The UV-Vis spectra of the Nd(III)-1 system confirmed the L:M = 1:1 stoichiometry evaluated potentiometrically.

  17. Selenophene transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    White, Carter James [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  18. Experimental measurement and theoretical assessment of fast lanthanide electronic relaxation in solution with four series of isostructural complexes.

    Science.gov (United States)

    Funk, Alexander M; Fries, Pascal H; Harvey, Peter; Kenwright, Alan M; Parker, David

    2013-02-07

    The rates of longitudinal relaxation for ligand nuclei in four isostructural series of lanthanide(III) complexes have been measured by solution state NMR at 295 K at five magnetic fields in the range 4.7-16.5 T. The electronic relaxation time T(le) is a function of both the lanthanide ion and the local ligand field. It needs to be considered when relaxation probes for magnetic resonance applications are devised because it affects the nuclear relaxation, especially over the field range 0.5 to 4.7 T. Analysis of the data, based on Bloch-Redfield-Wangsness theory describing the paramagnetic enhancement of the nuclear relaxation rate has allowed reliable estimates of electronic relaxation times, T(1e), to be obtained using global minimization methods. Values were found in the range 0.10-0.63 ps, consistent with fluctuations in the transient ligand field induced by solvent collision. A refined theoretical model for lanthanide electronic relaxation beyond the Redfield approximation is introduced, which accounts for the magnitude of the ligand field coefficients of order 2, 4, and 6 and their relative contributions to the rate 1/T(le). Despite the considerable variation of these contributions with the nature of the lanthanide ion and its fluctuating ligand field, the theory explains the modest change of measured T(le) values and their remarkable statistical ordering across the lanthanide series. Both experiment and theory indicate that complexes of terbium and dysprosium should most efficiently promote paramagnetic enhancement of the rate of nuclear relaxation.

  19. Synthesis, Characterization and Antioxidative Activity of Lanthanide Complexes with 3,5-Dibenzyloxybenzoyl-2,4-Dihydroxybenzaldehyde-Hydrazone

    Institute of Scientific and Technical Information of China (English)

    张玲; 唐宁; 房建国; 谭民裕

    2003-01-01

    In order to study the coordination character of the rare earth elements with hydrazones and the antioxidative activity of the ligand and the complexes, 3,5-dibenzyloxybenzoyl-2,4-dihydroxybenzaldehyde hydrazone (H2L), a new chelating ligand, and its six lanthanide complexes, Ln (HL)(OAc)2*n H2O [Ln=La(Ⅲ), Sm(Ⅲ), Eu(Ⅲ), Gd(Ⅲ), Tb(Ⅲ), Dy(Ⅲ); n=2, 4, 5], were synthesized and characterized on the basis of elemental analyses, IR and 1H NMR spectra, molar conductivity. The results show that the lanthanide ions are coordinated by O, O and N donors of the phenol (Ar-OH(A)) without deprotonation, the enol oxygen of the hydrazone group (NCO-) and the azomethine group (CH=N) from the ligand respectively, and by the four carboxylic oxygen from two acetate groups (CH3COO-) in the bidentate form. The scavenging activity of the ligand and the six lanthanides complexes on the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals is also evaluated. The results show that both the ligand and the complexes have the scavenging activity on the DPPH radicals, and the scavenging activity of the complexes is better than the ligand.

  20. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with (pyrazol-1-yl)acetic acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Scott, Brian L; Janicke, Michael T; Runde, Wolfgang

    2013-03-18

    As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yl)acetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)3(H2O)2]·nH2O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing one-dimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive (13)C NMR signals of the carboxylate groups in the solid state NMR.

  1. Thermally unstable complexants: Stability of lanthanide/actinide complexes, thermal instability of the ligands, and applications in actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Rickert, P.G.

    1991-01-01

    Water soluble complexing agents are commonly used in separations to enhance the selectivity of both ion exchange and solvent extraction processes. Applications of this type in the treatment of nuclear wastes using conventional complexing agents have found mixed success due to the nature of the complexants. In addition, the residual solutions containing these species have led to potentially serious complications in waste storage. To overcome some of the limitations of carboxylic acid and aminopolycarboxylate ligands, we have initiated a program to investigate the complexing ability, thermal/oxidative instability, and separation potential of a group of water soluble organophosphorus compounds which we call Thermally Unstable Complexants, or simply TUCS. Complexants of this type appear to be superior to conventional analogues in a number of respects. In this report, we will summarize our research to date on the actinide/lanthanide complexes with a series of substituted methanediphosphonic acids, the kinetics of their oxidative decomposition, and a few applications which have been developed for their use. 17 refs., 5 figs., 3 tab.

  2. Synthesis of mixed Cp/Tp(Me2) lanthanide complexes from lanthanocene precursors and their structures and reactivities.

    Science.gov (United States)

    Han, Fuyan; Zhang, Jie; Han, Yanan; Zhang, Zhengxing; Chen, Zhenxia; Weng, Linhong; Zhou, Xigeng

    2009-02-16

    Reaction of Cp(2)LnCl with 1 equiv of KTp(Me2) in toluene gives the mixed Tp(Me2)/Cp lanthanide complexes Cp(2)Ln(Tp(Me2)) (Ln = Yb (1a), Er (1b), Dy (1c)), while unexpected complexes CpLn(Tp(Me2))Cl(THF) (Ln = Yb (2a), Er (2b.THF), Dy (2c), Y (2d)) are obtained when the reactions are carried out in THF. Complex 2b can also be formed by the reaction of CpErCl(2)(THF)(3) with 1 equiv of KTp(Me2) in THF. Moreover, complex 1a can also be obtained from the reaction of Cp(3)Yb and KTp(Me2). The results not only represent an efficient and versatile method for the synthesis of mixed Cp/Tp(Me2) lanthanide complexes but also provide new insight into the reactivity of Cp(2)LnCl. Furthermore, the reactivities of complexes 1a-c toward proton-donating reagents are examined. It has been found that 1b reacts with benzotriazole (C(6)H(4)NHN(2)) in THF to yield a lanthanide metallomacrocyclic complex [(Tp(Me2))CpEr(mu-N(3)C(6)H(4))](3) (3), while the reaction of 1a with 1 equiv of 2-aminopyridine in THF gives an unexpected oxide complex [(Tp(Me2))Yb(2-HNC(5)H(4)N)](2)(mu-O) (4). Presumably, the oxide ligand of compound 4 results from adventitious water. In addition, treatment of 1c with 2 equiv of 3,5-dimethylpyrazole yields a completely Cp-abstracted product (Tp(Me2))Dy(Pz(Me2))(2)(THF) (5), which can also be directly obtained from a three-component reaction of Cp(2)DyCl, KTp(Me2), and 3,5-dimethylpyrazole in THF. These results further indicate that the new mixed Tp(Me2)/Cp lanthanide complexes are practical and versatile precursors for the synthesis of poly(pyrazolyl)borate lanthanide derivatives. All new compounds have been characterized by elemental analysis and spectroscopic methods. The structures of complexes 1a,b and 2-5 have also been determined through single-crystal X-ray diffraction analysis.

  3. Efficient formation of luminescent lanthanide(III) complexes by solid-phase synthesis and on-resin screening.

    Science.gov (United States)

    Nakamura, Tatsuya; Mizukami, Shin; Tanaka, Miho; Kikuchi, Kazuya

    2013-11-01

    Time-resolved luminescence measurements of luminescent lanthanide complexes have advantages in biological assays and high-throughput screening, owing to their high sensitivity. In spite of the recent advances in their energy-transfer mechanism and molecular-orbital-based computational molecular design, it is still difficult to estimate the quantum yields of new luminescent lanthanide complexes. Herein, solid-phase libraries of luminescent lanthanide complexes were prepared through amide-condensation and Pd-catalyzed coupling reactions and their luminescent properties were screened with a microplate reader. Good correlation was observed between the time-resolved luminescence intensities of the solid-phase libraries and those of the corresponding complexes that were synthesized by using liquid-phase chemistry. This method enabled the rapid and efficient development of new sensitizers for Sm(III), Eu(III), and Tb(III) luminescence. Thus, solid-phase combinatorial synthesis combined with on-resin screening led to the discovery of a wide variety of luminescent sensitizers.

  4. Solution and Structural Investigations of Ligand Preorganization in Trivalent Lanthanide Complexes of Bicyclic Malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Bevin W.; Gilbertson, Robert D.; Hutchison, J. E.; Rather Healey, Elisabeth; Weakley, Timothy J R; Rapko, Brian M.; Hay, Benjamin P.; Sinkov, Sergei I.; Broker, Grant A.; Rogers, Robin D.

    2006-02-20

    This report describes an investigation into the coordination chemistry of trivalentlanthanides in solution and the solid state with acyclic and preorganized bicyclic malonamide ligands. Two experimental investigations were performed: solution bindingaffinities were determined through single-phase spectrophotometric titrations and the extent of conformational change upon binding was investigated with single-crystal X-raycrystallography. Both experimental methods compare the bicyclic malonamide (BMA), which is designed to be preorganized for binding trivalent lanthanides, to an analogousacyclic malonamide. Results from the spectrophotometric titrations indicate that BMA exhibits a 10-100 times increase in binding affinity to Ln(III) over acyclic malonamide.In addition, BMA forms compounds with high ligand-metal ratios, even when competing with water and nitrate ligands for binding sites. The crystal structures exhibit nosignificant differences in the nature of the binding between Ln(III) and the BMA or acyclic malonamide. These results support the conclusion that rational ligand design canlead to compounds that enhance the binding affinities within a ligand class.

  5. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains.

    Science.gov (United States)

    Chow, Chun Y; Eliseeva, Svetlana V; Trivedi, Evan R; Nguyen, Tu N; Kampf, Jeff W; Petoud, Stéphane; Pecoraro, Vincent L

    2016-04-20

    Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features: (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln(3+) cation by minimizing nonradiative deactivation pathways due to the presence of -OH, -NH and -CH vibrations. Herein, a new family of luminescent Ga(3+)/Ln(3+) metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm(3+)-Yb(3+)) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga(3+) and Ln(3+) nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy(3+) ion to the Ga(3+) ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f-f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the

  6. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  7. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    Science.gov (United States)

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  8. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  9. Single Component Lanthanide Hybrids Based on Metal-Organic Framework for Near-Ultraviolet White Light LED.

    Science.gov (United States)

    Zhao, Yan-Wu; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2016-09-14

    Near-UV single-phase white-light phosphor (Eu0.045Tb0.955CPOMBA/La0.6Eu0.1Tb0.3CPOMBA) based on metal-organic framework was prepared by in situ doping isostructural lanthanide MOF with Eu(3+) and Tb(3+), and it is found that the energy can effectively transfer from organic ligand to lanthanides, which can overcome weak absorption under direct excitation of lanthanide ions due to the forbidden f-f transitions. The photoluminescence and thermostability of the new MOF phosphor are investigated, and effective white-light emission is achieved under 365 and 380 nm excitations. By employing Eu0.045Tb0.955CPOMBA as phosphor, we fabricated a near-ultraviolet white-light-emitting diode (n-UV WLED) (365 nm) with low CCT (5733 K), high CRI (Ra = 73.4), and CIE chromaticity coordinate (0.3264, 0.3427). This approach may open new perspectives for developing single-phase UV phosphors.

  10. Self-aggregated dinuclear lanthanide(III) complexes as potential bimodal probes for magnetic resonance and optical imaging.

    Science.gov (United States)

    Regueiro-Figueroa, Martín; Nonat, Aline; Rolla, Gabriele A; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Charbonnière, Loïc J; Botta, Mauro; Platas-Iglesias, Carlos

    2013-08-26

    Homodinuclear lanthanide complexes (Ln = La, Eu, Gd, Tb, Yb and Lu) derived from a bis-macrocyclic ligand featuring two 2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid chelating sites linked by a 2,6-bis(pyrazol-1-yl)pyridine spacer (H2L(3)) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes indicate the presence of one inner-sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (ϕ H2O = 0.01 for [Eu2(L(3))] and 0.50 for [Tb2(L(3))] in 0.01 M TRIS/HCl, pH 7.4; TRIS = tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L(3))] are characteristic of slowly tumbling systems, showing a low-field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous Gd(III) complex containing a 4,4'-dimethyl-2,2'-bipyridyl spacer ([Gd2(L(1))]). The relaxivity of [Gd2(L(3))] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM(-1)  s(-1). The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L(1))] and [Gd2(L(3))], respectively. TEM images of [Gd2(L(3))] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.

  11. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  12. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  13. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    Science.gov (United States)

    Zhang, Xiu-Mei; Li, Peng; Gao, Wei; Liu, Feng; Liu, Jie-Ping

    2016-12-01

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H2O)4]·3H2O (Ln=Gd (1) and Tb (2) and Dy (3), H3TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1-3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO)2 double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectively sense Pb2+ and Fe3+ ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb2+ and Fe3+ ions is exceedingly rare example.

  14. Laser-induced lanthanide luminescence as a probe of metal ion-binding sites of human Factor Xa.

    Science.gov (United States)

    Rhee, M J; Horrocks, W D; Kosow, D P

    1984-06-25

    7F0 ---- 5D0 excitation spectroscopy of Eu(III) has shown that human Factor Xa has two high affinity lanthanide ion-binding sites. The deuterium isotope effect on the reciprocal lifetime (tau-1) of excited Eu(III) in human Factor Xa has indicated that 2 to 3 water molecules remain on Eu(III) after being complexed by Factor Xa, suggesting that 3-6 ligand atoms are provided by the protein, probably through two or three gamma-carboxyglutamic acids (GLA). F orster -type interlanthanide energy transfer has been utilized to measure the distance between the high affinity metal ion-binding sites of human Factor Xa using Tb(III) as an energy donor and Nd(III), Ho(III), or Er(III) as energy acceptors. Tau-1 values of Tb(III) in the presence of the acceptor ions Nd(III), Ho(III), and Er(III) were 1.90, 1.66, and 1.76 ms-1, respectively, which compared to 1.31 ms-1 in the presence of the nonacceptor ion Gd(III), yield energy transfer efficiencies of 0.29, 0.20, and 0.24, respectively. From these efficiencies and published critical distances (R0) ( Horrocks , W. DeW ., Jr., Rhee , M-J., Snyder, A. P., and Sudnick , D. R. (1980) J. Am. Chem. Soc. 102, 3650-3652), the distance between two high affinity sites is estimated to be 10.7 A. Based on these data, we propose that the two high affinity sites of human Factor Xa consist of two paired GLA residues; GLA-19, GLA-20 and GLA-25, GLA-26 together with one of the remaining single GLA residues for each site.

  15. Revealing and tuning the core, structure, properties and function of polymer micelles with lanthanide-coordination complexes.

    Science.gov (United States)

    Wang, Junyou; Groeneveld, Andrea; Oikonomou, Maria; Prusova, Alena; Van As, Henk; van Lent, Jan W M; Velders, Aldrik H

    2016-01-07

    Controlling self-assembly processes is of great interest in various fields where multifunctional and tunable materials are designed. We here present the versatility of lanthanide-complex-based micelles (Ln-C3Ms) with tunable coordination structures and corresponding functions (e.g. luminescence and magnetic relaxation enhancement). Micelles are prepared by charge-driven self-assembly of a polycationic-neutral diblock copolymer and anionic coordination complexes formed by Ln(III) ions and the bis-ligand L2EO4, which contains two dipicolinic acid (DPA) ligand groups (L) connected by a tetra-ethylene oxide spacer (EO4). By varying the DPA/Ln ratio, micelles are obtained with similar size but with different stability, different aggregation numbers and different oligomeric and polymeric lanthanide(III) coordination structures in the core. Electron microscopy, light scattering, luminescence spectroscopy and magnetic resonance relaxation experiments provide an unprecedented detailed insight into the core structures of such micelles. Concomitantly, the self-assembly is controlled such that tunable luminescence or magnetic relaxation with Eu-C3Ms, respectively, Gd-C3Ms is achieved, showing potential for applications, e.g. as contrast agents in (pre)clinical imaging. Considering the various lanthanide(III) ions have unique electron configurations with specific physical chemical properties, yet very similar coordination chemistry, the generality of the current coordination-structure based micellar design shows great promise for development of new materials such as, e.g., hypermodal agents.

  16. Synthesis and characterization of lanthanide complexes containing a bulky tridentate [N,N,O] Schiff base ligand

    Institute of Scientific and Technical Information of China (English)

    LI Bangyu; YAO Yingming; WANG Yaorong; ZHANG Yong; SHEN Qi

    2008-01-01

    The lanthanide complexes containing a bulky tridentate [N,N,O] Schiff base ligand 3,5-But2-2-(OH)C6H2CH=N-8-C9H6N (HL) were synthesized and characterized. The reaction of anhydrous LnCl3 with NaL formed in situ in a 1:1 molar ratio in THF at room temperature afforded the lanthanide Schiff base dichloride complexes LnLCl2(DME) (Ln=Eu (1);Sm (2)). Complexes 1 and 2 can be used as precursors for the synthesis of the lanthanide cyclopentadienyl Schiff base derivatives. The reactions of complexes 1 and 2 with one equiv of NaCH3C5H4 in THF provided the desired products LnL(CH3C5H4)Cl(THF)·THF (Ln=Eu (3);Sm (4)) in good isolated yields. These complexes were characterized by elemental analysis, IR spectra, and X-ray structural determination, in the case of complexes 3 and 4. The crystal data of complex 3 are monoclinic, P21/c space group, a=1.3370(2) nm, b=1.5190(2) nm, c=1.8910(3) nm, β=109.846(4)°, V=3.6125(8) nm3, Z=4, Dc=1.416 mg/m3, μ=1.847 mm-1, F(000)=1584, R=0.0707, wR=0.1350. The crystal data of complex 4 are monoclinic, P21/c space group, a=1.3383(1) nm, b=1.5210(2) nm, c=1.8960(2) nm, β =109.878(3)°, V=3.6293(7) nm3, Z=4, Dc=1.407 mg/m3, μ=1.728 mm-1, F(000)=1580, R=0.0670, wR=0.1385.

  17. Syntheses, Structures, Fluorescence and Magnetism of Six Lanthanide Metal-organic Frameworks Based on Silicon-centered Tetrahedral Ligand

    Institute of Scientific and Technical Information of China (English)

    LI Yang-xue; XUE Ming; GUO Li-jia; HUANG Lin; CHEN Si-ru; QIU Shi-lun

    2013-01-01

    Multifunctional lanthanide metal-organic frameworks(MOFs),M(H4TCPS)(H2O)1.5[M=Tb(JUC-95a),Er(JUC-95b),Dy(JUC-95c),Tm(JUC-95d),Y(JUC-95e) and Pr(JUC-95f); H4TCPS=tetrakis(4-carboxyphenyl)silane] were synthesized via the reaction of the lanthanide metal ions(Ln3) with a rigid silicon-centered tetrahedral carboxylate ligand H4TCPS via a hydrothermal synthesis method.X-Ray diffraction(XRD) analyses reveal that they are extremely similar in structure and crystallized in a monoclinic system with space group C2/c.Two eight-coordinated metal centers and four tetrahedral H4TCPS groups constructed a paddle-wheel building block.The paddle-wheel building blocks assembled with each other via one oxygen bridge from a water molecule to lead to a 1D infinite inorganic rod-shaped chain,—Y—O—C—O—Y—,along the [001] direction.These 1D inorganic rod-shaped chains linked with the phenyl groups of the tetrahedral H4TCPS ligand to form a 3D framework.In addition,the luminescent and magnetic properties of these compounds show that they could be potential antiferromagnetic and fluorescent materials.

  18. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  19. Pico- and subpicosecond relaxation processes in lanthanide-porphyrin complexes. [Lanthanoids: Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

    Energy Technology Data Exchange (ETDEWEB)

    Solov' ev, K.N.; Tsvirko, M.P.; Krasauskas, V.V.; Pyatosin, V.E.; Stel' makh, G.F.

    1984-03-01

    Methods of nano- and picosecond absorption spectroscopy and luminescence are used to determine the deactivation rates of ..pi.., ..pi..*-electron states of S/sub 2/, S/sub 1/ and T/sub 1/ in complexes of organic molecules of meso-tetratolylporphyne and tetrabenzoporphyne with trivalent Sm/sup 3 +/, Eu/sup 3 +/, Gd/sup 3 +/, Tb/sup 3 +/, Dy/sup 3 +/, Ho/sup 3 +/, Er/sup 3 +/, Tm/sup 3 +/, Yb/sup 3 +/, Lu/sup 3 +/. Quantitative data on superfast relaxation processes in lanthanide porphyrines are obtained. The function of the metal entral ion is presented in details as the excitation factor in deactivation processes of photoexcitation energy of the systems in question.

  20. Pentamethylcyclopentadienyl and bis(trimethylsilyl)amido complexes of the di- and trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, T.D.

    1982-03-01

    The reaction of the divalent iodides YbI/sub 2/ and EuI/sub 2/ with NaN(SiMe/sub 3/)/sub 2/ has provided pentane-soluble, monomeric derivatives of the divalent lanthanides. These compounds are isolated as the solvated species Eu(N(SiMe/sub 3/)/sub 2/)/sub 2/L/sub 2/ (L = thf or 1,2-dme), Yb(N(SiMe/sub 3/)/sub 2/)/sub 2/(thf)/sub 1/ /sub 5/ and Yb(N(SiMe/sub 3/)/sub 2/)/sub 2/L/sub 2/ (L = 1,2-dme or OEt/sub 2/), or as the sodium salts NaM(N(SiMe/sub 3/)/sub 2/)/sub 3/ (M = Eu or Yb). The pentamethylcyclopentadienyl ligand has been used to obtain trivalent derivatives of the type (C/sub 5/Me/sub 5/)/sub 2/MCl/sub 2/M'L/sub x/ (M = Nd, Sm or Yb; M' = Li or Na; L = OEt/sub 2/ or tmed) or (C/sub 5/Me/sub 5/)/sub 2/MCl(thf) (M = Nd or Yb). These compounds undergo metathesis reactions. The interaction of NaC/sub 5/Me/sub 5/ with EuCl/sub 3/ yields only the divalent (C/sub 5/Me/sub 5/)/sub 2/EuL (L = thf or OEt/sub 2/). Analogous compounds of ytterbium are obtained by reaction of YbI/sub 2/ with NaC/sub 5/Me/sub 5/ in thf or OEt/sub 2/. The ytterbium amine complexes are weakly paramagnetic, apparently due to charge transfer from ytterbium to the aromatic rings. The divalent phosphine complexes (C/sub 5/Me/sub 5/)/sub 2/ML (M = Eu or Yb; L = dmpe or dmpm) are also described. Crystallographic data are summarized.

  1. Electrochemical analysis of metal complexes.

    NARCIS (Netherlands)

    Jong, de H.G.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the species involv

  2. Trinuclear lanthanide complexes of a compartmental ligand N, N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide: A spectroscopic investigation

    Science.gov (United States)

    Gudasi, Kalagouda B.; Shenoy, Rashmi V.; Vadavi, Ramesh S.; Patil, Siddappa A.

    2006-11-01

    Trinuclear lanthanide complexes of the formula [Ln 3(PPDA)(NO 3) 6(H 2O) 2]·NO 3·2H 2O where Ln = La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H 2PPDA = N, N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.

  3. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first ..cap alpha..-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25/sup 0/C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA/sub 3/(HA)/sub 5/ and (NdA/sub 3/)/sub 2/(HA)/sub q/. Very small amounts of (NdA/sub 3/)/sub 2/ and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid.

  4. Synthesis and Characterization of Some Lanthanide(Ⅲ) Complexes with 4-[N-(2-methoxybenzylimine)formyl]-2, 3-dimethyl-1-phenyl-3-pyazolin-5-one

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of seven novel lanthanide(Ⅲ) nitrato complexes with 4-[N-(2-methoxybenzylimine)formyl]l-2, 3-dimethyl-1-phenyl-3-pyazolin-5-one (2mbfa), were synthesized.These complexes were characterized by elemental analysis, molecular mass determination, conductance and magnetic moment measurements, IR, UV-visible, and 13CNMR spectral studies.In these complexes, the Schiff base, 2mbfa, acts as neutral bidentate ligand by utilizing the carbonyl oxygen and azomethine nitrogen as donor sites.All the three nitrate ions are also coordinated unidentately with 7 coordination for the lanthanide(Ⅲ) ions with a tentative monocapped octahedral geometry for the complexes.All the seven lanthanide(Ⅲ) complexes have a general formula, [Ln(2mbfa)2(NO3)3].

  5. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin, E-mail: chuhb@imu.edu.cn

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  6. Novel one-dimensional lanthanide acrylic acid complexes: an alternative chain constructed by hydrogen bonding

    Science.gov (United States)

    Li, Hui; Hu, Chang Wen

    2004-12-01

    Novel one-dimensional (1D) chains of three lanthanide complexes La(L 1) 3(CH 3OH)]·CH 3OH (L 1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L 2) 3(H 2O) 2]·2.75H 2O (L 2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L 3) 3(CH 3OH) 2(H 2O)]·CH 3OH (L 3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C 29H 29LaO 11, monoclinic, P2 1/ n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, w R2=0.0919; for 2: C 27H 30.50LaO 13.75, triclinic, P-1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, w R2=0.0820; and for 3: C 30H 35LaO 13, monoclinic, P2(1)/ c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, w R2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F 2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1- 3.

  7. Syntheses and Properties of Lanthanide Hydroxy-meso-tetra(p-chlorophenyl)porphyrin Complexes

    Institute of Scientific and Technical Information of China (English)

    YU Miao; YU Lian-xiang; JIAN Wen-ping; YANG Wen-sheng; LIU Guo-fa

    2004-01-01

    @@ Introduction The syntheses and characterization of porphyrins and metalloporphyrins have been studied extensively[1]. Hemoglobin, myoglobin or cytochrome P450, has been applied as a model compound[2]. Wong C. P. et al.[3] synthesized the first lanthanide porphyrin, acetylacetonate tetraphenylporphyrin europium, in 1974.

  8. Lanthanide complexes containing 5-methyl-1,2,4-triazolo[1,5-a] pyrimidin-7(4H)-one and their therapeutic potential to fight leishmaniasis and Chagas disease.

    Science.gov (United States)

    Caballero, Ana B; Rodríguez-Diéguez, Antonio; Salas, Juan M; Sánchez-Moreno, Manuel; Marín, Clotilde; Ramírez-Macías, Inmaculada; Santamaría-Díaz, Noelia; Gutiérrez-Sánchez, Ramón

    2014-09-01

    In the last years, numerous and significant advances in lanthanide coordination chemistry have been achieved. The unique chemical nature of these metal ions which is conferred by their f-electrons has led to a wide range of coordination compounds with interesting structural, physical and also biological properties. Consequently, lanthanide complexes have found applications mainly in catalysis, gas adsorption, photochemistry and as diagnostic tools. However, research on their therapeutic potential and the understanding of their mechanism of action is still taking its first steps, and there is a distinct lack of research in the parasitology field. In the present work, we describe the synthesis and physical properties of seven new lanthanide complexes with the anionic form of the bioactive ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO), namely [Ln(mtpO)3(H2O)6]·9H2O (Ln=La(III), Nd(III), Eu(III), Gd(III), Tb(III), Dy(III) and Er(III)). In addition, results on the in vitro antiproliferative activity against Leishmania spp. and Trypanosoma cruzi are described. The high activity of the new compounds against parasite proliferation and their low cytotoxicity against reference host cell lines show a great potential of this type of compounds to become a new generation of highly effective and non-toxic antiparasitic agents to fight the so considered neglected diseases leishmaniasis and Chagas disease.

