WorldWideScience

Sample records for lakes addition managing

  1. Managing ecosystems without prior knowledge: pathological outcomes of lake liming

    Directory of Open Access Journals (Sweden)

    David G. Angeler

    2017-12-01

    Full Text Available Management actions often need to be taken in the absence of ecological information to mitigate the impact of pressing environmental problems. Managers counteracted the detrimental effects of cultural acidification on aquatic ecosystems during the industrial era using liming to salvage biodiversity and ecosystem services. However, historical contingencies, i.e., whether lakes were naturally acidic or degraded because of acidification, were largely unknown and therefore not accounted for in management. It is uncertain whether liming outcomes had a potentially detrimental effect on naturally acidic lakes. Evidence from paleolimnological reconstructions allowed us to analyze community structure in limed acidified and naturally acidic lakes, and acidified and circumneutral references. We analyzed community structure of phytoplankton, zooplankton, macroinvertebrates (littoral, sublittoral, profundal, and fish between 2000 and 2004. Naturally acidic limed lakes formed communities that were not representative of the other lake types. The occurrence of fish species relevant for ecosystem service provisioning (fisheries potential in naturally acidic limed lakes were confounded by biogeographical factors. In addition, sustained changes in water quality were conducive to harmful algal blooms. This highlights a pathological outcome of liming lakes when their naturally acidic conditions are not accounted for. Because liming is an important social-ecological system, sustained ecological change of lakes might incur undesired costs for societies in the long term.

  2. The Managed Recession of Lake Okeechobee, Florida: Integrating Science and Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Alan Steinman

    2002-12-01

    Full Text Available Resource management decisions often are based on a combination of scientific and political factors. The interaction of science and politics is not always apparent, which makes the decision-making process appear arbitrary at times. In this paper, we present a case study involving Lake Okeechobee, a key environmental resource in South Florida, USA, to illustrate the role that science played in a high-profile, highly contentious natural resource management decision. At issue was whether or not to lower the water level of Lake Okeechobee. Although scientists believed that a managed recession (drawdown of water level would benefit the lake ecosystem, risks were present because of possible future water shortages and potential environmental impacts to downstream ecosystems receiving large volumes of nutrient-rich fresh water. Stakeholders were polarized: the agriculture and utility industries favored higher water levels in the lake; recreation users and businesses in the estuaries wanted no or minimal discharge from the lake, regardless of water level; and recreation users and businesses around the lake wanted lower water levels to improve the fishery. Jurisdictional authority in the region allowed the Governing Board of the South Florida Water Management District to take emergency action, if so warranted. Based on information presented by staff scientists, an aggressive plan to release water was approved in April 2000 and releases began immediately. From a hydrological perspective, the managed recession was a success. Lake levels were lowered within the targeted time frame. In addition, water quality conditions improved throughout the lake following the releases, and submerged plants displayed a dramatic recovery. The short-term nature of the releases had no lasting negative impacts on downstream ecosystems. Severe drought conditions developed in the region during and following the recession, however. Severe water use restrictions were implemented for

  3. Integrated Co-management of Lakes through Beach Management Units

    OpenAIRE

    Goverment of Uganda; Department for International Development (DFID) of the UK Government

    2007-01-01

    Metadata only record In 1999, the Integrated Co-management of Lakes through Beach Management Units project was started in an effort to implement a new approach to the management of lake resources in Uganda. The main components of this plan involved decentralization, local community management, and improving the livelihood of the poor. In order to finance the management of these areas, the Beach Management Units (BMU's) are charging user fees to those individuals who obtain benefit from the...

  4. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    Science.gov (United States)

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  5. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  6. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  7. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  8. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  9. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    Science.gov (United States)

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  10. An ecohydrological-based management of Lake Beratan in Bedugul, Bali

    Science.gov (United States)

    Atmaja, D. M.; Budiastuti, M. S.; Setyono, P.; Sunarto

    2018-04-01

    Lake Beratan is one of waterway ecosystems located in the upper land of Bedugul, Bali and has become a tourist object which is visited by many foreign as well as domestic tourists. This is supported by a sufficiently high economic growth which, without the community’s being aware of, has caused environmental problems such as the shallowing of the lake, erosion, and water pollution to such an extent that have resulted in the degradation of the function of the lake as the site of catchment. The degradation of the function of the lake can be overcome by ecohydrological-based management. This study was aimed at developing an integrated and long lasting Lake Beratan environment management concept. The study used a descriptive qualitative approach using a survey, by collecting primary and secondary data. On the basis of those data the mapping of the potentials of the lake and problems of the lake which were then integrated to formulate criteria for sustainable use of Lake Beratan waters environment resources. The determination of zonation of the lake was done based on those criteria and the community’s existence consideration as well as the exising system of the lake waterway environment use. Based on the study in the field, some recommendations could be made concerning Lake Beratan waterway sustainable and integrated management.

  11. Water quality management in Lake Kinneret (Israel: hydrological and food web perspectives

    Directory of Open Access Journals (Sweden)

    Moshe GOPHEN

    2003-09-01

    Full Text Available Long term (1969-2001 data record of nutrient and plankton temporal distribution, and hydrological parameters in Lake Kinneret, combined with metabolic parameters of zooplankton, which were experimentally measured, were statistically (ANOVA analyzed. Trophic relations between food web compartments were quantitatively considered to evaluate directional combination of ecological forces. Monthly data of inflow discharges, and lake volume were used to calculate residence time values and the data were incorporated into the ecological analysis. The seasonal fluctuations of the hydrological parameters, nutrients, and plankton inventories represent typical subtropical climate conditions: high level in winter and low in summer months. It was found that nitrogen inventories in the lake declined and the biomass of grazable phytoplankton was enhanced since early 1980’s. Dissolved phosphorus was decreased mostly in summer months when the lake is nutrient limited, as a result of phytoplankton uptake. Zooplankton was declined until 1993 and increased later. Zooplankton preferably feed on chlorophytes and diatoms with supplemental resources of detritus, bacteria and protozoa. The most abundant zooplanktivorous fish, Lavnun (Bleak, Acanthobrama spp. populated the lake very densely during 1993-95 and biomanipulation management of subsidized fishery caused lowering of predation pressure resulted in zooplankton enhancement and suppression of additional primary produced matter. It is concluded that zooplankton in Lake Kinneret is not food limited and fishery management (Lavnun removal might be efficient to enhance zooplankton grazing capacity and algal suppression if phosphorus flux is reduced. Long term changes of nano-phytoplankton are affected by both phosphorus availability and zooplankton grazing and fish predation has a significant impact on zooplankton density. Fishery management aimed at algal suppression might be efficient if phosphorus supply is reduced

  12. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  13. Managing A Lake/Aquifer System-Science, Policy, and the Public Interest

    Science.gov (United States)

    Shaver, R. B.

    2009-12-01

    Lake Isabel is a small (312 ha) natural lake located in central North Dakota in the glaciated Missouri Coteau. The average lake depth is about 1.8 m with a maximum depth of about 3.6 to 4.6 m. The lake overlies the Central Dakota aquifer complex which is comprised of three sand and gravel aquifer units that are either directly or indirectly (through leakage) hydraulically connected to the lake. The aquifer is a major water source for center pivot irrigation. During the 2001-2008 drought, lower lake levels reduced lake recreation, including leaving many boat docks unusable. Lake homeowners attribute lake level decline to irrigation pumping and believe that irrigation should be curtailed. There is no water right associated with Lake Isabel because there are no constructed works associated with the lake. Therefore, under North Dakota statute the lake cannot be protected as a prior (senior) appropriator. The lake does have standing under the public interest as defined by North Dakota statute. Evaluation of the public interest involves the integration of both science and policy. Is it in the best interest of the people of the state to prohibit ground water withdrawals for irrigation to protect the lake? This is a policy decision, not a scientific decision. The basis of the policy decision should include an economic analysis of the irrigated crops, fish, wildlife, recreation, and lake property. In addition, priority of use and lake level history should be considered. The issue can likely be resolved without scientific controversy arising from hydrologic system uncertainty. If the decision is to protect the lake at some level, the issue becomes “scientized” and the following questions need to be answered: 1) Does irrigation pumping effect changes in lake levels? 2) Is our level of scientific understanding sufficient to determine what volume of irrigation pumping will cause what amount of lake level change? 3) Given aquifer lag time response to changes in pumping and

  14. The paleolimnological development of the twin lakes Etujärvi and Takajärvi in Askola, southern Finland – implications for lake management

    Directory of Open Access Journals (Sweden)

    Samu E. Valpola

    2006-01-01

    Full Text Available The twin lakes Etujärvi and Takajärvi in Askola, southern Finland, are closely interconnected mesotrophic headwater lakes with a relatively small catchment area. Both of the lakes have suffered from eutrophication and its consequences. Remediation activities such as oxygenation and biomanipulation have not resolved the problems. In this study a large set of paleolimnological techniques (radiometric AMS dating, spherical carbonaceous particles analysis, sediment lithology, grain-size analysis, phosphorus fractionation, and diatom analysis were applied to put together the development of the basin and its water level fluctuations during the Holocene. The age for observed Trapa natans -horizons was determined, and lake management options were discussed. The studied lakes dried up after isolation from the Ancylus Lake at about 9500 cal. B.P. and remained at very low water level until ca. 8700–8500 cal. B.P. The mid-Holocene risein water level resulted in fluctuating water levels, and led to the most recent rise starting about 2500 cal. B.P. as wet and cool climate conditions prevailed. The pronounced water level fluctuations led to the extensive growth of peat deposits surrounding the lake andprobably also forced T. natans to disappear from lake flora. The unstable, erodable peat rims impact the lakes, causing heavy load of humic substances to the lake and presenting additional deterioration to their recreational value.

  15. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  16. Trends in fishery management of the Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1970-01-01

    Some hope is returning for recovery of the fish stocks of the Great Lakes, which have been outstanding examples of abuse although they are the world's largest and most valuable freshwater fishery resource. The lakes and the fish in them have been under complete jurisdiction of sovereign nations and their subdivisions almost since the settlement of north-central North America, but ironically this control has not prevented their decadence. For the first time in the long history of the Great Lakes fishery, management measures have been taken to meliorate conditions that contributed to earlier difficulties.

  17. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    Science.gov (United States)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    mesotrophic conditions. The aquatic flora and fauna are limited to a few well adapted species. Therefore, the issue of hydrochemical constitution of the lakes' waters becomes more and more relevant. The prediction of water quality development in post mining lakes is a key requirement to regulate and manage the later hydrochemical conditions. Initially, this prediction was made by individual case studies for single lakes. By means of an iterative research process during the last years, hydrochemical lake models were developed as prediction tools, which allow a complex processing of interconnected post mining lakes and their integration in natural hydrography with respect to quantitative and qualitative evaluation. To counteract the poor water quality of mining lakes, flooding by surface water from neighbouring river basins, e.g. the river Neisse, shall support a quicker and thereby hydrochemically less damaging lake filling. However, this external flooding is only feasible under conditions of high runoff and therefore only as intermitted practice applicable. Additionally, technological measures of water treatment have to be applied to achieve the required effluent quality and to ensure the designated use. Regrettably, these technologies aren't commercially standard up to now and are not sustainable, while flooding or provides a huge amount itself of positive potential for hydrochemical stabilization. The river basin management of the rivers Spree and Schwarze Elster is attended by a common working group of the Federal States of Brandenburg and Berlin as well as the Free State of Saxony. The quantitative distribution of the regionally available water considers the potential use for drinking water supply, process water, …, and the flooding of open-pits. However, due to the formulated rank order, the flooding of the numerous mining open pits in Lusatia is on the last position. To guarantee a reliable flooding and a continuous water supply of the post mining lakes, additional

  18. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    Science.gov (United States)

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  19. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  20. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management

    DEFF Research Database (Denmark)

    Trolle, Dennis; Hamilton, David P.; Pilditch, Conrad A.

    2011-01-01

    To quantify the effects of a future climate on three morphologically different lakes that varied in trophic status from oligo-mesotrophic to highly eutrophic, we applied the one-dimensional lake ecosystem model DYRESM-CAEDYM to oligo-mesotrophic Lake Okareka, eutrophic Lake Rotoehu, both in the t....... Therefore, future climate effects should be taken into account in the long-term planning and implementation of lake management as strategies may need to be refined and adapted to preserve or improve the present-day lake water quality....

  1. Conservation implications of weed management of lake reservoirs ...

    African Journals Online (AJOL)

    Management of weeds around lake reservoirs is often implemented to reduce any possibility of siltation. However, machineries used in weed management have resulted in habitat degradation and geometrical multiplication of weeds by chopping rhizomes and scattering seeds. In general, the removal offers some feedbacks ...

  2. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  3. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  4. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Science.gov (United States)

    2012-10-16

    ..., consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and Finding of No Significant Impact for...

  5. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming

    Directory of Open Access Journals (Sweden)

    Marie-Elodie ePerga

    2015-07-01

    Full Text Available Varved lake sediments provide opportunities for high-resolution paleolimnological investigations that may extend monitoring surveys in order to target priority management actions under climate warming. This paper provides the synthesis of an international research program relying on >150 years-long, varved records for three managed perialpine lakes in Europe (Lakes Geneva, Annecy and Bourget. The dynamics of the dominant, local human pressures, as well as the ecological responses in the pelagic, benthic and littoral habitats were reconstructed using classical and newly developed paleo-proxies. Statistical modelling achieved the hierarchization of the drivers of their ecological trajectories. All three lakes underwent different levels of eutrophication in the first half of the XXth century, followed by re-oligotrophication. Climate warming came along with a 2°C increase in air temperature over the last century, to which lakes were unequally thermally vulnerable. Unsurprisingly, phosphorous concentration has been the dominant ecological driver over the last century. Yet, other human-influenced, local environmental drivers (fisheries management practices, river regulations have also significantly inflected ecological trajectories. Climate change has been impacting all habitats at rates that, in some cases, exceeded those of local factors. The amplitude and ecological responses to similar climate change varied between lakes, but, at least for pelagic habitats, rather depended on the intensity of local human pressures than on the thermal effect of climate change. Deep habitats yet showed higher sensitivity to climate change but substantial influence of river flows. As a consequence, adapted local management strategies, fully integrating nutrient inputs, fisheries management and hydrological regulations, may enable mitigating the deleterious consequences of ongoing climate change on these ecosystems.

  6. Best management practices guide for waterpower projects: lake sturgeon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    There are challenges and potential risks inherent in waterpower generation activities and this guide focuses on the fish species of lake sturgeon in Ontario and provides a synthesis of industry-wide knowledge and best available science indicators regarding hydropower impacts. This manual is written as guidance to proponents and practitioners but also to owners and operators, and provides them with tools and approaches to implement management strategies that will minimize potential impacts of waterpower generation installations on lake sturgeon and its habitat.

  7. Toward Integrated Resource Management: Lessons About the EcosystemApproach from the Laurentian Great Lakes

    Science.gov (United States)

    MACKENZIE

    1997-03-01

    / The ecosystem approach is an innovative tool for integratedresource management. Its goal is to restore, enhance, and protect ecosystemintegrity through a holistic and integrated mode of planning. Under thisapproach, the ecosystem itself becomes the unit of analysis and organizingprinciple for environmental management. Utilizing the ecosystem approachchallenges the prevailing structure and function of contemporary resourcemanagement agencies. This paper explores a number of important policy andmanagement issues in the context of a ten-year initiative to remediate theLaurentian Great Lakes using the ecosystem approach. The lessons gleaned fromthe Great Lakes experience are relevant to other areas in North America andabroad where resource management responsibilities are held by multiple andsometimes overlapping jurisdictions.KEY WORDS: Integrated resource management; Ecosystem approach; Watershedmanagement; Great Lakes

  8. Flood management of Dongting Lake after operation of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Xi-jun Lai

    2017-10-01

    Full Text Available Full operation of the Three Gorges Dam (TGD reduces flood risk of the middle and lower parts of the Yangtze River Basin. However, Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.

  9. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  10. Will the Oxygen-Phosphorus Paradigm Persist? - Expert Views of the Future of Management and Restoration of Eutrophic Lakes

    Science.gov (United States)

    Nygrén, Nina A.; Tapio, Petri; Horppila, Jukka

    2017-11-01

    In the age of climate change, the demand and lack of pure water challenges many communities. Substantial amount of effort is put in every year to manage and restore degraded lakes while the long-term effects of those efforts are only poorly known or monitored. Oxygenation, or aeration, is used extensively for the restoration of eutrophic lakes, although many studies question whether this process improves the status of the lakes in the long-term. The desired effect of oxygenation is based on paradigmatic theories that, in the light of recent literature, might not be adequate when long-term improvements are sought. This article canvasses expert views on the feasibility of the `oxygen-phosphorus paradigm' as well as the future of the management and restoration of eutrophic lakes, based on an international, two-rounded, expert panel survey (Delphi study), employing 200 freshwater experts from 33 nationalities, contacted at three conferences on the topic. The conclusion is that the oxygen-phosphorus paradigm seems to be rather persistent. The experts considered oxygenation to be a valid short-term lake restoration method, but not without harmful side-effects. In addition, experts' low level of trust in the adequacy of the scientific knowledge on the effects of restorations and in the use of the scientific knowledge as a basis of choice of restoration methods, could be signs of a paradigm shift towards an outlook emphasizing more effective catchment management over short-term restorations. The expert panel also anticipated that reducing external nutrient loads from both point and diffuse sources will succeed in the future.

  11. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  12. Optimal management of ecosystem services with pollution traps : The lake model revisited

    NARCIS (Netherlands)

    de Zeeuw, Aart; Grass, Dieter; Xepapadeas, Anastasios

    2017-01-01

    In this paper, optimal management of the lake model and common-property outcomes are reconsidered when the lake model is extended with the slowly changing variable. New optimal trajectories are found that were hidden in the simplified analysis. Furthermore, it is shown that two Nash equilibria may

  13. Landscape Sources, Ecological Effects, and Management of Nutrients in Lakes of Northeastern USA

    Science.gov (United States)

    Lakes face escalating pressures associated with land cover change and growing human populations. Ecological responses provide context for identifying stressor severity, land use impacts, and management effectiveness. We used EPA National Lakes Assessment data and GIS to develop i...

  14. Eutrophication of lakes and reservoirs: A framework for making management decisions

    Science.gov (United States)

    Rast, W.; Holland, M.

    1988-01-01

    The development of management strategies for the protection of environmental quality usually involves consideration both of technical and nontechnical issues. A logical, step-by-step framework for development of such strategies is provided. Its application to the control of cultured eutrophication of lakes and reservoirs illustrates its potential usefulness. From the perspective of the policymaker, the main consideration is that the eutrophication-related water quality of a lake or reservoir can be managed for given water uses. The approach presented here allows the rational assessment of relevant water-quality parameters and establishment of water-quality goals, consideration of social and other nontechnical issues, the possibilities of public involvement in the decision-making process, and a reasonable economic analysis within a management framework.

  15. The sterile-male-release technique in Great Lakes sea lamprey management

    Science.gov (United States)

    Twohey, Michael B.; Heinrich, John W.; Seelye, James G.; Fredricks, Kim T.; Bergstedt, Roger A.; Kaye, Cheryl A.; Scholefield, Ron J.; McDonald, Rodney B.; Christie, Gavin C.

    2003-01-01

    The implementation of a sterile-male-release technique from 1991 through 1999 and evaluation of its effectiveness in the Great Lakes sea lamprey (Petromyzon marinus) management program is reviewed. Male sea lampreys were injected with the chemosterilant bisazir (P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide) using a robotic device. Quality assurance testing indicated the device delivered a consistent and effective dose of bisazir. Viability of embryos in an untreated control group was 64% compared to 1% in a treatment group. A task force developed nine hypotheses to guide implementation and evaluation of the technique. An annual average of 26,000 male sea lampreys was harvested from as many as 17 Great Lakes tributaries for use in the technique. An annual average of 16,100 sterilized males was released into 33 tributaries of Lake Superior to achieve a theoretical 59% reduction in larval production during 1991 to 1996. The average number of sterile males released in the St. Marys River increased from 4,000 during 1991 to 1996 to 20,100 during 1997 to 1999. The theoretical reduc-stertion in reproduction when combined with trapping was 57% during 1991 to 1996 and 86% during 1997 to 1999. Evaluation studies demonstrated that sterilized males were competitive and reduced production of larvae in streams. Field studies and simulation models suggest reductions in reproduction will result in fewer recruits, but there is risk of periodic high recruitment events independent of sterile-male release. Strategies to reduce reproduction will be most reliable when low densities of reproducing females are achieved. Expansion of the technique is limited by access to additional males for sterilization. Sterile-male release and other alternative controls are important in delivering integrated pest management and in reducing reliance on pesticides.

  16. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    Science.gov (United States)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  17. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    Science.gov (United States)

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  18. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  19. Reservoir Management using seasonal forecasts in Lake Kariba and Lake Kahora Bassa: Initial results and plans

    CSIR Research Space (South Africa)

    Muchuru, S

    2012-06-01

    Full Text Available Seasonal forecasting as a tool to improve on reservoir management in Zimbabwe is presented. The focus of the talk is on predicting rainfall extremes over the Lake Kariba catchments. The forecast systems to do the predictions and the levels of skill...

  20. Water sediment, and nutrient budgets, and bathymetric survey of Old and New Gillespie Lakes, Macoupin County, Illinois, May 1996-April 1997; with a discussion of lake-management practices

    Science.gov (United States)

    Johnson, Gary P.

    1999-01-01

    The Gillespie Lakes system serves as a drinking water source for the town of Gillespie, Illinois, and is a major recreational focus for the area. As part of an investigation of a concern that the lakes are being adversely affected by excessive sediment and nutrient in flows, this report presents hydrologic, sediment, and nutrient budgets for Old Gillespie Lake and New Gillespie Lake, calculated by the U.S. Geological Survey with data collected during May 1996-April 1997 in cooperation with the Illinois Environmental Protection Agency and the city of Gillespie, Illinois. Bathymetric data also were collected in the two lakes to produce maps of the lake bed elevations. The influx of sediment, phosphorus, and nitrogen into Old Gillespie Lake during the study period was 4,063, 6.02, and 52.3 tons, respectively. Old Gillespie Lake retained 92 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for Old Gillespie Lake), 84 percent of the inflowing phosphorus, and 87 percent of the inflowing nitrogen. The influx of sediment, phosphorus, and nitrogen into New Gillespie Lake during the study period was 4,792, 7.56, and 64.3 tons, respectively. Old Gillespie Lake retained 95 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for New Gillespie Lake), 82 percent of the inflowing phosphorus, and 81 percent of the inflowing nitrogen. The loads per area of phosphorus and nitrogen to the Gillespie Lakes were 1.06 tons/mi2 and 9.26 tons/mi2, respectively. For row crops of corn and soybeans, the literature reports ranges of loads per area of phosphorus of 0.15 to 1.43 tons/mi2 and of nitrogen of 0.86 to 11.43 tons/mi2. Therefore, loads to the Gillespie Lakes are relatively high for the given cropping practices, and application of best management practices may substantially reduce the per area loads of these nutrients. Considering these loads and retention of sediment and nutrients, a

  1. Scoping Summary Report: Development of Lower Basin Shortage Guidelines and Coordinated Management Strategies for Lake Powell and Lake Mead, Particularly Under Low Reservoir Conditions

    OpenAIRE

    U.S. Department of the Interior, Bureau of Reclamation

    2006-01-01

    The Bureau of Reclamation (Reclamation) acting on behalf of the Secretary of the Department of the Interior (Secretary) proposes to take action to adopt specific Colorado River Lower Basin shortage guidelines and coordinated reservoir management strategies to address operations of Lake Powell and Lake Mead, particularly under low reservoir conditions. This proposed Action will provide a greater degree of certainty to all water users and managers in the Colorado River Basin by providing more d...

  2. Regional economic effects of current and proposed management alternatives for Sand Lake National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a Refuge and provide long range guidance and management direction to achieve Refuge purposes. Sand Lake National Wildlife Refuge (NWR), located 27 miles northeast of Aberdeen, South Dakota, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for Sand Lake NWR must contain an analysis of expected effects associated with current and proposed Refuge management strategies.

  3. Improving Multi-Objective Management of Water Quality Tipping Points: Revisiting the Classical Shallow Lake Problem

    Science.gov (United States)

    Quinn, J. D.; Reed, P. M.; Keller, K.

    2015-12-01

    Recent multi-objective extensions of the classical shallow lake problem are useful for exploring the conceptual and computational challenges that emerge when managing irreversible water quality tipping points. Building on this work, we explore a four objective version of the lake problem where a hypothetical town derives economic benefits from polluting a nearby lake, but at the risk of irreversibly tipping the lake into a permanently polluted state. The trophic state of the lake exhibits non-linear threshold dynamics; below some critical phosphorus (P) threshold it is healthy and oligotrophic, but above this threshold it is irreversibly eutrophic. The town must decide how much P to discharge each year, a decision complicated by uncertainty in the natural P inflow to the lake. The shallow lake problem provides a conceptually rich set of dynamics, low computational demands, and a high level of mathematical difficulty. These properties maximize its value for benchmarking the relative merits and limitations of emerging decision support frameworks, such as Direct Policy Search (DPS). Here, we explore the use of DPS as a formal means of developing robust environmental pollution control rules that effectively account for deeply uncertain system states and conflicting objectives. The DPS reformulation of the shallow lake problem shows promise in formalizing pollution control triggers and signposts, while dramatically reducing the computational complexity of the multi-objective pollution control problem. More broadly, the insights from the DPS variant of the shallow lake problem formulated in this study bridge emerging work related to socio-ecological systems management, tipping points, robust decision making, and robust control.

  4. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  5. Pesticides in the Lake Kinneret basin: a combined approach towards mircopollutant management

    Science.gov (United States)

    Gaßmann, M.; Friedler, E.; Dubwoski, Y.; Dinerman, E.; Olsson, O.; Bauer, M.

    2009-04-01

    concentration of the pesticides in Lake Kinneret (iv) and therefore the drinking water reservoir, a lake model is fed by the stream network model outputs. However, the most difficult part of the current risk management approach of water resources in the upper Jordan River basin is to produce reliable field data on the environmental fate of pesticides and to evaluate their impact on the local water supply. The introduced combined approach aims at providing useful information and arguments for the decision making process and supporting water managers in revision of management strategies and planning of new infrastructure projects.

  6. The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test

    International Nuclear Information System (INIS)

    Brugam, R.B.; Gastineau, J.; Ratcliff, E.

    1995-01-01

    Cylindrical polyethylene enclosures 3 m in length and 1 m in diameter reaching from the surface to the bottom were constructed in an acid (pH=3.1) lake on a coal surface mine in southern Illinois. Wheat straw was added to the enclosures to test the effects of dissimilatory sulfate reduction on water chemistry. Added straw increased sulfide concentrations, raised pH to 6.5, reduced O 2 and increased acid neutralizing capacity of the enclosed water columns when compared with a control enclosure and with the open lake. Generation of acid neutralizing capacity exceeded the standing stock of sulfide indicating that sulfide was removed either by precipitation of FeS or outgassing of H 2 S. The pH and acid neutralizing capacity within the enclosures eventually returned to the level of the surrounding lake because of water exchange around the enclosure walls. Our results show that additions of organic matter to acid surface mine lakes result in the generation of acid neutralizing capacity

  7. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    Science.gov (United States)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing

  8. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes.

    Science.gov (United States)

    Lürling, Miquel; Mackay, Eleanor; Reitzel, Kasper; Spears, Bryan M

    2016-06-15

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction. This is due to internal cycling of phosphorus (P). Geo-engineering, which we can here define as activities intervening with biogeochemical cycles to control eutrophication in inland waters, represents a promising approach, under appropriate conditions, to reduce P release from bed sediments and cyanobacteria accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing eutrophication is a system analysis that will reveal the main water and P flows and the biological structure of the waterbody. These site specific traits can be significant confounding factors dictating successful eutrophication management. Geo-engineering techniques, considered collectively, as part of a tool kit, may ensure successful management of eutrophication through a range of target effects. In addition, novel developments in modified zeolites offer simultaneous P and nitrogen control. To facilitate research and reduce the delay from concept to market a multi-national centre of excellence is required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  10. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  11. Application of theory and research in fishery management of the Laurentian Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1973-01-01

    The Great Lakes have a high potential for the conduct of research and useful application of research findings, but the history of the Great Lakes indicates that extensive research and intensive management have failed to prevent deterioration of the fisheries. At times the research was not done before a loss occurred, or did not provide the information needed to solve a problem, or was not interpreted to indicate a need for corrective action.

  12. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  13. The altered ecology of Lake Christina: A record of regime shifts, land-use change, and management from a temperate shallow lake

    International Nuclear Information System (INIS)

    Theissen, Kevin M.; Hobbs, William O.; Hobbs, Joy M. Ramstack; Zimmer, Kyle D.; Domine, Leah M.; Cotner, James B.; Sugita, Shinya

    2012-01-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3–4 times pre-settlement rates) and long-term trends in δ 13 C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ 15 N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ 13 C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts. -- Highlights: ► We explore the sediment geochemistry from Lake Christina's two distinct sub-basins. ► Our geochemical data show

  14. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  15. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    Science.gov (United States)

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  16. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  17. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  18. Real-estate lakes

    Science.gov (United States)

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    Since the dawn of civilization waterfront land has been an irresistible attraction to man. Throughout history he has sought out locations fronting on oceans, rivers, and lakes. Originally sought for proximity .to water supply and transportation, such locations are now sought more for their esthetic qualities and for recreation. Usable natural waterfront property is limited, however, and the more desirable sites in many of our urban areas have already been taken. The lack of available waterfront sites has led to the creation of many artificial bodies of water. The rapid suburbanization that has characterized urban growth in America since the end of World War II, together with increasing affluence and le-isure time, has created a ready market for waterfront property. Accordingly, lake-centered subdivisions and developments dot the suburban landscape in many of our major urban areas. Literally thousands of lakes surrounded by homes have materialized during this period of rapid growth. Recently, several "new town" communities have been planned around this lake-centered concept. A lake can be either an asset or a liaoility to a community. A clean, clear, attractively landscaped lake is a definite asset, whereas a weed-choked, foul-smelling mudhole is a distinct liability. The urban environment poses both problems and imaginative opportunities in the development of lakes. Creation of a lake causes changes in all aspects of the environment. Hydrologic systems and ecological patterns are usually most severely altered. The developer should be aware of the potential changes; it is not sufficient merely to build a dam across a stream or to dig a hole in the ground. Development of Gl a successful lake requires careful planning for site selection and design, followed by thorough and cc ntinual management. The purpose of this report is to describe the characteristics of real-estate lakes, to pinpoint potential pmblems, and to suggest possible planning and management guidelines

  19. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  20. Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate

    Science.gov (United States)

    Beutel, Marc W.; Horne, Alexander J.

    2018-03-01

    A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.

  1. Status and future of Lake Huron fish communities

    Science.gov (United States)

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  2. 76 FR 45311 - International Joint Commission Public Hearings on Binational Management of Lake of the Woods and...

    Science.gov (United States)

    2011-07-28

    ... DEPARTMENT OF STATE [Public Notice 7537] International Joint Commission Public Hearings on Binational Management of Lake of the Woods and Rainy River Watershed The International Joint Commission (IJC) will hold public hearings on the final report of its International Lake of the Woods and Rainy River...

  3. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  4. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  5. Measuring the Quality of the Lakeside Tourist Destinations: Case Study of Lake Palić and Lake Srebrno (Serbia

    Directory of Open Access Journals (Sweden)

    Jelica J. MARKOVIĆ

    2015-10-01

    Full Text Available The purpose of this study is to determine the dimensions of the lakeside tourist destinations quality through the cases of Lake Palić and Lake Srebrno (Serbia, by interviewing daily visitors and tourists and to determine which dimensions of quality have a crucial impact on the overall satisfaction of daily visitors and tourists. Various models have been developed to measure quality. In this paper, the quality is measured by the model that is appropriate for lakeside tourist destinations, developed by Ryan, Huimin, and Chon (2010. Five dimensions of quality were identified and named as: additional tourist infrastructure, lake water quality, natural environment, hospitality and cleanness of the place. The results showed that the measured quality model largely predicts overall satisfaction of daily visitors and tourists on the destination. The dimension lake water quality has the most effects on the overall satisfaction. Further research could use this research by adding some other quality dimensions into consideration (e.g. quality of service, situational conditions, destination management in examining the effect of destination’s quality on satisfaction of daily visitors and tourists. The research is important to managers of lakeside tourist destinations who tend to have highly satisfied guests and who work on promotion and improvement of destination quality.

  6. Long-term management impacts on carbon storage in Lake States forests

    Science.gov (United States)

    Matthew Powers; Randall Kolka; Brian Palik; Rachel McDonald; Martin. Jurgensen

    2011-01-01

    We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of...

  7. MINING LAKES OF THE AGHIREŞ AREA: GENESIS, EVOLUTION AND MORPHOMETRIC ASPECTS

    Directory of Open Access Journals (Sweden)

    V. MĂCICĂŞAN

    2012-03-01

    Full Text Available Mining lakes of the Aghireş area: Genesis, evolution and morphometric aspects. Mining activities are heavily influencing and destroying the landscape worldwide. In Aghireş mining perimeter, exploitation workings have led to extreme and irreversible environmental damages, especially regarding the geomorphologic and hydrological situation. After cessation of underground mining and initiation of quarry exploitation, certain mining galleries collapsed and were afterwards flooded by precipitation and re-ascending groundwater, leading to the formation of lacustrine units. Later, the abandoned quarries have undergone the same flooding process. In this paper, we report on the genesis, evolution and the current characteristics of these bodies of water, referred to as mining lakes. In addition, using the GIS technology, the morphometry of the mining lakes is presented in this paper. Due to their predominant current use, as for recreational purposes, the sustainable management of the mining lakes is an important ecological and socio-economical factor for the Aghireş area. For the majority of mining lakes, restoration measures may be necessary due to the demands of the European legislation as well as to the demands of a specific socio-economic use in the future (e.g. bathing lakes or fishing lakes. These aspects of investigation will constitute a prerequisite for effective environmental management and rehabilitation strategies.

  8. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  9. Expanding models of lake trophic state to predict cyanobacteria in lakes

    Science.gov (United States)

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chlor...

  10. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    Science.gov (United States)

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  11. Information support of territorial wildlife management of Lake Baikal and the surrounding areas (Russia)

    Science.gov (United States)

    Lesnykh, Svetlana

    2013-04-01

    The UNESCO World Heritage Committee inscribed Lake Baikal in the World Heritage List under all four natural criteria as the most outstanding example of a freshwater ecosystem. It is the oldest and deepest lake in the world, which is the main freshwater reserve surrounded by a system of protected areas that have high scientific and natural values. However, there is a conflict between three main interests within the territory: the preservation of the unique ecosystem of the lake and its surrounding areas, the need for regional economic development, and protection of interests of the population, living on the shores of Lake Baikal. Solutions to the current challenges are seen in the development of control mechanisms for the wildlife management to ensure sustainable development and conservation of lake and the surrounding regions. For development mechanisms of territorial management of the complex and valuable area it is necessary to analyze features of its functioning and self-control (adaptable possibilities), allowing ecosystems to maintain their unique properties under influence of various external factors: anthropogenic (emissions, waste water, streams of tourists) and natural (climate change) load. While determining the direction and usage intensity of the territory these possibilities and their limits should be considered. Also for development of management strategy it is necessary to consider the relation of people to land and water, types of wildlife management, ownership, rent, protection from the negative effects, and etc. The relation of people to the natural area gives a chance to prioritize the direction in the resource use and their protection. Results of the scientific researches (reaction of an ecosystem on influence of various factors and system of relations to wildlife management objects) are the basis for the nature protection laws in the field of wildlife management and environmental protection. The methodology of legal zoning of the territory was

  12. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  13. Lake or Pond WBID

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT DEC (Vermont Department of Environmental Conservation) manages an inventory of lake and pond information. The "Lakes and Ponds Inventory" stores the Water...

  14. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  16. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie; Liu, Yaling; Yu, Dongsheng; Zhao, Quanying; Shi, Xuezheng; Xing, Shihe; Wang, Guangxiang

    2016-08-01

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of the Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha-1 yr-1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.