  9. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  10. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  11. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    Science.gov (United States)

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants.

  12. Separation and Detection of Lanthanide Ions with Nitrilotri (methylenephosphonic) Acid as Complexing Agent and Eluent by IPC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A mixture containing eleven lanthanide ions was separated and detected on an anion-exchange co-lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10-2mol/L nitrilotri(methylenephosphonic) acid and 2.5×10-3mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.

  13. Two-photon sensitized visible and near-IR luminescence of lanthanide complexes using a fluorene-based donor-π-acceptor diketonate.

    Science.gov (United States)

    Woodward, Adam W; Frazer, Andrew; Morales, Alma R; Yu, Jin; Moore, Anthony F; Campiglia, Andres D; Jucov, Evgheni V; Timofeeva, Tatiana V; Belfield, Kevin D

    2014-11-28

    A fluorene-based donor-acceptor ligand was successfully employed to sensitize visible and near-IR emitting lanthanide centers. The ligand construct is based on a donor-π-acceptor architecture with diphenylamino acting as the donor and a fluorenyl π bridge derivatized with a trifluoroacetonate moiety acting as both a strong acceptor and the classic bidentate scaffold for complexing metals. (1)H NMR analysis in the polar solvents THF and CDCl3 revealed the enolic form of the diketone dominant in solution equilibria at room temperature. This preferred cis-enol form binds strongly to the lanthanide(III) ions (Ln = Eu, Sm, Dy, Tb, Yb, Nd, Er, and Gd) in the presence of phenanthroline affording the resulting ternary tris(diketonates) complexes with 1,10-phenanthroline. Detailed characterization of these complexes was conducted, with particular emphasis on linear and nonlinear photophysical properties. Steady-state and time-resolved emission spectroscopy and overall photoluminescence quantum yield (PLQY) measurements were performed on all the complexes. Sizeable visible and near-IR efficiency for europium (room temperature, visible), samarium (low temperature, visible) and ytterbium, neodymium and erbium (room temperature, near-IR) was displayed, with long luminescent lifetimes for the europium and samarium complexes of 85 and 70 μs, respectively Measurement of the luminescence decay for the Yb complex at 976 nm, Nd complex at 874 nm, and Er complex at 1335 nm yielded mono-exponential decay curves, with lifetimes of ~13 μs, ~1.6 μs, and ~2.5 μs, respectively, inferring that the emission was generated by a single species. In addition, fluorescence anisotropy and two-photon absorption (2PA) spectra (via Z-scan) were obtained for the ligand and europium complex, revealing a maximum 2PA cross section of 340 GM for the latter upon excitation at 760 nm. A quadratic relationship was found by varying laser excitation power vs. luminescence intensity of the europium complex

  14. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  15. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  16. Synthesis,Charactarization and Crystal Structures of Lanthanide Phenoxyacetate Complexes with1,10—Phenanthroline

    Institute of Scientific and Technical Information of China (English)

    邓洪; 蔡跃鹏; 巢晖; 陈春龙; 蒋才武; 陈超球; 计亮年

    2003-01-01

    Three new lanthanide phenoxyacetate complexes with 1,10-phenanthroline,[Nd(POA)3(phen)]2·2C2H5OH(1),[Eu(POA)3-(phen)]2·2C2H5OH(2) and [Sm(POA)2(DMSO)(phen)]2-(ClO4)2 (3)(POA=phenoxyacetate,phen=1,10-phenanthroline,DMSO=dimethyl sulfoxide),were synthesized and characterized by elemental analyses,IR,UV-vis and FAB-MS spectra.Their structures were determined by single crystal X-ray diffraction analysis.In complexes 1 and 2,the carboxlyate groups are bonded to Ln3+ ion in three modes:the chelating bidentate,the bridging bidentate and the bridging tridentate.In complex3,the carboxylate groups are bonded to Sm3+ ion only involved in one mode:the bridging bidentate.The luminescence behavior of complex 2 was also studied by means of emission spectra.

  17. RI and Target recovery system of Lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Park, U. J.; Jung, S. H.; Kim, J. B.; Moon, J. H.; Nam, S. S.; Jang, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Separation of adjacent lanthanides is complicated process to obtain pure target nuclide. Several papers have reported that the ionic character change of lanthanides with appropriate chelating agents can isolate the target lanthanides. These specific agents to the metal ion are called as complexing agents including-HIBA, tartaric acid, mandelic acid, lactic acid etc. Radioisotope research division of KAERI has developed separating technique for target lanthanides, total 20mg scale, by using complexing agents and ion-pairing agents in cold state. The reactor-produced radiolanthanides have been pivotal for development of therapeutic radiopharmaceuticals. Some radiolanthanides show excellent theranostic effects in that they have proper Let (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. This system was designed for automated separation of the (n,γ) reaction product. Especially, we are focused on getting the carrier free Ho-166 which is the first attempt at KAERI. Even though we have already developed to produce c.a Ho-166(carrier added form), we did not try to develop to produce carrier free Ho-166 since the separating process is difficult as well as production process follows double (n,γ) reaction. After HANARO is re-operated, we are schedule to produce n.c.a Ho by using this recovery system.

  18. Synthesis, structures,thermal and magnetic properties of a series of lanthanide [Ln=Sm, Gd, Er, Yb] complexes with 4-quinolineacarboxylate

    Institute of Scientific and Technical Information of China (English)

    GAO Qian; XIE Yabo; ZHANG Chong; SUN Jihong

    2009-01-01

    A series of lanthanide binuclear complexes, [Ln2(L)6(H2O)4]·2H2O (Ln=Sm(III), Gd(III), Er(III), Yb(III), HL=4-quinolineacarboxylic acid, were synthesized by reactions of corresponding rare earth salts with 4-quinolineacarboxylic acid at room temperature and were characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. X-ray diffraction analyses showed that they exhibited the same binuclear architecture and crystallized in monoclinic system and P21/c space group. In four complexes, each metal center adopted nine-coordinated mode coordinated by nine O atoms from two H2O molecules and three carboxyls of three ligands, and HL showed three different coordination modes. The variable-temperature magnetic susceptibility showed that complex [Gd2(L)6(H2O)4]·2H2O performed very weak antiferromagnetic property at low temperature and exchange was almost paramagnetic at high temperature. Complexes [Er2(L)6(H2O)4]·2H2O and [Yb2(L)6(H2O)4]·2H2O performed dominating antiferromagnetic coupling.

  19. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  20. Synthesis, infrared and fluorescence spectra of lanthanide complexes with a new amide-based 1,3,4-oxadiazole derivative

    Science.gov (United States)

    Tang, Xiao-Liang; Dou, Wei; Chen, Su-Wen; Dang, Fang-Fang; Liu, Wei-Sheng

    2007-10-01

    A new amide-based 1,3,4-oxadiazole derivative ligand 2,5-bis[2-( N, N-diethyl-1'-oxopropylamide)phenyl]-1,3,4-oxadiazole (L) and its complexes, Ln(NO 3) 3L (Ln = La, Eu, Gd, Tb, Er), were synthesized. The complexes were characterized by elemental analysis, infrared spectra and conductivity. The lanthanide ions were coordinated by O atoms from C dbnd O. The fluorescence properties of Eu(NO 3) 3L and Tb(NO 3) 3L in the solid state and in different solvents were investigated. Under the excitation of UV light, these complexes exhibit characteristic fluorescence of europium and terbium ions. The solvent factors influencing the fluorescent intensity were discussed.

  1. Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

    Science.gov (United States)

    Funk, Alexander M; Harvey, Peter; Finney, Katie-Louise N A; Fox, Mark A; Kenwright, Alan M; Rogers, Nicola J; Senanayake, P Kanthi; Parker, David

    2015-07-07

    Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch-Redfield-Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln(3+) ions, along with magnetic susceptibilities that deviate significantly from free-ion values.

  2. Evidence of different stoichiometries for the limiting carbonate complexes across the lanthanide(III) series: A capillary electrophoresis-mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V.; Vercouter, T.; Vitorge, P. [CEA, Dept Physicochem, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Aupiais, J.; Topin, S.; Ambard, C. [CEA, Serv Radioanalyse Chim et Environm, Bruyeres Le Chatel, (France); Chausse, A.; Vitorge, P. [Lab Analyse et Modelisat Biol et Environm, Evry, (France)

    2008-07-01

    The electrophoretic mobilities ({mu}{sub ep,Ln}) of twelve lanthanides (not Ce, Pr and Yb) were measured by CE-ICP-MS in 0.15 and 0.5 mol L{sup -1} Alk{sub 2}CO{sub 3} aqueous solutions for Alk{sup +} = Li{sup +}, Na{sup +}, K{sup +} and Cs{sup +}. In 0.5 mol L{sup -1} solutions, two different {mu}{sub ep,Ln} values were found for the light (La to Nd) and the heavy (Dy to Tm) lanthanides, which suggests two different stoichiometries for the carbonate limiting complexes. These results are consistent with a solubility study that attests the Ln(CO{sub 3}){sub 3}{sup 3-} and Ln(CO{sub 3}){sub 4}{sup 5-} stoichiometries for the heavy (small) and the light (big) lanthanides, respectively. The Alk{sup +} counter-ions influence the {mu}{sub ep,Ln}{sup Alk2CO3} values, but not the overall shape of the {mu}{sub ep,Ln}{sup Alk2CO3} plots as a function of the lanthanide atomic numbers: the counter-ions do not modify the stoichiometries of the inner sphere complexes. The influence of the Alk{sup +} counter-ions decreases in the Li{sup +} {>=} Na{sup +} {>=}{>=} K{sup +} {>=} Cs{sup +} series. The K{sub 3,Ln} stepwise formation constants of the Ln(CO{sub 3}){sub 3}{sup 3-} complexes slightly increase with the atomic numbers of the lanthanides while K{sub 4,Ln}, the stepwise formation constants of Ln(CO{sub 3}){sub 4}{sup 5-} complexes, slightly decrease from La to Th, and is no longer measurable for heavier lanthanides. (authors)

  3. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Science.gov (United States)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-12-01

    A 3D lanthanide MOF with formula [Sm2(abtc)1.5(H2O)3(DMA)]·H2O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol.

  4. Aqueous complexation of trivalent lanthanide and actinide cations by N,N,N'{sub 2},N'-tetrakis(2-pyridylmethyl)ethylenediamine.

    Energy Technology Data Exchange (ETDEWEB)

    Beitz, J. V.; Ensor, D. D.; Jensen, M. P.; Morss, L. R.

    1999-06-16

    The aqueous complexation reactions of trivalent lanthanide and actinide cations with the hexadentate ligand N,N,N{prime},N{prime}-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), have been characterized using potentiometric and spectroscopic techniques in 0.1 M NaClO{sub 4} At 25 C, the stability constant of Am(TPEN){sup 3+} is two orders of magnitude larger than that of Sm(TPEN){sup 3+}, reflecting the stronger interactions of the trivalent actinide cations with softer ligands as compared to lanthanide cations.

  5. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Munteanu

    2016-12-01

    Full Text Available In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III, Eu(III, Gd(III, Tb(III. The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H9O33(OH2(H2Ox]·nH2O, where Ln is the lanthanide cation and x = 0 for Sm(III, x = 1 for Eu(III, Gd(III, Tb(III and n = 0 for Sm(III, Gd(III, Tb(III, n = 1 for Eu(III, respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb ~ 104. Human serum albumin (HSA and transferrin (Tf binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra. The apparent association constants (Ka and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.

  6. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    Science.gov (United States)

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain.

  7. Ligand Symmetry Modulation for Designing a Mesoporous Metal-Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization.

    Science.gov (United States)

    Du, Miao; Wang, Xi; Chen, Min; Li, Cheng-Peng; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen

    2015-06-26

    A promising alternative strategy for designing mesoporous metal-organic frameworks (MOFs) has been proposed, by modifying the symmetry rather than expanding the length of organic linkers. By means of this approach, a unique MOF material based on the target [Zn8(ad)4] (ad = adeninate) clusters and C3-symmetric organic linkers can be obtained, with trigonal microporous (ca., 0.8 nm) and hexagonal mesoporous (ca., 3.0 nm) 1D channels. Moreover, the resulting 446-MOF shows distinct reactivity to transition and lanthanide metal ions. Significantly, the transmetalation of Co(II) or Ni(II) on the Zn(II) centers in 446-MOF can enhance the sorption capacities of CO2 and CH4 (16-21%), whereas the impregnation of Eu(III) and Tb(III) in the channels of 446-MOF will result in adjustable light-emitting behaviors.

  8. IUPAC-NIST Solubility Data Series. 85. Transition and 12-14 Main Group Metals, Lanthanide, Actinide, and Ammonium Halates

    Science.gov (United States)

    Miyamoto, Hiroshi

    2008-06-01

    This paper is the fourth and final volume in the halate solubility series. The solubility data for halates of transition metals, lanthanides, actinides, ammonium, and metallic elements of the main groups 12-14 are reviewed. Where appropriate, binary, ternary, and multicomponent systems are critically evaluated. Most of the solubility results were obtained in water or aqueous solutions of electrolytes. The solubility in organic solvents and aqueous-organic solvent mixtures is also collected in this volume. All these data were critically examined for their reliability. The best values were selected on the basis of critical evaluations and presented in tabular form. Fitting equations and graphical plots are also provided. When numerical data were not reported in an original publication, they were read out from figures and digitized by the compilers. The quantities, units, and symbols used in this volume are in accord with IUPAC recommendations. We always reported the original data and, if necessary, transferred them into the IUPAC recommended units and symbols. The literature on the solubility data was researched through 2002. The halates of these metals play a role in industrial processes. For example, some halates are essential as catalysts, heat stabilizers, and blanching reagents for manufacturing polymer products such as textiles and resins. Some iodates are used in pyrotechnic compounds for weather modification and colored smoke generation. The nonlinear halate crystals are important in construction of optical devices.

  9. Study on the Interaction between Lanthanide Cationic Porphyrin Complex and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    LIU, Peng; LIU, Yi; LI, Xi; HUANG, Wei-Guo

    2007-01-01

    The interaction between lanthanide cationic porphyrin and bovine serum albumin (BSA) was studied by fluorescence and UV-Vis spectrum. The static quenching of BSA was observed in the presence of YbTMPyP. According to the thermodynamic parameters, this binding was regarded as "enthalpy-driven" reaction. Furthermore,YbTMPyP is so close to the residues of BSA that molecular resonance energy transfer occurs between them. Besides, the red drift and hypochromicity of absorption spectrum of YbTMPyP were accompanied with the binding reaction.

  10. Molecular dynamics simulations of ter-pyridine and bis-triazinyl-pyridine complexes with lanthanide cations; Etude de dynamique moleculaire de complexes de la bis-triazinyl-pyridine (BTP) et de la terpyridine avec des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, Ph. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    The search for ligands which specifically separate actinides(III) from lanthanides(III) by liquid-liquid extraction has prompted considerable research in the Process Design and Modeling Department ('Service d'Etude et de Modelisation des Procedes'- SEMP). Ligands with soft donor atoms AS) that are able to perform this separation have already been investigated and research is currently under way to improve their performance for high acidic feeds. Theoretical chemistry research is conducted in the Theoretical and Structural Chemistry Laboratory ('Laboratoire de Chimie Theorique et Structurale') to improve our understanding of the complexation and extraction of these cations with such ligands. Theoretical studies were first carried out for the ter-pyridine (TPY) and bis-triazinyl-pyridine (BTP) ligands that display fairly good ability to separate and extract actinide(III) from lanthanide(III) ions. Molecular dynamics simulations were performed on ter-pyridine and bis-triazinyl-pyridine complexes with three lanthanide cations (La{sup 3+}, Eu{sup 3+} and Lu{sup 3+}) for vacuum and for water solutions. These calculations were carried out without counter-ions, with three nitrate (NO{sub 3}{sup -}) ions, and, in the case of ter-pyridine, with three {alpha}-bromo-caprate anions that are likely to be used experimentally as synergistic agents for the separation and extraction of An(III) from Ln(III). Molecular dynamics simulations were first performed for vacuum to evaluate the distances between nitrogen and lanthanide atoms (Ln{sup 3+},N) and intrinsic interaction energies to poly-nitrogenous ligands with or without NO{sub 3} ions, and for both ligands. The (Ln{sup 3+},N) distances decrease and the cation/ligand interaction energies increase along the La{sup 3+}, Eu{sup 3+}, Lu{sup 3+} series, with decreasing Ln(III) ion radii. The introduction of nitrate counter-ions makes the (Ln{sup 3+},N) distances slightly higher, and the TPY/Ln{sup 3+} and BTP

  11. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species.

  12. Synthesis and Characterization of Heteronuclear Copper(II-Lanthanide(III Complexes of N,N′-1,3-Propylenebis(Salicylaldiminato Where Lanthanide(III = Gd or Eu

    Directory of Open Access Journals (Sweden)

    Longjam Jaideva Singh

    2013-01-01

    Full Text Available Three complexes, namely, [Cu(salbn] (1, [Cu(salbnGd(NO33·H2O] (2, and [Cu(salbnEu(NO33·H2O] (3 where salbn = N,N′-1,3-propylenebis (salicylaldiminato have been synthesized and characterized by elemental analyses, ICP-AES, IR, UV, NMR, MS, EDX, powder XRD, and EPR spectroscopies. The EDX results suggest the presence of two different metal ions in heteronuclear complexes (2 and (3. The ligand(salbn, complex (1, and complex (3 crystallize in triclinic system while complex (2 crystallizes in monoclinic system. The EPR studies suggest that [Cu(salbn] complex is tetragonally coordinated monomeric copper(II complex with unpaired electron in the dx2-y2 orbital and spectral features that are the characteristics of axial symmetry while complex (2 in DMF solution at liquid nitrogen temperature exhibits an anisotropic broad signal around g ~ 2.03 which may suggest a weak magnetic spin-exchange interaction between Gd(III and Cu(II ions. The fluorescence intensity of Eu(III decreased markedly in the complex (3.

  13. Features of the complexation of octadecane-2,4-dione and lanthanide ions in Langmuir monolayers

    Science.gov (United States)

    Sokolov, M. E.; Repina, I. N.; Raitman, O. A.; Kolokolov, F. A.; Panyushkin, V. T.

    2016-05-01

    Monolayers of octadecane-2,4-dione on the surfaces of EuCl3 and TbCl3 solutions in the concentration range of 1 × 10-4 to 5 × 10-3 M at pH 5.8 are studied. It is found that the limiting area of octadecane-2,4-dione molecule in a monolayer dependence on Eu3+ and Tb3+ concentration is of extreme nature. The formation of complex compounds in the ligand monolayer is postulated, and structures are proposed for these compounds at different concentrations of metal ions.

  14. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    Science.gov (United States)

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  15. Constraining and Tuning the Coordination Geometry of a Lanthanide Ion in Metal-Organic Frameworks: Approach toward a Single-Molecule Magnet.

    Science.gov (United States)

    Liu, Ke; Li, Huanhuan; Zhang, Xuejing; Shi, Wei; Cheng, Peng

    2015-11-01

    It is available to constrain and tune the coordination geometries around lanthanide ions in metal-organic frameworks (MOFs) for the study of single-molecule-magnet (SMM) behavior. A series of Dy(III)-MOFs are synthesized via a solvothermal method by using furan-2,5-dicarboxylic acid (H2FDA) as the ligand. {[Dy2(FDA)3(DMF)2]·1.5DMF}n (1) and [Dy2(FDA)3(DMF)2(CH3OH)]n (2) show similar three-dimensional structures, but the coordination geometries around the dysprosium(III) ions in 1 and 2 exhibit different deviations from ideal square antiprism (D4d symmetry) because of the coordinated solvent molecules. Slow relaxation of the magnetization can be observed for both complexes, indicative of SMM behavior. The effective energy barriers for 1 and 2 can be obtained from alternating-current susceptibility measurements by applying an external 2000 Oe direct-current field. MOF 2 possesses a less distorted D4d coordination sphere and gives a higher effective energy barrier (Ueff) than that of MOF 1. Their diamagnetic Y(III)-diluted samples 1@Y and 2@Y exhibit similar relationships between the geometries and Ueff values, demonstrating that the magnetization relaxation is mainly from the symmetry-related single-ion behavior.

  16. Complexation of actinides(III) and lanthanides(III) cations by tridentate nitrogen ligands; Complexation des cations actinides(III) et lanthanides(III) par des ligands azotes tridentates

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P.Y.; Francois, N.; Guillaneux, D.; Hill, C.; Madic, Ch. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France); Illemassene, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2000-07-01

    To understand the properties of some systems able to extract actinides (III) from lanthanides(III) selectively, the solution chemistry of lanthanide(III) and actinide(III) cations with poly-hetero-aromatic nitrogen-containing ligands was studied by Time-Resolved Laser Induced Fluorimetry (TRLIF) and UV-visible spectrophotometry, combined with chemo-metric methods. Three soft donor ligands (L) were selected for the study: 2,2':6;2{sup -}ter-pyridine (Tpy),4,6-tri-(pyridine-2-yl)-1,3,5-triazine (Tptz) and 2,6-bis-(5,6-dimethyl-1,2,4-triazine-3-yl)-pyridine (MeBtp). Tpy and Tptz exhibit moderate affinity (distribution ratio) and selectivity when used in the synergistic liquid-liquid extraction of americium(III) (with a lipophilic carboxylic acid). MeBtp is also very efficient, and extracts Am(III) with high selectivity; The TRLIF study analyzed the Eu(III) fluorescence emission spectrum. By analyzing the respective changes in the band intensities, and the lifetimes of the Eu(III) excited states, when the ligands were added in homogeneous phase, the following conclusions were drawn: - for Tpy and Tptz, only one EuL{sup 3+} complex species was detected, with a low symmetry in the first coordination sphere, and the Eu(III) hydration number (number of water molecules in the Eu(III) first sphere of coordination) in these complexes was found to be around 5-6; - for MeBtp, two species were detected, one with a low symmetry and a hydration number close to 5-6, the other with a high symmetry and almost completely dehydrated. This is indicative of the formation of the complexes: EuL{sup 3+} for L =Tpy and Tptz, and Eu(MeBtp){sup 3+} and Eu(MeBtp){sub 3}{sup 3+} in the case of MeBtp. The formation of these complexes, as well as the protonated ligands, was quantitatively studied using UV-visible spectrophotometry. In each case, the variation in the absorption spectrum of one species was monitored, while the concentration of the other was varied. The complex formation

  17. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  18. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  19. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  20. Tuning the decay time of lanthanide-based near infrared luminescence from micro- to milliseconds through d-->f energy transfer in discrete heterobimetallic complexes.

    Science.gov (United States)

    Torelli, Stéphane; Imbert, Daniel; Cantuel, Martine; Bernardinelli, Gérald; Delahaye, Sandra; Hauser, Andreas; Bünzli, Jean-Claude G; Piguet, Claude

    2005-05-20

    Inert and optically active pseudo-octahedral Cr(III)N6 and Ru(II)N6 chromophores have been incorporated by self-assembly into heterobimetallic triple-stranded helicates HHH-[CrLnL3]6+ and HHH-[RuLnL3]5+. The crystal structures of [CrLnL(3)](CF(3)SO(3))(6) (Ln=Nd, Eu, Yb, Lu) and [RuLnL3](CF3SO3)5 (Ln=Eu, Lu) demonstrate that the helical structure can accommodate metal ions of different sizes, without sizeable change in the intermetallic MLn distances. These systems are ideally suited for unravelling the molecular factors affecting the intermetallic nd-->4f communication. Visible irradiation of the Cr(III)N6 and Ru(II)N6 chromophores in HHH-[MLnL3]5/6+ (Ln=Nd, Yb, Er; M=Cr, Ru) eventually produces lanthanide-based near infrared (NIR) emission, after directional energy migration within the complexes. Depending on the kinetic regime associated with each specific d-f pair, the NIR luminescence decay times can be tuned from micro- to milliseconds. The origin of this effect, together with its rational control for programming optical functions in discrete heterobimetallic entities, are discussed.

  1. Alkane Soluble Transition Metal Complexes.

    Science.gov (United States)

    1983-10-01

    and decomposition of any intermediate, complexes. Cloro - L~r. spectra were recorded in the range 4 000-200 cm𔃻 form solutions of the phosphine PAr5...netathesis quickly showed that the lo~o-complez Is less stable than its cloro -malogue. A detailed Investigatiom of the preparation, charecterlstion and...solvent extraction of products that are believed to be a mixture of several metals, as stationary phases in gas chromatography. isomers of the ortho

  2. Formazans and their metal complexes

    Science.gov (United States)

    Sigeikin, Gennadii I.; Lipunova, Galina N.; Pervova, I. G.

    2006-10-01

    The current data on the structure of formazans in crystals and in solutions are considered and some problems of tautomeric and conformational equilibria are discussed. Some novel classes of formazans synthesised over the past decade are presented. The results of structural studies of formazan complexes with various types of metal coordination are generalised. Examples of synthesis of formazan-containing polymers are given. Special emphasis is placed on analytical and practical applications of formazan derivatives.

  3. Formazans and their metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sigeikin, Gennadii I [Interdepartment Centre of Analytical Research in Chemistry, Physics and Biology at the Presidium of the Russian Academy of Sciences (Russian Federation); Lipunova, Galina N [Urals State Technical University, Ekaterinburg (Russian Federation); Pervova, I G [Urals State Forest Engineering University, Ekaterinburg (Russian Federation)

    2006-10-31

    The current data on the structure of formazans in crystals and in solutions are considered and some problems of tautomeric and conformational equilibria are discussed. Some novel classes of formazans synthesised over the past decade are presented. The results of structural studies of formazan complexes with various types of metal coordination are generalised. Examples of synthesis of formazan-containing polymers are given. Special emphasis is placed on analytical and practical applications of formazan derivatives.

  4. Synthesis, crystal structure, and luminescent properties of 2-(2,2,2-trifluoroethyl)-1-indone lanthanide complexes.

    Science.gov (United States)

    Li, Jingya; Li, Hongfeng; Yan, Pengfei; Chen, Peng; Hou, Guangfeng; Li, Guangming

    2012-05-07

    A new β-diketone, 2-(2,2,2-trifluoroethyl)-1-indone (TFI), which contains a trifluorinated alkyl group and a rigid indone group, has been designed and employed for the synthesis of two series of new TFI lanthanide complexes with a general formula [Ln(TFI)(3)L] [Ln = Eu, L = (H(2)O)(2) (1), bpy (2), and phen (3); Ln = Sm, L = (H(2)O)(2) (4), bpy (5), and phen (6); bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline]. X-ray crystallographic analysis reveals that complexes 1-6 are mononuclear, with the central Ln(3+) ion eight-coordinated by six oxygen atoms furnished by three TFI ligands and two O/N atoms from ancillary ligand(s). The room-temperature photoluminescence (PL) spectra of complexes 1-6 show strong characteristic emissions of the corresponding Eu(3+) and Sm(3+) ions, and the substitution of the solvent molecules by bidentate nitrogen ligands essentially enhances the luminescence quantum yields and lifetimes of the complexes.