  17. Application of Satellite Observations to Manage Natural Disasters in the Lake Victoria Basin

    Science.gov (United States)

    Habib, Shahid; Policelli, F.; Irwin, D.; Korme, Tesfaye; Adler, Bob; Hong, Yang

    2010-01-01

    Lake Victoria, the second largest fresh water lake in the Eastern part of Africa is a vital natural resource for the economic well being and prosperity of over 30 million people located in riparian regions of Uganda, Kenya and Tanzania. It covers a large area of about 68,870 km2 and produces a GDP of about US $30 billion per year. The region is also very much prone to natural disasters such as severe floods during heavy precipitation periods in the Eastern part of Africa. In addition to floods, the precipitation also produces large infestations of mosquito larvae due to the standing water in many areas. This further causes multiple vector borne diseases such as Malaria, Rift Valley Fever and more. These problems are of serious concern and require active and aggressive surveillance and management to minimize the loss of human and animal lives and property damage. Satellite imagery and observations along with the in situ measurements provide a great tool to analyze and study this area and inform the policy makers to make calculated policy decisions which are more beneficial to the environment. Recently, NASA and USAID have joined forces with the Regional Center for Mapping of Resources for Development (RCMRD) located in Nairobi, Kenya to utilize multiple NASA sensors such as TRMM, SRTM and MODIS to develop flood potential maps for the Lake Victoria Basin. The idea is to generate a flood forecasts and "nowcasts" that can be sent to the disaster management organizations of Uganda, Kenya, and Tanzania. Post flood event satellite imagery is becoming a common tool to assess the areas inundated by flooding. However, this work is unique undertaking by utilizing land imaging and atmospheric satellites to build credible flood potential maps. At same time, we are also studying the potential occurrence and spread of Rift Valley Fever disease based on the short term climate records and precipitation data. These activities require multi-nation coordination and agreements and

  18. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  19. Transient Social-Ecological Stability: the Effects of Invasive Species and Ecosystem Restoration on Nutrient Management Compromise in Lake Erie

    Directory of Open Access Journals (Sweden)

    Eric D. Roy

    2010-03-01

    Full Text Available Together, lake ecosystems and local human activity form complex social-ecological systems (SESs characterized by feedback loops and discontinuous change. Researchers in diverse fields have suggested that complex systems do not have single stable equilibria in the long term because of inevitable perturbation. During this study, we sought to address the general question of whether or not stable social-ecological equilibria exist in highly stressed and managed lacustrine systems. Using an integrated human-biophysical model, we investigated the impacts of a species invasion and ecosystem restoration on SES equilibrium, defined here as a compromise in phosphorus management among opposing stakeholders, in western Lake Erie. Our integrated model is composed of a calibrated ecological submodel representing Sandusky Bay, and a phosphorus management submodel that reflects the societal benefits and costs of phosphorus regulation. These two submodels together form a dynamic feedback loop that includes freshwater ecology, ecosystem services, and phosphorus management. We found that the invasion of dreissenid mussels decreased ecosystem resistance to eutrophication, necessitating increased phosphorus management to preserve ecosystem services and thus creating the potential for a shift in social-ecological equilibrium. Additionally, our results suggest that net benefits in the region following the invasion of dreissenids may never again reach the pre-invasion level if on-site phosphorus control is the sole management lever. Further demonstrating transient system stability, large-scale wetland restoration shifted points of management compromise to states characterized by less on-site phosphorus management and higher environmental quality, resulting in a significant increase in net benefits in the region. We conclude that lacustrine SESs are open and dynamic, and we recommend that future models of these systems emphasize site-specific perturbation over

  20. 76 FR 81962 - Final Environmental Impact Statement for General Management Plan, Ross Lake National Recreation...

    Science.gov (United States)

    2011-12-29

    ... soundscapes, and scenery through traditional outdoor activities. The NPS would actively manage to reduce... Ross Lake NRA in order to protect and enhance soundscapes and wilderness character, experience, and...

  1. Remote sensing of macrophyte morphological traits: Implications for the management of shallow lakes

    Directory of Open Access Journals (Sweden)

    Paolo Villa

    2017-03-01

    Full Text Available Macrophytes are important elements of freshwater ecosystems, fulfilling a pivotal role in biogeochemical cycles. The synoptic capabilities provided by remote sensing make it a powerful tool for monitoring aquatic vegetation characteristics and the functional status of shallow lake systems in which they occur. The latest generation of airborne and spaceborne imaging sensors can be effectively exploited for mapping morphologically – and physiologically – relevant vegetation features based on their canopy spectral response. The objectives of this study were to calibrate semi-empirical models for mapping macrophyte morphological traits (i.e., fractional cover, leaf area index and above-water biomass from hyperspectral data, and to investigate the capabilities of remote sensing in supporting macrophyte monitoring and management. We calibrated spectral models using in situ reflectance and morphological trait measures and applied them to airborne hyperspectral imaging data, acquired over two shallow European water bodies (Lake Hídvégi, in Hungary, and Mantua lakes system, in Italy in two key phenological phases. Maps of morphological traits were produced covering a broad range of aquatic plant types (submerged, floating, and emergent, common to temperate and continental regions, with an error level of 5.4% for fractional cover, 0.10 m2 m-2 for leaf area index, and 0.06 kg m-2 for above-water biomass. Based on these maps, we discuss how remote sensing could support monitoring strategies and shallow lake management with reference to our two case studies: i.e., by providing insight into spatial and species-wise variability, by assessing nutrient uptake by aquatic plants, and by identifying hotspot areas where invasive species could become a threat to ecosystem functioning and service provision.

  2. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  4. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    Science.gov (United States)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  5. Clearing lakes : an ecosystem approach to the restoration and management of shallow lakes in the Netherlands

    NARCIS (Netherlands)

    Hosper, H.

    1997-01-01

    In the 1950 s and 1960 s, most shallow lakes in the Netherlands shifted from macrophyte-dominated clear water lakes, towards algae-dominated turbid water lakes. Eutrophication, i.e. increased nutrient loading, is the main cause of the deterioration

  6. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  7. [Research of preferences and security management of tourists in Poyang Lake based on schistosomiasis prevention].

    Science.gov (United States)

    Feng, Shu-hua

    2015-04-01

    To discuss the prevention of schistosomiasis in tourism of lake region. The seasonal distribution of tourism activities and spatial distribution of scenic spots, as well as the coupling between space and temporal of Oncomelania snail distribution and the transmission time of schistosomiasis in Poyang Lake region were analyzed. The travel preference of schistosomiasis susceptible population was surveyed by questionnaires and interviews. There were couplings of space and temporal between tourism activities in Poyang Lake region and transmission time of schistosomiasis as well as space distribution of snails, respectively. The most popular tourism items were Shuishangrenjia (overwater household) and fishing folk culture with property of participation and experience. The suggestion is to establish health records of tourists, carry out health education of schistosomiasis, and enhance the management of tourism and activities of tourists.

  8. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  9. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  10. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    Science.gov (United States)

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  11. Sustainable management of lakes in connection with mitigation of adverse effects of climate change, agriculture and development of green micro regions based on renewable energy production

    Directory of Open Access Journals (Sweden)

    Sandor Antal Nemethy

    2014-11-01

    Full Text Available Lake management is extremely complex and requires a coordinated effort of research institutions, community groups, individuals, landowners, and government. Lakes constitute an important group of natural resources due to their ecosystem services and often unique cultural environments. Climate change is a growing concern, which particularly strongly affects shallow lakes. The adverse impact of climate change is enhanced by extreme water level fluctuations and human factors such as environmental pollution from waste water discharge, large scale agriculture and shoreline constructions reducing or eliminating valuable wetlands. Since eutrophication is a leading cause of impairment of freshwater ecosystems, specific strategies to address a lake's nutrient enrichment must focus on activities in the watershed and, if needed, in-lake restoration techniques. Analyzing the key factors of sustainable local and regional development in the vicinity of lakes, assessing the environmental risks of pollution, large scale agriculture, waste management and energy production, we propose a complex, stakeholder based management system and holistic regional development in lake areas, which will preserve natural ecosystems without compromising the sustainable use of ecosystem services. There are available technologies to develop ecologically acceptable water level regulations, promote organic agriculture applying grey water irrigation, stop leachate from landfills and control invasive species. Regional and local production and use of renewable energy is essential both for environmental and economical sustainability. Renewable energy production should be well coordinated with agriculture, forestry, waste management and management of water resources of lakes and their watershed areas in a sustainable, holistic way through a participatory approach. This is particularly pronounced in connection with tourism as one of the main uses of lake-ecosystem services, but also an

  12. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

    Science.gov (United States)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

    2017-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  13. Strategic Management of Tourism in the National Parks (Case: National Park Skadar Lake

    Directory of Open Access Journals (Sweden)

    Iva Bulatović

    2015-07-01

    Full Text Available In this paper we will try to prepare strategic analysis in order to give right guidelines for national park’s management. We are going to analyze National Park Skadar Lake as a tourist destination. We will use different strategic tools for proper analysis such as Life Cycle Concept, Boston Consulting Group Matrix, Ansoff Matrix, and McKinsey matrix. A strategy that involves penetration of the market would be desirable in the case of developing excursion, cultural – religious tourism, event tourism, hunting and fishing tourism, and wine tourism. Furthermore, market diversification is essential when it comes to new tourist products such as eco-tourism, rural tourism, scientific research, MICE tourism, golf and camping tourism, while the transformation of existing and introduction of new tourist products is expected within the sport - recreational, health, culture, excursions, wine tourism, etc.The paper will provide a framework for future research in the field of strategic management of tourism development in national parks. This topic has not yet been thoroughly analyzed and it is expected to serve as the basis of a strategic plan for managing tourism in the National Park Skadar Lake and / or as an incentive for researchers to enter more deeply into the issue

  14. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils

    International Nuclear Information System (INIS)

    Mosley, Luke M.; Shand, Paul; Self, Peter; Fitzpatrick, Rob

    2014-01-01

    Highlights: • The dynamic geochemistry of a lake acidification event and its management was assessed. • Sulfate complexes dominated the aqueous metal speciation at low pH. • Iron oxydroxysulfate minerals (schwertmannite, jarosite) were identified. • Aerial additions of limestone to the acidic water slowly returned the pH to near neutral. • Coating of the limestone with gypsum and metal precipitates limited its neutralisation efficiency. - Abstract: Understanding the geochemistry and kinetics of acidification events arising from acid sulfate soils is important to enable effective management and risk assessment. Large-scale exposure and oxidation of acid sulfate soils occurred during a drought in the Lower Lakes (Murray–Darling Basin) of South Australia. We examined the geochemical changes that occurred in one region (Boggy Lake) that experienced surface water acidification and was subsequently neutralised via aerial limestone (CaCO 3 ) dosing and dilution via natural lake refill. Very low pH (< 3) and high concentrations (≈10–1000 mg/L Fe, Al, Mn) of dissolved metals were initially found in surface water. The water chemistry exhibited pH-dependent enhancement of constituents typically associated with acid sulfate soils (SO 4 , Al and Fe). Geochemical speciation calculations indicated that most (60–80%) of the acidity was present as dissolved metal-sulfate complexes at low pH. X-ray diffraction (XRD) analyses showed that the orange-brown precipitates present after an initial limestone dosing were secondary oxyhydroxysulfate minerals (schwertmannite, jarosite). Further limestone dosing resulted in neutralisation of the pH, reduction in dissolved metal concentrations, dissolution of jarosite and schwertmannite precipitates, and formation of other metal oxyhydroxide phases. The results were consistent with a pE-pH diagram constructed for metal-sulfur geochemistry. Assessment of the measured and simulated (using PHREEQC) pH and Ca/Cl ratio during

  15. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  16. SELECTED PROBLEMS OF LAKES MANAGEMENT IN POLISH WATER LAW RELATED TO THE DIFFERENCES BETWEEN POLISH AND EUROPEAN UNION LEGISLATION

    Directory of Open Access Journals (Sweden)

    MARSZELEWSKI M

    2015-03-01

    Full Text Available Proper management of water resources has got significant social and economic dimension. For this reason, it is an essential element of almost every national law, European Union law, and also international law in a broad sense. Legislative authority, during legislature process, should allway s balance private and public interests to adopt compromised solutions. Furthermore these solutions must be determined mostly by hydrology to be appropriate to the nature of waters and environment. Because of mentioned issues, it is very undesirable state of affairs when law simply does not fit to the object of its regulation. In Water Law Act of 2001 Polish legislator classifies lakes, depending upon the type of watercourse (natural or man-made flowing into or out of the lake, among either flowing water or stagnant one. This regulation is against hydrological classification of lakes. Moreover this legal act introduces different treatment of dammed lakes in the context of public access to the lakeshores. Indicated problems have got significant impact on many aspects such as ownership of lakes, obligations of the owners of the lakes, lakes and environmental protection and, mentioned above, right to public acces to the lakes.

  17. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes

    DEFF Research Database (Denmark)

    Lürling, Miquel; Mackay, Eleanor; Reitzel, Kasper

    2016-01-01

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction...... accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature...... will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing...

  18. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  19. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication

    Science.gov (United States)

    Lepori, Fabio; Roberts, James J.

    2017-01-01

    We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.

  20. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  1. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Science.gov (United States)

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  2. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  3. Riparian ecosystem resilience and livelihood strategies under test: lessons from Lake Chilwa in Malawi and other lakes in Africa.

    Science.gov (United States)

    Kafumbata, Dalitso; Jamu, Daniel; Chiotha, Sosten

    2014-04-05

    This paper reviews the importance of African lakes and their management challenges. African inland lakes contribute significantly to food security, livelihoods and national economies through direct exploitation of fisheries, water resources for irrigation and hydropower generation. Because of these key contributions, the ecosystem services provided are under significant stress mainly owing to high demand by increasing populations, negative anthropogenic impacts on lake catchments and high levels of poverty which result in unsustainable use. Climate variability exacerbates the stress on these ecosystems. Current research findings show that the lakes cannot sustain further development activities on the scale seen over the past few decades. Millions of people are at risk of losing livelihoods through impacts on livestock and wildlife. The review further shows that the problems facing these lakes are beyond the purview of current management practices. A much better understanding of the interactions and feedbacks between different components of the lake socio-ecological systems is needed to address the complex challenges of managing these ecosystem services. This review suggests that the three small wetlands of Chad, Chilwa and Naivasha provide an opportunity for testing novel ideas that integrate sustainability of natural resource management with livelihoods in order to inform policy on how future land use and climatic variability will affect both food security and the ecosystem services associated with it.

  4. Lake Sturgeon, Acipenser fulvescens, movements in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake, Minnesota-Ontario, contains a native population of Lake Sturgeon (Acipenser fulvescens) that has gone largely unstudied. The objective of this descriptive study was to summarize generalized Lake Sturgeon movement patterns through the use of biotelemetry. Telemetry data reinforced the high utilization of the Squirrel Falls geographic location by Lake Sturgeon, with 37% of the re-locations occurring in that area. Other spring aggregations occurred in areas associated with Kettle Falls, the Pipestone River, and the Rat River, which could indicate spawning activity. Movement of Lake Sturgeon between the Seine River and the South Arm of Rainy Lake indicates the likelihood of one integrated population on the east end of the South Arm. The lack of re-locations in the Seine River during the months of September and October may have been due to Lake Sturgeon moving into deeper water areas of the Seine River and out of the range of radio telemetry gear or simply moving back into the South Arm. Due to the movements between Minnesota and Ontario, coordination of management efforts among provincial, state, and federal agencies will be important.

  5. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  6. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  7. Nile perch fish processing waste along Lake Victoria in East Africa ...

    African Journals Online (AJOL)

    In East Africa, Nile perch fish processing into chilled fish fillet for export along Lake Victoria generate large proportions of both solid and liquid wastes. However, no thorough auditing and characterization of the waste has been done that would guide potential value addition through bioconversions and waste management.

  8. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  9. Acid rain stimulation of Lake Michigan phytoplankton growth

    Science.gov (United States)

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  10. The northern lakes of Egypt: Encounters with a wetland environment

    International Nuclear Information System (INIS)

    Parmenter, B.M.

    1991-01-01

    Five lakes fringe the northern coast of Egypt. Together they represent 25% of the remaining wetland habitat in the Mediterranean basin. Residents of these lakes traditionally exploited a wide variety of resources. Today these lakes face a number of threats to their existence, including large-scale reclamation and water pollution. Agricultural authorities, engineers, fishery managers, and conservationists in Egypt and abroad debate about how best to manage and develop the lake region's resources, but few of these groups understand or communicate with one another, or with residents of lake communities. This study explores how these various groups encounter the coastal lakes of Egypt, focusing particularly on Lakes Manzala and Burullus. Its purpose is to explore the ways in which the lakes, their resources and their inhabitants have been evaluated, and to analyze how underlying preconceptions, goals and structures of professional discourse influence such evaluations. The thesis is that environmental management is in reality not a rational plan but a process. Egypt is currently attempting to develop a coherent strategy to remedy its environmental problems without adversely affecting economic growth

  11. An introduction to the processes, problems, and management of urban lakes

    Science.gov (United States)

    Britton, L.J.; Averett, R.C.; Ferreira, R.F.

    1975-01-01

    Lakes are bodies of water formed in depressions on the earth's surface, and as such, act as depositories for a variety of chemical and biological materials. The study of lakes has become increasingly prevalent in recent years. Lakes are a valuable resource, and their multiple uses have made them susceptible to water-quality problems such as algal blooms, sediment deposition and fish kills. These problems are products of the eutrophication process (enrichment, aging and extinction of lakes), which is often accelerated by man. Therefore, it becomes important to understand the properties and processes of lakes which govern lake enrichment, and the measures available to control enrichment.

  12. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  13. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  14. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  15. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    Science.gov (United States)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  16. Population models of burrowing mayfly recolonization in Western Lake Erie

    Science.gov (United States)

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  17. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    Science.gov (United States)

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  18. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    Science.gov (United States)

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  20. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Science.gov (United States)

    Marla R. Emery; Clare. Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  1. Hydrology and water quality of Park Lake, south-central Wisconsin

    Science.gov (United States)

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  2. 76 FR 23276 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Science.gov (United States)

    2011-04-26

    ... Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES: The meeting... preliminary recommendation of Lake Tahoe Southern Nevada Public Land Management Act (SNPLMA) Round 12 capital... Lake Tahoe SNPLMA Round 12 capital projects and science themes, and 3) public comment. All Lake Tahoe...

  3. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Directory of Open Access Journals (Sweden)

    M. Arnoux

    2017-11-01

    Full Text Available Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions, lake catchment size (which impacts the intensity of the flux change, lake volume (which impacts the range of variation, and lake G index (i.e., the percentage of groundwater that makes up total lake inflows, the latter being the dominant control on water balance conditions, as

  4. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth; Gibson, John; Noret, Aurélie

    2017-11-01

    Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by

  5. The bird species of Kumasir lake (Kahramanmaras-Turkey) and a view of environmental ethics on sustainable wetland management.

    Science.gov (United States)

    Inac, S; Gorucu, O; Pinar, A H

    2008-05-01

    Kumasir lake is located next to towns of Donuklu and Fatih, nine km west of Kahramanmaras city center the region of east Mediterranean, Turkey This lake is of crucial importance from the point of native and immigrant birds. We located 17 birdspecies in this area during our observations carried out in the spring and autumn of 2005-2006. These were Ciconia ciconia L., Anas platyrhynchos L., Accipiter nisus L., Accipiter brevipes L., Fulica atra L., Columba palumbus L., Merops apiaster L., Upupa epops L., Alauda arvensis L., Motacilla flava L., Turdus merula L., Acrocephalus scirpaceus L., Regulus regulus L., Garrulus glandarius L., Corvus corax L., Fringilla coelebs L., Hirundo rustica L.. Among observed 17 species; 6 of them were immigrant and remaining 11 of them were native birds. Kumasir lake is surrounded by wetland of Amik and Gavur lake. Since it was greatly dried, it was transformed to farmland. Consequently the birds lost most of theirnests and settlements. However not taken in the care of environmental ethic values, the wastewaters of the villages drain to lake reservoir; herbicides and insecticides used for agriculture are polluting the water reeds have been burned, the lake's reeds are getting dry by the irrigation for the farmland. So, the wetland ecosystem is being affected negatively by these factors. On the other hand, the birds are exposed to illegal and unlawful hunting. For this reasons, this lake must be taken into a management regime of sustainable wetland (protection profiting balance) and used techniques of participation planning via the process of sustainable natural resources and planning.

  6. A Systematic Study of Zerbar Lake Restoration

    Science.gov (United States)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    systematic manner. In step III, stakeholder engagement was investigated through constitution analysis. Meetings were held to communicate lake damages obtained and classified through DPSIR Framework to the stakeholders. Then, stakeholder participation in different actions was achieved through additional meetings. Finally in Step IV, crucial restoration actions were identified: residents to manage rural and urban sewage and waste disposal through local governance, to plan and perform complementary study of lake water treatment (physical, chemical and biochemical methods), to plan and perform bottom sediment refinement, restoring the lake's natural hydrodynamic condition by adjusting the outlet level, local communities to help prevent landuse change from agriculture to villas, triggering the watershed master plan study to enable watershed monitoring, investigating water quality and discharge of bottom springs to better understand the lake's hydrological cycle, and finally, local residents to protect riparian vegetation.

  7. Improved water management with the development of Snake Lake Reservoir

    International Nuclear Information System (INIS)

    Kemp, P.; Miller, D.; Webber, J.

    1998-01-01

    The $10.3 million Snake Lake Reservoir which is located south of the TransCanada Highway between Bassano and Brooks, in Alberta, was completed in 1997. It provides 19.1 million cubic meters of storage to improve the water supply for the irrigation of 29,000 hectares of agricultural land in the Eastern Irrigation District. One of challenges that engineers faced during the construction of the reservoir was the extremely soft dam foundation conditions. The resolution of this and other challenges are discussed. In addition to water storage, the reservoir also provides wildlife, recreation and aquaculture opportunities. 8 refs., 5 figs

  8. Lake Mead National Recreational Area air tour management plan and planning and National Environmental Policy Act scoping document

    Science.gov (United States)

    2004-04-19

    The Federal Aviation Administration (FAA), in cooperation with the National Park Service (NPS), has initiated the development of an Air Tour Management Plan (ATMP) for Lake Mead National Recreation Area (LAME) pursuant to the National Parks Air Tour ...

  9. CONSIDERATIONS REGARDING THE INTEGRATED MANAGEMENT OF FRESHWATER LAKES IN TRANSYLVANIA PLAIN

    Directory of Open Access Journals (Sweden)

    Ioan FODOREAN

    2008-06-01

    Full Text Available Lakes appear under more forms and dimensions and include lots of features that constitute important advantages in defining them as a class of objects that need to be studied. They have very well defined limits and there are open systems that receive water, solar energy and chemical substances from outside the system. The foreign specialty literature provides special attention to the study of the lakes and the swampy fields of their neighbourhood, as well as to the numerous interactions that come out from the existence of these water units. In this purpose, proper paradigms of the study of aquatic systems have been drawn: the paradigm of lakes as microcosmos or integrated ecosystems, paradigm of lakes as experimental systems, paradigm of lakes as chronicles of natural history etc.

  10. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  11. Review of fish diversity in the Lake Huron basin

    Science.gov (United States)

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  12. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-01-01

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  13. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Daniel Boyd Kramer; Stephen Polasky; Anthony Starfield; Brian Palik; Lynn Westphal; Stephanie Snyder; Pamela Jakes; Rachel Hudson; Eric Gustafson

    2006-01-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to...

  14. McClean Lake. Site Guide

    International Nuclear Information System (INIS)

    2016-09-01

    Located over 700 kilometers northeast of Saskatoon, Areva's McClean Lake site is comprised of several uranium mines and one of the most technologically advanced uranium mills in the world - the only mill designed to process high-grade uranium ore without dilution. Areva has operated several open-pit uranium mines at the McClean Lake site, and is evaluating future mines at and near the site. The McClean Lake mill has recently undergone a multimillion-dollar upgrade and expansion, which has doubled its annual production capacity of uranium concentrate to 24 million pounds. It is the only facility in the world capable of processing high-grade uranium ore without diluting it. The mill processes the ore from the Cigar Lake mine, the world's second largest and highest-grade uranium mine. The McClean Lake site operates 365 days a year on a week-in/week-out rotation schedule for workers, over 50% of whom reside in northern Saskatchewan communities. Tailings are waste products resulting from milling uranium ore. This waste is made up of leach residue solids, waste solutions and chemical precipitates that are carefully engineered for long-term disposal. The TMF serves as the repository for all resulting tailings. This facility allows proper waste management, which minimizes potential adverse environmental effects. Mining projections indicate that the McClean Lake mill will produce tailings in excess of the existing capacity of the TMF. After evaluating a number of options, Areva has decided to pursue an expansion of this facility. Areva is developing the Surface Access Borehole Resource Extraction (SABRE) mining method, which uses a high-pressure water jet placed at the bottom of the drill hole to extract ore. Areva has conducted a series of tests with this method and is evaluating its potential for future mining operations. McClean Lake maintains its certification in ISO 14001 standards for environmental management and OHSAS 18001 standards for occupational health

  15. Identification and Quantification of Phosphorus Sources at the Owasco Lake Watershed

    Science.gov (United States)

    Lisboa, M. S.

    2016-12-01

    Discharge of pollutants into water bodies is of major concern for water quality protection, and for the sustainable development of the areas that rely on water bodies. NPS pollution, especially from agriculture runoff, is considered the leading contributor to water quality impairments in the U.S. Our proposed area of study, the Owasco Lake, is part of the Finger Lakes, a group of water bodies located in Western and Central NY that supports agriculture and industrial activities, and constitutes the main drinking water source for its community. Owasco Lake and its watershed is exposed to a variety of environmental threats, with NPS pollution being one of the major concerns. Phytoplankton growth in the lake is P limited and P concentrations in the lake has been raising for several years. In order to establish effective P control strategies for the Owasco Lake watershed, we intend to identify and quantify all diffuse sources of phosphorus, and determine the effect of agricultural land use on the P loads draining to the lake and its tributaries. With the aim of addressing our goal we are conducting a whole year monitoring of base and quick flow coupled with GIS analysis. The sampling design captured the diverse land uses present at the Owasco watershed, with a primary focus on agriculture since it is the dominant use. In addition, we use a Soil Topographic Index (STI) that has previously been well correlated to soil moisture and storm runoff to identify the areas prone to more readily produce runoff in each sub-catchment. Preliminary results from the base flow monitoring show that the areas with more than 80% of agriculture land use cover present significantly higher soluble reactive phosphorus (SRP) concentrations; however, this trend is not as clear for Total Phosphorus (TP). We expect to find a similar trend in the result of storm runoff analysis and to observe a P load gradient associated with land use, from a low (basal load) in areas with mostly forest cover to

  16. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    Science.gov (United States)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  17. Mercury and water level fluctuations in lakes of northern Minnesota

    Science.gov (United States)

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  18. Turning conflict into collaboration in managing commons: A case of Rupa Lake Watershed, Nepal

    Directory of Open Access Journals (Sweden)

    Pashupati Chaudhary

    2015-09-01

    Full Text Available A growing body of literature on the commons has provided fascinating and intricate insights on how some local institutions have successfully managed to avoid a seemingly inevitable “tragedy of the commons” once popularized by Garrett Hardin. Primarily benefitting from the recent studies on the commonpool resources conducted by Elinor Ostrom and colleagues, polycentric selforganization and autonomy, rather than the direct state or market control over the commons, are often recognized as key features of the long enduring commons.However, these commons are quite diverse and the outcomes are often multiple and complex, accentuating the needs to differentiate among multiple commons outcomes. Furthermore, relatively under-reported are the cases where the degradation of common-pool resources are actually halted, and even restored. This study examines both the turbulent history of fishery mismanagement in Rupa Lake, Nepal and its reversal built around the participation, engagement and inclusiveness in the governance of its watershed. We find that Rupa Lake’s experience tells two stories. Reflecting Hardin’s dire forecast, the Rupa Lake watershed verged on collapse as population grew and seemingly selfish behaviorintensified under an open-access regime. But the users also found a way to rebound and reverse their course as they adopted a bottom-up approach to fishery management and established an innovative community institution, the ‘Rupa Lake Rehabilitation and Fishery Cooperative’, dedicated to the sustainable governance of the commons. This case highlights how one community at the threshold of ‘tragedy’ transformed itself by turning conflict into collaboration, which we hope contributes to the effort of better understanding multiple commons.

  19. The necessity of management in a lake of the Atlantic Forest biodiversity hotspot: nitrogen levels connected to a persistent bloom of Cylindrospermopsis raciborskii

    Directory of Open Access Journals (Sweden)

    Cleber Cunha Figueredo

    2016-01-01

    Full Text Available ABSTRACT Conservational studies of the threatened Atlantic Forest biome are frequently restricted to terrestrial ecosystems. We know little about the water bodies, specially considering that this biome covers the third largest system of lakes in Brazil. Some of these lakes are located inside the protected "Rio Doce State Park", but many others are found outside this reserve. These external lakes are seldom studied, but understanding their response to human activities is essential for the conservation and the protection of the lakes inside the Park. We evaluated the effects of degradation in a lake outside the Park, which shows a constant bloom of the toxic invasive cyanobacteria Cylindrospermopsis raciborskii. Phytoplankton, climate and physico-chemical variables were assessed from 2011 to 2013 to evaluate which were the major determinants of the lake dynamics. Despite the seasonal changes, the lake was always eutrophic, and cyanobacteria, transparency and nutrients were the major indicators of water characteristics. The lake seems to be nitrogen-limited and cyanobacteria were negatively correlated with nitrogen levels, since the constantly dominant C. raciborskii is a superior competitor for N. We suggest that the monitoring of nitrogen levels is fundamental to establish management strategies to avoid harmful algae blooms in this Atlantic Forest lake.

  20. Mirror Lake: Past, present and future: Chapter 6

    Science.gov (United States)

    Likens, Gene E.; LaBaugh, James W.; Winter, Thomas C.; Likens, Gene E.

    2009-01-01

    This chapter discusses the hydrological and biogeochemical characteristics of Mirror Lake and the changes that resulted from air-land-water interactions and human activities. Since the formation of Mirror Lake, both the watershed and the lake have undergone many changes, such as vegetation development and basin filling. These changes are ongoing, and Mirror Lake is continuing along an aging pathway and ultimately, it will fill with sediment and no longer be a lake. The chapter also identifies major factors that affected the hydrology and biogeochemistry of Mirror Lake: acid rain, atmospheric deposition of lead and other heavy metals, increased human settlement around the lake, the construction of an interstate highway through the watershed of the Northeast Tributary, the construction of an access road through the West and Northeast watersheds to the lake, and climate change. The chapter also offers future recommendations for management and protection of Mirror Lake.

  1. Sexual difference in PCB concentrations of lake trout (Salvelinus namaycush) from Lake Ontario

    Science.gov (United States)

    Madenjian, Charles P.; Keir, Michael J.; Whittle, D. Michael; Noguchi, George E.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 61 female lake trout (Salvelinus namaycush) and 71 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). To estimate the expected change in PCB concentration due to spawning, PCB concentrations in gonads and in somatic tissue of lake trout were also determined. In addition, bioenergetics modeling was applied to investigate whether gross growth efficiency (GGE) differed between the sexes. Results showed that, on average, males were 22% higher in PCB concentration than females in Lake Ontario. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 3% and 14% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in male lake trout. According to the bioenergetics modeling results, GGE of males was about 2% higher than adult female GGE, on average. Thus, bioenergetics modeling could not explain the higher PCB concentrations exhibited by the males. Nevertheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations of the lake trout.

  2. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment...... (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment...

  3. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  4. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were

  5. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  6. The legacy of large regime shifts in shallow lakes.

    Science.gov (United States)

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.

  7. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  8. Satellite Monitoring and Characterization of the 2010 Rockslide-Dammed Lake Gojal, North Pakistan

    Science.gov (United States)

    Leonard, G. J.; Kargel, J. S.; Crippen, R. E.; Evans, S. G.; Delaney, K. B.; Schneider, J. F.

    2010-12-01

    On January 4, 2010, a landslide blocked the Hunza River at Attabad, northern Pakistan (36.308°N, 74.820°E). The landslide destroyed the village of Attabad killing 19 people, and formed a dam approximately 1200m long, 350 meters wide, and 125 meters high. The flow of the Hunza river was blocked for 144 days, forming Lake Gojal. In addition to inundating several villages and submerging 22 km of the regionally critical Karakoram Highway, >25,000 people have been displaced or remain cut off from overland connection with the rest of the country. Lake overtopping began on May 29 via a 15m deep spillway excavated through the saddle of the dam. Remarkably, the slowly eroding natural structure remains largely intact and currently represents a new geologic feature, although a threat remains from possible catastrophic outburst flooding. We have monitored growth of the lake with multi-temporal satellite imagery collected from ASTER (Advanced Spaceborne Thermal and Reflection Radiometer) and ALI (Advanced Land Imager) sensors. We applied NASA’s ASTER Global Digital Elevation Model (GDEM) and SRTM-3 digital terrain data, along with field data obtained onsite by Schneider, and by Pakistan’s NDMA to derive volumes of the growing lake. Lake size peaked during mid-summer when it was ~22 km long, 12 km2, 119m deep, and contained 540 to 620 Mm3 water (SRTM-3 and GDEM +5m global correction estimates respectively). Our estimates indicated lake volumes three to four times higher than media quotes, and before spillover, were used to improve predictions of possible flood discharge and disaster management planning. Estimates of valley inflow based on a 31-year hydrographic history (Archer, D., 2003, Jour. Hydrology 274, 198-210) are consistent with our volume infilling estimates. As early as April 14 our volume assessments, coupled with hydrographic and seepage data were used to project a spillover date range of May 28-June 2, bracketing the actual overflow date. Additionally, we have

  9. Artificial propagation of coregonines in the management of the Laurentian Great Lakes

    Science.gov (United States)

    Todd, Thomas N.

    1986-01-01

    Numerous stresses caused wide fluctuations in the abundance of Great Lakes coregonine fishes during the last century. State, Provincial, and Federal agencies attempted to bolster these fisheries by stocking more than 32 billion fry of lake whitefish (Coregonus clupeaformis) and 6 billion fry of lake herring (C. artedii) over a period of about 90 years (1870-1960). Propagation efforts were unsuccessful in arresting the decline of these fishes, perhaps because the stocking densities were too low. It appears that stocking densities must exceed 41% of the natural hatch to produce measurable success in a planting program that augments natural reproduction. Stocking of any of the Great Lakes with lake whitefish at these levels would require several billion fry per lake annually. Such a program is too large to be practical and intensified protection of the remaining stocks would be more cost effective. A species such as the shortnose cisco (C. reighardi) which has only a small number of extant individuals, and can therefore be significantly augmented with fewer stocked fish, may be a much better candidate for propagation than is the lake whitefish. Propagation of coregonines in the Great Lakes should be considered only in localities that have little or no natural recruitment and then only for rehabilitation, and only if accompanied by adequate assessment of the performance of the stocked fish.

  10. Effects of flood control alternatives on fish and wildlife resources of the Malheur-Harney lakes basin

    Science.gov (United States)

    Hamilton, David B.; Auble, Gregor T.; Ellison, Richard A.; Roelle, James E.

    1985-01-01

    , and surface area, as well as changes in water quality, that result from the proposed water management projects (upstream storage, upstream diversions, drainage canals) and the no action alternative. The Vegetation submodel determines associated changes in the areal extent of wetland and upland vegetation communities. Finally, the Wildlife submodel calculates indices of abundance or habitat suitability for colonial nesting birds (great egret, double-crested cormorant, white-faced ibis), greater sandhill crane, diving ducks, tundra swan, dabbling ducks, and Canada goose based on hydrologic and vegetation conditions. The model represents the Malheur-Harney Lakes Basin, but provides water quantity and quality indicators associated with additional flows that might occur in the Malheur River Basin. Several management scenarios, representing various flood control alternatives and assumptions concerning future runoff, were run to analyze model behavior. Scenario results are not intended as an analysis of all potential management actions or assumptions concerning future runoff. Rather, they demonstrate the type of analysis that could be conducted if the model was sufficiently refined and tested. Early in a model development project, the process of building the model is usually of greater benefit than the model itself. The model building process stimulates interaction among agencies, assists in integrating existing information, and helps identify research needs. These benefits usually accrue even in the absence of real predictive power in the resulting model. This workshop initiated interaction among the primary State and Federal resource and development agencies in a nonadversarial forum. The exchange of information and expertise among agencies provided the FWS with the best information currently available for use in the Planning Aid Letter it will develop at the Reconnaissance state of the COE study. If the COE subsequently initiates a Feasability Study, this information will

  11. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    Science.gov (United States)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  12. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    Science.gov (United States)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  13. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    Science.gov (United States)

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Global Lakes Sentinel Services: Evaluation of Chl-a Trends in Deep Clear Lakes

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin

    2016-08-01

    The aim of this study is the analysis of trend in the trophic level evolution in clear deep lakes which, being characterised by good quality state, are important socio- economic resources for their regions. The selected lakes are situated in Europe (Garda, Maggiore, Constance and Vättern), North America (Michigan) and Africa (Malawi and Tanganyika) and cover a range of eco- regions (continental, perialpine, boreal, rift valley) distributed globally.To evaluate trophic level tendency we mainly focused on chlorophyll-a concentrations (chl-a) which is a direct proxy of trophic status. The chl-a concentrations were obtained from 5216 cloud-free MERIS imagery from 2002 to 2012.The 'GLaSS RoIStats tool' available within the GLaSS project was used to extract chl-a in a number of region of interests (ROI) located in pelagic waters as well as some few other stations depending on lakes morphology. For producing the time-series trend, these extracted data were analysed with the Seasonal Kendall test.The results overall show almost stable conditions with a slight increase in concentration for lakes Maggiore, Constance, and the Green Bay of Lake Michigan; a slight decrease for lakes Garda and Tanganyika and absolutely stable conditions for lakes Vättern and Malawi.The results presented in this work show the great capability of MERIS to perform trend tests analysis on trophic status with focus on chl-a concentration. Being chl-a also a key parameter in water quality monitoring plans, this study also supports the managing practices implemented worldwide for using the water of the lakes.