  5. Synthesis and luminescent properties of novel lanthanide(III) beta-diketone complexes with nitrogen p,p'-disubstituted aromatic ligands.

    Science.gov (United States)

    Bellusci, Anna; Barberio, Giovanna; Crispini, Alessandra; Ghedini, Mauro; La Deda, Massimo; Pucci, Daniela

    2005-03-21

    Tris-beta-diketonate lanthanide(III) complexes (Ln = Eu, Er, Yb, Tb), of general formula [Ln(acac)3 L(m)], with chelating ligands such as 4,7-disubstituted-1,10-phenanthrolines and 4,4'-disubstituted-2,2'-bipyridines, have been synthesized and fully characterized. The inductive effects of the para-substituents on the aromatic N-donor ligands have been investigated both in the solid and in the solution states. Single-crystal X-ray structures have been determined for the diethyl 1,10-phenanthroline-4,7-dicarboxylate europium and 4,4'-dimethoxy-2,2'-bipyridine erbium derivatives, revealing a distorted square antiprismatic geometry around the lanthanide atom in both cases. The influence exerted by the p,p'-substituents with respect to the nitrogen coordinating atoms on the Ln-N bond distances is discussed comparing the geometrical parameters with those found for the crystal structures containing the fragments [Ln(III)(phen)] and [Ln(III)(bipy)] obtained from the Cambridge Structural Database. The influence exerted by the electron-attracting groups on the coordination ability of the ligands, that in some cases becomes lack of coordination of the lanthanide ions, has been also detected in solution where the loss of the ligand has been followed by UV-vis spectroscopy. Moreover, the use of relatively long alkoxy chains as substituents on the 1,10-phenanthroline ligand led to the formation of a promesogenic lanthanide complex, whose thermal behavior is encouraging for the synthesis of new lanthanide liquid-crystalline species.

  6. Lanthanide(III) complexes of 4,10-bis(phosphonomethyl)-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (trans-H6do2a2p) in solution and in the solid state: structural studies along the series.

    Science.gov (United States)

    Campello, M Paula C; Lacerda, Sara; Santos, Isabel C; Pereira, Giovannia A; Geraldes, Carlos F G C; Kotek, Jan; Hermann, Petr; Vanek, Jakub; Lubal, Premysl; Kubícek, Vojtech; Tóth, Eva; Santos, Isabel

    2010-07-26

    Complexes of 4,10-bis(phosphonomethyl)-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (trans-H(6)do2a2p, H(6)L) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal-ion complexes are between the corresponding values of H(4)dota and H(8)dotp complexes, as a consequence of the ligand basicity. The solid-state structures of the ligand and of nine lanthanide(III) complexes were determined by X-ray diffraction. All the complexes are present as twisted-square-antiprismatic isomers and their structures can be divided into two series. The first one involves nona-coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa-coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid-assisted dissociation of several Ln(III)-H(6)L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota-like ligands. The [Ce(L)(H(2)O)](3-) complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate-acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the (1)H NMR spectroscopic pseudo-contact shifts for the Ce-Eu and Tb-Yb series, the solution structures of the complexes reflect the structures of the [Ce(HL)(H(2)O)](2-) and [Yb(HL)](2-) anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between (31)P/(1)H lanthanide-induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N(4

  7. Synthesis and design of organic light-emitting devices containing lanthanide-cored complexes

    Science.gov (United States)

    Phelan, Gregory D.; Carlson, Brenden; Lawson, Rhys; Rowe, Daniel; Allen, Kolby; Dalton, Larry; Jiang, Xuezhong; Kim, Joo H.; Jen, Alex K.

    2004-02-01

    There is a considerable interest in the use of metal centered materials as a light source in the growing field of organic light emitting devices (OLED's). In these devices, a polymeric host matrix containing either a carbazole type polymer or polyfluorene derivatives is used to help facilitate energy transfer to the luminophore. We have shown that by using a gadolinium complex that consist of three equivalents of a chelated dibenzoylmethane b-diketone ligand and one equivalent of a phenanthroline type ligand as a component in the host matrix, the performance of a double layer type OLED is improved. We have studied OLED systems that contain tris chelated europium compounds that contain three equivalents of partially fluorinated β-diketone type ligands and an equivalent of a phenanthroline type ligand. In these devices, the external efficiency has shown a 30-fold increase. We have also shown there is an increase for Osmium based OLED's that use the gadolinium complex as part of the polymer matrix. In these devices, the maximum quantum efficiency increased from 2.1% to a value of 3.8%.

  8. Synergic solvent extraction and thermal studies of fluorinated beta-diketone-organophosphorus adduct complexes of lanthanide and related elements

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, James Winfield [Iowa State Univ., Ames, IA (United States)

    1970-01-01

    Solvent extraction and gas chromatography have proven to be very successful techniques for quantitative separation and determination of many types of compounds. While the former has been well established as a universal tool for both organic and inorganic separations, the latter has been primarily used for organic applications. Recent investigations (80) however, have amply demonstrated the utility of gas chromatography for inorganic analysis. Although both techniqes provide excellent analytical capabilities, a greater analytical potential for separation and determination of inorganic materials would be produced by a combination of the two techniques. The combination of the resoltion capabilites of gas chromatography and the specificity of solvent extraction should considerably broaden the scope of practical analysis of cationic mixtures. During a recent study at the Ames Laboratory a mixture of hexafluoracetylacetone (HHFA) and tri-n-butylphosphate (TBP) in cyclohexane was used for the first time as a gas chromatographic reagent for the lanthanide elements (19). This initial work included a broad spectrum of studies designed to assess the potential of mixed-ligand chelates for inorganic gas chromatography. The successful gas chromatography (GC) R.E.(A) 3 -2TBP, where A is the anion of the ligand and R.E. represents the rare earth cation, were extracted into the organic phase. The synergic system, HHFA-TBP, was found to possess extraction properties necessary for a subsequent gas chromatographic determination. Rare earths at micro and macro levels (10-8 to 10-2 _M_) were rapidly and quantitatively converted to the corresponding mixed chelates under pH conditions such that hydrolysis of the cations in the aqueous phase did not occur. The stioichiometry of the complexes extracted into solutions of HHFA-TBP in cyclohexane remained constant for the lanthanide series. Analytical extraction curves were measured for Th(IV), Sc(III), U

  9. Synthesis, characterization and antibacterial activity of new complexes of some lanthanide ions with 15-crown-5 and 18-crown-6

    Directory of Open Access Journals (Sweden)

    Hussein Al-Amery

    2016-05-01

    Full Text Available Complexes of some lanthanide picrates (Ln3+ = Pr3+, Nd3+ and Dy3+ with 15-crown-5 and 18-crown-6 were synthesized and characterized by elemental analysis, ICP-AES, FTIR, 1H-NMR, 13C-NMR and UV-Visible spectrophotometric methods, thermal analysis (TGA & DTG, magnetic susceptibility , molar conductance and melting points. Also an in-vitro study on pathogenic gram positive (Staphylococcus aureus and pathogenic gram negative bacteria (Escherichia coli, Salmonella and pseudomonas aeruginosa was performed and the results were compared to those of a broad spectrum antibiotic (Chloramphinicol. The complexes of 15-crown-5 have the general formula [Ln(15C52(Pic]Pic2.nH2O where (Ln3+ = Nd3+ and Dy3+, (Pic = Picrate anion and (n = 2 or 4 except for Pr3+ complex which has the formula [Pr(15C5]Pic3.H2O , the 18-crown-6 complexes have the general formula [Ln(18C6]Pic3 where (Ln3+ = Pr3+ and Nd3+ except for Dy3+ complex which has the formula [Dy(18C6(Pic]Pic2.3H2O. In 15-crown-5 complexes both Nd3+ and Dy3+ were coordinated with two 15-crown-5 ligands and one picrate anion through its phenolic oxygen and the oxygen of it’s ortho nitro group, except for Pr3+ which was coordinated with only one 15-crown-5 ligand leaving three picrate anions as counter ions. In 18-crown-6 complexes both Pr3+ and Nd3+ were coordinated with one 18-crown-6 ligand leaving all the three picrate anions as counter ions outside the coordination sphere, except for the Dy3+ complex which was coordinated with one 18-crown-6 ligand and one picrate anion.

  10. 3D lanthanide metal-organic frameworks constructed from 2,6-naphthalenedicarboxylate ligand: synthesis, structure, luminescence and dye adsorption

    Science.gov (United States)

    Zhu, Yajing; Wang, Li; Chen, Xiaodong; Wang, Pengcheng; Fan, Yong; Zhang, Ping

    2017-07-01

    A series of novel isostructural 3D lanthanide metal-organic frameworks {[Ln2(NDC)3(H2O)4]·(DMF)4}n (Ln=Eu(1), Gd(2), Tb(3), Er(4), Yb(5), Dy(6), Y(7), Lu(8), H2NDC =2,6-Naphthalenedicarboxylic acid, DMF=N,N-dimethylformamide) with a rhombic channel along the b axis and high thermal stabilities, have been successfully synthesized under solvothermal conditions. The network can be described as 2, 4, 5-connected net with Schäfli symbol of (42.62.82)2(42.63.85)2(6). Luminescent studies illustrate that 1, 2, 7 and 8 exhibit strong luminescent emitting of the corresponding Ln(III) centers in the visible range, while 5 shows near-infrared range (NIR) luminescence. Further studies of 1 and 2A (activated product of 2) show that 1 displays good stability in different solvents and excellent fluorescence sensing for organic solvent small molecules and 2A ([Gd2(NDC)3(H2O)4]n) exhibits good adsorption capacity for organic dyes in water, especially for crystal violet.

  11. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingjing [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Ye Zhiqiang, E-mail: zhiqiangye2001@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Xin Chenglong [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Yuan Jingli, E-mail: jingliyuan@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A lanthanide complex-based ratiometric luminescent pH sensor was developed. Black-Right-Pointing-Pointer The sensor can luminously respond to pH in weakly acidic to neutral media. Black-Right-Pointing-Pointer The sensor can be used for monitoring pH with time-resolved luminescence mode. Black-Right-Pointing-Pointer The sensor can be also used for monitoring pH with absorbance mode. Black-Right-Pointing-Pointer The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4 Prime -hydroxy-2,2 Prime :6 Prime ,2 Prime Prime -terpyridine-6,6 Prime Prime -diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu{sup 3+} and Tb{sup 3+} complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu{sup 3+} is strongly dependent on the pH values in weakly acidic to neutral media (pK{sub a} = 5.8, pH 4.8-7.5), while that of HTTA-Tb{sup 3+} is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu{sup 3+} and HTTA-Tb{sup 3+} (the HTTA-Eu{sup 3+}/Tb{sup 3+} mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb{sup 3+} emission at 540 nm to its Eu{sup 3+} emission at 610 nm, I{sub 540nm}/I{sub 610nm}, as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu{sup 3+}/Tb{sup 3+} mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A{sub 290nm

  12. Metal complexes with 5-aminotetrazole

    Energy Technology Data Exchange (ETDEWEB)

    Lavrenova, L.G.; Larionov, S.V.; Grankina, Z.A.; Ikorskij, V.N. (AN SSSR, Novosibirsk. Inst. Neorganicheskoj Khimii)

    1983-01-01

    Nitrate and chloride complexes of Co(2), Ni(2), Cu(2), Cd(2), Hg(2), Pb(2) with 5 aminotetrazole (ATE) and compounds Zn(ATE')/sub 2/ and Cd(ATEE')/sub 2/, where ATE' is a 5 aminotetrazole anion, were prepared. On the base of spectroscopic data (spectrophotometry, IR- spectra, EPR and magnetic measurements assumptions on M(2) coordination in complexes are made. Most probably ATE is a bridge ligand which is toined by two nitrogen atoms to various M(2) ions. In Co(2), Ni(2) and Cu(ATE)/sub 3/-Cl/sub 2/ compounds the metal has a distorted actahedral coordination and forms MN/sub 6/ unit, which suggests the interaction of metal ions with ATE nitrogen atoms along the Z-axis. In the Cu(ATE)/sub 2/(NO/sub 3/)/sub 2/ octahedral complex the CuN/sub 4/O/sub 2/ coordination unit is realized at the expense of participation of nitratogroups in coordination.

  13. Configuration-averaged open shell ab initio method for crystal field levels and magnetic properties of lanthanide(III) complexes

    CERN Document Server

    Heuvel, Willem Van den; Soncini, Alessandro

    2015-01-01

    We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...

  14. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    Science.gov (United States)

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  15. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  16. Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate- interactions of cerium(III) complex

    Indian Academy of Sciences (India)

    Karreddula Raja; Akkili Suseelamma; Katreddi Hussain Reddy

    2016-01-01

    The lanthanide(III) complexes of general formula of [Ln(BPBH)2(NO3)3] (where, Ln = La, Ce, Pr, Nd and BPBH = 2-benzoylpyridine benzhydrazone) have been synthesized and characterized by elemental analysis, molar conductance, spectroscopic (UV, IR), electrochemical and single crystal X-ray diffraction studies. The coordination mode of the ligand and the geometry of [Ce(BPBH)2(NO3)3] are confirmed by single crystal X-ray studies. The crystals are monoclinic with C2/c crystallographic symmetry. The central metal is 12 coordinated and the coordination polyhedron around the cerium atom can be described as a distorted icosahedron. The existence of nitrate. . . and CH. . . stacking interactions in the [Ce(BPBH)2(NO3)3] leads to a supramolecular arrangement in its network. The binding properties of these complexes with calf-thymus DNA have been investigated by viscosity measurements. The complexes show more nuclease activity in the presences of H2O2.

  17. Synthesis, crystal structure and effect of deuterated solvents and temperature on visible and near infrared luminescence of N4-donor Schiff base lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuo; Fan, Rui-Qing; Gao, Song; Wang, Xinming; Yang, Yu-Lin, E-mail: ylyang@hit.edu.cn

    2014-05-01

    A series of lanthanide complexes [LnL(NO{sub 3}){sub 3}]·CH{sub 3}CN [Ln=Ce, (1• Ce); Nd, (2• Nd); Tb, (3• Tb); Dy, (4• Dy); Ho, (5• Ho); Er, (6• Er); Tm, (7• Tm); Yb (8• Yb)] have been synthesized by the reaction of N4 chelate ligand N,N'-bis(2-pyridinylmethylene)cyclohexane-1,2-diamine (L) with lanthanide salts. Photoluminescence spectra of complexes 2• Nd, 3• Tb, 4• Dy, and 8• Yb show the strong characteristic luminescence from visible to near infrared (NIR) region. Further, the singlet state (32,467 cm{sup −1}) and the lowest triplet (23,202 cm{sup −1}) energy level of L are calculated, indicating that the energy transfer from L to Tb{sup 3+} ion is more effective than that to Dy{sup 3+} ion. An extended work is developed to discuss on the effect of deuterated reagent and temperature on luminescent properties of 3• Tb and 8• Yb. - Highlights: • A series of N4-donor Schiff base lanthanide complex are designed and synthesized. • The characteristic luminescence from visible to near infrared region could be revealed. • The influence of deuterated reagent and temperature on luminescent properties is described.

  18. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    Science.gov (United States)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  19. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    Science.gov (United States)

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions.

  20. Azobenzene-derived tris-β-diketonate lanthanide complexes: reversible trans-to-cis photoisomerization in solution and solid state.

    Science.gov (United States)

    Lin, Li-Rong; Wang, Xuan; Wei, Gao-Ning; Tang, Hui-Hui; Zhang, Hui; Ma, Li-Hua

    2016-10-14

    Novel azobenzene-derived β-diketonates (4,4,5,5,6,6,6-heptafluoro-1-azobenzene-1,3-hexanedione (LA), 4,4,5,5,6,6,6-heptafluoro-1-(4-dimethylamino)azobenzene-1,3-hexanedione (LB)) were designed and their complexes with lanthanide cations (La(3+), Eu(3+), Gd(3+), Yb(3+)) were prepared and characterized by (1)H NMR, FT-IR, and elemental analysis. Three of the complexes were crystallized successfully and identified by X-ray diffraction. It was significant to find that LA showed remarkably reversible trans-to-cis isomerization properties, however, LB, bearing an electron donor compared with LA, slowed down the isomerization to an extent. The presence of Ln(iii) enhanced the reversible trans-to-cis isomerization properties of both LA and LB a little upon photoirradiation in organic solvents, and amazingly increased the fatigue resistance. In addition, the complexes doped in polymethyl methacrylate (PMMA) films produced a similar phenomenon as well as when in solution. Theoretical calculations based on time dependent density functional theory (TD-DFT) were performed for geometry optimization and to determine the excitation energies of LA and LB to gain further insight into the electronic structure of the complexes, and the data were consistent with the experimental results. The excellent reversible photoisomerization properties of the newly designed Ln(iii) complexes can offer important advantages that will help with the further study of these materials to reach their full potential in applications such as molecular switching devices.

  1. Synthesis, characterization and DNA interaction studies of complexes of lanthanide nitrates with tris{2-[(3,4-dihydroxybenzylidene)imino]ethyl}amine

    Science.gov (United States)

    Liu, Min; Yuan, Wen-bing; Zhang, Qi; Yan, Lan; Yang, Ru-dong

    2008-10-01

    A new tripodal, hydroxyl-rich ligand, tris{2-[(3,4-dihydroxybenzylidene)imino]ethyl}amine (L), and its complexes with lanthanide nitrates were synthesized. These complexes which are stable in air with the general formula of [LnL(NO 3) 2]NO 3·H 2O (Ln = La, Sm, Eu, Gd, Y) were characterized by molar conductivity, elemental analysis, IR spectra and thermal analysis. The NO 3- groups coordinated to lanthanide mono-dentately, and the coordination number in these complexes may be 8. The interaction of complexes with DNA were investigated by ultraviolet and fluorescent spectra, which showed that the binding mode of complexes with DNA was intercalation, and the binding affinity with DNA were La(III) complex > Sm(III) complex > Eu(III) complex > Gd(III) complex > Y(III) complex. Based on these results, it can be shown that the La(III)complex is promising candidate for therapeutic reagents and DNA probes.

  2. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs

    Science.gov (United States)

    Commodore, Juliette J.; Cassady, Carolyn J.

    2016-09-01

    Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met -H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.

  3. Hydrolytic synthesis of novel lanthanide(III) complexes with pyridine-2,6-dicarboxylic acid: Characterization of the structure and the physical properties

    Science.gov (United States)

    Hojnik, Nuša; Kristl, Matjaž; Golobič, Amalija; Jagličić, Zvonko; Drofenik, Miha

    2015-01-01

    The coordination compounds of pyridine-2,6-dicarboxylic acid and two lanthanide(III) ions, Ho3+ and Dy3+, were hydrolytically synthesized in aqueous solutions at a slightly basic pH, and then characterized by thermogravimetric analysis, IR spectroscopy, magnetic measurements as well as X-ray powder and single-crystal diffraction analysis. The elemental analyses were performed to check the purity of the compounds. The formula for these compounds is identified as Na3[Ln(Pydc)3]ṡ14H2O (Ln = Ho, 1; Ln = Dy, 2) in agreement with the X-ray structural analysis and all the other experimental data. The absence of the 1709 cm-1 band corresponding to ν(C dbnd O) in the IR spectra of the compounds evidences the deprotonating of the carboxyl group. The very strong inductive effect of the metal ion that is readily coordinated by the carboxylate group of the zwitterionic ligand is responsible for the formation of the product. The single-crystal X-ray structural analysis revealed that compounds 1 and 2 are isostructural. Their structure can be described as interchanging layers of complex anions [Ln(Pydc)3]3 (Ln = Ho and Dy for 1 and 2, respectively) and layers of hydrated sodium cations. In complex anions the holmium and dysprosium atoms are coordinated by three crystallographically independent pyridinedicarboxylate ligands in tridentate-chelate mode, via one O atom of both carboxylate groups and the ring N atom. The coordination number is nine and the coordination polyhedron is a tricapped trigonal prism with O atoms at the corners.

  4. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(III) complexes of a polypyridyl ligand.

    Science.gov (United States)

    Hussain, Akhtar; Gadadhar, Sudarshan; Goswami, Tridib K; Karande, Anjali A; Chakravarty, Akhil R

    2012-01-21

    Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO(3))] (1, 2), [Ln(pydppz)(acac)(2)(NO(3))] (3, 4) and [La(pydppz)(anacac)(2)(NO(3))] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c]phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO(6)N(3) coordination. The pydppz complexes 3-5 show an electronic spectral band at ~390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K(b) in the range of 5.4 × 10(4)-1.2 × 10(6) M(-1). Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen ((1)O(2)) and hydroxyl radical (HO˙) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC(50) value of 0.16(±0.01), 0.15(±0.01) and 0.26±(0.02) μM in UV-A light of 365 nm, while they are less toxic in dark with an IC(50) value of >3 μM. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

  5. Synthesis, thermodynamic properties and antibacterial activities of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jun-Ru [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Shu-Xia [Material Science and Engineering School, Shijiazhuang Tiedao University, Shijiazhaung 050043 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Da-Hai [Department of Chemistry, Handan College, Handan 056005 (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2013-11-20

    Graphical abstract: Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline))were synthesized and characterized by elemental analysis, IR and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and Candida albicans were studied by filter paper approach. - Highlights: • Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} were synthesized and characterized. • The thermal decomposition processes of the title complexes were studied using the TG/DSC–FTIR coupling techniques. • The heat capacities of the complexes were measured by (DSC). • The antibacterial action of the four complexes on Escherichia coli, Staphylococcus aureus and Candida albicans were studied. - Abstract: Four lanthanide complexes with a general formula [Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, infrared spectra (IR), and thermogravimetric, differential scanning calorimetry techniques, combined with Fourier transform infrared (TG/DSC–FTIR) technology. The thermal decomposition processes of the four complexes were investigated by TG/DSC–FTIR techniques. Heat capacities were measured by DSC. The values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions (H{sub T} − H{sub 298.15} {sub K}), (S{sub T} − S{sub 298.15} {sub K}), and (G{sub T} − G{sub 298.15} {sub K}) were calculated. The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and

  6. Bromide complexation by the Eu(III) lanthanide cation in dry and humid ionic liquids: a molecular dynamics PMF study.

    Science.gov (United States)

    Chaumont, Alain; Wipff, Georges

    2012-05-14

    We report a molecular dynamics study on the EuBr(n)(3-n) complexes (n=0 to 6) formed upon complexation of Br(-) by Eu(3+) in the [BMI][PF(6)], [BMI][Tf(2)N] and [MeBu(3)N][Tf(2)N] ionic liquids (ILs), to compare the effect of the IL anion (PF(6)(-) versus Tf(2)N(-)), the IL cation (BMI(+) versus MeBu(3)N(+)) and the "IL humidity" on their solvation and stability. In "dry" solutions all complexes remain stable and the first coordination shell of Eu(3+) is purely anionic (Br(-) and IL anions), surrounded by IL cations (BMI(+) or MeBu(3)N(+) ions). Long range "onion type" solvation features (up to 20 Å from Eu(3+)), with alternating cation-rich and anion-rich solvent shells, are observed around the different complexes. The comparison of gas phase-optimized structures of EuBr(n)(3-n) complexes (that are unstable for n=5 and 6) with those observed in solution points to the importance of solvation forces on the nature of the complex, with a higher stabilization by imidazolium- than by ammonium-based dry ILs. Adding water to the IL has different effects, depending on the IL. In the highly hygroscopic [BMI][PF(6)] IL, Br(-) ligands are displaced by water, to finally form Eu(H(2)O)(9)(3+). In the less "humid" [BMI][Tf(2)N], the EuBr(n)(3-n) complexes do not dissociate and coordinate at most 1-2 H(2)O molecules. We also calculated the free-energy profiles (Potential of Mean Force calculations) for the stepwise complexation of Br(-), and found significant solvent effects. EuBr(6)(3-) is predicted to form in both [BMI][PF(6)] and [BMI][Tf(2)N], but not in [MeBu(3)N][Tf(2)N], mainly due to weaker interactions with the cationic solvation shell. First steps are found to be more exergonic in the PF(6)(-)- than in the Tf(2)N(-)-based IL. Molecular dynamics (MD) comparisons between ILs and classical solvents (acetonitrile and water) are also reported, affording good agreement with the experimental observations of Br(-) complexation by trivalent lanthanides in these classical

  7. Semi-emprical and ab initio study of lanthanide and transition metal ions doped in hexagonol beta-NaYF4

    Science.gov (United States)

    Yao, Ge

    Lanthanide and transition metal doped hexagonal beta-NaYF4 nanocrystals have a wide variety of applications in bioimaging, solar concentrators, display panel technology, photodynamic therapy, and security printing. This dissertation research employed two complementary approaches to characterizing the photoactive properties of lanthanides and transition metals doped in beta-NaYF 4. One approach was a semi-empirical method, based on Judd-Ofelt theory, used to calculate the optical transition intensity parameters for Er 3+ doped in beta-phase NaYF4:Yb3+ from measured emission intensity ratios and the diffuse reflectance spectrum. The second approach was based on first-principles density functional theory, investigating the effect of doping on the electronic structure of the materials of interest. In this latter approach, models of beta-NaYF4 with different numbers of atoms in supercells were built, where supercells were reproduced through translational symmetry creating periodic boundary conditions. The models were tested for convergence of local structure and energy as a function of supercell size. First, a converged model for the un-doped "parent" structure of the host material was developed using the Perdew-Burke-Ernzerhof (PBE) functional. Then, a systematic investigation of the optimized geometry and electronic structure of the doped beta-NaYF4: Ln3+ nanocrystals, was conducted using both spin-polarized DFT and non-collinear-spin DFT. For transition metal doping, the relationship between site symmetry and spin state with different doping concentrations was also demonstrated.

  8. Luminescence, magnetocaloric effect and single-molecule magnet behavior in lanthanide complexes based on a tridentate ligand derived from 8-hydroxyquinoline.

    Science.gov (United States)

    Shen, Hai-Yun; Wang, Wen-Min; Bi, Yan-Xia; Gao, Hong-Ling; Liu, Shuang; Cui, Jian-Zhong

    2015-11-21

    A new family of lanthanide complexes, [Ln2(hfac)4L2] (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Lu (7); hfac = hexafluoroacetylacetonate, HL = 2-(2′-benzothiazole)-8-hydroxyquinoline), was synthesized and characterized using single-crystal X-ray diffraction, elemental analysis (EA), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD) and UV-vis spectra. X-ray crystallographic analyses reveal that 1–7 are isomorphous and crystallize in the monoclinic space group C2/c. In these dinuclear complexes, each LnШ ion is eight-coordinated with two bidentate hfac and two μ-phenol bridging L ligands. The TGA results show that the complexes have relatively high thermal stabilities. Complexes 1 and 3 show the characteristic transitions of the corresponding lanthanide ions with ligand-related emission peaks. Meanwhile, complexes 4 and 7 exhibit ligand-centered fluorescence at room temperature. Magnetic measurements were carried out on complexes 2–6. The magnetic study reveals that 2 displays a magnetocaloric effect, with a maximum −ΔSm value of 16.89 J K−1 kg−1 at 2 K for ΔH = 8 T. Dynamic magnetic studies reveal single-molecule magnet (SMM) behavior for complex 4. Fitting the dynamic magnetic data to the Arrhenius law gives an energy barrier ΔE/kB = 50.33 K and pre-exponential factor τ0 = 1.05 × 10(-8)s.

  9. Development and set-up of a new low temperature scanning tunneling microscope Applications on microscopy and spectroscopy of lanthanid metals

    CERN Document Server

    Mühlig, A

    2000-01-01

    Scanning tunneling microscopy and spectroscopy are suitable methods to study the physical properties of thin magnetic metal films with a thickness of a few monolayers. These systems are of current interest because they give insight into solids states physics of metals. This thesis deals with following subjects: Introduction to scanning tunneling microscopy. Set-up of a low temperatur scanning tunneling microscope. Growth of thin Co and lanthanid metal films on W(110). Interplay of morphologie and magnetism on the example of Co/W(110). Making of Gd wires which are only a few nanometers thin. Diskussion of the studied exchange splitting of a d-like surface state in a local moment magnet. Measurement of the lifetime of hot holes and hot electrons near the fermi edge.

  10. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances; Analyse critique des donnees de complexation des lanthanides et actinides par la matiere organique naturelle: cas des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.

    2010-07-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M{sup z+} are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is

  11. Ytterbium Coordination Polymer with Four Different Coordination Numbers: The First Structural Characterization of Lanthanide Phthalate Complex

    Institute of Scientific and Technical Information of China (English)

    WAN,Yong-Hong(万永红); JIN,Lin-Pei(金林培); WANG,Ke-Zhi(王科志)

    2002-01-01

    The novel ytterbium coordination polymer is a two-dimensional framework in which the central metal ions have four different coordination numhers and form four kinds of coordination polyhedra. The four kinds of coordination polyhedra connect into infinite chains by sharing oxygen atoms

  12. Synthesis and Application of Lanthanide Complexes with Schiff Base of Pridoxylidence-Glycine

    Institute of Scientific and Technical Information of China (English)

    黄晓华; 周青; 王玉红; 王云翔; 李奚; 王小锋; 李邨

    2002-01-01

    A series of novel rare earths complexes with Schiff base of pridoxylidence-glycine acid (HL) were synthesized in absolute methanol under argon atmosphere. The complexes were characterized by elemental analysis, molar conductivity, IR, UV spectra, and H-NMR spectra et al. Data indicate that the complexes have a general formula Ln LCl2*3H2O (Ln=La, Y, Sm, Gd, Dy, Yb; L=C10H11N2O4). Effects of the complexes (Ln=La) on physiological and biochemical indexes of plants under Pb stress were studied. The experiments shown that the complexes obviously mitigated Pb pollution results in decreasing of chlorophyll content, rising of cell membrane permeability, changing catalase(CAT) and distribution of Pb.

  13. Crystal structures and fluorescence properties of lanthanide complexes prepared with 2,2'-biphenyldicarboxylic acid and 2,2':6',2”-terpyridine

    Institute of Scientific and Technical Information of China (English)

    XIE Hongzhen; LU Guanzhong

    2013-01-01

    Five lanthanide complexes of Ln2(dpdc)2(tpy)2(NO3)2(H2O)2 [Ln=La (1),Ce (2),Pr (3),Sm (4),Gd (5),H2dpdc=2,2'-biphenyldicarboxylic acid and tpy=2,2':6',2''-terpyridine] were prepared at room temperature and characterized by X-ray diffiaction,FT-IR and thermo-gravimetric analysis.The results showed that complexes 1-5 were isostructural and consisted of dinuclear units [Ln2(dpdc)2(tpy)2(NO3)(H2O)2] bridged by two dpdc2-ligands.The dinuclear units with strong intramolecular hydrogen bonds were assembled into 2D supramolecular layers by the weak π…π staking interactions between pyridine rings of tpy.The TG analysis showed that the complexes 1-5 behaved higher thermal stability with no mass loss at < 320 ℃.The lanthanide contraction effect and the solid state luminescence properties of complexes 1-5 were also investigated.The luminescence emission spectra of complexes 1-5 exhibited ligands emission bands and complex 3 and 4 had no typical emission in the visible region.

  14. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  15. Enhancement of anion binding in lanthanide optical sensors.

    Science.gov (United States)

    Cable, Morgan L; Kirby, James P; Gray, Harry B; Ponce, Adrian

    2013-11-19

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the "lock-and-key". Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability, and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium, and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science, and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be

  16. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution

    Science.gov (United States)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro

    2015-11-01

    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  17. One-Dimensional Coordination Polymers of Lanthanide Cations to Cucurbit[7]uril Built Using a Range of Tetrachloride Transition-Metal Dianion Structure Inducers

    Directory of Open Access Journals (Sweden)

    Sai-Feng Xue

    2013-05-01

    Full Text Available A number of linear coordination polymers have been assembled from lanthanide cations (Ln3+ and cucurbit[7]uril (Q[7] in the presence of [CuCl4]2−or [CoCl4]2− anions acting as inorganic structure inducers in HCl solution. X-ray diffraction analysis has revealed that they form three groups of isomorphous structures. Generally, the complexes of Q[7] with light lanthanide cations (those with atomic number below that of neodymium (Nd3+ are in one group. The other two groups, in which the lanthanide cation has atomic number greater than that of europium (Eu3+, seem to follow no obvious rule. For example, the complexes of Q[7] with Eu3+ and Gd3+cations are in the second group in the presence of [CuCl4]2− anions, while they are in the third group in the presence of [CoCl4]2− anions. However, whatever group a given complex belongs to, they all show a common honeycomb-patterned supramolecular assembly, in which [CuCl4]2−or [CoCl4]2− anions form a honeycomb structure. The Ln3+ cations then coordinate to neighboring Q[7] molecules to form 1D coordination polymers that are inserted into the channels of the honeycomb framework, such that each individual coordination polymer is surrounded by [CuCl4]2−or [CoCl4]2− anions.

  18. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties.

    Science.gov (United States)

    Chen, Pangkuan; Li, Qiaochu; Grindy, Scott; Holten-Andersen, Niels

    2015-09-16

    We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.

  19. Lanthanide metal-organic frameworks as multifunctional luminescent sensor for detecting cations, anions and organic solvent molecules in aqueous solution

    Science.gov (United States)

    Liu, Feng; Gao, Wei; Li, Peng; Zhang, Xiu-Mei; Liu, Jie-Ping

    2017-09-01

    A series of water-stable isostructural mono/bimetallic lanthanide metal-organic frameworks (Ln-MOFs) {[Eu5xTb5(1-x)(OH)6(TZI)3(DMA)1.5(H2O)10.5]·DMA·0.5H2O}n (x = 1.0 (1), 0.5 (3), 0.4 (4), 0.3 (5), 0.2 (6), 0.1 (7), 0.05 (8), 0 (2), H3TZI = 5-(1H-tetrazol-5-yl)isophthalic acid) were synthesized. These Ln-MOFs exhibit 3D frameworks in which 1D chains based on pentanuclear [Ln5(μ3-OH)6(COO)5]4+ clusters are linked by TZI backbones. The luminescent investigations revealed that compounds 1 and 2 not only exhibit characteristic Eu3+ and Tb3+ emissions in the red and green regions, respectively, but also can sensitively and selectively detect Fe3+ cations, CO32-, PO43-, AsO43- anions and acetone molecules in aqueous solution. In addition, the luminescent colors of the bimetallic (Tb5(1-x):Eu5x) compounds can easily be tuned by doping isostructural Ln- MOFs with Eu3+ and Tb3+ ions. This work presents some good candidate materials for the potential multifunctional sensors. Eight water-stable isostructural 3D Ln-MOFs {[Eu5xTb5(1-x)(OH)6(TZI)3(DMA)1.5(H2O)10.5]·DMA·0.5H2O}n based on pentanuclear clusters were prepared. The Ln-MOFs represented the rapid and drastic emission quenching induced by Fe3+ cations, CO32-, PO43-, AsO43- anions and acetone molecules in aqueous solution. the luminescence colors of the bimetallic (Tb5(1-x):Eu5x) compounds can easily be tuned by doping isostructural Ln-MOFs with Eu3+ and Tb3+ ions.

  20. Lanthanide triangles sandwiched by tetranuclear copper complexes afford a family of hendecanuclear heterometallic complexes [Ln(III)3Cu(II)8] (Ln = La-Lu): synthesis and magnetostructural studies.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Luneau, Dominique

    2013-08-05

    Reaction in ethanol of 3-hydroxymethylen-5-methylsalicylaldoxime (H3L) with CuCl2·2H2O and LnCl3·xH2O [Ln = La (1), Ce (2), Pr (3), Nd (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11), Ho (12)] allowed the synthesis of a family of hendecanuclear heterometallic copper(II)-lanthanide(III) clusters with general formula [Ln(III)3Cu(II)8(HL)6(μ4-O)2Cl6(H2O)8]Cl3 (1-12). According to the single-crystal X-ray diffraction investigation, the complexes are isomorphous and crystallize in the trigonal R32 group. The hendecanuclear cluster is formed by two tetrahedral μ4-oxo {Cu4} clusters assembled by three lanthanide ions sandwiched in between. Along the family, the separation between the {Cu4} moieties increases linearly from Lu to La in good correlation with ionic radius of the lanthanide ions. A comparative analysis of the magnetic data for the lanthanum (1) and lutetium (11) compounds shows the presence of ferromagnetic and antiferromagnetic interactions within the μ4-oxo {Cu4} moieties. For the gadolinium (6) and terbium (7) compounds, the magnetic interactions between the lanthanide and the copper ions are found to be ferromagnetic. The dysprosium (8) compound exhibits single-molecule magnet behavior.

  1. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yu-E [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Li, Xia, E-mail: xiali@mail.cnu.edu.cn [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Song, Shuang [Department of Chemistry, Capital Normal University, Beijing 100048 (China)

    2012-12-15

    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  2. Complexation of Sn{sub 2}Se{sub 6} with lanthanide(III) centers influenced by ethylene polyamines: Solvothermal syntheses, crystal structures, and optical properties of lanthanide selenidostannates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunying; Wang, Fang; Chen, Ruihong; Jiang, Wenqing; Zhang, Yong; Jia, Dingxian, E-mail: jiadingxian@suda.edu.cn

    2013-08-15

    Lanthanide selenidostannates (H{sub 3}O){sub n}[Ce(tepa)(μ-1κ{sup 2}:2κ{sup 2}-Sn{sub 2}Se{sub 6})]{sub n} (1), [(Yb(tepa)(μ-OH)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}·nH{sub 2}O (2), [Htrien]{sub 2}[(Ln(trien)(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}] (Ln=Ce(3), Nd(4)) and [(Yb(dien){sub 2}){sub 2}(μ-OH){sub 2}]Sn{sub 2}Se{sub 6} (5) were solvothermally prepared in different ethylene polyamines. The Sn{sub 2}Se{sub 6} unit connects [Ce(tepa)]{sup 3+} and [(Yb(tepa)(μ-OH)){sub 2}]{sup 4+} fragments with tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes in tepa, to form polymers 1 and 2, respectively. It joins two [Ln(trien)(tren)]{sup 3+} fragments as a μ-1κSe{sup 1}:2κSe{sup 5} ligand to form binuclear complexes 3 and 4 in trien. Unlike the Sn{sub 2}Se{sub 6} units in 1–4 that bind with Ln(III) centers as Se-donor ligands, the Sn{sub 2}Se{sub 6} unit in 5 exists as a discrete ion. The syntheses of 1–5 show that the ethylene polyamines play an important role in the complexation of Sn{sub 2}Se{sub 6} ligand with Ln(III) centers. Compounds 1–5 exhibit optical band gaps in the range of 2.09–2.42 eV, which are influenced by the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers. - Graphical abstract: New lanthanide complexes concerning the Sn{sub 2}Se{sub 6} ligand were solvothermally prepared, and the effect of ethylene polyamines on the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers are observed. Highlights: • Lanthanide complexes concerning the selenidostannates have been solvothermally prepared in different ethylene polyamines. • A tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and a bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes for the Sn{sub 2}Se{sub 6} ligand is obtained. • The complexation of the Sn{sub 2}Se{sub 6} ligand with Ln(III) centers are

  3. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    Science.gov (United States)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  4. Solid-Liquid Extraction of Some Lanthanide Complexes with 1-Nitroso-2-Naphthol

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The extraction behavior of Sm(III), Eu(III) ,Er(III) and Yb(III) with 1- nitroso -2- naphthol (HA) in paraffin has been studied. The composition of extracted complexes has been determined to be LnA3 by slope analysis method. The effect of temperature on extraction system is also investigated and thermodynamic parameters are obtained.

  5. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6

    DEFF Research Database (Denmark)

    Junker, Anne Kathrine Ravnsborg; Tropiano, Manuel; Faulkner, Stephen

    2016-01-01

    in a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction with azide-functionalized crown ethers. The resulting complexes were investigated using NMR and optical methods. Titrations with potassium chloride in methanol observing the sensititzed europium- and terbium-centered emissions were...

  6. Syntheses and Structures of Two Mixed Ligands Lanthanide Complexes with N,N'-Substituted Adipamide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Crystal structures of neodymium (Ⅲ) and dysprosium (Ⅲ) nitrate complexes with the new ligand N, N'-dimethyl-N, N'-diphenyladipamide (mpaa) has been determined. Both complexes are triclinic with space group Pi ,formula [C22H30N5NdO12S]2 1 [C42H54N7DyO14S 2]Mr = 1465.62[1075.48], a = 8.541(1)[9.711(2)], b = 11.915(1)[16.017(3)], c = 15.906(1)[16.686(3)] A,α =107.22(1)[109.600(1)],β = 98.12(1)[92.50(1)], γ = 99.78(1) [96.22(1)]° ,μ=0.71073cn-1; R=0.0261 [0.0364], wR=0.0611 [0.0857] reflections with I>2 σ (Ⅰ). Complex (1)is dinuclear, in which two Nd(Ⅲ) ions are double-bridged by two mpaa ligands. And Dy(mpaa)2(dmso)(NO3)3 (2) (dmso= dimethylsulfoxide) is a mononuclear complex, in which one of the two C=O groups in MPAA is uncoordinated. In the two above complexes, each Ln(Ⅲ)ion is nine-coordinated including three bidenate nitrates, one dmso molecule and two carbonyl oxygens from two different mpaa ligands. Neutral monodentate dmso enters the coordination in diamides of the type (R1R2NCO)2(CH2)n was increased, the ligand prefers to act as a bridging reagent rather than a chelate.

  7. Structure of Complexes of Lanthanides with N,N'-Dimethyl-3-Oxa-Glutaramic Acid

    Institute of Scientific and Technical Information of China (English)

    Huang Nian; Wang Jianchen; Zhang Ping; Sun Dazhi; Zhang Jing; Liu Tao

    2005-01-01

    A new stripping agent N,N-dimethyl-3-oxa-glutaramic Acid (DOGA) was used in TRPO process to simplify the TRPO process. The structures of the complexes of the DOGA with Eu(Ⅲ), Nd(Ⅲ), La(Ⅲ) were characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), infrared spectra (IR) and mass spectra (MS). The molecular formula of the complexes of Eu(Ⅲ) and Nd(Ⅲ) is deduced to be M(DOGA)3, and only La(Ⅲ) can form the complex HM(DOGA)4 under condition of high consistency of the DOGA. The coordination number of Ln(Ⅲ) in the complexes is 8, and all of coordinated donor atoms are O atoms. For Eu(Ⅲ), Nd(Ⅲ), the coordination numbers of O atom in the first coordination shell is 6 and the average coordination bond lengths of Ln-O are 0.240 nm, 0.244 nm respectively, while the numbers of the second O shell are 2.4, and the average coordination bond lengths of Ln-O are 0.260 nm, 0.262 nm. For La(Ⅲ), the coordination numbers of O atom in the first coordination shell is 6 and the average coordination bond lengths of La-O are 0.258 nm, while the number of O atom in the second coordination shell is 4.4, and the average coordination bond length of La-O is 0.28 nm. The results of IR and MS show that there is no water coordinating with Ln(Ⅲ) in the complexes.

  8. Physicochemical Properties of Near-Linear Lanthanide(II) Bis(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb).

    Science.gov (United States)

    Goodwin, Conrad A P; Chilton, Nicholas F; Vettese, Gianni F; Moreno Pineda, Eufemio; Crowe, Iain F; Ziller, Joseph W; Winpenny, Richard E P; Evans, William J; Mills, David P

    2016-10-17

    Following our report of the first near-linear lanthanide (Ln) complex, [Sm(N(††))2] (1), herein we present the synthesis of [Ln(N(††))2] [N(††) = {N(Si(i)Pr3)2}; Ln = Eu (2), Tm (3), Yb (4)], thus achieving approximate uniaxial geometries for a series of "traditional" Ln(II) ions. Experimental evidence, together with calculations performed on a model of 4, indicates that dispersion forces are important for stabilization of the near-linear geometries of 1-4. The isolation of 3 under a dinitrogen atmosphere is noteworthy, given that "[Tm(N″)(μ-N″)]2" (N″ = {N(SiMe3)2}) has not previously been structurally authenticated and reacts rapidly with N2(g) to give [{Tm(N″)2}2(μ-η(2):η(2)-N2)]. Complexes 1-4 have been characterized as appropriate by single-crystal X-ray diffraction, magnetic measurements, electrochemistry, multinuclear NMR, electron paramagnetic resonance (EPR), and electronic spectroscopy, along with computational methods for 3 and 4. The remarkable geometries of monomeric 1-4 lead to interesting physical properties, which complement and contrast with comparatively well understood dimeric [Ln(N″)(μ-N″)]2 complexes. EPR spectroscopy of 3 shows that the near-linear geometry stabilizes mJ states with oblate spheroid electron density distributions, validating our previous suggestions. Cyclic voltammetry experiments carried out on 1-4 did not yield Ln(II) reduction potentials, so a reactivity study of 1 was performed with selected substrates in order to benchmark the Sm(III) → Sm(II) couple. The separate reactions of 1 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), azobenzene, and benzophenone gave crystals of [Sm(N(††))2(TEMPO)] (5), [Sm(N(††))2(N2Ph2)] (6), and [Sm(N(††)){μ-OPhC(C6H5)CPh2O-κO,O'}]2 (7), respectively. The isolation of 5-7 shows that the Sm(II) center in 1 is still accessible despite having two bulky N(††) moieties and that the N-donor atoms are able to deviate further from linearity or ligand

  9. A novel CMPO-functionalized task specific ionic liquid: Synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes

    NARCIS (Netherlands)

    Mohapatra, P.K.; Kandwal, P.; Iqbal, M.; Huskens, Jurriaan; Murali, M.S.; Verboom, Willem

    2013-01-01

    A novel CMPO (carbamoylmethylphosphine oxide) based task specific ionic liquid (TSIL) with an NTf2− counter anion was synthesized and evaluated for actinide/lanthanide extraction from acidic feed solutions using several room temperature ionic liquids (RTILs). The extraction data were compared with

  10. Analysis of multinuclear lanthanide-induced shifts. 4. Some consequences of the lanthanide contraction

    Science.gov (United States)

    Peters, Joop A.

    The effects of the lanthanide contraction on lanthanide-induced shifts are estimated using simulated structures for a set of lanthanide chelates. The variations of the Ln-donor distances cause small conformational changes in the coordination polyhedron of the Ln(III) cation, and the induced pseudocontact shifts for a series of Ln complexes vary gradually going from La(III) to Lu(III). As a result of data manipulation these gradual variations may sometimes show up as an abrupt break in the middle of the lanthanide series.

  11. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    Science.gov (United States)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  12. Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS.

    Science.gov (United States)

    Moreau, Juliette; Guillon, Emmanuel; Pierrard, Jean-Claude; Rimbault, Jean; Port, Marc; Aplincourt, Michel

    2004-10-11

    Complexation of the lanthanides Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota) has been studied in solution by using potentiometry, luminescence spectrometry, and EXAFS. Three series of successive complexes were characterized by at least two of these methods: the immediate [LnHn(dota)](n-1)+** and intermediate [LnHn(dota)](n-1)+* complexes with 0 potentiometry. From the results, a complexation mechanism involving three steps has been proposed. In the [LnHn(dota)](n-1)+** complexes that are instantaneously formed, the lanthanide is bound to four oxygen atoms of the carboxylate groups and to five water molecules. These species evolve rapidly: the lanthanide moves into the macrocycle cavity, two new bonds are formed with two nitrogen atoms diametrically opposed in the tetraaza cycle and only three water molecules remain bound to the lanthanide in the [LnHn(dota)](n-1)+* (0 complexes, which appear after a two-day wait. These compounds are stable for about four days. After 4-8 weeks, a concerted rearrangement occurs which leads to the formation of thermodynamically stable [Ln(dota)]- complexes in which the lanthanide is bound to four nitrogen atoms, four carboxylate oxygen atoms, and one water molecule.

  13. Lanthanides post-functionalized indium metal-organic frameworks (MOFs) for luminescence tuning, polymer film preparation and near-UV white LED assembly.

    Science.gov (United States)

    Wu, Jing-Xing; Yan, Bing

    2016-11-22

    A class of hybrid materials based on indium 2,2'-bipyridine-5,5'-dicarboxylate metal-organic frameworks, In(OH)bpydc, was synthesized by postsynthetic introduction with lanthanide ions (Eu(3+), Tb(3+) and Sm(3+)). The structure, thermal stability, morphology and more detailed information about these materials were characterized by XRD, DSC, BET, FTIR, SEM and so forth. The further study of luminescent properties in detail showed that these compounds possess characteristic emission, and the In-MOF-Eu maintains different colors of light from blue-green to red under different excitation wavelengths (excited at 400 nm to 320 nm), which includes the near-white light region (the color coordinates are X = 0.34, Y = 0.36). It is a remarkable fact that the trend of ligand-central emission is opposite to that of the characteristic emission of Eu(3+). Moreover, a kind of thin film and assembled white light near-UV LED based on the optically lanthanide-functionalized MOFs was prepared in order to extend their potential applications; both of them lead to desirable white light (X = 0.34, Y = 0.36; X = 0.35, Y = 0.37). In addition, the matrix does not affect the white luminescence.

  14. Lanthanide dinuclear complexes constructed from mixed oxygen-donor ligands: the effect of substituent positions of the neutral ligand on the magnetic dynamics in Dy analogues.

    Science.gov (United States)

    Zhu, Wen-Hua; Li, Shan; Gao, Chen; Xiong, Xia; Zhang, Yan; Liu, Li; Powell, Annie K; Gao, Song

    2016-03-21

    Two series of lanthanide dinuclear complexes with the general formulae, [Ln(n-PNO)(Bza)3(H2O)] {Bza = benzoic acid; n = 3, n-PNO = 3-picoline N-oxide, Dy(1) and Er(2); and n = 4, n-PNO = 4-picoline N-oxide, Nd(3), Eu(4), Gd(5), Tb(6), Dy(7), Er(8) and Y(9)} have been successfully synthesized by the hydrothermal method. Single-crystal X-ray diffraction experiments illustrate that the two series of compounds possess similar carboxylic ligand-bridged dinuclear structure and coordination geometry around the lanthanide ions despite the different methyl-substituent positions on the neutral ligand. Comparative studies of the Dy analogues in the static-field measurements reveal only a little difference with a small butterfly-shaped opening for complex 1 and a close hysteresis loop for 7 at 2.0 K. However, systematic investigations of the alternating-current (ac) measurements indicate that the different substituent positions of the picoline N-oxide ligand have a significant effect on the magnetic relaxation dynamics. A more substantial suppression of the quantum tunnelling of magnetization (QTM) effect and pronounced slow magnetic relaxation were observed in complex 7 as compared to 1 under both zero and a 1 kOe static field.

  15. Understanding stability trends along the lanthanide series.

    Science.gov (United States)

    Regueiro-Figueroa, Martín; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos

    2014-04-01

    The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA(4-) (H4TETA=2,2',2'',2'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetic acid), BCAED(4-) (H4BCAED=2,2',2'',2'''-{[(1,4-diazepane-1,4-diyl)bis(ethane-2,1-diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C6(2-) (H2BP18C6=6,6'-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6-31G(d,p) level, and using a 46+4f(n) ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X-ray structures. The contractions of the Ln(3+) coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La(L)](n+/-)(sol)+Ln(3+)(sol)→[Ln(L)](n+/-)(sol)+La(3+)(sol). A parameterization of the Ln(3+) radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED(4-) complexes, increase smoothly for the TETA(4-) analogues, and decrease in the case of BP18C6(2-) complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.

  16. Complexation thermodynamics and structural studies of trivalent actinide and lanthanide complexes with DTPA, MS-325 and HMDTPA

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P.; Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Conca, J.L. [RJ Lee Group, Inc., Pasco, WA (United States). Center for Lab. Sciences; Dodge, C.J. [Brookhaven National Laboratory, Upton, NY (United States); Francis, A.J. [Brookhaven National Laboratory, Upton, NY (United States); Pohang Univ. of Science and Technology (Korea, Republic of). Div. of Advanced Nuclear Engineering

    2013-05-01

    The protonation constants of DTPA (diethylenetriaminepentaacetic acid) and two derivatives of DTPA, 1-R(4,4-diphenyl cyclohexyl-phosphonyl-methyl diethylenentriaminepentaacetic acid) (MS-325) and (R)-hydroxymethyl-diethylenentriaminepentaacetic acid (HMDTPA) were determined by potentiometric titration in 0.1 M NaClO{sub 4}. The formation of 1: 1 complexes of Am{sup 3+}, Cm{sup 3+} and Ln{sup 3+} cations with these three ligands were investigated by potentiometric titration with competition by ethylenediaminetetraacetic acid (EDTA) and the solvent extraction method in aqueous solutions of I=0.10 M NaClO{sub 4}. The thermodynamic data of complexation were determined by the temperature dependence of the stability constants and by calorimetry. The complexation is exothermic and becomes weaker with increase in temperature. The complexation strength of these ligands follows the order: DTPA {approx} HMDTPA > MS-325. Eu{sup 3+}/Cm{sup 3+} luminescence, EXAFS (Extended X-ray Absorption Fine Structure) and DFT (Density Functional Theory) calculations suggest that all three ligands are octadentate in the complex. In the complex, M(L){sup 2-} (L = DTPA, MS-325 and HMDTPA). The M{sup 3+} binds via five carboxylates oxygen atoms, three nitrogen atoms, and the complex contains one water of hydration. (orig.)

  17. Luminescent hybrid materials based on zeolite L crystals and lanthanide complexes: host-guest assembly and ultraviolet-visible excitation.