  15. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    Science.gov (United States)

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  16. Freshwater lakes--a potential source for aquaculture activities--a model study on Perumal Lake, Cuddalore, Tamil Nadu.

    Science.gov (United States)

    Usha, R; Ramalingam, K; Bharathi Rajan, U D

    2006-10-01

    The freshwater Perumal lake located at Cuddalore was assessed for its suitability and potential for aquaculture practices. Various hydrobiological parameters determined reveals that the various physicochemical characteristics are with in normal range of values. The DO level, BOD and COD values determined in the lake revealed the consequences of community activities and pollution possibilities. The primary productivity data revealed maximum productivity during March which infer that the lake is unaffected by anthropogenic disturbance and community contamination. The bacterial count remained higher during the monsoon periods, which characterize profuse rainfall and storm water discharge into the lake. The microfauna includes zooplankter such as cladocerans, copepods, rotifers and ostracods. Benthos include carps, catfishes, mullets and prawns. The above study revealed that the various parameters in the lake conform to the levels suited for freshwater fish culture and represents a resource for scientific management.

  17. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Kramer, Daniel Boyd; Polasky, Stephen; Starfield, Anthony; Palik, Brian; Westphal, Lynne; Snyder, Stephanie; Jakes, Pamela; Hudson, Rachel; Gustafson, Eric

    2006-09-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy.

  18. Geo-Engineering in Lakes: A Crisis of Confidence?

    NARCIS (Netherlands)

    Spears, B.M.; Maberly, S.C.; Pan, G.; Mackay, E.; Lurling, M.F.L.L.W.

    2014-01-01

    The effective management of lakes suffering from eutrophication is confounded by a mosaic of interactions and feedbacks that are difficult to manipulate. For example, in lake processes can delay the relinquishment of legacy phosphorus (P) manifested within bed sediments for decades, even after

  19. Ohio Lake Erie Commission Homepage

    Science.gov (United States)

    management of Lake Erie: including, water quality protection, fisheries management, wetlands restoration over 365 projects since 1993. Projects have focused on an array of issues critical to the effective quality of its waters and ecosystem, and to promote economic development of the region by ensuring the

  20. Hydro-climatic trends and water resource management implications based on multi-scale data for the Lake Victoria region, Kenya

    International Nuclear Information System (INIS)

    Koutsouris, A J; Destouni, G; Jarsjoe, J; Lyon, S W

    2010-01-01

    Unreliable rainfall may be a main cause of poverty in rural areas, such as the Kisumu district by Lake Victoria in Kenya. Climate change may further increase the negative effects of rainfall uncertainty. These effects could be mitigated to some extent through improved and adaptive water resource management and planning, which relies on our interpretations and projections of the coupled hydro-climatic system behaviour and its development trends. In order to identify and quantify the main differences and consistencies among such hydro-climatic assessments, this study investigates trends and exemplifies their use for important water management decisions for the Lake Victoria drainage basin (LVDB), based on local scale data for the Orongo village in the Kisumu district, and regional scale data for the whole LVDB. Results show low correlation between locally and regionally observed hydro-climatic trends, and large differences, which in turn affects assessments of important water resource management parameters. However, both data scales converge in indicating that observed local and regional hydrological discharge trends are primarily driven by local and regional water use and land use changes.

  1. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  2. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  3. Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake

    Science.gov (United States)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.

    2017-12-01

    Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not

  4. Ecological Assessment of Lake Hora, Ethiopia, Using Benthic and ...

    African Journals Online (AJOL)

    Bheema

    Lake Hora needs protection management strategies to maintain its sustainable use. Key words: Benthic Fauna, Ethiopia, Lake Hora, Specimens, Weed-bed. 1. ..... Loam soils often contain a good amount of organic matter. 3.3. Ecological ...

  5. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  6. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  7. Additional results on palaeomagnetic stratigraphy of the Koobi Fora Formation, east of Lake Turkana (Lake Rudolf), Kenya

    Science.gov (United States)

    Hillhouse, J.W.; Ndombi, J.W.M.; Cox, A.; Brock, A.

    1977-01-01

    The magnetostratigraphy of the hominid-bearing sediments exposed east of Lake Turkana has been strengthened by new palaeomagnetic results. Ages obtained from several tuffs by the 40Ar/39Ar method suggest an approxmate match between the observed magnetozones and the geomagnetic polarity time scale; however, the palaeomagnetic results are also compatible with a younger chronology suggested by conventional K-Ar dating of the KBS Tuff. ?? 1977 Nature Publishing Group.

  8. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    Science.gov (United States)

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  9. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    population.The wild plants and animals and the natural systems that support them in the Great Lakes region are valuable resources of considerable local, regional, and national interest. They are also, in part, transboundary resources that we share with our Canadian neighbors to the north. The way these resources are changing over time is inadequately known and is a cause for concern for resource users and for those charged with managing and protecting these unique and valuable resources. This chapter describes the wild plants and animals and the systems that support them in the Great Lakes region; addresses their condition; and points out the gaps in our knowledge about them that, if filled, would aid in their conservation and appropriate use.

  10. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  11. Seasonal influence on water quality status of Temenggor Lake, Perak

    International Nuclear Information System (INIS)

    Wan Mohd Afiq Wan Abdul Khalik; Mohd Pauzi Abdullah; Mohd Pauzi Abdullah

    2012-01-01

    A study of the water quality in Temenggor Lake was conducted within two different seasons, namely wet season (November - January 2009) and dry season (March - July 2010). Thirteen sampling stations were selected representing open water body of the lake particularly surrounding Banding Island. Three depths layered sampling (surface, middle and bottom of lake) was performed at each sampling stations except in zone B. An average WQI for Temenggor Lake in wet season (90.49) is slightly higher than the average for dry season (88.87). This study indicates quite significant seasonal influence of rainfalls on environmental lake ecosystems by improving the quality through dilution effect on several parameters. Statistical analysis of two-way ANOVA test indicates that all measured parameters are affected by seasonal changes except for pH, turbidity, DO, BOD, oil and grease. Biochemical Oxygen Demand (BOD) and water hardness showed significant relationship with local community activities. Considering future development as eco tourism destination, the water quality of Temenggor Lake should be maintained thus some sort of integrated lake management system model on the integrated water resource management concept should be implemented. (author)

  12. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  13. [Ecosystem services valuation of Qinghai Lake].

    Science.gov (United States)

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  14. Quantifying Cyanobacteria and High Biomass Bloms from Satellite to Support Environmental Management and Public Use of U.S. Lakes and Estuaries

    Science.gov (United States)

    Tomlinson, Michelle C.; Stumpf, Richard P.; Dupuy, Danielle; Wynne, Timothy T.; Briggs, Travis

    2015-12-01

    Algal blooms of high biomass and cyanobacteria are on the rise, occurring both nationally and internationally. These blooms can foul beaches, clog water intakes, produce toxins that contaminate drinking water, and pose a threat to human and domestic animal health. A quantitative tool can aid in the management needs to respond to these issues. These blooms can affect many lakes within a state management district, pointing to the need for a synoptic and timely assessment. The 300 m Medium Resolution Imaging Spectrometer (MERIS) satellite imagery provided by the European Space Agency from 2002 to 2012 has led to advances in our ability to monitor these systems. Algorithms specific to quantifying high biomass blooms have been developed for use by state managers through a comparison of field radiometry, water quality and cell enumeration measurements, and remotely-sensed satellite data. These algorithms are designed to detect blooms even with atmospheric interference and suspended sediments. Initial evaluations were conducted for Florida lakes and the St. Johns River, Florida, USA and showed that cyanobacteria blooms, especially of Microcystis, can be identified and their biomass can be estimated (as chlorophyll concentration and other metrics). Forecasts and monitoring have been demonstrated for Lake Erie and for Florida. A multi-agency (NASA, EPA, NOAA, and USGS) project, “Cyanobacteria Assessment Network (CyAN)” intends to apply these methods to Sentinel-3 data in near real-time on a U.S. national scale, in order to support state management agencies in protecting public health and the environment.

  15. A framework for profiling a lake's riparian area development potential

    Science.gov (United States)

    Pamela J. Jakes; Ciara Schlichting; Dorothy H. Anderson

    2003-01-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems -in a lake`s riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework...

  16. Spatial Complexity, Resilience, and Policy Diversity: Fishing on Lake-rich Landscapes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    2004-06-01

    Full Text Available The dynamics of and policies governing spatially coupled social-ecological mosaics are considered for the case of fisheries in a lake district. A microeconomic model of households addresses agent decisions at three hierarchic levels: (1 selection of the lake district from among a larger set of alternative places to live or visit, (2 selection of a base location within the lake district, and (3 selection of a portfolio of ecosystem services to use. Ecosystem services are represented by dynamics of fish production subject to multiple stable domains and trophic cascades. Policy calculations show that optimal policies will be highly heterogeneous in space and fluid in time. The diversity of possible outcomes is illustrated by simulations for a hypothetical lake district based loosely on the Northern Highlands of the State of Wisconsin. Lake districts are frequently managed as if lakes were independent, similar, endogenously regulating systems. Our findings contradict that view. One-size-fits-all (OSFA policies erode ecological and social resilience. If regulations are too stringent, social resilience declines because of the potential rewards of overharvesting. If regulations are too lax, ecological resilience is diminished by overharvesting in some lakes. In either case, local collapses of fish populations evoke spatial shifts of angling effort that can lead to serial collapses in neighboring fisheries and degraded fisheries in most or all of the lakes. Under OSFA management, the natural resources of the entire landscape become more vulnerable to transformation because of changes in, e.g., human population, the demand for resources, or fish harvesting technology. Multiplicity of management regimes can increase the ecological resilience, social resilience, and inclusive value of a spatially heterogeneous social-ecological system. Because of the complex interactions of mobile people and multistable ecosystems, management regimes must also be flexible

  17. Floristic diversity of midforest lakes (Sobibór Landscape Park, Poland

    Directory of Open Access Journals (Sweden)

    Sender Joanna

    2016-12-01

    Full Text Available Aquatic vegetation greatly impacts lake functions. Forest ecosystems surrounding lakes are effective protection zone of lakes and their associated flora and fauna. The presence of aquatic plants depends on many factors, including the chemical composition and acidity of water, the shape of the lake catchment, the angle of slope along shorelines and the management of surrounding lands. Natural ecosystems throughout Eastern Europe are threatened by anthropogenic activities. Aquatic systems and bogs are particularly sensitive to disturbances. The aim of the study was to determine the influence of land management, forest type and stand age on aquatic plant colonisation within lakes as well as to quantify and qualify the structure of macrophyte communities within two lakes, Płotycze Sobiborskie and Orchowe, located in the Sobibór Landscape Park in western Poland. Even though there were few bogs within the catchment areas and lake buffer zones, where they did occur they had the greatest effect on macrophyte presence. The results of this research indicate that in the absence of anthropogenic disturbances midforest water-bog complexes are relatively stable systems and preserve their natural character. The applied multi-criteria evaluation of macrophytes in the studied lakes and their surrounding buffer zones and catchment areas allowed the lakes to be characterised as lakes with a good ecological status.

  18. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model.

    Science.gov (United States)

    Bucak, Tuba; Trolle, Dennis; Andersen, Hans Estrup; Thodsen, Hans; Erdoğan, Şeyda; Levi, Eti E; Filiz, Nur; Jeppesen, Erik; Beklioğlu, Meryem

    2017-03-01

    Inter- and intra-annual water level fluctuations and changes in water flow regime are intrinsic characteristics of Mediterranean lakes. Additionally, considering climate change projections for the water-limited Mediterranean region, increased air temperatures and decreased precipitation are anticipated, leading to dramatic declines in lake water levels as well as severe water scarcity problems. The study site, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - threatened by climatic changes and over-abstraction of water for irrigated crop farming. Therefore, implementation of strict water level management policies is required. In this study, an integrated modeling approach was used to predict the future water levels of Lake Beyşehir in response to potential future changes in climate and land use. Water level estimation was performed by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Regression model (ε-SVR). The projected increase in temperature and decrease in precipitation based on the climate change models led to an enhanced potential evapotranspiration and reduced total runoff. On the other hand, the effects of various land use scenarios within the catchment appeared to be comparatively insignificant. According to the ε-SVR model results, changes in hydrological processes caused a water level reduction for all scenarios. Moreover, the MPI-ESM-MR General Circulation Model outputs produced the most dramatic results by predicting that Lake Beyşehir may dry out by the 2040s with the current outflow regime. The results indicate that shallow Mediterranean lakes may face a severe risk of drying out and losing their ecosystem values in the near future if the current intensity of water abstraction is not reduced. In addition, the results also demonstrate that outflow management and sustainable use of water sources are vital to sustain lake ecosystems in water

  19. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  20. The algal growth-limiting nutrient of lakes located at Mexico’s Mesa Central

    Directory of Open Access Journals (Sweden)

    Fernando W. Bernal-Brooks

    2016-03-01

    Full Text Available This paper reports on the algal growth-limiting nutrients of five lakes located on Mexico’s Mesa Central - a topic poorly known in the regional limnology of Mexico. The five case studies involved three contiguous watersheds of Michoacán State and provided a trophic state variation from mesotrophic to hypereutrophic; the case studies included Lakes Zirahuén, Pátzcuaro, Teremendo, Cuitzeo and the Cointzio Reservoir. The fieldwork involved the collection of physical and chemical data (including nutrients from each case study during the dry and rainy seasons of 2010. Additionally, water samples (1 L were obtained and filtered (0.45 µm in the laboratory to keep the nutrient content available for bioassays. The chemical analyses suggested a phosphorus (P limitation in the Cointzio Reservoir, Lake Teremendo and Lake Zirahuén relative to an N:P>16:1. There was a nitrogen (N limitation at three sampling stations of Lake Pátzcuaro, with an N:P<16:1. As result of the bioassays conducted in July 2012, the Cointzio Reservoir and Lake Teremendo appeared to be P-limited and Lake Pátzcuaro appeared to be N-limited at three sampling stations. Lake Zirahuén showed seasonal variation, with an N limitation during the dry season and a P limitation during the wet season. Those cases with similar results from both methods confirmed the limiting nutrient identification. Lake Cuitzeo, Lake Zirahuén (dry season, and the shallowest sampling station in Lake Pátzcuaro produced unclear results because of divergent outcomes. In terms of the algal growth potential, the Cointzio Reservoir remained unaltered from one season to the next. However, for most of the lakes (with the exception of Lake Pátzcuaro sites 2 and 4, the rainy season provided a dilution effect. Effective lake management depends on a clear recognition of such elements that are in control of the aquatic productivity. In the area of Michoacán, both N and P may act as limiting nutrients.

  1. Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  2. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    Science.gov (United States)

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon

  3. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    Science.gov (United States)

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of

  4. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  5. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  6. Competing risks and the development of adaptive management plans for water resources: Field reconnaissance investigation of risks to fishes and other aquatic biota exposed to endocrine disrupting chemicals (edcs) in lake mead, Nevada USA

    Science.gov (United States)

    Linder, G.; Little, E.E.

    2009-01-01

    The analysis and characterization of competing risks for water resources rely on a wide spectrum of tools to evaluate hazards and risks associated with their management. For example, waters of the lower Colorado River stored in reservoirs such as Lake Mead present a wide range of competing risks related to water quantity and water quality. These risks are often interdependent and complicated by competing uses of source waters for sustaining biological resources and for supporting a range of agricultural, municipal, recreational, and industrial uses. USGS is currently conducting a series of interdisciplinary case-studies on water quality of Lake Mead and its source waters. In this case-study we examine selected constituents potentially entering the Lake Mead system, particularly endocrine disrupting chemicals (EDCs). Worldwide, a number of environmental EDCs have been identified that affect reproduction, development, and adaptive behaviors in a wide range of organisms. Many EDCs are minimally affected by current treatment technologies and occur in treated sewage effluents. Several EDCs have been detected in Lake Mead, and several substances have been identified that are of concern because of potential impacts to the aquatic biota, including the sport fishery of Lake Mead and endangered razorback suckers (Xyrauchen texanus) that occur in the Colorado River system. For example, altered biomarkers relevant to reproduction and thyroid function in fishes have been observed and may be predictive of impaired metabolism and development. Few studies, however, have addressed whether such EDC-induced responses observed in the field have an ecologically significant effect on the reproductive success of fishes. To identify potential linkages between EDCs and species of management concern, the risk analysis and characterization in this reconnaissance study focused on effects (and attendant uncertainties) that might be expressed by exposed populations. In addition, risk reduction

  7. DECLINE AND EXTINCTION OF LAKE TROUT IN THE GREAT LAKES: CAN BIOLOGICAL INDICATORS HELP DIAGNOSE CAUSES, IDENTIFY REMEDIAL ACTIONS, AND PREDICT FUTURE CONDITIONS?

    Science.gov (United States)

    The lake trout, Salvelinus namaycush, is the predominant top predator native fish species of the Great Lakes. Lake trout are valued for commercial and recreational use in addition to their ecological importance. In the last half of the 20th century, population declines lead to vi...

  8. A new bathymetric survey of the Suwałki Landscape Park lakes

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2016-12-01

    Full Text Available The results of the latest bathymetric survey of 21 lakes in the Suwałki Landscape Park (SLP are presented here. Measurements of the underwater lake topography were carried out in the years 2012–2013 using the hydroacoustic method (sonar Lawrence 480M. In the case of four lakes (Błędne, Pogorzałek, Purwin, Wodziłki this was the first time a bathymetric survey had been performed. Field material was used to prepare bathymetric maps, which were then used for calculating the basic size and shape parameters of the lake basins. The results of the studies are shown against the nearly 90 year history of bathymetric surveying of the SLP lakes. In the light of the current measurements, the total area of the SLP lakes is over 634 hm2 and its limnic ratio is 10%. Lake water resources in the park were estimated at 143 037.1 dam3. This value corresponds to a retention index of 2257 mm. In addition, studies have shown that the previous morphometric data are not very accurate. The relative differences in the lake surface areas ranged from –14.1 to 9.1%, and in the case of volume – from –32.2 to 35.3%. The greatest differences in the volume, expressed in absolute values, were found in the largest SLP lakes: Hańcza (1716.1 dam3, Szurpiły (1282.0 dam3, Jaczno (816.4 dam3, Perty (427.1 dam3, Jegłówek (391.2 dam3 and Kojle (286.2 dam3. The smallest disparities were observed with respect to the data obtained by the IRS (Inland Fisheries Institute in Olsztyn. The IMGW (Institute of Meteorology and Water Management bathymetric measurements were affected by some significant errors, and morphometric parameters determined on their basis are only approximate.