    Science.gov (United States)

    Chen, Lei; Yan, Bing

    2014-10-15

    Several kinds of host-guest hybrid materials have been synthesized employing a ship in a bottle method by loading 9-hydroxy-2-methylphenalenone (MHPO) or 9-hydroxyphenalen (HPNP) from gas phase into the nanochannels of Ln(3+)-exchanged zeolite L (ZL) crystals (Ln=Gd or Eu). The resulting hybrids without lanthanide ions, MHPO-ZL, HPNP-ZL and the hybrids with lanthanide ions Ln-MHPO-ZL and Ln-HPNP-ZL are characterized with FT-IR, UV-vis DRS and photoluminescence spectroscopy. The photoluminescence properties of these hybrid materials have been analyzed and discussed, exhibiting the luminescence of Eu(3+) and ligands under the excitation at ultraviolet-visible region. These results provide useful data and can be expected to have potential application in the practical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Slow relaxation of the magnetization in an Isostructural series of Zinc-lanthanide complexes: an integrated EPR and AC susceptibility study

    Science.gov (United States)

    Amjad, Asma; Madalan, Augustin; Andruh, Marius; Caneschi, Andrea; Sorace, Lorenzo; University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Bucharest, Romania Collaboration

    2015-03-01

    Lanthanide based molecular complexes have shown potential to behave as single molecule magnets proficient to function above cryogenic temperatures. In this work we explore the dynamics of one such family, [Zn(LH)2Ln](NO3)3 .6H2O - (Ln = Nd3+, Dy3+, Tb3+, Ho3+, Er3+, Yb3+) . The series has a single lanthanide ion as a magnetic center in a low symmetry environment; the dynamics and energy landscape of the series is explored using X-band EPR, AC and DC susceptibility over a range of temperature, field and frequency. DC magnetic data show χT value consistent with expected behavior. EPR spectra for Er3+ and Yb3+ complexes shows EPR spectra typical for easy-plane and quasi-isotropic systems respectively, thus explaining the lack of out of phase susceptibility even in an external applied filed. However, Dy3+ derivative show slow relaxation of the magnetization in zero field up to 15 K and is, accordingly EPR silent.

  19. metal complexes of copper(ii)

    African Journals Online (AJOL)

    ABSTRACT. Thermally stable metal complexes based on oligomers were prepared by the reaction ... Besides, coordination compounds of salicylaldehyde Schiff base have proven to be an excellent .... They were insoluble in common organic.

  20. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    Science.gov (United States)

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  1. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  2. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    Science.gov (United States)

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  3. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C., E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lourenco, Ana V. S.; Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f; Brito, Maria E.F., E-mail: britomef@cpqam.fiocruz.b [Centro de Pesquisas Aggeu Magalhaes (CPqAM/Fiocruz), Recife, PE (Brazil)

    2009-07-01

    The importance of the luminescence of lanthanide ions and UO{sub 2}{sup 2+} is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu{sup 3+} and Tb{sup 3+} ions, and now UO{sub 2}{sup 2+} are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  4. New metal complexes as potential therapeutics.

    Science.gov (United States)

    Zhang, Christiana Xin; Lippard, Stephen J

    2003-08-01

    The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.

  5. Fabrication of complex metallic nanostructures by nanoskiving.

    Science.gov (United States)

    Xu, Qiaobing; Rioux, Robert M; Whitesides, George M

    2007-10-01

    This paper describes the use of nanoskiving to fabricate complex metallic nanostructures by sectioning polymer slabs containing small, embedded metal structures. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates sections (which can be as thin as 50 nm) of epoxy containing metallic nanostructures. The cross-sectional dimensions of the metal wires embedded in the resulting thin epoxy sections are controlled by the thickness of the evaporated metal film (which can be as small as 20 nm) and the thickness of the sections cut by the ultramicrotome; this work uses a standard 45 degrees diamond knife and routinely generates slabs 50 nm thick. The embedded nanostructures can be transferred to, and positioned on, planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures. Nanoskiving can fabricate complex nanostructures that are difficult or impossible to achieve by other methods of nanofabrication. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high aspect ratios, and large-area structures comprising two-dimensional periodic arrays. This paper illustrates one class of application of these nanostructures: frequency-selective surfaces at mid-IR wavelengths.

  6. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  7. Lessons learned from dinuclear lanthanide nano-magnets.

    Science.gov (United States)

    Habib, Fatemah; Murugesu, Muralee

    2013-04-21

    The quest for higher density information storage has led to the investigation of Single-Molecule Magnets (SMMs) as potential molecules to be applied in materials such as hard discs. In order for this to occur, one must first design metal complexes which can retain magnetic information at temperatures where these applications become possible. This can only be achieved through answering and understanding fundamental questions regarding the observed physical properties of SMMs. While mononuclear lanthanide complexes have shown promise in obtaining high energy barriers for the reversal of the magnetisation they are limited to Single-Ion Magnet behaviour intrinsic to one metal centre with a limited number of unpaired electrons. As a way of increasing the effective anisotropic barrier, systems with higher nuclearity have been sought to increase the spin ground state of the molecule. Dinuclear complexes are presented as key compounds in studying and understanding the nature of magnetic interactions between metal ions. This tutorial review will span a number of dinuclear 4f complexes which have been critical in our understanding of the way in which lanthanide centres in a complex interact magnetically. It will examine key bridging moieties from the more common oxygen-based groups to newly discovered radical-based bridges and draw conclusions regarding the most effective superexchange pathways allowing the most efficient intracomplex interactions.

  8. Synthesis, structures and magnetic properties of a series of polynuclear copper(II)-lanthanide(III) complexes assembled with carboxylate and hydroxide ligands

    Institute of Scientific and Technical Information of China (English)

    CHEN, Xiao-Ming; YANG, Yang-Yi

    2000-01-01

    Heteromnetallic copper(I)-lanthanide(Ⅲ) complexes have been made with a variety of exclusively O-donor ligands in cluding betaines (zwitterionic carboxylates) and chloroac etate, which are dinuclear CuLn, tetranuclear Cu2Ln2, pen tanuclear Cu3Ln2, and octadecanuclear Cu12 Ln3 complexes. Tne results show that subtle changes in both the carboxylates and acidity of the reaction solution can cause drastic changoes in the structures of the products. Magnetic studies exhibit that shieldirng of the Ln3+ 4f electrons by the outer shell electrons is very effective to preclude significant coutpling interaction be tween the Ln3+ 4f electrons and Cu2+ 3d electrons in either a mono-atomic hydroxide-bridged, or a carboxylate-bridged system.

  9. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Stephen P. Mezyk; Gary S. Groenewold

    2016-05-01

    Abstract The group actinide/lanthanide complexing agent octylphenylcarbamoylmethyl phosphine oxide (CMPO) has been examined for its radiation stability by measuring the kinetics of its reactions with free radicals in both the aqueous and organic phases for the free and metal-complexed ligand, identifying its degradation products for both alpha and gamma irradiation, measuring the effects on solvent extraction performance, and measuring the G-values for its degradation under various conditions. This includes the G-values for CMPO in the absence of, and in contact with the acidic aqueous phase, where it is shown that the acidic aqueous phase provides radio-protection for this ligand. It was found that both solvent and metal complexation affect the kinetics of the reaction of the •NO3 radical, a product of HNO3 radiolysis, with CMPO. For example, CMPO complexed with lanthanides has a rate constant for this reaction an order of magnitude higher than for the free ligand, and the reaction for the free ligand in the organic phase is about three times faster than in the aqueous phase. In steady state radiolysis kinetics it was determined that HNO3, although not NO3- anion, provides radio-protection to CMPO, with the G-value for its degradation decreasing with increasing acidity, until it was almost completely suppressed by irradiation in contact with 5 M HNO3. The same degradation products were produced by irradiation with alpha and gamma-sources, except that the relative abundances of these products varied. For example, the product of C-C bond scission was produced only in low amounts for gamma-radiolysis, but it was an important product for samples irradiated with a He ion beam. These results are compared to the new data appearing in the literature on DGA radiolysis, since CMPO and the DGAs both contain the amide functional group.

  10. Study on Properties of TBP-HNO3 Complex Used for Direct Dissolution of Lanthanide and Actinide Oxides in Supercritical Fluid CO2

    Institute of Scientific and Technical Information of China (English)

    DUAN Wu-Hua; ZHU Li-Yang; JING Shan; ZHU Yong-Jun; CHEN Jing

    2007-01-01

    The tri-n-butyl phosphate-nitric acid (TBP-HNO3) complex prepared by contacting the pure TBP with the concentrated HNO3 can be used for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TBP-HNO3 complex have been studied. Experimental results showed that when the initial HNO3/TBP volume ratio was varied from 1 : 7 to 5 : 1, the concentration of HNO3 in the TBP-HNO3 complex changed from 1.95 to 5.89 mol/L, the [HNO3]/[TBP] ratio of the TBP-HNO3 complex changed from 0.61 to 2.22, and the content of H2O in the TBP-HNO3 complex changed from 2.02% to 4.19%. All of the density, viscosity and surface tension of the TBP-HNO3 complex changed with the concentration of HNO3 in the complex, and were higher than those of the pure TBP. The protons of HNO3 and H2O in the complex underwent rapid exchange to exhibit a singlet resonance peak in nuclear magnetic resonance spectra. When the TBP-HNO3 complex was dissolved in a low dielectric constant solvent, small droplets of HNO3 were formed that can be detected by NMR.

  11. Properties of TRPO-HNO3 complex used for direct dissolution of lanthanide and actinide oxides in supercritical fluid CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mixed trialkylphosphine oxide-nitric acid (TRPO-HNO3) complex prepared by contacting pure TRPO with concentrated HNO3 may be used as additives for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TRPO-HNO3 complex have been studied. Experimental results show when the initial HNO3/TRPO volume ratio is varied from 1:7 to 5:1, the concentration of HNO3 in the TRPO-HNO3 complex changes from 2.12 to 6.16 mol/L, the [HNO3]/[TRPO] ratio of the TRPO-HNO3 complex changes from 0.93 to 3.38, and the content of H2O in the TRPO-HNO3 complex changes from 0.97% to 2.70%. All of the density, viscosity and surface tension of the TRPO-HNO3 complex change with the concentration of HNO3 in the complex. The protons of HNO3 and H2O in the complex undergo rapid exchange to exhibit a singlet resonance peak in NMR spectra with D2O insert. When the TRPO-HNO3 complex dissolves in a low dielectric constant solvent, small droplets of HNO3 appear which can be detected by NMR.

  12. Lanthanide-containing polyimides

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, Anne K.

    1987-01-01

    The preparation of a variety of lanthanide-containing polyimide films is described, and results of their characterization are presented. The properties investigated include the glass transition temperature, thermooxidative stability, magnetic susceptibility, and electrical conductivity of the polymer. Films containing lanthanide chlorides, fluorides, and sulfides are flexible, but those containing lanthanide nitrates are extremely brittle. The addition of lanthanide acetates and acetylacetonates caused immediate gelation of two of the synthesis-mixture ingredients. It was found that, in general, the addition of lanthanide to the polyimide increases the density and glass transition temperature of the polymer but slightly decreases the thermooxidative stability.

  13. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, B.J.; Groenewold, G.S. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Mezyk, S.P. [California State University at Long Beach, Long Beach, CA 90840 (United States)

    2016-07-01

    The organophosphorus amide octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl phosphine oxide (CMPO) is proposed for use in fuel cycle separations as a group actinide/lanthanide extractant. Alternative compounds such as the mono-amides and diglycol amides (DGAs) proposed for actinide and/or actinide/lanthanide extraction also contain the amidic functional group, but do not contain the CMPO aromatic or phosphoryl groups. Their radiation stability is in the order mono-amides > CMPO > DGA for irradiation under similar conditions. Although they produce similar radiolysis products, the kinetics of degradation for CMPO are completely different than for the other amides. CMPO degradation occurs in a zero-order fashion, and the -G-value for the change in [CMPO] is much lower when in the presence of acid. The DGAs and mono-amides degrade with pseudo-first-order kinetics and are not protected by acidity. Possible mechanistic reasons for the differences between CMPO and the other amides are discussed, as are the effects of the diluent and metal complexation on CMPO free radical reaction rates. Finally, it is also shown that α-irradiation has much less adverse effects on CMPO degradation than β/γ irradiation, both with respect to -G-values, and radiolysis product generation. (authors)

  14. Novel metals and metal complexes as platforms for cancer therapy.

    Science.gov (United States)

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  15. Highly Efficient Visible-to-NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Charge-Transfer Character: Beyond Triplet Sensitization.

    Science.gov (United States)

    Pan, Mei; Du, Bin-Bin; Zhu, Yi-Xuan; Yue, Mei-Qin; Wei, Zhang-Wen; Su, Cheng-Yong

    2016-02-12

    Two zwitterionic-type ligands featuring π-π* and intraligand charge-transfer (ILCT) excited states, namely 1,1'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)dipyridinium-4-olate (TMPBPO) and 1-dodecylpyridin-4(1 H)-one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand-direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide-band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln(3+) ions were observed to cover the visible to near-infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single-component white light was achieved by preparation of solid solutions of the ternary systems Gd-Eu-Tb (for TMPBPO) and La-Eu-Tb and La-Dy-Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm(3+) ((3) H4 ) and Yb(3+) ((2) F5/2 ) decay dynamics, which has not been explored before for their coordination complexes.

  16. A [Cyclentetrakis(methylene)]tetrakis[2-hydroxybenzamide]Ligand That Complexes and Sensitizes Lanthanide(III) Ions

    Energy Technology Data Exchange (ETDEWEB)

    D' Aleo, Anthony; Xu, Jide; Do, King; Muller, Gilles; Raymond, Kenneth N.

    2009-04-30

    The synthesis of a cyclen derivative containing four isophthalamide groups (L{sup 1}) is described. The spectroscopic properties of the Ln(III) complexes of L{sup 1} (Ln = Gd, Tb, Yb, Eu) reveal changes of the UV/visible absorption, circular dichroism absorption, luminescence and circularly polarized luminescence properties. It is shown that at least two metal complex species are present in solution, whose relative amounts are pH dependent. When at pH > 8.0, an intense long lived emission is observed (for [L{sup 1}Tb] and [L{sup 1}Yb]) while at pH < 8.0, a weaker, shorter-lived species predominates. Unconventional Ln(III) emitters (Pr, Nd, Sm, Dy and Tm) were sensitized in basic solution, both in the visible and in the near infra-red, to measure the emission of these ions.

  17. Separation of oxidized americium from lanthanides by use of pillared metal(IV) phosphate-phosphonate hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.D.; Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Borkowski, M.; Reed, D.T. [Los Alamos National Laboratory, Carlsbad, NM (United States). Earth and Environmental Sciences Div.

    2012-07-01

    Closing the nuclear fuel cycle in the US poses many challenges, one of which is found in the waste streams, which contain both trivalent lanthanides and actinides. The separation of americium from the raffinate will dramatically reduce the long-term radiotoxicity of the waste. The sorption of americium in both the tri- and pentavalent oxidation states was observed for four M(IV) phosphate-phosphonate ion exchange materials in nitric acid at pH 2. High selectivity was observed for reduced Am(III) with K{sub d} values ca. 6 x 10{sup 5} mL/g, while the K{sub d} values for Am(V) were much lower. A new method of synthesizing and stabilizing AmO{sub 2}{sup +} to yield a lifetime of at least 24 h in acidic media using a combination of sodium persulfate and calcium hypochlorite will be described.

  18. Bioavailabiltiy of Lanthanides to Freshwater Organisms: Speciation, Accumulation and Toxicity

    NARCIS (Netherlands)

    Weltje, L.

    2003-01-01

    The lanthanides consist of a group of fifteen homologous metals and together with scandium (Sc) and yttrium (Y) they are known as the rare earth elements (REE). Contrasting to what this name suggests they are not rare at all and lanthanides can be found in most soils and sediments in quantities comp

  19. Synthesis, structural characterization and thermal studies of lanthanide complexes with Schiff base ligand N,N′-di-(4′-pentyloxybenzoate-salicylidene-1,3-diaminopropane

    Directory of Open Access Journals (Sweden)

    Sadeem M. Al-Barody

    2015-12-01

    Full Text Available New mesogen Schiff base ligand N,N′-di-(4′-pentyloxybenzoatesalicylidene-1,3-diaminopropane [H2L] was synthesized by the reaction of substituted 4-pentyloxy(4′-formyl-3′-hydroxy-benzoate and 1,3-diaminopropane in 2:1 molar ratio. Four mononuclear lanthanide complexes of the type [Ln(H2LLCl] (Ln = LaIII, CeIII, SmIII and GdIII were synthesized and characterized by 1H,13CNMR, fourier transform infrared (FT-IR spectroscopy, elemental analysis (C.H.N.O, gas chromotography-mass, magnetic susceptibility and molar conductivity. Thermal properties of the title compounds were studied using the thermogravimetric analysis/differential scanning calorimetry (TGA/DSC and optical polarizing microscopy (OPM. The ligand and coordination compounds exhibit liquid crystalline properties (smectic A.

  20. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes

    Science.gov (United States)

    Sun, Lining; Ge, Xiaoqian; Liu, Jinliang; Qiu, Yannan; Wei, Zuwu; Tian, Bo; Shi, Liyi

    2014-10-01

    A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small animal imaging based on Tm3+ luminescence (under 980 nm excitation). The doped Gd3+ ion endows the nanomesoporous materials UCNPs@mSiO2-Ln(dbm)4 with effective T1 signal enhancement, which affords them as potential magnetic resonance imaging (MRI) contrast agents. Therefore, our results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small

  1. Special Issue: Practical Applications of Metal Complexes

    Directory of Open Access Journals (Sweden)

    Iztok Turel

    2015-04-01

    Full Text Available In 1913 Alfred Werner received the Nobel Prize in Chemistry for his work that was of great importance for the development of coordination chemistry. In the years that followed numerous complexes consisting of metal ions and organic ligands were isolated, thus building a strong connection between inorganic and organic chemistry. Coordination compounds have many interesting properties which find diverse applications in numerous aspects of human life. Fourteeen contributions were received for this Special Issue covering very different aspects of metal complexes and their practical applications. The highest number of manuscripts deals with the biological activity of complexes which might potentially be used in the clinical practice. Authors have tested their cytotoxicity, antibacterial activity and enzyme inhibition. Their optical properties were studied in view of their potential use in photodynamic therapy. Moreover, optical properties could also be used for bioanalysis. It is also known that metal complexes are useful catalysts and a few such examples are also described herein. Many other interesting properties and facts about the isolated and described complexes are also reported (radioactivity, design of metal-organic frameworks, etc..

  2. Special issue: practical applications of metal complexes.

    Science.gov (United States)

    Turel, Iztok

    2015-04-30

    In 1913 Alfred Werner received the Nobel Prize in Chemistry for his work that was of great importance for the development of coordination chemistry. In the years that followed numerous complexes consisting of metal ions and organic ligands were isolated, thus building a strong connection between inorganic and organic chemistry. Coordination compounds have many interesting properties which find diverse applications in numerous aspects of human life. Fourteeen contributions were received for this Special Issue covering very different aspects of metal complexes and their practical applications. The highest number of manuscripts deals with the biological activity of complexes which might potentially be used in the clinical practice. Authors have tested their cytotoxicity, antibacterial activity and enzyme inhibition. Their optical properties were studied in view of their potential use in photodynamic therapy. Moreover, optical properties could also be used for bioanalysis. It is also known that metal complexes are useful catalysts and a few such examples are also described herein. Many other interesting properties and facts about the isolated and described complexes are also reported (radioactivity, design of metal-organic frameworks, etc.).

  3. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak; Karaca, Serkan [Department of Chemistry, Arts and Science Faculty, Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty, Çukurova University, 01330 Adana (Turkey); Lopez, Valerie [Department of Chemistry, Syracuse University, Syracuse, NY 13244 (United States); Nanao, Max H. [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9 (France); University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9 (France); Zubieta, Jon [Department of Chemistry, Syracuse University, Syracuse, NY 13244 (United States); Université Grenoble Alpes Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2016-01-15

    Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.

  4. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    Science.gov (United States)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  5. Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments

    Science.gov (United States)

    Stern, J. C.; Salters, V.; Sonke, J.

    2006-12-01

    The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us

  6. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  7. Preparation and luminescent properties of lanthanide (Eu3+ and Tb3+) complexes grafted to 3-aminopropyltriethoxysilane by covalent bonds

    Science.gov (United States)

    Zhang, Wenjun; Wang, Haiyan

    2015-12-01

    A novel precursor PMA-Si was synthesized by modifying 1,2,4,5-benzene-tetracarboxylic acid (PMA) with 3-aminopropyltriethoxysilane (APTES). Then the hybrids were prepared by PMA-Si coordinating to lanthanide ions (Eu3+ and Tb3+) in sol-gel process. In order to improve luminescent efficiency, 1,10-Phenanthroline (Phen) was introduced to the system as the second ligand. As-prepared compounds in sol condition were coated on quartz plates to form a layer of thin film, which was different from other similar hybrids. The properties of the hybrids were characterized by FT-IR, fluorescence spectra, TG and SEM. The results showed that the obtained materials enhanced thermal stability, mechanical resistances, waterproofness as well as machining properties.

  8. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D' Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  9. Understanding the interaction between trivalent lanthanide ions and stereoregular polymethacrylates through luminescence, binding isotherms, NMR, and interaction with cetylpyridinium chloride.

    Science.gov (United States)

    Kogej, Ksenija; Fonseca, Sofia M; Rovisco, José; Azenha, M Emília; Ramos, M Luísa; Seixas de Melo, J Sérgio; Burrows, Hugh D

    2013-11-26

    Complexation of isotactic, syndiotactic, and atactic poly(methacrylic acid), PMA, with trivalent lanthanide ions has been studied in water at a degree of neutralization 0.5. Metal ion binding is shown by quenching of cerium(III) fluorescence, enhancement of Tb(III) luminescence, and lanthanide-induced line broadening in the PMA (1)H NMR spectra. Comparison with lanthanide-acetate complexation suggests carboxylate binds in a bidentate fashion, while Ce(III) luminescence quenching suggests an ≈3:1 carboxylate:metal ion stoichiometry, corresponding to charge neutralization. The presence of both free and bound Ce(III) cations in PMA solutions is confirmed from luminescence decays. Studies of Tb(3+) luminescence lifetime in H2O and D2O solutions show complexation is accompanied by loss of 5-6 water molecules, indicating that each bidentate carboxylate replaces two coordinated water molecules. The behavior depends on pH and polyelectrolyte stereoregularity, and stronger binding is observed with isotactic polyelectrolyte. Binding of cetylpyridinium chloride, CPC, in these systems is studied by luminescence, NMR, and potentiometry. NMR and Tb(3+) luminescence lifetime studies show the strongest binding with the isotactic polymer. Binding of surfactant to poly(methacrylate) in the presence of lanthanides is noncooperative, i.e., it binds to the free sites; binding isotherms in the presence of lanthanides are shifted to higher free surfactant concentrations, compared with sodium ions, have lower slopes and show a clear two-step binding mechanism. While CPC readily replaces the Na(+) ions of poly(methacrylate) and binds very strongly (low critical association concentrations), exchange is much more difficult with the strongly bound trivalent lanthanide ions. Effects of tacticity are seen, with surfactant interacting most strongly with isotactic chains in the initial stages of binding, while in the final stages of binding the interaction is strongest with atactic poly(methacrylate).

  10. Lanthanide ion exchange properties of a coordination polymer consisting of di(2-ethylhexyl) phosphoric acid and trivalent metal ions (Ce3+, Fe3+, or Al3+).

    Science.gov (United States)

    Ooi, Kenta; Tasaki-Handa, Yuiko; Abe, Yukie; Wakisaka, Akihiko

    2014-03-28

    Three kinds of coordination polymers ([M(dehp)3], M = Ce, Fe, or Al) were prepared by mixing the sodium form (Na(dehp)) of di(2-ethylhexyl) phosphoric acid and MCl3 in an ethanol-water binary mixture. They have monoclinic crystalline structure with similar lattice parameters. The lanthanide ion (Ln(3+) = La(3+), Sm(3+), Dy(3+), or Yb(3+)) exchange properties were studied in a 20 : 80 vol% ethanol-water binary mixture containing 2 mM Ln(NO3)3 at room temperature. The rate of Ln(3+) adsorption is relatively slow; it requires over 3 weeks to reach equilibrium. [M(dehp)3] has different Ln(3+) affinities depending on the kind of central metal ions: the affinity order at 3 week adsorption is Yb(3+) coordination preference and steric strain caused by the polymeric structure. The chemical and structural analyses suggested that the Ln(3+) adsorption progresses first by the central M(3+)/Ln(3+) exchange, followed by a morphological change to a rod-like or fibrous form by a solid phase reaction. In the case of [Fe(dehp)3], the eluted Fe(3+) may be hydrolyzed and precipitated as amorphous iron hydroxide.

  11. Synthesis, Structures, Fluorescence and Magnetism of Two Lanthanide Metal-organic Frameworks with CaF2 Topology Based on Silicon-centered Tetrahedral Ligand

    Institute of Scientific and Technical Information of China (English)

    LI Yang-xue; XUE Ming; HUANG Lin; CHEN Si-ru; QIU Shi-lun

    2013-01-01

    Two 3D multifunctional lanthanide metal-organic frameworks(MOFs),Pr(HTCPS)(H2O)·2DMF·C2H5OH·5H2O(JUC-93) and Pr3(TCPS)2(NO3)(H2O)4(DMA)2·2DMA·C2H5OH·3H2(JUC-94)[H4TCPS=tetrakis(4-carboxyphenyl)-silane,DMF=N,N'-dimethylformamide,DMA=N,N'-dimethylacetamide and JUC=Jilin University China] were synthesized by the self-assembly of a rigid silicon-centered tetrahedral carboxylate ligand H4TCPS and Pr(Ⅲ) ions in different solvothermal reactions.X-Ray crystallography revealed that they exhibited a rare CaF2 topology framework,constructed from the 4-connected tetrahedral TCPS unit with the 8-connected dinuclear praseodymium cluster unit and trinuclear praseodymium cluster unit,respectively.In addition,the luminescent and magnetic properties of the two compounds were investigated.

  12. Real-Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal-Organic Framework.

    Science.gov (United States)

    Zhang, Huan; Chen, Diming; Ma, Huili; Cheng, Peng

    2015-10-26

    Luminescent 3D lanthanide metal-organic framework (Ln-MOF) {[Tb2 (TATAB)2 ]⋅4 H2 O⋅6 DMF}n (1) was synthesized under solvothermal conditions by using flexible ligand 4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB). A phase transition was observed between low temperature and room temperature. The luminescence of 1 could be enhanced by formaldehyde and quenched efficiently by trace amounts of benzaldehyde in solvents such as benzyl alcohol (0.01-2.0 vol %) and ethanol (0.01-2.5 vol %). This is the first use of a Ln-MOF as chemical sensor for both formaldehyde and benzaldehyde. The high sensitivity and selectivity of the luminescence response of 1 to benzaldehyde allows it to be used as an excellent sensor for identifying benzaldehyde and provides a simple and convenient method for detecting traces of benzaldehyde in benzyl alcohol based injections. This work establishes a new strategy for detection of benzaldehyde in benzyl alcohol by luminescent MOFs.