  9. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2015-06-01

    Full Text Available A Lake Multi-biotic Integrity Index (LMII for the China’s second largest interior lake (Dongting Lake was developed to assess the water quality status using algal and macroinvertebrate metrics. Algae and benthic macroinvertebrate assemblages were sampled at 10 sections across 3 subregions of Dongting Lake. We used a stepwise process to evaluate properties of candidate metrics and selected ten for the LMII: Pampean diatom index, diatom quotient, trophic diatom index, relative abundance diatoms, Margalef index of algae, percent sensitive diatoms, % facultative individuals, % Chironomidae individuals, % predators individuals, and total number of macroinvertebrate taxa. We then tested the accuracy and feasibility of the LMII by comparing the correlation with physical-chemical parameters. Evaluation of the LMII showed that it discriminated well between reference and impaired sections and was strongly related to the major chemical and physical stressors (r = 0.766, P<0.001. The re-scored results from the 10 sections showed that the water quality of western Dongting Lake was good, while that of southern Dongting Lake was relatively good and whereas that of eastern Dongting Lake was poor. The discriminatory biocriteria of the LMII are suitable for the assessment of the water quality of Dongting Lake. Additionally, more metrics belonging to habitat, hydrology, physics and chemistry should be considered into the LMII, so as to establish comprehensive assessment system which can reflect the community structure of aquatic organisms, physical and chemical characteristics of water environment, human activities, and so on.

  10. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. High-levels of microplastic pollution in a large, remote, mountain lake

    International Nuclear Information System (INIS)

    Free, Christopher M.; Jensen, Olaf P.; Mason, Sherri A.; Eriksen, Marcus; Williamson, Nicholas J.; Boldgiv, Bazartseren

    2014-01-01

    Highlights: • We quantified pelagic microplastic pollution in Lake Hovsgol, Mongolia. • Lake Hovsgol is more polluted with microplastics than Lakes Huron and Superior. • Microplastics came from consumer goods; no microbeads/few pellets were observed. • Microplastics were sourced from population centers and distributed by the winds. • Without waste management, even small populations can heavily pollute large lakes. - Abstract: Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km −2 , Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics

  12. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  13. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  14. Additional Security Considerations for Grid Management

    Science.gov (United States)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  15. Additive Manufacturing: Which DLA-Managed Legacy Parts are Potential AM Candidates

    Science.gov (United States)

    2016-07-01

    R G ADDITIVE MANUFACTURING : WHICH DLA-MANAGED LEGACY PARTS ARE POTENTIAL AM CANDIDATES? REPORT DL501T1 J UL Y 2016...L Y 2 0 1 6 ADDITIVE MANUFACTURING : WHICH DLA-MANAGED LEGACY PARTS ARE POTENTIAL AM CANDIDATES? REPORT DL501T1 Thomas K . Pa rk s...DESIGNATED BY OTHER OFFICIAL DOCUMENTATION. LMI © 2016. ALL RIGHTS RESERVED. iii Additive Manufacturing : Which DLA-Managed Legacy Parts Are

  16. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    Science.gov (United States)

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    tributaries to the Fox Chain of Lakes. With the exception of Grass Lake Outlet at Lotus Woods, most of the bed sediments are sand size or larger. The bed material at the streamflow-gaging station at Grass Lake Outlet at Lotus Woods contains 31.5 percent silt- and clay-sized particles. The bed material at Nippersink Creek near Spring Grove also has higher silt content (10.7 percent) than the bed material found in the Fox River at Wilmot (2.1 percent) and Johnsburg (1.3 percent). Additionally, water velocities at 80 cross sections in the Fox Chain of Lakes were collected to provide sample circulation patterns during two separate 1-week periods, and discharge was measured at 18 locations in the lakes. These data were collected to be available for use in hydrodynamic models.

  17. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  18. International Planning for Subglacial Lake Exploration

    Science.gov (United States)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  19. Nutrient Application and Algal Blooms: Farmer Decisions Regarding the Use of Best Management Practices in Lake Erie's Maumee River Watershed

    Science.gov (United States)

    Heeren, A.; Toman, E.; Wilson, R. S.; Martin, J.

    2016-12-01

    Lake Erie is the most productive of the Great Lakes. However, harmful algal blooms (HABs) caused by nutrient run-off threaten the lake. Experts have proposed numerous best management practices (BMPs) designed to reduce nutrient and sediment run-off. However, for these practices to be effective at reducing HABs, a significant portion of farmers and landowners within Lake Erie's watersheds have to first adopt and implement these practices. In order to better understand how farmers and landowners make decisions about whether or not to adopt and implement BMPs we conducted a series of focus groups and a mail survey of Lake Erie's largest watershed. We found that many farmers were supportive of adopting BMPs. For example, 60% of farmers in the watershed have already adopted using grid soil sampling while another 30% are willing to adopt the practice in the future. However, other practices were less popular, for example, only 18% of farmers had already adopted cover crops. Farmers also expressed several reservations about adopting some BMPs. For example, farmers were concerned about the costs of some BMPs, such as cover crops and drainage management systems, and how such practices might interfere with the planting of subsequent crops. Our research has several implications for reducing nutrient production by promoting BMPs. First, we identified potential concerns and limitations farmers faced in implementing specific BMPs. For example, conservationists can design future programs and communication efforts to target these specific concerns. Second, through examining the socio-psychological and cognitive characteristics that influence farmer decision-making, we identified that willingness to adopt nutrient BMPs is association with how strongly a farmer identifies with conservation and how effective they believed the BMP was at reducing run-off. Messages and information about BMPs may be more effective if they are framed in a way that aligns with identities and beliefs about

  20. Determination of water quality at lake of Engineering at UKM campus Bangi: Towards integrated water resources management

    International Nuclear Information System (INIS)

    Mazlin Mokhtar; Othman Abdul Karim

    2008-01-01

    Integrated Water Resources Management (IWRM) is a process, which promotes the coordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystem. A study on the water quality of the Engineering Lake, UKM Bangi Campus was carried out to determine the water quality, and compare it with the Interim National Water Quality Standard (INWQS) (DOE, 2001), followed by estimation of its Water Quality Index (WQI) based on six selected parameters. The purpose of this study was to identify the possible causes of the water pollution and level of this pollution at the lake. The comparisons of concentration values measured during dry days with those on rainy were performed using suitable statistical methods. Water quality parameters that were measured are pH, temperature, dissolve oxygen (DO), conductivity, turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal-nitrogen, lead and cadmium. Temperature, pH, conductivity, dissolved oxygen and turbidity were measured in situ by using calibrated meters, whilst metal concentrations were determined by using Atomic Absorption Spectrophotometer (AAS). Methods of sampling and water analyses were performed according to recommendations that were outlined by the American Public Health Association (APHA, 1998). On normal days, the inflow and the outflow of the lake were estimated to be 0.057 ± 0.024 m 3 / s inflows and 0.052 ± 0.018 m 3 / s outflows. The theoretical retention time of the lake water with a mean depth of 1.5 m and area of 18,000 m 2 was 62.5 ± 37.6 days. On the normal days, the estimated total amounts of materials that were present in the lake were DO (200.88 ± 28.25 kg), TSS (163.78 ± 18.19 kg), NH-N (12.65 ± 13.90 kg), BOD (41.90 ± 23.95 kg), COD (1605.58 ± 74.68 kg), Pb (9.50 ± 0.90 kg) and Cd (2.81 ± 0

  1. Effectiveness of a refuge for Lake Trout in Western Lake Superior II: Simulation of future performance

    Science.gov (United States)

    Akins, Andrea L; Hansen, Michael J.; Seider, Michael J.

    2015-01-01

    Historically, Lake Superior supported one of the largest and most diverse Lake Trout Salvelinus namaycush fisheries in the Laurentian Great Lakes, but Lake Trout stocks collapsed due to excessive fishery exploitation and predation by Sea Lampreys Petromyzon marinus. Lake Trout stocking, Sea Lamprey control, and fishery regulations, including a refuge encompassing Gull Island Shoal (Apostle Islands region), were used to enable recovery of Lake Trout stocks that used this historically important spawning shoal. Our objective was to determine whether future sustainability of Lake Trout stocks will depend on the presence of the Gull Island Shoal Refuge. We constructed a stochastic age-structured simulation model to assess the effect of maintaining the refuge as a harvest management tool versus removing the refuge. In general, median abundances of age-4, age-4 and older (age-4+), and age-8+ fish collapsed at lower instantaneous fishing mortality rates (F) when the refuge was removed than when the refuge was maintained. With the refuge in place, the F that resulted in collapse depended on the rate of movement into and out of the refuge. Too many fish stayed in the refuge when movement was low (0–2%), and too many fish became vulnerable to fishing when movement was high (≥22%); thus, the refuge was more effective at intermediate rates of movement (10–11%). With the refuge in place, extinction did not occur at any simulated level of F, whereas refuge removal led to extinction at all combinations of commercial F and recreational F. Our results indicate that the Lake Trout population would be sustained by the refuge at all simulated F-values, whereas removal of the refuge would risk population collapse at much lower F (0.700–0.744). Therefore, the Gull Island Shoal Refuge is needed to sustain the Lake Trout population in eastern Wisconsin waters of Lake Superior.

  2. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  3. Hog Producers' Risk Management Attitudes and Desire for Additional Risk Management Education

    OpenAIRE

    Patrick, George F.; Peiter, Amy J.; Knight, Thomas O.; Coble, Keith H.; Baquet, Alan E.

    2007-01-01

    Hog producers in Indiana and Nebraska were surveyed about sources of risk, effectiveness of risk management strategies, and prior participation in and desire for additional risk management education. Ownership of hogs by the producer, size of the operation, and age did have significant effects on ratings of both sources of risk and effectiveness of risk management strategies. Probit analysis found age, prior attendance, knowledge and prior use of the tool, level of integration, and concern ab...

  4. Social capital and fisheries management: the case of Chilika Lake in India.

    Science.gov (United States)

    Sekhar, Nagothu Udaya

    2007-04-01

    This article shows how social capital impacts fisheries management at the local level in Chilika Lake, located in the state of Orissa in India. In Chilika, the different fishing groups established norms and "rules of the game" including, but not limited to, spatial limits that determine who can fish and in what areas, temporal restrictions about when and for how long people may fish, gear constraints about what harvesting gear may be used by each group, and physical controls on size and other characteristics of fish that may be harvested. A survey of the members of fishing groups has shown that the bonding social capital is strong within the Chilika fishing groups. Bonding and bridging social capital keeps the fishers together in times of resource scarcity, checks violations of community rules and sanctions, and strengthens the community fisheries management. In contrast, linking social capital in Chilika appears to be weak, as is evident from the lack of trust in external agencies, seeking the help of formal institutions for legal support, and increasing conflicts. Trust and cooperation among fishers is crucial in helping to build the social capital. A social capital perspective on fisheries governance suggests that there should be a rethinking of priorities and funding mechanisms, from "top-down" fisheries management towards "co-management" with a focus on engendering rights and responsibilities for fishers and their communities.

  5. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  6. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  7. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  8. Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  9. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective.

    Science.gov (United States)

    Zhang, Yunlin; Yao, Xiaolong; Qin, Boqiang

    2016-07-01

    Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that "sediment," "eutrophication", "Microcystis aeruginosa", "cyanobacterial blooms", and "remote sensing" were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the

  10. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  11. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  12. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  13. STOCK ENHANCEMENT IN INDONESIAN LAKE AND RESERVOIRS FISHERIES

    Directory of Open Access Journals (Sweden)

    Endi Setiadi Kartamihardja

    2012-12-01

    enhancement including providing quality and quantity of seeds, regulating of fish catch, developin g of market system, institution and fisheries co-management have supported a steady yearly increase in yield. The governments should take the initiative in protection of genetic diversity, especially in stock enhancement of lakes inhabited by endemic and or threatened species, such as lakes in Sulawesi and Papua Island.

  14. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    International Nuclear Information System (INIS)

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  15. Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-11-01

    On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  16. Invasive crayfish threaten the development of submerged macrophytes in lake restoration.

    Science.gov (United States)

    van der Wal, Jessica E M; Dorenbosch, Martijn; Immers, Anne K; Vidal Forteza, Constanza; Geurts, Jeroen J M; Peeters, Edwin T H M; Koese, Bram; Bakker, Elisabeth S

    2013-01-01

    Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.

  17. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    Science.gov (United States)

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  18. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes

    Directory of Open Access Journals (Sweden)

    Dehua Mao

    2018-02-01

    Full Text Available High-altitude inland-drainage lakes on the Tibetan Plateau (TP, the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.

  19. The limnology of L Lake: Results of the L-Lake monitoring program, 1986--1989

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A.

    1991-12-15

    L Lake was constructed in 1985 on the upper regions of Steel Creek, SRS to mitigate the heated effluents from L Reactor. In addition to the NPDES permit specifications (Outfall L-007) for the L-Reactor outfall, DOE-SR executed an agreement with the South Carolina Department of Health and Environmental Control (SCDHEC), that thermal effluents from L-Reactor will not substantially alter ecosystem components in the approximate lower half of L Lake. This region should be inhabited by Balanced (Indigenous) Biological Communities (BBCs) in accordance with Section 316(a) of the Pollution Control (Clean Water) Act (Public Law 92-500). In response to this requirement the Environmental Sciences Section/Ecology Group initiated a comprehensive biomonitoring program which documented the development of BBCs in L Lake from January 1986 through December 1989. This report summarizes the principal results of the program with regards to BBC compliance issues and community succession in L Lake. The results are divided into six sections: water quality, macronutrients, and phytoplankton, aquatic macrophytes, zooplankton, benthic macroinvertebrates, fish, and community succession. One of the prime goals of the program was to detect potential reactor impacts on L Lake.

  20. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  1. NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  2. Ecological regime shifts and changes of lake ecosystem service in a shallow Yangtze lake (Taibai Lake, China) over the past 150 years

    Science.gov (United States)

    Dong, X.; Xu, M.; Yang, X.

    2017-12-01

    people are seeking higher desired services by human "modification" on lake ecosystem. By long-term records, temporal perspectives on such dynamic tradeoffs and synergies relationship among various ESs under the context of different types resource utilization over time have significant implications for management initiatives.

  3. Using Watershed Models and Human Behavioral Analyses to identify Management Options to Reduce Lake Erie's Harmful Algal Blooms

    Science.gov (United States)

    Martin, J.; Wilson, R. S.; Aloysius, N.; Kalcic, M. M.; Roe, B.; Howard, G.; Irwin, E.; Zhang, W.; Liu, H.

    2017-12-01

    In early 2016, the United States and Canada formally agreed to reduce phosphorus inputs to Lake Erie by 40% to reduce the severity of annual Harmful Algal Blooms (HABs). These blooms have become more severe, with record events occurring in 2011 and 2015, and have compromised public safety, shut down drinking water supplies, and negatively impacted the economy of the western Lake Erie basin. Now, a key question is what management options should be pursued to reach the 40% reduction. This presentation will highlight interdisciplinary research to compare the amount and types of practices needed for this reduction to the current and projected levels of adoption. Multiple models of the Maumee watershed identified management plans and adoption rates needed to reach the reduction targets. For example, one successful scenario estimated necessary adoption rates of 50% for subsurface application of fertilizer on row crops, 58% for cover crops, and 78% for buffer strips. Current adoption is below these levels, but future projections based on farmer surveys shows these levels are possible. This information was then used to guide another round of watershed modeling analysis to evaluate scenarios that represented more realistic scenarios based on potential levels of management adoption. In general, these results show that accelerated adoption of management plans is needed compared to past adoption rates, and that some of these greater adoption levels are possible based on likely adoption rates. Increasing the perceived efficacy of the practices is one method that will support greater voluntary rates of adoption.

  4. Forecasting daily lake levels using artificial intelligence approaches

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher

    2012-04-01

    Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.

  5. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    Science.gov (United States)

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  6. Effects of Hypolimnetic Oxygenation on Mercury Cycling in Twin Lake, Washington

    Science.gov (United States)

    Beutel, M.; Dent, S.; Reed, B.; Moore, B.; Yonge, D.; Shallenberger, E.

    2010-12-01

    , particularly late in the fall. Analytical work and data analysis is ongoing to measure methylmercury in zooplankton and normalize mercury levels in zooplankton to zooplankton density to account for the potential effects of biodilution. This study sheds light on the complex biogeochemistry and bioaccumulation of mercury in lakes and the effects of hypolimnetic oxygenation on methylmercury cycling in lake ecosystems. With few management options available to resource managers, and limited near-term improvements expected from source control efforts, applied research is needed to evaluate the effectiveness of in-lake management strategies, such as lake oxygenation, in repressing mercury accumulation in aquatic biota.

  7. A Citizen Science Program for Monitoring Lake Stages in Northern Wisconsin

    Science.gov (United States)

    Kretschmann, A.; Drum, A.; Rubsam, J.; Watras, C. J.; Cellar-Rossler, A.

    2011-12-01

    Historical data indicate that surface water levels in northern Wisconsin are fluctuating more now than they did in the recent past. In the northern highland lake district of Vilas County, Wisconsin, concern about record low lake levels in 2008 spurred local citizens and lake associations to form a lake level monitoring network comprising citizen scientists. The network is administered by the North Lakeland Discovery Center (NLDC, a local NGO) and is supported by a grant from the Citizen Science Monitoring Program of the Wisconsin Department of Natural Resources (WDNR). With technical guidance from limnologists at neighboring UW-Madison Trout Lake Research Station, citizen scientists have installed geographic benchmarks and staff gauges on 26 area lakes. The project engages citizen and student science participants including homeowners, non-profit organization member-participants, and local schools. Each spring, staff gauges are installed and referenced to fixed benchmarks after ice off by NLDC and dedicated volunteers. Volunteers read and record staff gauges on a weekly basis during the ice-free season; and maintain log books recording lake levels to the nearest 0.5 cm. At the end of the season, before ice on, gauges are removed and log books are collected by the NLDC coordinator. Data is compiled and submitted to a database management system, coordinated within the Wisconsin Surface Water Integrated Monitoring System (SWIMS), a statewide information system managed by the WDNR in Madison. Furthermore, NLDC is collaborating with the SWIMS database manager to develop data entry screens based on records collected by citizen scientists. This program is the first of its kind in Wisconsin to utilize citizen scientists to collect lake level data. The retention rate for volunteers has been 100% over the three years since inception, and the program has expanded from four lakes in 2008 to twenty-six lakes in 2011. NLDC stresses the importance of long-term monitoring and the

  8. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  9. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  10. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  11. The effect of climatic changes on Van lake

    International Nuclear Information System (INIS)

    Dirican, A.

    2002-01-01

    Lake levels are influenced by climatic changes, greenhouse effects and anthropogenic activities. These effects are reflected in the hydrological cycle features over the lake drainage basins. Among the significant hydrological variables, lake levels are influenced by different atmospheric and environmental conditions. During wet periods, there may be water-level rise that may cause some social and economical losses to agriculture and human activities along the lake shores. Such rises become serious in the case of shore line settlements and low lying agricultural land. Lake Van currently faces such problems due to water-level rises in eastern Turkey. Because of, it is a closed basin with no natural and artificial outlet and its water contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source, Lake Van unique. Under these circumstances, in addition to discussion of early studies air temperature, δ 18 O of precipitation, temperature profile of lake and δ 18 O variation of water column of lake Van were examined

  12. Rehabilitation of Mohawk Lake: Brantford's crown jewel

    International Nuclear Information System (INIS)

    Farrell, C.W.; Kube, D.J.

    1994-01-01

    Mohawk Lake in Brantford, Ontario had been receiving contaminants from various industrial and municipal sources since the late 1800s. The lake suffered a slow death with the absence of any watershed management plan. A citizen committee was established in 1990 to rehabilitate the lake so that its recreational and resource potential could be fully realized. In 1993, the committee obtained government funding to carry out a detailed baseline environmental study of the lake. Lake sediments were found to consist of an upper horizon of poorly consolidated, organic-rich, odoriferous material overlying a more compact sandy layer. Lake water was characterized by high concentrations of nutrients and metals, and high biological oxygen demand. Sediments also had high concentrations of heavy metals and low concentrations of such organic contaminants as pyrene, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The most distinct contaminant appeared to be petroleum hydrocarbons at 0.5-1% concentration. It was determined that lake rehabilitation would require removal of these sediments. Tests indicated that the sediments were non-hazardous non-registrable solid waste, and the preferred removal option was hydraulic dredging into settlement ponds along the undeveloped south shore of the lake. A sediment trap was recommended to be installed at the entrance of the lake, along with a constructed wetland to remove a variety of water pollutants. The sediment dredging, dewatering, trap and wetland installation, and land remediation of the sediment disposal area are estimated to cost ca $3.75 million, and the work will require at least 18 months to complete. 1 fig

  13. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    Science.gov (United States)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  14. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  15. Projected shifts in fish species dominance in Wisconsin lakes under climate change.

    Science.gov (United States)

    Hansen, Gretchen J A; Read, Jordan S; Hansen, Jonathan F; Winslow, Luke A

    2017-04-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33-75% of lakes where recruitment is currently supported and a 27-60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85

  16. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  17. Climate Change Assessments for Lakes Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ayten Erol

    2012-07-01

    Full Text Available Climate change is one of the most important challenges for forestry. Forests are known to be most efficient natural tools to ensure availability and quality of water in many regions. Besides, planning of forest resources towards water quality and quantity is essential in countries that are expected to face with more frequent drought periods in the next decades due to climate change. Watershed management concept has been supposed as the primary tool to plan natural resources in a more efficient and sustainable way by both academicians and practitioners to mitigate and adapt climate change. Forest cover among other land use types provides the best regulating mechanism to mitigate erosion, sedimentation, desertification, and pollution. In addition, climate change can potentially affect forest stand dynamics by influencing the availability of water resources. Therefore, the amount of forest cover in a watershed is an indicator of climate change mitigation and adaptation. Climate change is a concern and risk for the sustainability of water resources in Lakes Region of Turkey. The objective of this study is to make a comprehensive assessment in lake watersheds of the Lakes region considering the forest cover. For this purpose, the study gives a general view of trends in climatic parameters using Mann Kendall trend test. The results showed that Mann Kendall trend test for temperature and precipitation data is not enough to evaluate the magnitude of potential changes of climate in terms of forest cover. Understanding impacts of changes in temperature and precipitation on forest cover, runoff data should be evaluated with temperature and precipitation for watersheds of forest areas in Lakes Region.

  18. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  19. 77 FR 57556 - Lake Tahoe Basin Federal Advisory Committee (LTBFAC)

    Science.gov (United States)

    2012-09-18

    ... Management Unit, Forest Service, 35 College Drive, South Lake Tahoe, CA 96150, (530) 543-2773, (530) 543-0956... received at 35 College Drive, South Lake Tahoe, CA 96150. Please call ahead to 530-543-2773 to facilitate... Standard Time, Monday through Friday. SUPPLEMENTARY INFORMATION: The following business will be conducted...

  20. Integrating remote sensing approach with pollution monitoring tools for aquatic ecosystem risk assessment and management: a case study of Lake Victoria (Uganda).

    Science.gov (United States)

    Focardi, Silvia; Corsi, Ilaria; Mazzuoli, Stefania; Vignoli, Leonardo; Loiselle, Steven A; Focardi, Silvano

    2006-11-01

    Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. The resulting enhanced nutrient loading to the soil is subsequently transported to the lake by rain or as dry fall. The data has been inserted in a Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an

  1. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  2. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  3. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  4. 76 FR 31359 - Notice of Intent To Prepare an Environmental Impact Statement on a General Management Plan...

    Science.gov (United States)

    2011-05-31

    ... management activities, visitor activities, and developments that would be appropriate in the park in the future. In addition, the plan will generally address visitor-use related issues and provide management... Environmental Impact Statement on a General Management Plan Amendment/Wilderness Study for Lake Clark National...

  5. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin

    Science.gov (United States)

    Hughes, P.E.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Fowler Lake Management District, completed a hydrologic and water-quality study of Fowler Lake in southeastern Wisconsin during calendar year 1984. Data on temperature, pH, specific conductance, and concentrations of dissolved oxygen, total phosphorus, dissolved orthophosphate phosphorus, and various nitrogen species were collected from January through November 1984. The water-quality data indicate that Fowler Lake can be classified as a mildly fertile lake with excellent water clarity as indicated by Secchi depth readings generally greater than 12 feet. Although phosphorus concentrations are generally less than 0.01 milligram per liter, the lake does produce dense stands of macrophytes during the open-water period. The lake is thermally stratified during the summer months, resulting in oxygen depletion in the deepest parts of the lake.

  7. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    -eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (. Scrophulariaceae......We use 2nd generation sequencing technology on sedimentary ancient DNA (. sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty...... and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650calyrBP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less...

  8. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    Science.gov (United States)

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    positive effect such that a unit increase in water color resulted in a 2 μg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 μg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP–CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color–CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals.

  9. Comparison of genetic and visual identification of cisco and lake whitefish larvae from Chaumont Bay, Lake Ontario

    Science.gov (United States)

    George, Ellen M.; Hare, Matthew P.; Crabtree, Darran L.; Lantry, Brian F.; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi are an important component of native food webs in the Great Lakes, and their restoration is instrumental to the recovery of lake trout Salvelinus namaycush and Atlantic salmon Salmo salar. Difficulties with visual identification of larvae can confound early life history surveys, as cisco are often difficult to distinguish from lake whitefish C. clupeaformis. We compared traditional visual species identification methods to genetic identifications based on barcoding of the mitochondrial cytochrome C oxidase I gene for 726 coregonine larvae caught in Chaumont Bay, Lake Ontario. We found little agreement between the visual characteristics of cisco identified by genetic barcoding and the most widely used dichotomous key, and the considerable overlap in ranges of traditionally utilized metrics suggest that visual identification of coregonine larvae from Chaumont Bay is impractical. Coregonines are highly variable and plastic species, and often display wide variations in morphometric characteristics across their broad range. This study highlights the importance of developing accurate, geographically appropriate larval identification methods in order to best inform cisco restoration and management efforts.

  10. Lake Naivasha Sustainability : Ecosystem Improvement for Health ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Lake Naivasha Sustainability : Ecosystem Improvement for Health and ... The overall goal is to make recommendations for the sustainable management of natural ... to improve livestock vaccine development and production to benefit farmers ...

  11. Lake Ontario: Food web dynamics in a changing ecosystem (1970-2000)

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2003-01-01

    We examined stressors that have led to profound ecological changes in the Lake Ontario ecosystem and its fish community since 1970. The most notable changes have been reductions in phosphorus loading, invasion by Dreissena spp., fisheries management through stocking of exotic salmonids and control of sea lamprey (Petromyzon marinus), and fish harvest by anglers and double-crested cormorants (Phalacrocorax auritus). The response to these stressors has led to (i) declines in both algal photosynthesis and epilimnetic zooplankton production, (ii) decreases in alewife (Alosa pseudoharengus) abundance, (iii) declines in native Diporeia and lake whitefish (Coregonus clupeaformis), (iv) behavioral shifts in alewife spatial distribution benefitting native lake trout (Salvelinus namaycush), threespine stickleback (Gasterosteus aculeatus), and emerald shiner (Notropis atherinoides) populations, (v) dramatic increases in water clarity, (vi) predation impacts by cormorants on select fish species, and (vii) lake trout recruitment bottlenecks associated with alewife-induced thiamine deficiency. We expect stressor responses associated with anthropogenic forces like exotic species invasions and global climate warming to continue to impact the Lake Ontario ecosystem in the future and recommend continuous long-term ecological studies to enhance scientific understanding and management of this important resource.

  12. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    Science.gov (United States)

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  13. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    Science.gov (United States)

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  14. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  15. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  16. A synthesis of the Green Bay (Lake Michigan) mass balance project: Implications for environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, W.; Endicott, D.; Kreis, R. [Environmental Protection Agency, Grosse Ile, MI (United States). Large Lakes Research Station

    1995-12-31

    The questions confronting environmental managers responsible for the Great Lakes are complex and regulatory action (or inaction) have major social, environmental and economical consequences. It has become evident that rational approaches must be found to address the issues, more clearly identify and quantitate problems, locate and quantitate sources of important chemicals, and arrive at optimal remedial programs. A scientifically based management framework has been implemented and prototyped within the Great Lakes community of mangers and scientists referred to as the Mass Balance Approach. The US Environmental Protection Agency, led by the Great Lakes National Program Office (GLNPO) in cooperation with Office of Research and Development (ORD) and other state and academic organizations, has completed an intensive study of Green Bay (Lake Michigan) to test the feasibility of using the mass balance approach for managing toxic substances in the Great Lakes. This presentation will provide an overview of the project and the results. Conclusions and recommendations will be reviewed and implications for future policy based, scientific studies will be explored.

  17. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  18. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  19. Protecting the endangered lake salmon

    International Nuclear Information System (INIS)

    Soimakallio, H.; Oesch, P.

    1997-01-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  20. Protecting the endangered lake salmon

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  1. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  2. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  3. Projected shifts in fish species dominance in Wisconsin lakes under climate change

    Science.gov (United States)

    Hansen, Gretchen JA; Read, Jordan S.; Hansen, Jonathan F.; Winslow, Luke

    2016-01-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989–2014) and future (2040–2064 and 2065–2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33–75% of lakes where recruitment is currently supported and a 27–60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up

  4. Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran

    Directory of Open Access Journals (Sweden)

    Alireza Asem

    2014-02-01

    Full Text Available Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana. Other forms of life include several species of algae, bacteria, microfungi, plants, birds, reptiles, amphibians and mammals. As a consequence of this unique biodiversity, this lake has been selected as one of the 59 biosphere reserves by UNESCO. This paper provides a comprehensive species checklist that needs to be updated by additional research in the future.

  5. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  6. Foreseen hydrological changes drive efforts to formulate water balance improvement measures as part of the management options of adaptation at Lake Balaton, Hungary

    Science.gov (United States)

    Molnar, Gabor; Kutics, Karoly

    2013-04-01

    completed with a similar methodology applied in partner lakes of the EULAKES project. Based on the assessment through a participatory process involving a broad group of stakeholders the possible management options were gathered and tested as the alternatives to improve the water balance of the lake.

  7. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  8. Monitoring lake level changes by altimetry in the arid region of Central Asia

    Science.gov (United States)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  9. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  10. Delineating the Drainage Structure and Sources of Groundwater Flux for Lake Basaka, Central Rift Valley Region of Ethiopia

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2017-11-01

    Full Text Available As opposed to most of the other closed basin type rift valley lakes in Ethiopia, Lake Basaka is found to be expanding at an alarming rate. Different studies indicated that the expansion of the lake is challenging the socio-economics and environment of the region significantly. This study result and previous reports indicated that the lake’s expansion is mostly due to the increased groundwater (GW flux to the lake. GW flux accounts for about 56% of the total inflow in recent periods (post 2000 and is found to be the dominant factor for the hydrodynamics and existence of the lake. The analysis of the drainage network for the area indicates the existence of a huge recharge area on the western and upstream side of the catchment. This catchment has no surface outlet; hence most of the incoming surface runoff recharges the GW system. The recharge area is the main source of GW flux to the lake. In addition to this, the likely sources/causes of GW flux to the lake could be: (i an increase of GW recharge following the establishment of irrigation schemes in the region; (ii subsurface inflow from far away due to rift system influence, and (iii lake neotectonism. Overall, the lake’s expansion has damaging effect to the region, owing to its poor water quality; hence the identification of the real causes of GW flux and mitigation measures are very important for sustainable lake management. Therefore a comprehensive and detailed investigation of the parameters related to GW flux and the interaction of the lake with the GW system of the area is highly recommended.

  11. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    Science.gov (United States)

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  12. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  13. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  14. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Howie; Smith, Howard (Okanagan Nation Alliance, Fisheries Department, Westbank, BC, Canada)

    2004-01-01

    Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areas in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction

  15. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite

  16. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  17. Cordova Lake dam hydroelectric generating station case study

    International Nuclear Information System (INIS)

    Kerr, D.; Huxley, J.

    1993-01-01

    The Ontario Ministry of Natural Resources released a Crown owned site to the private water power industry as part of the small hydro site release program initiated by the Ontario Government in the mid 1980's. The Cordova Lake Dam Hydroelectric Generating Station, built on this site, has been in operation since the first week of October, 1992. Since that time, the plant has been operating with less than 1 % down time and has generated over 2,400 MWh of electricity. Algonquin Power Systems is responsible for the management and operations of the plant which includes full time monitoring from the company's Mississauga office and a part time employee at Cordova Lake. Cordova Lake Dam is located on the Crowe River at the outlet of Cordova Lake, approximately 125 kilometers east of Toronto, Ontario. The total cost of the Cordova Lake Dam project was $1.6 million. Algonquin Power contributed 20% equity to the project. Algonquin Power was also responsible for all engineering and geotechnical work and for completing the construction and equipment contracts. 1 tab., 2 figs

  18. The Elevation to Area Relationship of Lake Behnke

    Directory of Open Access Journals (Sweden)

    Kaitlin Deutsch

    2012-01-01

    Full Text Available The objective of this project was to determine the area-to-depth relationship in Lake Behnke, which acts as the principal stormwater drainage basin for the University of South Florida campus in Tampa, Florida. Data previously collected in a stormwater management study by Jeffery Earhart illustrated a linear correlation between the lake's area and depth; however, that study was conducted in 1998, and this present work serves to double check that correlation. We analyzed a bathymetric map of Lake Behnke that displayed several contour lines indicating depth and approximated the area inside each closed curve with a contour integral. The resulting relationship between area and elevation was determined to be more parabolic than linear.

  19. A dynamic model of caesium transport in lakes and their catchments

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, Sandra; Jenkins, Alan (Institute of Hydrology, Wallingford (UK)); Hilton, John (Institute of Freshwater Ecology, Ambleside (UK). Windermere Lab.)

    1991-04-01

    A mathematical model has been developed to predict radiocaesium concentrations over time within individual compartments of the lake and its catchment. The lake has been divided into five compartments; catchment, lake water (epilimnion and hypolimnion during stratification), lake sediment and fish. Radiocaesium enters the lake via contaminated rainfall and catchment runoff. A proportion of this radiocaesium absorbs onto suspended solids in the lake. This proportion is represented by a distribution coefficient. Sedimentation of the suspended solids occurs at a rate defined by the areal removal coefficient and results in increased caesium concentrations in the sediment. The ingestion of radiocaesium by either water column or benthic feeding fish is described by transfer functions. The model has been tested against data collected from Esthwaite water and Windermere shortly after the Chernobyl reactor accident from May 1986 to December 1987. The model simulates observed radiocaesium concentrations in Esthwaite lake water and sediment and also in lake water, sediment and fish in Windermere. The model could form the basis of a valuable management tool for the water industry should a major airborne pollution event occur again. (author).

  20. A dynamic model of caesium transport in lakes and their catchments

    International Nuclear Information System (INIS)

    McDougall, Sandra; Jenkins, Alan; Hilton, John

    1991-01-01

    A mathematical model has been developed to predict radiocaesium concentrations over time within individual compartments of the lake and its catchment. The lake has been divided into five compartments; catchment, lake water (epilimnion and hypolimnion during stratification), lake sediment and fish. Radiocaesium enters the lake via contaminated rainfall and catchment runoff. A proportion of this radiocaesium absorbs onto suspended solids in the lake. This proportion is represented by a distribution coefficient. Sedimentation of the suspended solids occurs at a rate defined by the areal removal coefficient and results in increased caesium concentrations in the sediment. The ingestion of radiocaesium by either water column or benthic feeding fish is described by transfer functions. The model has been tested against data collected from Esthwaite water and Windermere shortly after the Chernobyl reactor accident from May 1986 to December 1987. The model simulates observed radiocaesium concentrations in Esthwaite lake water and sediment and also in lake water, sediment and fish in Windermere. The model could form the basis of a valuable management tool for the water industry should a major airborne pollution event occur again. (author)

  1. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    Science.gov (United States)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    Water resource managers attempt to minimize conflicts among users, preserve the environment as much as possible, and satisfy user necessities at a minimum cost. Several European directives indirectly address mine restoration policies, with a goal of minimizing negative impacts and adding social and environmental value where possible. Water management must consider water sources, ecological flows, flood control, and variability in the demands for urban, industrial, and agricultural uses. In the context of the present study, the city of A Coruña is located in Galicia (NW Spain). The water supply system for this city and surrounding municipalities (~400.000 inhabitants) is based on the Abegondo-Cecebre reservoir. In cases when precipitation is scarce (e.g. no rain for more than seven consecutive months) and there is a seasonal increase in demand significantly stress the supply system so that, as occurred in 2010, shortages and water supply restrictions need to be considered. This is a clear indication of that, at present, the Abegondo-Cecebre reservoir has not enough capacity to cope with a scenario of increasing water demand (due to the vegetative and seasonal increase of population) and hydric stress likely connected with the widely acknowledged climate change. In the present context of monetary resources scarcity and society concern with respect large new public work projects, the construction of a new dam is challenging. However the opportunity provided by the recent flooding of the Meirama open pit (a large mine void that has been forced-flooded for its reclamation and it is located in the headwaters of one of the rivers draining towards the Abegondo-Cecebre reservoir) proves to be a significant new asset that will help to improve the future water management scenarios under the acknowledged uncertain conditions. In this study we have studied in detail the hydrochemistry of the affected systems (lake, river and reservoir) in order to make clear whether or not the

  2. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  3. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  4. Incentivizing the public to support invasive species management: eurasian milfoil reduces lakefront property values.