  13. Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

    Science.gov (United States)

    Zhou, Xiaoyan; Guo, Yanling; Shi, Zhaohua; Song, Xueqin; Tang, Xiaoliang; Hu, Xiong; Zhu, Zhentong; Li, Pengxuan; Liu, Weisheng

    2012-02-14

    Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2 : 3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.

  14. Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework.

    Science.gov (United States)

    Azar, Michael R; Boron, Thaddeus T; Lutter, Jacob C; Daly, Connor I; Zegalia, Kelcie A; Nimthong, Ruthairat; Ferrence, Gregory M; Zeller, Matthias; Kampf, Jeff W; Pecoraro, Vincent L; Zaleski, Curtis M

    2014-02-01

    structures available through the metallacrown analogy, these complexes allow for the mixing and matching of a diverse range of metals that might permit the fine-tuning of molecular properties where one day they may be exploited as magnetic materials or luminescent agents.

  15. Research progress on the single-molecule magnets of Lanthanide complexes%稀土配合物单分子磁体研究进展

    Institute of Scientific and Technical Information of China (English)

    董飘平; 梁福永; 邹征刚; 温和瑞

    2016-01-01

    Single-molecule magnets(SMMs) have potential application in the areas of ultrahigh-density memory components,spintronic devices and quantum computers. Rare earth ions are widely used for preparation of magnetic materials due to their high spin ground state as well as strong spin orbit coupling and magnetic anisotropy. In recent years,the rare earth ions have been used to improve SMMs spin flip energy barrier and a lot of rare earth complexes have been also synthesized. In this paper,the synthesis and structures of Lanthanide-based SMMs are briefly reviewed with an emphasis on magnetism properties of the mono-,di-,tri-,tetra-,penpa- and hexa-nuclear Lanthanide SMMs. Studies have showed that the SMMs made from Dysprosium-based complexes are the best and of the more the complex nuclear,the stronger the characteristics of SMMs. The future research of Lanthanide-based SMMs should focus on the synthesis of high nuclear complexes and the advancement of magnetic anisotropy energy barrier.%单分子磁体在超高密度存储、自旋电子器件、量子计算机等领域具有潜在的应用。稀土离子因其存在高电子自旋基态以及很强的自旋轨道耦合和磁各向异性,被广泛应用于磁性材料的制备。近年来,稀土离子用来提高单分子磁体的自旋翻转能垒的研究备受关注,大量具有单分子磁体性能的稀土配合物被合成。本文综述了稀土配合物单分子磁体的合成、结构与磁性研究进展,着重介绍了单核、双核、三核、四核、五核及六核稀土配合物单分子磁体的结构与磁学性质。研究表明,应用元素镝构筑的稀土配合物单分子磁体性能最好,且随着配合物核数的增加,单分子磁体的特性更加明显。展望稀土配合物单分子磁体的研究,今后的研究重点是合成高核稀土配合物和提高磁各向异性能垒。

  16. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.

    Science.gov (United States)

    Carolan, Ashley N; Cockrell, Gregory M; Williams, Neil J; Zhang, Gang; VanDerveer, Donald G; Lee, Hee-Seung; Thummel, Randolph P; Hancock, Robert D

    2013-01-01

    Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-yl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. The intense π-π* transitions in the absorption spectra of aqueous solutions of 10(-5) M DPP were monitored as a function of pH and metal ion concentration to determine formation constants of the alkali-earth metal ions and Ln(III) (Ln = lanthanide) ions. It was found that log K(1)(DPP) for the Ln(III) ions has a peak at Ln(III) = Sm(III) in a plot of log K(1) versus 1/r(+) (r(+) = ionic radius for 8-coordination). For Ln(III) ions larger than Sm(III), there is a steady rise in log K(1) from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K(1) decreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation of log K(1) with varying size of Ln(III) ion was analyzed using MM (molecular mechanics) and DFT (density functional theory) calculations. Values of strain energy (∑U) were calculated for the [Ln(DPP)(H(2)O)(5)](3+) and [Ln(qpy)(H(2)O)(5)](3+) (qpy = quaterpyrdine) complexes of all the Ln(III) ions. The ideal M-N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge Structural Database) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M-O bond lengths were those for complexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ∑U versus ideal M-N length, a minimum in ∑U occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1) MM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containing triazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclear waste, and (2) Am(III) is very

  17. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bromm, A.J. Jr.; Vallarino, L.M. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Chemistry; Leif, R.C. [Newport Instruments, San Diego, CA (United States); Quagliano, J.R. [Los Alamos National Lab., NM (United States)

    1998-12-29

    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emission of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.

  18. Application of the Hubbard model to Cp*(2)Yb(bipy), a model system for strong exchange coupling in lanthanide systems.

    Science.gov (United States)

    Lukens, Wayne W; Magnani, Nicola; Booth, Corwin H

    2012-10-01

    Exchange coupling is quantified in lanthanide (Ln) single-molecule magnets (SMMs) containing a bridging N(2)(3-) radical ligand and between [Cp*(2)Yb](+) and bipy(•-) in Cp*(2)Yb(bipy), where Cp* is pentamethylcyclopentadienyl and bipy is 2,2'-bipyridyl. In the case of these lanthanide SMMs, the magnitude of exchange coupling between the Ln ion and the bridging N(2)(3-), 2J, is very similar to the barrier to magnetic relaxation, U(eff). A molecular version of the Hubbard model is applied to systems in which unpaired electrons on magnetic metal ions have direct overlap with unpaired electrons residing on ligands. The Hubbard model explicitly addresses electron correlation, which is essential for understanding the magnetic behavior of these complexes. This model is applied quantitatively to Cp*(2)Yb(bipy) to explain its very strong exchange coupling, 2J = -0.11 eV (-920 cm(-1)). The model is also used to explain the presence of strong exchange coupling in Ln SMMs in which the lanthanide spins are coupled via bridging N(2)(3-) radical ligands. The results suggest that increasing the magnetic coupling in lanthanide clusters could lead to an increase in the blocking temperatures of exchange-coupled lanthanide SMMs, suggesting routes to rational design of future lanthanide SMMs.

  19. Lanthanide-based luminescence biolabelling.

    Science.gov (United States)

    Sy, Mohamadou; Nonat, Aline; Hildebrandt, Niko; Charbonnière, Loïc J

    2016-04-14

    Luminescent lanthanide complexes display unrivalled spectroscopic properties, which place them in a special category in the luminescent toolbox. Their long-lived line-like emission spectra are the cornerstones of numerous analytical applications ranging from ultrasensitive homogeneous fluoroimmunoassays to the study of molecular interactions in living cells with multiplexed microscopy. However, achieving such minor miracles is a result of years of synthetic efforts and spectroscopic studies to understand and gather all the necessary requirements for the labels to be efficient. This feature article intends to survey these criteria and to discuss some of the most important examples reported in the literature, before explaining in detail some of the applications of luminescent lanthanide labels to bioanalysis and luminescence microscopy. Finally, the emphasis will be put on some recent applications that hold great potential for future biosensing.

  20. Ionization Energies of Lanthanides

    Science.gov (United States)

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  1. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  2. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue.

    Science.gov (United States)

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2010-09-06

    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  3. Advancing Chemistry with the Lanthanide and Actinide Elements: Final Report, September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Evans, William John [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    2013-09-11

    The objective of this research is to use the unique chemistry available from complexes of the lanthanides and actinides, as well as related heavy metals such as scandium, yttrium, and bismuth to advance chemistry in energy-related areas. The lanthanides and actinides have a combination of properties in terms of size, charge, electropositive character, and f valence orbitals that provides special opportunities to probe reactivity and catalysis in ways not possible with the other metals in the periodic table. We seek to discover reaction pathways and structural types that reveal new options in reaction chemistry related to energy. Identification of new paradigms in structure and reactivity should stimulate efforts to develop new types of catalytic processes that at present are not under consideration because either the transformation or the necessary intermediates are unknown.

  4. Ultrafast photophysics of transition metal complexes.

    Science.gov (United States)

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of

  5. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Science.gov (United States)

    2010-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting...

  6. Luminescence and single-molecule magnet behavior in lanthanide complexes involving a tetrathiafulvalene-fused dipyridophenazine ligand.

    Science.gov (United States)

    Pointillart, Fabrice; Jung, Julie; Berraud-Pache, Romain; Le Guennic, Boris; Dorcet, Vincent; Golhen, Stéphane; Cador, Olivier; Maury, Olivier; Guyot, Yannick; Decurtins, Silvio; Liu, Shi-Xia; Ouahab, Lahcène

    2015-06-01

    The reaction between the TTF-fused dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligand (L) and 1 equiv of Ln(hfac)3·2H2O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetyacetonate) or 1 equiv of Ln(tta)3·2H2O (tta(-) = 2-thenoyltrifluoroacetonate) (Ln(III) = Dy(III) or Yb(III)) metallic precursors leads to four mononuclear complexes of formula [Ln(hfac)3(L)]·C6H14 (Ln(III) = Dy(III) (1), Yb(III) (2)) and [Ln(tta)3(L)]·C6H14 (Ln(III) = Dy(III) (3), Yb(III) (4)), respectively. Their X-ray structures reveal that the Ln(III) ion is coordinated to the bischelating nitrogenated coordination site and adopts a D4d coordination environment. The dynamic magnetic measurements show a slow relaxation of the Dy(III) magnetization for 1 and 3 with parameters highlighting a slower relaxation for 3 than for 1 (τ0 = 4.14(±1.36) × 10(-6) and 1.32(±0.07) × 10(-6) s with Δ = 39(±3) and 63.7(±0.7) K). This behavior as well as the orientation of the associated magnetic anisotropy axes have been rationalized on the basis of both crystal field splitting parameters and ab initio SA-CASSCF/RASSI-SO calculations. Irradiation of the lowest-energy HOMO → LUMO ILCT absorption band induces a (2)F5/2 → (2)F7/2 Yb-centered emission for 2 and 4. For these Yb(III) compounds, Stevens operators method has been used to fit the thermal variation of the magnetic susceptibilities, and the resulting MJ splittings have been correlated with the emission lines.

  7. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.

  8. Two types of lanthanide selenidostannates(IV) first prepared under the same solvothermal conditions.

    Science.gov (United States)

    Zhou, Jian; Xiao, Hong; Xiao, Hong-Ping; Yang, Tao; Zou, Hua-Hong; Liu, Xing; Zhao, Rong-Qing; Tang, Qiuling

    2015-01-21

    Two types of lanthanide selenidostannates(iv) [Ln2(tepa)2(μ-OH)2Sn2Se6] {Ln = Y(), Pr (), Dy (), Er (), Tm (); tepa = tetraethylenepentamine} and [Ln2(tepa)2(μ2-OH)2Cl2]2[Sn4Se10]·4H2O {Ln = Y (), Dy (), Er (), Tm ()} have been synthesized under identical solvothermal conditions and characterized structurally. Type I (, , , and ) displays 1-D neutral chains [Ln2(tepa)2(μ-OH)2Sn2Se6]n, while type II (, , and ) contains discrete adamantane-like [Sn4Se10](4-) ions with binuclear lanthanide complex [Ln2(tepa)2(μ-OH)2Cl2](2+) ions as counterions. Although the solvothermal synthetic methods could result in the formation of various transition-metal chalcogenidometalates, such identical experimental conditions usually result in the only stable phases of lanthanide chalcogenidometalates. Hence, two different lanthanide selenidostannates(iv), obtained under same solvothermal conditions and starting materials, have been first observed in this work. The optical properties of all the compounds have been investigated by UV-vis spectra.

  9. Understanding the complexation of Eu3 + with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation

    Science.gov (United States)

    Sengupta, Arijit; Kadam, R. M.

    2017-02-01

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu3 + with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu3 + to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu3 + in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D3h local symmetry while that for Cyanex 923 and Cyanex 272 were C3h. Judd-Ofelt analysis of these systems revealed that the covalency of Eusbnd O bond followed the trend DHOA > TBP > Cyanex 272 > Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5D0-7F2 transition was found to be hypersensitive with ligand field with a trend DHOA > TBP > Cyanex 272 > Cyanex 923. Supplementary Table 2: Determination of inner sphere water molecules from the different empirical formulae reported in the literature.

  10. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers.

    Science.gov (United States)

    Claude, Charles

    1995-01-01

    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and

  11. Separation process for lanthanides based on solvation properties of non ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G

    2004-07-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  12. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  13. Synthesis and Spectral Characterization of Lanthanide Complexes Derived from 2-[(4-Bromo-2,6-Dichloro-Phenylimino-Methyl]-4,6-Diiodo-Phenol

    Directory of Open Access Journals (Sweden)

    V. R. Rajewar

    2014-12-01

    Full Text Available The solid complexes of La(III, Pr (III, Tb(III ,Sm(III and Nd(III were prepared from bidentate Schiff base, 2-[(4-bromo-2,6-dichloro-phenylimino-methyl]-4,6-diiodo-phenol. The Schiff base ligand was synthesized from 3,5 diiodosalicylaldehyde and 4-bromo-2,6-dichlorobenzenamine . These metal complexes were characterized by molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, FTIR, 1H-NMR and UV-Vis. The analytical data of these metal complexes showed metal:ligand ratio of 1:2 La(III, Pr (III, Tb(III ,Sm(III and 1:1 for Nd(III complexes. The physico-chemical study supports the presence of octahedral geometry around La(III, Pr (III, Tb(III ,Sm(III and Nd(III ions. The IR spectral data reveal that the ligand behaves as bidentate with ON donor atom sequence towards central metal ion. The molar conductance values of metal complexes suggest their electrolyte nature except Nd(III complex. The X-ray diffraction data suggest monoclinic crystal system for Pr (III, Nd (III complexes. Thermal behavior (TG/DTA shows breakdown of complexes.

  14. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  15. Solvothermal synthesis and spectroscopic characterization of three lanthanide complexes with high luminescent properties [H2NMe2]3[Ln(III)(2,6-pyridinedicarboxylate)3] (Ln = Sm, Eu, Tb): In the presence of 4,4‧-Bipyridyl

    Science.gov (United States)

    Viveros-Andrade, Alan G.; Colorado-Peralta, Raúl; Flores-Alamo, Marcos; Castillo-Blum, Silvia E.; Durán-Hernández, Jesús; Rivera, José María

    2017-10-01

    Three lanthanide complexes, [H2NMe2]3[Ln(III)(2,6-pyridinedicarboxylate)3] (Ln = Sm, Eu, Tb) have been successfully synthesized using a solvothermal method in the presence of a base and they were prepared from inexpensive and readily available reactants. Infrared, ultraviolet-visible absorption spectroscopies, elemental analyses and thermogravimetric analysis were employed for the characterization. Crystals suitable for X-ray diffraction were isolated in good yields by a simple filtration, their crystal structures were analyzed; the samarium structure has orthorhombic symmetry with space group Pbcn, exhibiting three-dimensional supramolecular architecture through hydrogen bonding interactions. The metal center is coordinated to nine atoms corresponding to three pyridine-2,6-dicarboxylic acid molecules. These compounds are thermally stable up to 270 °C.

  16. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  17. Supramolecular coordination chemistry in aqueous solution: lanthanide ion-induced triple helix formation.

    Science.gov (United States)

    Lessmann, J J; Horrocks, W D

    2000-07-24

    The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.

  18. Ytterbium Coordination Polymer with Four Different Coordination Numbers:The First Structural Characterization of Lanthanide Phthalate Complex

    Institute of Scientific and Technical Information of China (English)

    万永红; 金林培; 等

    2002-01-01

    The novel ytterbium coordination polymer is a t4wo-dimensional framework in which the central metal ions have four different coordination numbers and form four kinds of coordination poly-hedra,The four kinds of coordination polyhedra connect into infinite chains by sharing oxygen atoms.

  19. Lanthanide amidinates and guanidinates in catalysis and materials science: a continuing success story.

    Science.gov (United States)

    Edelmann, Frank T

    2012-12-07

    Today the rare-earth elements play a critical role in numerous high-tech applications. This is why various areas of rare-earth chemistry are currently thriving. In organolanthanide chemistry the search for new ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations continues to be a hot topic. Among the most successful approaches in this field is the use of amidinate and guanidinate ligands of the general types [RC(NR')(2)](-) (R = H, alkyl, aryl; R' = alkyl, cycloalkyl, aryl, SiMe(3)) and [R(2)NC(NR')(2)](-) (R = alkyl, SiMe(3); R' = alkyl, cycloalkyl, aryl, SiMe(3)), which can both be regarded as steric cyclopentadienyl equivalents. Mono-, di- and trisubstituted lanthanide amidinate and guanidinate complexes are all readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts e.g. for the polymerization of olefins and dienes, the ring-opening polymerization of cyclic esters or the guanylation of amines. Moreover, certain alkyl-substituted lanthanide tris(amidinates) and tris(guanidinates) were found to be highly volatile and are thus promising precursors for ALD (= atomic layer deposition) and MOCVD (= metal-organic chemical vapor deposition) processes in materials science, e.g. for the production of lanthanide nitride thin layers. This tutorial review covers the continuing success story of lanthanide amidinates and guanidinates which have undergone an astonishing transition from mere laboratory curiosities to efficient homogeneous catalysts as well as ALD and MOCVD precursors within the past 10 years.

  20. Complexation of trivalent lanthanide cations by different chelation sites of malic and tartric acid (composition, stability and probable structure

    Directory of Open Access Journals (Sweden)

    Mohammed Riri

    2016-11-01

    Full Text Available The formation of colorless gadolinium complexes (x,y,z between x gadolinium ions, y ligands and z protons of some organic acids has been studied in aqueous solution. In this work we shall present the results of investigations on the interaction of the gadolinium ion (Gd3+ with different chelation sites of malic and tartric acid formed in dilute solution for pH values between 5.50 and 7.50. The structures of these new organometallic complexes are Gd3(C4H4O52·(NO33·nH2O and Gd3(C4H4O62·(NO33·nH2O (C4H4O52-: malate ions and C4H4O62-: tartrate ions. These colorless gadolinium complexes of malate and tartrate ions have no absorption band UV–visible, the indirect photometry detection (IPD study; have identified major tri-nuclear complexes of these dicarboxylic acids, giving for these colorless complexes a (3,2,2 and (3,2,3, respectively. Composition and apparent stability constant depends on the acidity of the medium. To complement previous results and to propose probable structures for these new complexes detected in solution FT-IR and FT-Raman spectroscopy have been conducted to identify the different chelation sites for both ligands.

  1. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    QIU ZaoZao; XIE ZuoWei

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of icosahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  2. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of ico-sahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  3. Five different types of η(8)-cyclooctatetraenyl-lanthanide half-sandwich complexes from one ligand set, including a "giant neodymium wheel".

    Science.gov (United States)

    Sroor, Farid M; Hrib, Cristian G; Liebing, Phil; Hilfert, Liane; Busse, Sabine; Edelmann, Frank T

    2016-09-14

    The lithium-cyclopropylethynylamidinates Li[c-C3H5-C[triple bond, length as m-dash]C-C(NR)2] (1a: R = (i)Pr, 1b: R = cyclohexyl (Cy)) have been used as precursors for the preparation of five new series of half-sandwich complexes. These complexes contain the large flat cyclooctatetraenyl ligand (C8H8(2-), commonly abbreviated as COT), and were isolated as solvated, unsolvated and inverse sandwich complexes. Treatment of the halide precursors [(COT)Pr(μ-Cl)(THF)2]2 with 1b and [(COT)Nd(μ-Cl)(THF)2]2 with 1a and 1b in THF in a 1 : 2 molar ratio, respectively, afforded (COT)Ln[μ-c-C3H5-C[triple bond, length as m-dash]C-C(NR)2]2Li(L) (2: Ln = Pr, R = Cy, L = Et2O; 3: Ln = Nd, R = (i)Pr, L = THF; 4: Ln = Nd, R = Cy, L = THF). Treatment of the dimeric cerium(iii) bis(cyclopropylethynylamidinate) complexes [{c-C3H5-C[triple bond, length as m-dash]C-C(NR)2}2Ce(μ-Cl)(THF)]2 (5: R = (i)Pr; 6: R = Cy) in situ with K2C8H8 in a 1 : 1 molar ratio in THF at room temperature afforded the inverse-sandwich complexes (μ-η(8):η(8)-COT)[Ce{c-C3H5-C[triple bond, length as m-dash]C-C(NR)2}2]2 (7: R = (i)Pr; 8: R = Cy). This reaction represents a new method for encapsulation of a planar (C8H8)(2-) ring in lanthanide complexes containing amidinate ligands in the outer decks. Novel unsolvated dinuclear lanthanide half-sandwich complexes were prepared by using the precursors 1a, 1b and COT(2-). Unlike the complexes 2-4, the reaction of [(COT)Pr(μ-Cl)(THF)2]2 with 1a afforded the unsolvated centrosymmetric complex [(COT)Pr(μ-c-C3H5-C[triple bond, length as m-dash]C-C(N(i)Pr)2)]2 (9). These dimeric structures could be also accessed by reaction of LnCl3 (Ln = Ce or Nd) with 1a or 1b and K2COT in a 1 : 1 : 1 molar ratio as a one-pot reaction to give novel [(COT)Ln(μ-c-C3H5-C[triple bond, length as m-dash]C-C(NR)2)]2 complexes (10: Ln = Ce, R = (i)Pr; 11: Ln = Ce, R = Cy; 12: Ln = Nd, R = (i)Pr). Similar treatment of HoCl3 with 1a or 1b and K2COT as three

  4. Energetic characteristics of transition metal complexes.

    Science.gov (United States)

    Wojewódka, Andrzej; Bełzowski, Janusz; Wilk, Zenon; Staś, Justyna

    2009-11-15

    Ten transition metal nitrate and perchlorate complexes of hydrazine and ethylenediamine were synthesized, namely [Cu(EN)(2)](ClO(4))(2), [Co(EN)(3)](ClO(4))(3), [Ni(EN)(3)](ClO(4))(2), [Hg(EN)(2)](ClO(4))(2), [Cr(N(2)H(4))(3)](ClO(4))(3), [Cd(N(2)H(4))(3)](ClO(4))(2), [Ni(N(2)H(4))(3)](NO(3))(2), [Co(N(2)H(4))(3)](NO(3))(3), [Zn(N(2)H(4))(3)](NO(3))(2), and [Cd(N(2)H(4))(3)](NO(3))(2) based on the lines of the literature reported methods. All of them were tested with applying underwater detonation test and further compared to the typical blasting explosives: RDX, HMX, TNT and PETN. From the above presented complexes [Ni(N(2)H(4))(3)](NO(3))(2) (called NHN) and [Co(N(2)H(4))(3)](NO(3))(3) (called CoHN) are known as primary explosives and can be used as the standard explosives. Explosion parameters, such as shock wave overpressure, shock wave energy equivalent and bubble energy equivalent, were determined. Evaluated energetic characteristics of the tested compounds are comparable to those of the classic high explosives and are even enhanced in some cases.

  5. Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Amanda M. [Department of Chemistry, Washington State University, Pullman WA 99163; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Wang, Zheming [E Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Clark, Sue B. [Department of Chemistry, Washington State University, Pullman WA 99163; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Bryan, Samuel A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352

    2016-05-04

    Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed for supporting more efficient tracking within the nuclear, medicinal, and industrial fields. Spectroelectrochemistry (SEC) is a powerful technique combining electrochemistry and spectroscopy that can meet those needs. The primary limitation of SEC as a detection method for lanthanides is their low molar absorptivity in absorbance based measurements and low emission intensities in fluorescence based measurements; both lead to high limits of detection. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation may also stabilize the metal ions in solution and improve the electrochemical reversibility, or Nernstian behavior, of the redox couples. To demonstrate this concept, studies were completed using europium in complexes with four different sensitizing ligands. Initial work indicates Eu in the four complexes studied does display the necessary characteristics for SEC analysis, which was successfully and reproducibly applied to all Eu complexes.

  6. Synthesis, characterization of the luminescent lanthanide complexes with ( Z)-4-(4-methoxyphenoxy)-4-oxobut-2-enoic acid

    Science.gov (United States)

    Duan, Guo-Jian; Yang, Ying; Liu, Tong-Huan; Gao, Ya-Ping

    2008-02-01

    ( Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL 3·2H 2O (Ln = La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616 nm for Eu(III) and 547 nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.

  7. Dual Emissive-Reflective Display Materials with Large Emission Switching Using Highly Luminescent Lanthanide(III) Complex and Electrochromic Material

    Science.gov (United States)

    Kanazawa, Kenji; Nakamura, Kazuki; Kobayashi, Norihisa

    2013-05-01

    Electroswitching of emission and coloration was achieved by a combination of a luminescent Eu(III) complex and an electrochromic molecule of diheptyl viologen (HV2+), in order to utilize them as novel display devices with dual emissive-reflective modes. The coloration was associated with the HV2+ electrochromism. Emission control was also achieved by the HV2+ electrochromism via intermolecular energy transfer from the excited state of the Eu(III) ion to the HV+. In order to improve ON-OFF contrast in emission, the emission quantum yield of Eu(III) complex were considerably improved using low vibrational phosphine oxide ligands, resulting in the large control of emission switching.

  8. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  9. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry; Complexes aqueux de lanthanides (3) et actinides (3) avec les ions carbonate et sulfate. Etude thermodynamique par spectrofluorimetrie laser resolue en temps et spectrometrie de masse a ionisation electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, Th

    2005-03-15

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO{sub 3}){sub 3}{sup 3-}, is identified by solubility measurements in Na{sub 2}CO{sub 3} solutions. Then the formation constants of the complexes Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) and Eu(SO{sub 4}){sub i}{sup 3-2i} (i=1-2) are measured by TRLFS. The formation of aqueous LaSO{sub 4}{sup +} is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO{sub 3}){sub 2}{sup -} + CO{sub 3}{sup 2-} {r_reversible} Cm(CO{sub 3}){sub 3}{sup 3-} are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  10. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  11. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    National Research Council Canada - National Science Library

    Flick, Tawnya G; Donald, William A; Williams, Evan R

    2013-01-01

    .... ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge...

  12. From antenna to assay: lessons learned in lanthanide luminescence.

    Science.gov (United States)

    Moore, Evan G; Samuel, Amanda P S; Raymond, Kenneth N

    2009-04-21

    Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in homogeneous time-resolved fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multichromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single "antenna"). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to approximately 60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong circularly

  13. Metal speciation dynamics and bioavailability: Inert and labile complexes

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, H.P.

    1999-11-01

    The free-ion activity model for the biouptake of metals from complex media is limited to cases where mass transfer is not flux-determining. This paper considers the simultaneous effects of bioconversion kinetics and metal transport in the medium coupled with metal complex dissociation kinetics. For the two kinetically limiting situations of inert and fully labile complexes, the bioavailabilities of bioinactive metal complexes are analyzed under conditions where (i) the actual biouptake follows a Michaelis-Menten type of steady-state flux and (ii) the supply of free metal is governed by diffusion of free metal or coupled diffusion of the different labile metal species. The resulting steady-site fluxes are given in terms of two fundamental quantities, i.e., the relative bioaffinity parameter (a) and the ratio between the limiting uptake flux and the limiting transport flux (b). For labile complexes, these variables are differentiated by a complexation parameter defined by the ration between the free metal on activity and the total labile metal activity. Limits of the uptake flux for extreme values of the bioaffinity parameter a and the limiting flux ratio b are easily derived from the general flux expression. The analysis precisely shows under what conditions labile complex species contribute to the biouptake process or, equivalently, under what conditions the free-ion activity model is not obeyed.

  14. Lanthanides migration and immobilization in U-Zr nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bozzolo, G., E-mail: guille_bozzolo@yahoo.com [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Hofman, G.L.; Yacout, A.M. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Mosca, H.O. [Gerencia de Investigaciones y Aplicaciones, CNEA, Av. Gral Paz 1499, B165KNA, San Martin, Buenos Aires (Argentina)

    2012-06-15

    Redistribution of lanthanides fission products during irradiation and migration to the surface of U-Zr based metallic fuels is a concern due to their interaction with the cladding. The existing remedy for preventing this effect is the introduction of diffusion barriers on the cladding inner surface or by adding thermodynamically stable compound-forming elements to the fuel. Exploring this second option, in this work atomistic modeling with the Bozzolo-Ferrante-Smith (BFS) method for alloys is used to study the formation of lanthanide-rich precipitates in U-Zr fuel and the segregation patterns of all constituents to the surface. Surface energies for all elements were computed and, together with the underlying concepts of the computational methodology and large scale simulations, the migration of lanthanides to the surface region in U-Zr fuels is explained. The role of additions to the fuel such as In, Ga, and Tl for immobilization of lanthanides is discussed.

  15. Alkoxy-Siloxide Metal Complexes: Precursors to Metal Silica, Metal Oxide Silica, and Metal Silicate Materials.

    Science.gov (United States)

    Terry, Karl William

    The alkoxy-siloxide complexes M (OSi(O ^{rm t}Bu)_3 ]_4 (M = Ti(1), Zr(2), Hf(3)), were prepared by reaction with their respective metal diethylamides. These compounds readily undergo low-temperature decomposition to their respective metal oxide silica materials rm(MO_2{cdot}4SiO_2). The volatile products of the thermolysis of 2 (ca. 200 ^circC) were isobutylene (11.7 equiv) and water (5.4 equiv). The rm ZrO _2{cdot}4SiO_2 material from the decomposition of 2 at 400^circ C was amorphous until ca. 1100^ circC where crystallization of t-ZrO _2 occurred. After thermolysis to 1500 ^circC, t-ZrO_2 and cristobalite were the major products with minor amounts of m-ZrO_2. The rm HfO_2{cdot}4SiO_2 material from the decomposition of 3 at 400^ circC was amorphous until ca. 1000 ^circC where crystallization of c/t -HfO_2 was observed. Thermolysis to 1460^circC yielded c/t -HfO_2, m-HfO_2, and minor amounts of cristobalite. The crystallization of anatase in the rm TiO_2{cdot }4SiO_2 material from decomposed 1 at 400^circC was apparent after thermolysis to 1000^circC. Thermolysis to 1400^circC gave a mixture of anatase, rutile, and cristobalite. Compound 2 was decomposed in xylenes and yielded a transparent gel which was isolated as a white powder upon drying in vacuuo. The compounds [ Me _2AlOSi(O^{t}Bu)_3] _2 (4) and [( ^{t}BuO)MeAlOSi(O^{t}Bu) _3]_2 (5) were structurally characterized and contain bent and planar rm Al_2O_2 four membered rings, respectively. Both 4 and 5 yield isobutylene upon thermolysis (ca. 200 ^circC) and the crystallization of mullite occurs at 1034^circC and 1017^circC, respectively (by DTA). The solution thermolysis of 4 in refluxing toluene yields an opaque white gel. The crystallization of mullite occurs at 1029^circC (by DTA). The compounds [ CuOSi(O ^{t}Bu)_3]_{n } (6) and [ CuOSi(O ^{t}Bu)_2Ph]_4 (7) were prepared by reaction with [ CuO^{t}Bu]_4. The thermolysis of 6 at 1000^circ C under argon gave Cu^circ and amorphous silica and thermolysis under

  16. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    NARCIS (Netherlands)

    Leeuwen, van Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain

  17. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain equil...

  18. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment.

    Science.gov (United States)

    Petit, L; Paudyal, D; Mudryk, Y; Gschneidner, K A; Pecharsky, V K; Lüders, M; Szotek, Z; Banerjee, R; Staunton, J B

    2015-11-13

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar(-1) for GdCd confirmed by our experimental measurements of +1.6  K kbar(-1). Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.

  19. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    Science.gov (United States)

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions.

  20. Kinetics of formation for lanthanide (III) complexes of DTPA-(Me-Trp)2 used as imaging agent.

    Science.gov (United States)

    Tiwari, Anjani K; Sinha, Deepa; Datta, Anupama; Kakkar, Dipti; Mishra, Anil K

    2011-05-01

    Diethlenetriamine-N,N,N'N''N''-pentaacetic acid (DTPA)-bis (amide) analogs have been synthesized and evaluated as a potential biomedical imaging agents. Imaging and biodistribution studies were performed in mice that showed a significant accumulation of DTPA analogs in brain. The stability and protonation constants of the complexes formed between the ligand [DTPA-(Me-Trp)(2)] and Gd(3+), Eu(3+), and Cu(2+) have been determined by pH potentiometry (Gd(3+), Eu(3+)) and spectrophotometry (Cu(2+)) at 25 °C and at constant ionic strength maintained by 0.10 M KCl. The kinetic inertness of Gd [DTPA-(Me-Trp)(2)] was characterized by the rates of exchange reactions with Zn(2+) and Eu(3+). In the Eu(3+) exchange, a second-order [H(+)] dependence was found for the pseudo-first-order rate constant [k(0) = (4.5 ± 1.2) × 10(-6)/s; k(1) = 0.58 ± 0.1 /M/s, k(2) = (6.6 ± 0.2) × 10(4) /M(2)/s, k(3) = (4.8 ± 0.8) × 10(-4) /M/s]. In the Eu(3+) exchange, at pH DTPA-(Me-Trp)(2)] is more inert than GdDTPA(2-), the most commonly used MRI contrast agent (t(1/2) = 127 h). High kinetic stability is an important requirement for the Gd complexes used as contrast enhancement agents in magnetic resonance imaging. © 2011 John Wiley & Sons A/S.

  1. Recognition Interactions of Metal-complexing Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    Ying LIU; Guo Sheng DING; Jun De WANG

    2005-01-01

    Molecularly imprinted polymer, exhibiting considerable enantioselectivity for L-mandelic acid, was prepared using metal coordination-chelation interaction. By evaluating the recognition characteristics in the chromatographic mode, the recognition interactions were proposed: specific and nonspecific metal coordination-chelation interaction and hydrophobic interaction were responsible for substrate binding on metal-complexing imprinted polymer; while the selective recognition only came from specific metal coordination-chelation interaction and specific hydrophobic interaction.

  2. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  3. A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable Kinetic Inertness for a Linear, Bishydrated Complex.

    Science.gov (United States)

    Bonnet, Célia S; Laine, Sophie; Buron, Frédéric; Tircsó, Gyula; Pallier, Agnès; Helm, Lothar; Suzenet, Franck; Tóth, Éva

    2015-06-15

    To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent

  4. SYNTHESIS AND CHARACTERIZATION OF SALICYLALDAZINE AND ITS METAL (II) COMPLEXES DERIVED FROM METAL (II) CHLORIDES

    OpenAIRE

    Jamila wazir

    2016-01-01

    The salicylaldazine (ligand) and its metal (II) complexes like copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes has been synthesized and characterized by different techniques using FTIR, UV-VIS spectroscopy. The ligand (salicylaldazine) is synthesized by the condensation reaction of salicylaldehyde and hydrazine sulfate. The salicylaldazine metal (II) complexes like Cu (II) , Ni(II), Zn (II), Co(II), Mn(II) were prepared by using metal (II) chloride in dioxane. Th...

  5. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update

    Directory of Open Access Journals (Sweden)

    Valentina Uivarosi

    2013-09-01

    Full Text Available Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle at the 7-position, and a carbonyl oxygen atom at the 4-position quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  6. Metal complexes of quinolone antibiotics and their applications: an update.

    Science.gov (United States)

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  7. Metal flux from hydrothermal vents increased by organic complexation

    Science.gov (United States)

    Sander, Sylvia G.; Koschinsky, Andrea

    2011-03-01

    Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.

  8. Sensitization of Eriochromeazurol-B in Presence of Cetyldimethylethylammonium Bromide for the Microdetermination of Some Lanthanides

    Directory of Open Access Journals (Sweden)

    Anil B. Zade

    2012-01-01

    Full Text Available Cetyldimethylethylammonium bromide, a cationic surfactant has been used to decolorize eriochromeazurol B, an anionic triphenylmethane type of dye. Addition of specific lanthanide metal ion to this decolorized solution resulted into intense colored stable ternary complex with large bathochromic shift from 540 nm (binary complex to 650 nm (ternary complex with increase in absorbance values at shifted wavelength. CDMEAB thus decreases the color intensity of ECAB and increases the absorbance value of ternary complexes. This two fold advantage resulted into enhancement in molar absorptivities and sensitivities at shifted wavelength of ternary complexes with stoichiometric composition 1:(1:32, [Ln : (R:S] for all lanthanides understudy namely yttrium, neodymium, europium, terbium and ytterbium. The ternary complexes at pH 6.0 exhibited absorption maxima at 650 nm with molar absorptivities 69000 L.mol-1.cm-2 for Y(III, 66000 L.mol-1.cm-2 for Nd(III, 69000 L.mol-1.cm-2 for Eu(III, 64000 L.mol-1.cm-2 for Tb(III, 70000 L.mol-1.cm-2 for Yb(III. Beer's law were obeyed in concentration range 0.11-0.94, 0.19-1.53, 0.2-1.41, 0.21-1.69 and 0.23-1.11 ppm for Y(III, Nd(III, Eu(III, Tb(III and Yb(III respectively. Conditional formation constants and various analytical parameters have been evaluated and compared the results of newly formed ternary complexes with binary complexes. Finally newly suggested modified method have been recommended for the microdetermination of lanthanides understudy.

  9. Calix[4]azacrowns as novel molecular scaffolds for the generation of visible and near-infrared lanthanide luminescence.

    Science.gov (United States)

    Oueslati, Issam; Sa Ferreira, Rute A; Carlos, Luís D; Baleizão, Carlos; Berberan-Santos, Mario N; de Castro, Baltazar; Vicens, Jacques; Pischel, Uwe

    2006-03-20

    Two calix[4]azacrowns, capped with two aminopolyamide bridges, were used as ligands for the complexation of lanthanide ions [Eu(III), Tb(III), Nd(III), Er(III), La(III)]. The formation of 1:2 and 1:1 complexes was observed, and stability constants, determined by UV absorption and fluorescence spectroscopy, were found to be generally on the order of log beta(11) approximately 5-6 and log beta(12) approximately 10. The structural changes of the ligands upon La(III) complexation were probed by 1H NMR spectroscopy. The two ligands were observed to have opposite fluorescence behaviors, namely, fluorescence enhancement (via blocking of photoinduced electron transfer from amine groups) or quenching (via lanthanide-chromophore interactions) upon metal ion complexation. Long-lived lanthanide luminescence was sensitized by excitation in the pi,pi band of the aromatic moieties of the ligands. The direct involvement of the antenna triplet state was demonstrated via quenching of the ligand phosphorescence by Tb(III). Generally, Eu(III) luminescence was weak (Phi(lum) lanthanides. However, Eu(III) luminescence was efficiently quenched by NH oscillators and the presence of a ligand-to-metal charge transfer state. Near-infrared luminescence of Nd(III) was also generated by energy-transfer sensitization.

  10. Use of Electro-spray Ionization Mass Spectrometry (ESI-MS) for the characterization of complexes 'ligand - metallic cations' in solution

    Energy Technology Data Exchange (ETDEWEB)

    Berthon, Laurence; Zorz, Nicole; Lagrave, Stephanie; Gannaz, Benoit; Hill, Clement [CEA-Marcoule DEN-DRCP-SCPS-LCSE, BP 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    In the framework of nuclear waste reprocessing, separation processes of minor actinides from fission products are developed by Cea. In order to understand the mechanisms involved in the extraction processes, the 'ligand/metallic cation' complexes, formed in the organic phases are characterized by electro-spray-mass-spectrometry (ESI-MS). This paper deals with the extraction of lanthanides (III) and americium (III) cations by an organic phase composed of a malonamide or / and a dialkyl phosphoric acid, diluted in an aliphatic diluent. For the dialkyl phosphoric acid, Ln(DEHP){sub 3}(HDEHP){sub 3} complexes are observed and in the presence of a large excess of Ln(NO{sub 3}){sub 3}, dinuclear species are also observed. For the malonamide extractant, it appears that the complexes formed in the organic phase are of the Nd(NO{sub 3}){sub 3}D{sub x} type, with 2 {<=} x {<=} 4: their distributions depend on the ratio [Ln]/[DMDOHEMA]. When the two extractants are present in the organic phase, mixed 'Ln-malonamide-dialkyl phosphoric acid' species are observed. The influence of several parameters, such as extractant concentration, solute concentration, aqueous acidity and the nature of the cations (lanthanides or americium) are studied. (authors)

  11. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  12. METAL COMPLEXES OF HETEROCYCLIC UNSATURATED 1, 3- DIKETONES

    Directory of Open Access Journals (Sweden)

    K.L. Krishnakumar*and Mathew Paul

    2013-03-01

    Full Text Available ABSTRACT: The present investigation is mainly on the synthesis, characterization and anti-microbial screening of certain new curcuminoid analogues containing imidazole, pyrrole and thiophene rings and their metal complexes. The ability of such heterocyclic β-dicarbonyl compounds and their metal ions to influence many of complex reaction upon which the vital processes of micro-organisms depends is the motivation behind the work. A series of 5- hetero aryl-1-phenyl-4-pentene-1,3-diones(1a-c and their Cu (II, Ni (II complexes of ML2 stoichiometry were synthesized and characterized by UV, IR, mass and 1H NMR spectroscopies. Analytical and spectral data suggest neutral bidentate coordination for unsaturated diketone with metals. Anti-microbial screening was carried out by using Kirby-Bauer disc plate method. All the ligands and their metal complexes showed significant anti-microbial action. Further complexation; seem to augment the antimicrobial activity of the compounds.

  13. Hydrogen storage in complex metal hydrides

    National Research Council Canada - National Science Library

    Bogdanovic, Borislav; Felderhoff, Michael; Streukens, Guido

    2009-01-01

    ...) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides...

  14. Reaction of lanthanide elements with Fe–Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Kenta, E-mail: inagaki@criepi.denken.or.jp; Ogata, Takanari

    2013-10-15

    During steady-state irradiation of metal fuel in fast reactors, lanthanide fission products react with the Fe-base cladding and cause wastage of the cladding inner surface. In order to provide the basis of the cladding wastage modeling, the authors conducted isothermal annealing tests of diffusion couples consisting of Fe–12wt.%Cr alloy and lanthanide alloy, 13La–24Ce–12Pr–39Nd–12Sm (in wt.%), which simulates fission yield of lanthanide elements. In the temperature range of 773–923 K, Fe diffused into the lanthanide alloy side and formed Fe{sub 2}RE precipitates, where RE stands for lanthanide element mixture. Cr did not migrate evidently. The lanthanide elements diffused into the Fe–Cr side and formed the distinct reaction zone. This reaction zone showed two-phase structure of (Fe,Cr){sub 17}RE{sub 2} and (Fe,Cr){sub 3}RE. Ce and Sm were concentrated in the Fe{sub 2}RE and (Fe,Cr){sub 17}RE{sub 2} phases. The thickness of reaction zone in the Fe–Cr side grew in proportion to the square root of annealing time. The activation energy of the reaction zone growth was determined, which can be the basis of the cladding wastage modeling.

  15. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands

    NARCIS (Netherlands)

    Broere, D.L.J.; Modder, D.K.; Blokker, E.; Siegler, M.A.; van der Vlugt, J.I.

    2016-01-01

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to AuI followed by homoleptic metalation of the NO pocket with NiII affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically co

  16. Role of Lanthanide-Ligand bonding in the magnetization relaxation of mononuclear single-ion magnets: A case study on Pyrazole and Carbene ligated LnIII(Ln=Tb, Dy, Ho, Er) complexes

    Indian Academy of Sciences (India)

    TULIKA GUPTA; GUNASEKARAN VELMURUGAN; THAYALAN RAJESHKUMAR; GOPALAN RAJARAMAN

    2016-10-01

    Ab initio CASSCF+RASSI-SO+SINGLE_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic M(BcMe)₃ (M = Tb(1), Dy(2), Ho(3), Er(4), [BcMe]⁻ = dihydrobis (methylimidazolyl) borate) and M(BpMe)₃ (M = Tb(1a), Dy(2a), Ho(3a), Er(4a) [BpMe]⁻ = dihydrobis (methypyrazolyl) borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm⁻¹, respectively and this is in accordance with experiment. Experimentally only frequency dependent χ” tails are observed for complex 1a and our calculation predicts a large Ucalof 229.4 cm⁻¹ for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln...H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied.

  17. Synthesis and spectral characterization of lanthanide complexes with 1, 2-diphenyl-4-butyl-3,5-pyrazolidinedione: Luminescent property of Tb(Ⅲ) complex

    Institute of Scientific and Technical Information of China (English)

    M.R. Anoop; P.S. Binil; S. Suma; M.R. Sudarsanakumar

    2012-01-01

    The complexes of rare earth elements with 1,2-diphenyl-4-butyl-3,5-Pyrazolidinedione (PBH,phenylbutazone) were synthesized and characterized byelemental analysis,molar conductance,IR,UV-Vis,EPR and magnetic moment measurements.Based on these studies the complexes were formulated as [Ln(PB)3(H2O)2]·nH2O,where Ln=Eu(Ⅲ),Gd(Ⅲ),Tb(Ⅲ),Dy(Ⅲ) and Er(Ⅲ).From IR spectra,it was found that PBH acted as a bidentate mono-ionic ligand coordinating through two carbonyl oxygen of the pyrazolidinedione ring.The thermal analysis of all the complexes was carried out at a heating rate of 10 ℃/min.The kinetic aspects of the complexes were evaluated.The negative entropy value of the complexes indicated a more ordered state for the activated complexes.The photoluminescence property of Tb(Ⅲ) complex was investigated.It showed all the characteristic emission peaks of Tb3+ with a life time of 0.98914 ms.

  18. 一种镧系-过渡金属二维氰桥配合物[Nd(DMSO)2(H2O)2][Ni(CN)4]Cl(DMSO=二甲亚砜)的合成和晶体结构%Synthesis and Crystal Structure of a Cyano-Bridged Lanthanide-Transition-Metal Complex [Nd(DMSO)2(H2O)2][Ni(CN)4]Cl (DMSO=Dimethylsulfoxide) with Two-dimensional Gridding Molecule Structure

    Institute of Scientific and Technical Information of China (English)

    梁淑惠; 车云霞; 郑吉民

    2005-01-01

    The cyano-bridged bimetallic complex [Nd(DMSO)2(H2O)2][Ni(CN)4]Cl with two-dimensional gridding molecule structure was synthesized and characterized. In the complex all four cyano groups of unit Ni(CN)42- are bound to Nd3+ ions. The crystal data for the title complex: monoclinic, space group P21/c, a=0.780 0(3) nm,b=1.5097(6) nm, c=1.683 2(6) nm, β=115.231(14)°, Z=4, μ=4.311 mm-1, final R1=0.020 9, wR2=0.045 4. CCDC:272214.

  19. Photochemical and electrochemical studies on lanthanide complexes of 6-(hydroxymethylpyridine- 2-carboxaldehyde[2- methyl-pyrimidine-4,6-diyl] bis-hydrazone

    Directory of Open Access Journals (Sweden)

    María Alejandra Fernandez

    2014-01-01

    Full Text Available Herein we report the synthesis of the 6-(hydroxymethylpyridine-2- carboxaldehyde[2-methyl-pyrimidine- 4,6-diyl]bis-hydrazone by a condensation reaction between 6-(hydroxymethyl picolinaldehyde with 4,6-(bis-hydrazino-2- methylpyrimidine. This bis-hydrazone can be visualized as a two-arm system which exhibits photochemical induced [E,E]/[E,Z]/[Z,Z’] isomerizations and double coordination to metal centers. Configurational changes, upon UV light irradiation, were followed over time by 1 H NMR, establishing that isomerization, in both arms, is a consecutive reaction that follows first-order kinetics (k1 = 4.06 x 10-4 s-1 and k2 = 2.80 x 10-4 s-1. Furthermore, the synthesis of bis-hydrazone metal complexes with La (III and Sm (III ions was achieved; subsequently, the absorption and emission properties of these complexes were studied, determining the fluorescence quantum yields, La= 0.2024 and Sm= 0.1413. Electrochemical studies of the complexes were conducted by square wave voltammetry, demonstrating that the bis-hydrazone and its complexes are electroactive species between +1.5 and -2.5 V.

  20. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission.

    Science.gov (United States)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins; Faulkner, Stephen; Vosch, Tom; Sørensen, Thomas Just

    2015-02-11

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency. Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed for the visible part of the spectrum.

  1. N-Heterocyclic carbene metal complexes in medicinal chemistry.

    Science.gov (United States)

    Oehninger, Luciano; Rubbiani, Riccardo; Ott, Ingo

    2013-03-14

    Metal complexes with N-heterocyclic carbene (NHC) ligands are widely used in chemistry due to their catalytic properties and applied for olefin metathesis among other reactions. The enhanced application of this type of organometallics has over the last few years also triggered a steadily increasing number of studies in the fields of medicinal chemistry, which take advantage of the fascinating chemical properties of these complexes. In fact it has been demonstrated that metal NHC complexes can be used to develop highly efficient metal based drugs with possible applications in the treatment of cancer or infectious diseases. Complexes of silver and gold have been biologically evaluated most frequently but also platinum or other transition metals have demonstrated promising biological properties.

  2. studies on transition metal complexes of herbicidal compounds. ii

    African Journals Online (AJOL)

    a

    II: TRANSITION METAL COMPLEXES OF DERIVATIZED 2-CHLORO-4- ... Several compounds of this class like atrazine, simazine, prometryn, aziprotryn, etc. .... dissolve in water and most of the common polar organic solvents. ... coordination.

  3. Bioactive luminescent transition-metal complexes for biomedical applications.

    Science.gov (United States)

    Ma, Dik-Lung; He, Hong-Zhang; Leung, Ka-Ho; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2013-07-22

    The serendipitous discovery of the anticancer drug cisplatin cemented medicinal inorganic chemistry as an independent discipline in the 1960s. Luminescent metal complexes have subsequently been widely applied for sensing, bio-imaging, and in organic light-emitting diode applications. Transition-metal complexes possess a variety of advantages that make them suitable as therapeutics and as luminescent probes for biomolecules. It is thus highly desirable to develop new luminescent metal complexes that either interact with DNA through different binding modes or target alternative cellular machinery such as proteins as well as to provide a more effective means of monitoring disease progression. In this Review, we highlight recent examples of biologically active luminescent metal complexes that can target and probe a specific biomolecule, and offer insights into the future potential of these compounds for the investigation and treatment of human diseases.

  4. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief discussi

  5. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief

  6. Inkjet printing of 3D metallic silver complex microstructures

    NARCIS (Netherlands)

    Wits, Wessel W.; Sridhar, Ashok

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief discussi

  7. Revisited: the conception of lability of metal complexes

    NARCIS (Netherlands)

    Leeuwen, van H.P.

    2001-01-01

    Starting from the original reaction layer concept, the voltammetric properties of electroinactive metal complexes are critically reviewed in terms of their finite rates of dissociation into electroactive free metal ions. The limiting conditions for the reaction layer-based flux expressions are made

  8. Compartmentation and complexation of metals in hyperaccumulator plants.

    Science.gov (United States)

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-09-20

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs.

  9. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  10. Modeling lanthanide series binding sites on humic acid.

    Science.gov (United States)

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  11. Therapeutic treatment of Alzheimer's disease using metal complexing agents.

    Science.gov (United States)

    Price, Katherine A; Crouch, Peter J; White, Anthony R

    2007-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by deposition of extracellular amyloid plaques, formation of intracellular neurofibrillary tangles and neuronal dysfunction in the brain. A growing body of evidence indicates a central role for biometals such as copper in many critical aspects of AD. The amyloid beta (Abeta) peptide and its parental molecule, the amyloid precursor protein (APP) both modulate Cu and Zn metabolism in the brain. Therefore, aberrant changes to APP or Abeta metabolism could potentially alter biometal homoestasis in AD, leading to increased free radical production and neuronal oxidative stress. Modulation of metal bioavailability in the brain has been proposed as a potential therapeutic strategy for treatment of AD patients. The lipid permeable metal complexing agent, clioquinol (CQ), has shown promising results in animal models of AD and in small clinical trials involving AD patients. Moreover, a new generation of metal-ligand based therapeutics is currently under development. Patents now cover the generation of novel metal ligand structures designed to modulate metal binding to Abeta and quench metal-mediated free radical generation. However, the mechanism by which CQ and other metal complexing agents slows cognitive decline in AD animal models and patients is unknown. Increasing evidence suggests that ligand-mediated redistribution of metals at a cellular level in the brain may be important. Further research will be necessary to fully understand the complex pathways associated with efficacious metal-based pharmaceuticals for treatment of AD.

  12. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    Science.gov (United States)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  13. Heavy metal music meets complexity and sustainability science.

    Science.gov (United States)

    Angeler, David G

    2016-01-01

    This paper builds a bridge between heavy metal music, complexity theory and sustainability science to show the potential of the (auditory) arts to inform different aspects of complex systems of people and nature. The links are described along different dimensions. This first dimension focuses on the scientific aspect of heavy metal. It uses complex adaptive systems theory to show that the rapid diversification and evolution of heavy metal into multiple subgenres leads to a self-organizing and resilient socio-musicological system. The second dimension builds on the recent use of heavy metal as a critical thinking model and educational tool, emphasizing the artistic component of heavy metal and its potential to increase people's awareness of environmental sustainability challenges. The relationships between metal, complexity theory and sustainability are first discussed independently to specifically show mechanistic links and the reciprocal potential to inform one domain (science) by the other (metal) within these dimensions. The paper concludes by highlighting that these dimensions entrain each other within a broader social-cultural-environmental system that cannot be explained simply by the sum of independent, individual dimensions. Such a unified view embraces the inherent complexity with which systems of people and nature interact. These lines of exploration suggest that the arts and the sciences form a logical partnership. Such a partnership might help in endeavors to envision, understand and cope with the broad ramifications of sustainability challenges in times of rapid social, cultural, and environmental change.

  14. Complexation and Antimicrobial Studies of Some Divalent Metal Chelates

    Directory of Open Access Journals (Sweden)

    Suparna Ghosh

    2010-01-01

    Full Text Available Metal chelates of Ni(II and Cu(II with the ligand 5-acetamido-1,3,4-thiadiazole-2-sulphonamide have been synthesized. The isolated compounds have been characterized by elemental analysis, molar conductivity, magnetic moment, electronic and IR spectral studies. The analytical data reflects the metal to ligand stoichiometry to be 1: 2. The conductivity data of the complexes also suggests their non-electrolytic nature. The stability constants and free energy change for the complexes have been calculated.. Ligand and their complexes have been screened for their biological activity and the data show good activity of these complexes and ligands.

  15. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...... develop at the particle/medium interface. Thus the chemodynamic features of M-NP complexes should be fundamentally different from those of molecular systems in which the reaction layer is a property of the homogeneous solution (μ = (DM/ka ′)1/2). For molecular complexes, the characteristic timescale...

  16. 3,2-HOPO Complexes of Near-Infra-Red (NIR) Emitting Lanthanides: Sensitization of Ho(III) and Pr(III) in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan G.; Szigethy, Geza; Xu, Jide; Palsson, Lars-Olof; Beeby, Andrew; Raymond, Kenneth N.

    2008-05-19

    There is a growing interest in Near Infra-Red (NIR) emission originating from organic complexes of Ln{sup III} cations. As a major impetus, biological tissues are considerably more transparent at these low energy wavelengths when compared to visible radiation, which facilitates deeper penetration of incident and emitted light. Furthermore, the long luminescence lifetimes of Ln{sup III} complexes (eg. Yb{sup III}, {tau}{sub rad} {approx} 1 ms) when compared to typical organic molecules can be utilized to vastly improve signal to noise ratios by employing time-gating techniques. While the improved quantum yield of Yb{sub III} complexes when compared to other NIR emitters favors their use for bioimaging applications, there has also been significant interest in the sensitized emission from other 4f metals such as Ln = Nd, Ho, Pr and Er which have well recognized applications as solid state laser materials (eg. Nd {approx} 1.06 {micro}m, Ho {approx} 2.09 {micro}m), and in telecommunications (eg. Er {approx} 1.54 {micro}m) where they can be used for amplification of optical signals. As a result of their weak (Laporte forbidden) f-f absorptions, the direct excitation of Ln{sup III} cations is inefficient, and sensitization of the metal emission is more effectively achieved using the so-called antenna effect. We have previously examined the properties of several Eu{sup III} complexes which feature 1-hydroxypyridin-2-one (Fig. 1) as the light harvesting chromophore. While the 1,2-HOPO isomer was found to strongly sensitize Eu{sup III}, we noted the analogous Me-3,2-HOPO isomer does not, which prompted further investigation of the properties of this chromophore with other metals.

  17. Rare earth(III) complexes for the development of new magnetic and luminescent probes; Complexes de lanthanides(III) pour le developpement de nouvelles sondes magnetiques et luminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Nonat, A

    2007-10-15

    The simultaneous optimisation of the molecular parameters determining the relaxivity (number of coordinated water molecules, water-exchange, rotation dynamics of the whole complex, electronic relaxation, Gd(III)-proton distance) is essential to prepare efficient contrast agents. The aim of this work is on the one hand to design and study complexes with a high number of bound water molecules and to understand the influence of the coordination sphere on the stability and on the electronic relaxation and on the other hand, to use the ligand as a chromophore for the development of luminescent probes for biomedical imaging. We present the structure, the stability and the relaxivity of Gd(III) complexes of two series of tripodal ligands containing picolinate units based either on the 1,4,7-tri-aza-cyclononane ring or on a tertiary amine. These complexes show high relaxivity in water and in serum and can establish a non covalent interaction with serum albumin. The interpretation of the water proton relaxivity with the help of new relaxometric methods based on an auxiliary probe solute has allowed us to show that both the presence of the picolinate groups and the 1,4,7-tri-aza-cyclononane framework can lead to Gd(III) complexes with favourable electronic relaxation properties. This ligands have also been used for Eu(III) and Tb(III) complexation leading to strong luminescence in visible light. Other complexes derived from 8-hydroxyquinoline unit which display a very high luminescence in infrared are also studied. (author)

  18. Lanthanide-Potassium Biphenyl-3,3'-disulfonyl-4,4'-dicarboxylate Frameworks: Gas Sorption, Proton Conductivity, and Luminescent Sensing of Metal Ions.

    Science.gov (United States)

    Zhou, Li-Juan; Deng, Wei-Hua; Wang, Yu-Ling; Xu, Gang; Yin, Shun-Gao; Liu, Qing-Yan

    2016-06-20

    A novel sulfonate-carboxylate ligand of biphenyl-3,3'-disulfonyl-4,4'-dicarboxylic acid (H4-BPDSDC) and its lanthanide-organic frameworks {[LnK(BPDSDC)(DMF)(H2O)]·x(solvent)}n (JXNU-2, where JXNU denotes Jiangxi Normal University, DMF indicates dimethylformamide, and Ln = Sm(3+), Eu(3+), and Pr(3+)) were synthesized and structurally characterized. The three isomorphous lanthanide compounds feature three-dimensional frameworks constructed from one-dimensional (1D) rod-shaped heterometallic Ln-K secondary building units and are an illustration of a Kagome-like lattice with large 1D hexagonal channels and small 1D trigonal channels. The porous material of the representive JXNU-2(Sm) has an affinity to quadrupolar molecules such as CO2 and C2H2. In addition, the JXNU-2(Sm) compound exhibits humidity- and temperature-dependent proton conductivity with a large value of 1.11 × 10(-3) S cm(-1) at 80 °C and 98% relative humidity. The hydrophilic sulfonate group on the surface of channels facilitates enrichment of the solvate water molecules in the channels, which enhances the proton conductivity of this material. Moreover, the JXNU-2(Eu) material with the characteristic bright red color shows the potential for recognition of K(+) and Fe(3+) ions. The enhancing Eu(3+) luminescence with the K(+) ion and quenching Eu(3+) luminescence with the Fe(3+) ion can be associated with the functional groups of the organic ligand.

  19. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2017-01-31

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  20. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    Science.gov (United States)

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2013-10-15

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  1. Lanthanide amidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films.

    Science.gov (United States)

    Edelmann, Frank T

    2009-08-01

    For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type [RC(NR')(2)](-) (R = H, alkyl, aryl; R' = alkyl, cycloalkyl, aryl, SiMe(3)) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type [R(2)NC(NR')(2)](-) (R = alkyl, SiMe(3); R' = alkyl, cycloalkyl, aryl, SiMe(3)). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts e.g. for ring-opening polymerization reactions. Moreover, certain alkyl-substituted lanthanide tris(amidinates) and tris(guanidinates) were found to be highly volatile and could thus be promising precursors for ALD (= Atomic Layer Deposition) and MOCVD (= Metal-Organic Chemical Vapor Deposition) processes in materials science and nanotechnology. This tutorial review covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts as well as ALD and MOCVD precursors.

  2. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

  3. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin

    Directory of Open Access Journals (Sweden)

    R. Aravindhan

    2014-12-01

    Full Text Available The present study emphasizes synthesis and bioprofiling of embelin, embelin-metal (EM and embelin-azo-metal (EAM complexes in detail. EM complexes were prepared using pure embelin and d-block transition elements, namely Mn, Fe, Co, Ni, Cu, and Zn. Similarly, EAM complexes were synthesized using phenyl azo-embelin with the said transition metals. Embelin, EM, and EAM complexes were subjected to ultra violet visible spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, electrospray ionization mass spectrometry, thermogravimetric analysis, carbon hydrogen nitrogen sulfur analysis. With regard to bioprofiling, the test complexes were studied for the antioxidant and antimicrobial activities. Results revealed that the prepared EM and EAM complexes form octahedral complexes with embelin with the yield in the range of 45–75%. All the instrumental analyses authenticate the interaction of metals with bidentate embelin through its enolic and quinonic oxygen atoms as [M(Emb2(H2O2]H2O and [M(Emb-Azo2(H2O2]. The antioxidant profile studies suggested that upon complexation with metals, the free radical scavenging activity of embelin reduced significantly. But, with regard to antimicrobial activity, cobalt and nickel embelin complexes displayed>80% growth inhibition in comparison with embelin alone. The hemolytic activity studies suggested that both embelin and the metal complexes are non-hemolytic. The reason for the reduction in antioxidant and an increase in antimicrobial activities were discussed in detail.

  4. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Phillip Thomas [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The divalent lanthanide complex, (Me5C5)2Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me5C5)2YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me5C5)2YbCH(SiMe3)2, displays similar chemistry to (Me5C5)2YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me5C5)3YbCH(SiMe5)2. Copper and silver halide salts react with (Me5C5)2V to produce the trivalent halide derivatives, (Me5C5)2VX (X + F, Cl, Br, I). The chloride complex, (Me5C5)2VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me5C5)2V producing the vanadium-oxo complex, (Me5Ce5)2VO. The trivalent titanium species, (Me5C5)2TiX (X = Cl, Br, Me, BH4), form bimetallic coordination complexes with (Me5C5)2Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  5. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, P.T.

    1991-11-01

    The divalent lanthanide complex, (Me{sub 5}C{sub 5}){sub 2}Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me{sub 5}C{sub 5}){sub 2}YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}, displays similar chemistry to (Me{sub 5}C{sub 5}){sub 2}YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}. Copper and silver halide salts react with (Me{sub 5}C{sub 5}){sub 2}V to produce the trivalent halide derivatives, (Me{sub 5}C{sub 5}){sub 2}VX (X + F, Cl, Br, I). The chloride complex, (Me{sub 5}C{sub 5}){sub 2}VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me{sub 5}C{sub 5}){sub 2}V producing the vanadium-oxo complex, (Me{sub 5}Ce{sub 5}){sub 2}VO. The trivalent titanium species, (Me{sub 5}C{sub 5}){sub 2}TiX (X = Cl, Br, Me, BH{sub 4}), form bimetallic coordination complexes with (Me{sub 5}C{sub 5}){sub 2}Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  6. The path for metal complexes to a DNA target.

    Science.gov (United States)

    Komor, Alexis C; Barton, Jacqueline K

    2013-05-01

    The discovery of cisplatin as a therapeutic agent stimulated a new era in the application of transition metal complexes for therapeutic design. Here we describe recent results on a variety of transition metal complexes targeted to DNA to illustrate many of the issues involved in new therapeutic design. We describe first structural studies of complexes bound covalently and non-covalently to DNA to identify potential lesions within the cell. We then review the biological fates of these complexes, illustrating the key elements in obtaining potent activity, the importance of uptake and subcellular localization of the complexes, as well as the techniques used to delineate these characteristics. Genomic DNA provides a challenging but valuable target for new transition metal-based therapeutics.

  7. Two-dimensional networks of lanthanide cubane-shaped dumbbells.

    Science.gov (United States)

    Savard, Didier; Lin, Po-Heng; Burchell, Tara J; Korobkov, Ilia; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2009-12-21

    The syntheses, structures, and magnetic properties are reported for three new lanthanide complexes, [Ln(III)(4)(mu(3)-OH)(2)(mu(3)-O)(2)(cpt)(6)(MeOH)(6)(H(2)O)](2) (Ln = Dy (1.15MeOH), Ho (2.14MeOH), and Tb (3.18MeOH)), based on 4-(4-carboxyphenyl)-1,2,4-triazole ligand (Hcpt). The three complexes were confirmed to be isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. The crystal structure of 1 reveals that the eight-coordinate metal centers are organized in two cubane-shaped moieties composed of four Dy(III) ions each. All metal centers in the cubane core are bridged by two mu(3)-oxide and two mu(3)-hydroxide asymmetrical units. Moreover, each cubane is linked to its neighbor by two externally coordinating ligands, forming the dumbbell {Dy(III)(4)}(2) moiety. Electrostatic interactions between the ligands of the triazole-bridged dimers form an extended supramolecular two-dimensional arrangement analogous to a metal-organic framework with quadrilateral spaces occupied by ligands from axial sheets and by four solvent molecules. The magnetic properties of the three compounds have been investigated using dc and ac susceptibility measurements. For 1, the static and dynamic data corroborate the fact that the {Dy(III)(4)} cubane-shaped core exhibits slow relaxation of its magnetization below 5 K associated with a single-molecule magnet behavior.

  8. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding.

    Science.gov (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen

    2012-10-07

    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  9. Coordination Complexes of Decamethylytterbocene with4,4'-Disubstituted Bipyridines: An Experimental Study of Spin Coupling inLanthanide Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2005-12-08

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Ybwith a series of 4,4'-disubstituted bipyridines, bipy-X, where X is Me,tert-Bu, OMe, Ph, CO2Me, and CO2Et have been prepared. All of thecomplexes are paramagnetic and the values of the magnetic susceptibilityas a function of temperature show that these values are less thanexpected for the cation, [(C5Me5)2Yb(III)(bipy-X)]+, which have beenisolated as the cation-anion ion-pairs[(C5Me5)2Yb(III)(bipy-X)]+[(C5Me5)2YbI2]f fnfn where X is CO2Et, OMe andMe. The 1H NMR chemical shifts (293 K) for the methine resonances locatedat the 6,6' site in the bipy-X ring show a linear relationship with thevalues of chiT (300 K) for the neutral complexes which illustrates thatthe molecular behavior does not depend upon the phase with one exception,viz., (C5Me5)2Yb(bipy-Me). Single crystals of the 4,4'-dimethylbipyridinecomplex undergo an irreversible, abrupt first order phase change at 228 Kthat shatters the single crystals. The magnetic susceptibility,represented in a delta vs. T plot, on this complex, in polycrystallineform undergoes reversible abrupt changes in the temperature regime 205 -212 K, which is suggested to be due to the way the individual molec ularunits pack in the unit cell. A qualitative model is proposed thataccounts for the sub-normal magnetic moments in theseytterbocene-bipyridine complexes.

  10. Microstructure of N—Picolylpolyurethane Transition Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Qun-DongShen; Tian-DouHu; 等

    1999-01-01

    Spectroscopic methods are used to investigate coordination structure of N-picolylpolyurethane transition metal complexes(PUPYM,M=Co2+ and Ni2+) .Geometrical arrangement of ligands in first-shell coordination sphere of metal ions is postulated to be tetrahedral CoL2Cl2 and octahedral NiL2-Cl2Z2.where L is the picolyl group and Z is a hydrate.From extended X-ray absorption fine structure (EXAFS) analysis,bond lengths for metal-chlorine and metal-ligand of PUPYM are similar to those of small molecular weight transition metal complexes.A two-phase model of PUPYM which best describes the experimental data of DMTA and SAXS.is proposed.One microphase is the hard domain of self segregated haed segments brought about by metal-ligand interaction.and the other phase is the matrix of soft segments.Transition metal ion-ligand moieties and their interactions dominate the macroscopic thermal behavior of PUPYM.The ligand field stabilization energy difference(ΔLFSE) between mteal d-electrons in complexes with two picolyl ligands in the coordination sphere of metal ions and complexes maintaining one picolyl ligand as coordination pendent group is calculated on the basis of observed coordination structure,and it represents the energy supplied to split coordination cross-links.ΔLFSE of polyurethane nickel(II) complex is larger than that of the cobalt(II) complex,Since the mobility of hard segments is in inverse proportion to the strength of coordination cross-links.a higher α-transition temperature of PUPYNi2+ with respect to PUPYCo2+ is found as expected.

  11. A new metalation complex for organic synthesis and polymerization reactions

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  12. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  13. Lanthanide-halide based humidity indicators

    Science.gov (United States)

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  14. Transition metal complexes with Girard reagents and their hydrazones

    Directory of Open Access Journals (Sweden)

    Vojinović-Ješić Ljiljana S.

    2012-01-01

    Full Text Available This is the first review dealing with the coordination chemistry of metal complexes with Girard's reagents and their hydrazones. The short introduction points out to chemical properties and significance of these organic compounds. The next section briefly describes synthetic methods for preparing complexes with Girard's reagents, as well as modes of coordination of these ligands. The last two extensive sections review the preparation, stereochemistry and structural characteristics of metal complexes with Girard's hydrazones, including some newer non-hydrazonic derivatives of Girard's reagents, also.[Acknowledgments. Projekat Ministarstva nauke Republike Srbije, br. 172014

  15. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  16. New lanthanide complexes for sensitized visible and near-IR light emission: synthesis, 1H NMR, and X-ray structural investigation and photophysical properties.

    Science.gov (United States)

    Quici, Silvio; Marzanni, Giovanni; Forni, Alessandra; Accorsi, Gianluca; Barigelletti, Francesco

    2004-02-23

    We describe the syntheses, the 1H NMR studies in CD3OD and D2O as solvent, the X-ray characterization, and the luminescence properties in D2O solution of the two complexes Eu.1 and Er.1, where 1 is a dipartite ligand that includes (i) a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) unit serving as hosting site for the metal center; and (ii) a phenanthroline unit which plays the role of light antenna for the sensitization process of the metal centered luminescence. In a previous report (Inorg. Chem. 2002, 41, 2777), we have shown that for Eu.1 there are no water molecules within the first coordination sphere. X-ray and 1H NMR results reported here are consistent with full saturation of the nine coordination sites within the Eu.1 and Er.1 complexes. In addition, these studies provide important details regarding the conformations, square antiprism (SAP) and twisted square antiprism (TSAP), adopted in solution by these complexes. The luminescence results are consistent with both an effective intersystem crossing (ISC) at the light absorbing phenanthroline unit (lambda(exc) = 278 nm) and an effective energy transfer (en) process from the phenanthroline donor to the cation acceptor (with unit or close to unit efficiency for both steps). In D2O solvent, the overall sensitization efficiency, phi(se), is 0.3 and 5 x 10(-6), for Eu.1 (main luminescence peaks at 585, 612, 699 nm) and Er.1 (luminescence peak at 1530 nm), respectively. The photophysical properties of both complexes are discussed with reference to their structural features as elucidated by the obtained 1H NMR and X-ray results.

  17. Metal plasmon enhanced europium complex luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Aldea, Gabriela [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Petru Poni Institute of Macromolecular Chemistry Iasi, Aleea Grigore Ghica Voda 41A, 700487 Iasi (Romania); Nunzi, Jean-Michel, E-mail: nunzijm@queensu.c [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada)

    2010-01-15

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod){sub 3}) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  18. Photodissociation Studies of Metal-Containing Clusters and Complexes

    Science.gov (United States)

    Pilgrim, Jeffrey Scott

    1995-01-01

    There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met

  19. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  20. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  1. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    GUIFANG YAN; YUFENG HE; GANG LI; YUBING XIONG; PENGFEI SONG; RONG-MIN WANG

    2016-11-01

    Superoxide anion radical (O•−₂ ) is a noxious reactive oxygen species (ROS). Transition metal ion complexes have been generally used as antioxidants to eliminate ROS. In this work, a neoteric watersoluble biopolymer metal complex (BSA-M) was prepared by conjugating the soluble biopolymer bovineserum albumin (BSA) with three transition metal ions (M, M=Cu, Co, Mn). The binding mode and ratio of metal ions bound to albumin were investigated. The BSA-M complexes were characterized by UV-Vis, circular dichroism (CD) spectra and polyacrylamide gel electrophoresis (PAGE). BSA served as polymerscaffold and the metal complex functioned as the catalytic active center. The results demonstrated that the structure of BSA remained unchanged when the binding ratio of transition metal ion complex to BSA was 5:1. Furthermore, the scavenging superoxide anion free radical (O•−₂ ) activity of biopolymer-metal complexes were determined by nitroblue tetrazolium light reduction assay method. The antioxidant capacity of BSA-M has markedly increased. The conjugated BSA-M (M=Cu, Mn) showed preeminent scavenging activity for O•−₂ , and the EC₅₀ value of the BSA-Cu was 0.038±0.0013μmol·L⁻¹, which is comparable to EC₅₀ value (0.041±0.001μmol·L⁻¹) of the natural superoxide dismutase (SOD), the analog quantity reached 107%. As a consequence, it can be considered as a bio-functional mimic of enzyme SOD and has a promising application prospect in antioxidant drug field.

  2. Electric relaxation processes in chemodynamics of aqueous metal complexes: From simple ligands to soft nanoparticulate complexants

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Buffle, J.; Town, R.M.

    2012-01-01

    The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process.

  3. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates.

  4. Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian, E-mail: jiadingxian@suda.edu.cn

    2015-10-15

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connected into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}

  5. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shay, M.A.

    1989-01-01

    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  6. Metal Complexes of EDTA: An Exercise in Data Interpretation

    Science.gov (United States)

    Mitchell, Philip C. H.

    1997-10-01

    Stability constants of metal complexes of edta with main group and transition metals are correlated with properties of the elements and cations (ion charge, atomic and ionic radii, ionization energies and electronegativities) and interpreted with an ionic bonding model including a covalent contribution. Enthalpy and entropy contributions are discussed. It is shown how chemists recognize patterns in data with the help of a general theory and so develop a model.

  7. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  8. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts.

  9. Structure and Bonding in Some Gd(Ⅲ) Metal Complexes Studied by Three-Dimensional X-Ray Analysis and 155Gd M(o)ssbauer Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique.The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, 155Gd, and 237Np M(o)ssbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds.In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3·2H2O (pta=1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione) and Gd(bfa)3·2H2O (bfa=1, 1, 1-trifluoro-4-phenyl-2-4-butanedione) were reported.Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3·2H2O crystallizes in the P 21/ n (#14) monoclinic space group and its lattice parameters are a =1.4141(6) nm, b =1.0708(3) nm, c =2.2344(4) nm, β=95.24(2)°, and Gd(bfa)3·2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a=1.322(1) nm, b =2.295(1) nm, c =1.0786(8) nm.In the meantime, the authors had finished a systematic investigation on the 155Gd M(o)ssbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen.A tendency for the δ value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed.This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the ligands donating electrons to 6s, 5d, and 4f orbitals of Gd.

  10. Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents.

    Science.gov (United States)

    Peacock, Anna F A; Sadler, Peter J

    2008-11-13

    The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon-bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure-activity relationships and elucidation of the speciation of complexes under conditions relevant to drug testing and formulation are crucial for the further development of promising medicinal applications of organometallic complexes. Specific examples involving the design of ruthenium and osmium arene complexes as anticancer agents are discussed.

  11. New Opportunities for Lanthanide Luminescence

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude G. Bünzli; Steve Comby; Anne-Sophie Chauvin; Caroline D. B. Vandevyver

    2007-01-01

    Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the

  12. Tailoring optical complex fields with nano-metallic surfaces

    Directory of Open Access Journals (Sweden)

    Rui Guanghao

    2015-04-01

    Full Text Available Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics in the optical far field will be presented. Nano-metallic surfaces are also proven to be very effective for receiving and detection of complex optical fields in the near field. Advances made in this nascent field may enable the design of novel photonic devices and systems for a variety of applications such as quantum optical information processing and integrated photonic circuits.

  13. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  14. Bioactivities of Novel Metal Complexes Involving B Vitamins and Glycine

    Directory of Open Access Journals (Sweden)

    Fazary Ahmed E.

    2016-01-01

    Full Text Available In this work twelve novel mixed ligand complexes were synthesized. The complexes were formed between a metal ion (Cu(II, Cd(II, Mn(II, Fe(III, Ni(II, Pb(II and vitamins (B 3 and B 9 as primary ligands, and glycine as secondary ligand. Melting points, conductivities, and magnetic susceptibilities of the synthesized complexes were determined and the complexes were subjected to elemental analyses. The presence of coordination water molecules in the complex was also supported by TG/DTG thermal analysis. Full elucidation of the molecular structures for the synthesized mixed ligand complexes were confirmed using detailed spectroscopic IR, 1H-, 13C-NMR, and XRD techniques. In addition, cytotoxic and antioxidant activities of the twelve synthesized solid complexes were tested to evaluate their bioactivities.

  15. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    Science.gov (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  16. Syntheses of methylcyclopentadienyl derivatives of lanthanides (Ln = La-Nd) and crystal structures of [(THF){sub 2}Li({mu}-Cl){sub 2}]{sub 2}[MeCpNd(THF)] and [Li(DME){sub 3}][MeCpLa(NPh{sub 2}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jingwen Guan; Songchun Jin; Yonghua Lin; Ai Shen [Changchun Institute of Applied Chemistry, Changchun (China)

    1992-07-01

    Organolanthanide chemistry has undergone rapid growth in recent years. However, much of the work has been concentrated on the smaller and later lanthanide elements. Because of the lanthanide constriction effect and coordinative unsaturation, the important precursor lanthanide cyclopentadienyl and smaller substituted cyclopentadienyl chlorides of the early lanthanides have not been easily synthesized. Now it has been found that some approaches can be used to prepare such kinds of complexes for early lanthanides. 18 refs., 2 figs., 5 tabs.

  17. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.

    Science.gov (United States)

    Aravena, Daniel; Atanasov, Mihail; Neese, Frank

    2016-05-01

    Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the

  18. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  19. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  20. Metal Complexes as Color Indicators for Solvent Parameters.

    Science.gov (United States)

    Soukup, Rudolf W.; Schmid, Roland

    1985-01-01

    Although indicators are omnipresent tools in aqueous chemistry, they have not been used extensively to assign solvent properties in nonaqueous systems. Therefore, recent research into a system of metal complexes that can be used to assign donor and acceptor numbers to nonaqueous solvents is summarized. Pertinent experiments are also described. (JN)

  1. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    analysis, molar conductance, magnetic susceptibility, infrared and electronic ... stops at the first step, the metal ion forming a highly stable colored complex with the ..... *Intensities in parenthesis: b-broad, vs-very strong, s-strong, m-medium, ...

  2. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(III) nitrates: structural, spectroscopic and DFT characterization of the complexes.

    Science.gov (United States)

    Matveeva, Anna G; Vologzhanina, Anna V; Goryunov, Evgenii I; Aysin, Rinat R; Pasechnik, Margarita P; Matveev, Sergey V; Godovikov, Ivan A; Safiulina, Alfiya M; Brel, Valery K

    2016-03-28

    Hybrid scorpionate ligand (OPPh2)2CHCH2C(O)Me (L) was synthesized and characterized by spectroscopic methods and X-ray diffraction. The selected coordination chemistry of L with UO2(NO3)2 and Ln(NO3)3 (Ln = La, Nd, Lu) has been evaluated. The isolated mono- and binuclear complexes, namely, [UO2(NO3)2L] (1), [{UO2(NO3)L}2(μ2-O2)]·EtOH (2), [La(NO3)3L2]·2.33MeCN (3), [Nd(NO3)3L2]·3MeCN (4), [Nd(NO3)2L2]+·(NO3)−·EtOH (5) and [Lu(NO3)3L2] (6) have been characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray structures have been determined for complexes 1-5. Intramolecular intraligand π-stacking interactions between two phenyl fragments of the coordinated ligand(s) were observed in all complexes 1-5. The