    Directory of Open Access Journals (Sweden)

    Julian D Olden

    Full Text Available Economic evaluations of invasive species are essential for providing comprehensive assessments of the benefits and costs of publicly-funded management activities, yet many previous investigations have focused narrowly on expenditures to control spread and infestation. We use hedonic modeling to evaluate the economic effects of Eurasian milfoil (Myriophyllum spicatum invasions on lakefront property values of single-family homes in an urban-suburban landscape. Milfoil often forms dense canopies at the water surface, diminishing the value of ecosystem services (e.g., recreation, fishing and necessitating expensive control and management efforts. We compare 1,258 lakeshore property sale transactions (1995-2006 in 17 lakes with milfoil and 24 un-invaded lakes in King County, Washington (USA. After accounting for structural (e.g., house size, locational (e.g., boat launch, and environmental characteristics (e.g., water clarity of lakes, we found that milfoil has a significant negative effect on property sales price ($94,385 USD lower price, corresponding to a 19% decline in mean property values. The aggregate cost of milfoil invading one additional lake in the study area is, on average, $377,542 USD per year. Our study illustrates that invasive aquatic plants can significantly impact property values (and associated losses in property taxes that reduce local government revenue, justifying the need for management strategies that prevent and control invasions. We recommend coordinated efforts across Lake Management Districts to focus institutional support, funding, and outreach to prevent the introduction and spread of milfoil. This effort will limit opportunities for re-introduction from neighboring lakes and incentivize private landowners and natural resource agencies to commit time and funding to invasive species management.

  5. Incentivizing the public to support invasive species management: eurasian milfoil reduces lakefront property values.

    Science.gov (United States)

    Olden, Julian D; Tamayo, Mariana

    2014-01-01

    Economic evaluations of invasive species are essential for providing comprehensive assessments of the benefits and costs of publicly-funded management activities, yet many previous investigations have focused narrowly on expenditures to control spread and infestation. We use hedonic modeling to evaluate the economic effects of Eurasian milfoil (Myriophyllum spicatum) invasions on lakefront property values of single-family homes in an urban-suburban landscape. Milfoil often forms dense canopies at the water surface, diminishing the value of ecosystem services (e.g., recreation, fishing) and necessitating expensive control and management efforts. We compare 1,258 lakeshore property sale transactions (1995-2006) in 17 lakes with milfoil and 24 un-invaded lakes in King County, Washington (USA). After accounting for structural (e.g., house size), locational (e.g., boat launch), and environmental characteristics (e.g., water clarity) of lakes, we found that milfoil has a significant negative effect on property sales price ($94,385 USD lower price), corresponding to a 19% decline in mean property values. The aggregate cost of milfoil invading one additional lake in the study area is, on average, $377,542 USD per year. Our study illustrates that invasive aquatic plants can significantly impact property values (and associated losses in property taxes that reduce local government revenue), justifying the need for management strategies that prevent and control invasions. We recommend coordinated efforts across Lake Management Districts to focus institutional support, funding, and outreach to prevent the introduction and spread of milfoil. This effort will limit opportunities for re-introduction from neighboring lakes and incentivize private landowners and natural resource agencies to commit time and funding to invasive species management.

  6. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  7. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  8. Climate change and diverse dimensions of glacial lake outburst floods (GLOFs): Lake Palcacocha case study, Peru

    Science.gov (United States)

    Emmer, Adam; Walker-Crawford, Noah; Carey, Mark; Huggel, Christian; Verheyen, Roda; Wallimann-Helmer, Ivo

    2017-04-01

    Post-Little Ice Age (LIA) climate change has led to worldwide glacier retreat, formation and evolution of glacial lakes, occasionally followed by glacier lake outburst floods (GLOFs). Hundreds of GLOFs are documented throughout the 20th and 21st century, of which a certain number that caused massive downstream destruction and up to thousands of lives lost. Management of GLOF hazards and risks has typically been a local concern, focusing on the implementation of specific technical and engineering measures. Recently, however, researchers have realized that the complexity of both the risks and the socio-environmental context requires a broader understanding and response beyond the more typical local perception and management. The growing cumulative greenhouse gas (GHG) emissions, for instance, increase the anthropogenic contribution to glacier retreat, lake formation and growth and eventually to GLOF. GLOF hazard and risk management is inherently linked to the global scale from this perspective. It implies that additional important dimensions enter the debate, including ethical and legal questions about the responsibility for damage and loss due to GLOFs. Here we analyze the conditions at an emblematic case in Peru's Cordillera Blanca, which has made international headlines repeatedly since it first generated one of the world's most deadly GLOFs in 1941 to its present-day growth and instability. Situated upstream from the regional center of Huaráz (population ˜120,000), Lake Palcacocha has attracted significant attention in recent years within Peru and at an international level. Perspectives on Palcacocha lack truly cross-disciplinary research, missing more comprehensive insight. This contribution is unique for its analysis of diverse dimensions, which also provide a framework for other GLOF hazard, risk, and climate-related studies. The main aim of this constribution is to understand the links between them, their drivers and inhibitors. Four dimensions were studied

  9. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  10. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  11. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  12. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  13. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003-2011

    Science.gov (United States)

    Moore, P.; Williams, S. D. P.

    2014-12-01

    Terrestrial water storage (TWS) change for 2003-2011 is estimated over Africa from GRACE gravimetric data. The signatures from change in water of the major lakes are removed by utilizing kernel functions with lake heights recovered from retracked ENVISAT satellite altimetry. In addition, the contribution of gravimetric change due to soil moisture and biomass is removed from the total GRACE signal by utilizing the GLDAS land surface model. The residual TWS time series, namely groundwater and the surface waters in rivers, wetlands, and small lakes, are investigated for trends and the seasonal cycle using linear regression. Typically, such analyses assume that the data are temporally uncorrelated but this has been shown to lead to erroneous inferences in related studies concerning the linear rate and acceleration. In this study, we utilize autocorrelation and investigate the appropriate stochastic model. The results show the proper distribution of TWS change and identify the spatial distribution of significant rates and accelerations. The effect of surface water in the major lakes is shown to contribute significantly to the trend and seasonal variation in TWS in the lake basin. Lake Volta, a managed reservoir in Ghana, is seen to have a contribution to the linear trend that is a factor of three greater than that of Lake Victoria despite having a surface area one-eighth of that of Lake Victoria. Analysis also shows the confidence levels of the deterministic trend and acceleration identifying areas where the signatures are most likely due to a physical deterministic cause and not simply stochastic variations.

  14. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  15. Close-out concepts for the Elliot Lake uranium mining operations

    International Nuclear Information System (INIS)

    Culver, K.B.; Chakravatti, J.L.; Gorber, D.M.; Knapp, R.A.; Davis, J.B.

    1982-01-01

    In the Elliot Lake area, approximately 100 million tonnes of tailings have been generated and deposited in ten separate management areas covering a total of 460 hectares. With continued placement of tailings into land-based management areas, the ultimate combined area covered with tailings would be in the order of 1500 to 2000 hectares. The principal environmental concerns associated with the land-based management areas in the long term (after mining has ceased), as seen by the Canadian regulatory authorities, are the potential of acid generation from pyrite oxidation, and the release and migration of radionuclides into air and water. The development of close-out criteria and concepts, therefore, has focussed on addressing these concerns. A position paper was issued for comment by the Canadian Atomic Energy Control Board on long-term aspects of uranium tailings management. In response, three of the uranium companies, Rio Algom Limited, Denison Mines Limited, and Eldorado Nuclear Limited, have countered with their own position and supported it with the extensive research on close-out procedures that has been carried out on their properties. The companies' position is that regulations should allow for site specific solutions and that institutional control is a valid long-term control option. As radiological loadings to air and water in the long term will be less than during operations, the only long-term concern in Elliot Lake is pyrite oxidation. Research has indicated that pyrite oxidation can be controlled in the upper zone of tailings. A summary of options available to control pyrite oxidation in this upper zone, including vegetation, limestone addition, pyrite removal, and physical cover is presented as well as preliminary cost estimates of each alternative. (author)

  16. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina

    Science.gov (United States)

    Pedrozo, Fernando L.; Temporetti, Pedro F.; Beamud, Guadalupe; Diaz, Mónica M.

    2008-12-01

    The strategies for eutrophication control, remediation, and policy management are often defined for neutral to alkaline freshwater systems, as they are most suitable for human use. The influence of nutrients on eutrophication in a naturally-acidic lake is poorly known. The main purpose of the present work is to evaluate the significance of volcanic nutrients in the control of the trophic state of the acidic Lake Caviahue, located at North Patagonia, Argentina. Acidic water systems were most studied on artificial acidified lakes, such as mining lakes in Germany or pit lakes in the United States. Lake Caviahue received a very high P load (42-192 ton P/yr) and low N load (14 ton N/yr), mainly as ammonium with quite low N:P ratios (Copahue volcano represents the main natural contribution of nutrients and acidity to the Lake Caviahue. The lake is oligotrophic in terms of CHLa. Neither the transparency nor the nutrient, dissolved or particulate, contents are to date representative of the trophic state of the lake. High P loads do not imply the eutrophication of the lake. We suggest that nitrogen and not phosphorus represents the key control nutrient in volcanically acidified lakes as TON was better related to CHLa observed (0.13-0.36 mg/m 3) in the lake. The pH increased around one unit (pH 2.0-3.0) during the last five years suggesting that the lake has not yet returned to a stable state.

  17. Spatiotemporal monitoring of Bakhtegan Lake's areal fluctuations and an exploration of its future status by applying a cellular automata model

    Science.gov (United States)

    Jokar Arsanjani, Taghi; Javidan, Reza; Nazemosadat, Mohamad Jafar; Jokar Arsanjani, Jamal; Vaz, Eric

    2015-05-01

    Recent developments of geospatial technologies and models have provided environmentalists and naturalists with a wide variety of facilities and approaches for improved monitoring and management of environmental resources. Rich temporal remote sensing datasets, e.g., Landsat imagery as well as geospatial modeling techniques, facilitate the process of monitoring and modeling environmental phenomena. The main objective of this paper is to monitor the spatiotemporal patterns of fluctuations of a dynamic lake in the south of Iran - Bakhtegan Lake - which has been influenced by extreme climate change conditions. To do so, a temporal coverage of 12 Landsat images from 1973 to 2013, was used to delineate the boundaries of the lake over time and analyze the occurred changes. Next, a cellular automata (CA) approach was adopted for simulating two main processes: 'lake expansion' and 'lake shrinkage'. The CA model was then calibrated based on a statistical comparison of the simulated and actual images of one timestamp. Application of Kappa index analysis measures the performance of the model at a value of 83 percent. The calibrated CA model was then applied and the future status of the lake (by 2017) was modeled; this suggested a further 45 percent shrinkage in addition to its recent 42 percent shrinkage. In conclusion, the socio-ecological impacts and consequences of the lake's fluctuations are discussed in detail and some complementary recommendations are proposed.

  18. Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring

    Directory of Open Access Journals (Sweden)

    Martin Søndergaard

    2017-01-01

    Full Text Available Biomanipulation by fish removal has been used in many shallow lakes as a method to improve lake water quality. Here, we present and analyse 30 years of chemical and biological data from the shallow and 16 ha large Lake Væng, Denmark, which has been biomanipulated twice with a 20-year interval by removing roach (Rutilus rutilus and bream (Abramis brama. After both biomanipulations, Lake Væng shifted from a turbid, phytoplankton-dominated state to a clear, water macrophyte-dominated state. Chlorophyll a was reduced from 60–80 μg·L−1 to 10–30 μg·L−1 and the coverage of submerged macrophytes, dominated by Elodea canadensis, increased from <0.1% to 70%–80%. Mean summer total phosphorus was reduced from about 0.12 to 0.07 mg·L−1 and total nitrogen decreased from 1.0 to 0.4 mg·L−1. On a seasonal scale, phosphorus and chlorophyll concentrations changed from a summer maximum during turbid conditions to a winter maximum under clear conditions. The future of Lake Væng is uncertain and a relatively high phosphorus loading via the groundwater, and the accumulation of a mobile P pool in the sediment make it likely that the lake eventually will return to turbid conditions. Repeated fish removals might be a relevant management strategy to apply in shallow lakes with a relatively high external nutrient loading.

  19. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  20. Mitochondrial DNA variation in brood stocks of the lake trout

    International Nuclear Information System (INIS)

    Grewe, P.M.; Hebert, P.D.N.

    1986-01-01

    Efforts are in progress to restore lake trout populations in the Great Lakes from hatchery stocks. In most cases, plantings include a variety of brood stocks that originated from different portions of the Great Lakes. Members of the various stocks can be differentially fin clipped to permit comparison of their survival success, but this does not allow assessment of their reproductive capability in the wild. Assessment of reproductive success requires the existence of genetic markers between brook stocks which will ideally persist over many generations. Efforts to identify allozyme differences between brood stocks have met with little success. The present investigation has employed an alternative technique to identify genetic markers--the restriction analysis of mitochondrial DNA. Mitochondiral DNA analysis of 7 lake trout brood stocks has revealed the existence of 10 mitochondrial clones falling into 3 major groups. The results indicate that mt-DNA markers have great potential for brood stock management. Genetic variability in the nuclear genome of each stock can be maintained by utilizing a large number of male parents, while restricting female parents to members of a single mitochondrial clone. Genetically marked fry could then be produced with only minor shifts in hatchery management

  1. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska

    Science.gov (United States)

    Baughman, Carson; Jones, Benjamin M.; Bartz, Krista K.; Young, Daniel B.; Zimmerman, Christian E.

    2015-01-01

    Lake Clark is an important nursery lake for sockeye salmon (Oncorhynchus nerka) in the headwaters of Bristol Bay, Alaska, the most productive wild salmon fishery in the world. Reductions in water clarity within Alaska lake systems as a result of increased glacial runoff have been shown to reduce salmon production via reduced abundance of zooplankton and macroinvertebrates. In this study, we reconstruct long-term, lake-wide water clarity for Lake Clark using the Landsat TM and ETM+ surface reflectance products (1985–2014) and in situwater clarity data collected between 2009 and 2013. Analysis of a Landsat scene acquired in 2009, coincident with in situ measurements in the lake, and uncertainty analysis with four scenes acquired within two weeks of field data collection showed that Band 3 surface reflectance was the best indicator of turbidity (r2 = 0.55,RMSE turbidity for Lake Clark between 1991 and 2014. We did, however, detect interannual variation that exhibited a non-significant (r2 = 0.20) but positive correlation (r = 0.20) with regional mean summer air temperature and found the month of May exhibited a significant positive trend (r2 = 0.68, p = 0.02) in turbidity between 2000 and 2014. This study demonstrates the utility of hindcasting turbidity in a glacially influenced lake using the Landsat surface reflectance products. It may also help land and resource managers reconstruct turbidity records for lakes that lack in situ monitoring, and may be useful in predicting future water clarity conditions based on projected climate scenarios.

  2. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    land sub-systems, the first one showing an average 4.2 mm net daily water loss during the summer season (about 0.975 m3/s) for the years 2000-2009. Lake inflow is constituted of two main terms: an anthropogenic one related to the drainage of the reclaimed land of about 1.1 m3/s (ranging 75-81% of the total inflow); a natural one defined by recharge through rainfall, the western coastal aquifer and the eastern reliefs, accounting for 0.25 m3/s (varying 19-25% of the total inflow). On the other hand, lake water loss is mainly due to evaporation from water surface and evapotranspiration from the palustrine vegetation for around 56-61% (1.31 m3/s on average), while 13 to 15% (0.325 m3/s) is due to inefficient irrigation schemes using lake water and, being the lake perched, recharge to the reclaimed land aquifer (26 to 29%) by means of water infiltrating along the embankments (0.64 m3/s on average). Since several springs on the eastern margin, which would flow to the lacustrine system for about 0.160 m3/s (Autorità di Bacino del Fiume Serchio, 2007), are tapped (for residential, tourism and industrial users), the anthropogenic impact on the water deficit constitutes about 50% of the total, being 34% due to irrigation and 16% to other users. This demonstrates the naturally induced water deficit, already known by historical sources, is heavily altered by anthropogenic pressure defining a not sustainable balance between the socio-economic system and the natural one. It is then clear, that in order to reduce the water stress, a new water management strategy in the whole basin must be devised by revising and enhancing the irrigation schemes and the residential, industrial and tourism water distribution. Reference Autorità di Bacino del Fiume Serchio, 2007. Piano di Bacino 'Bilancio idrico del bacino del lago di Massaciuccoli' Relazione di piano. Lucca, Italy.

  3. Interaction of hydrological regime and vegetation in a seasonally flooded lake wetland (Poyang Lake) in China

    Science.gov (United States)

    Zhang, Qi

    2017-04-01

    Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.

  4. 77 FR 41877 - International Joint Commission; International Joint Commission To Hold Public Hearings on Lake...

    Science.gov (United States)

    2012-07-16

    ... the regulation of water levels of Lake Osoyoos for the benefit of agriculture, tourism, municipal... limited to the management of lake levels with only minor modifications that are primarily related to a...

  5. Looking Back to Move Forward: Collaborative Planning to Revise the Green Mountain and Finger Lakes National Forests Land and Resource Management Plans

    Directory of Open Access Journals (Sweden)

    Michael J Dockry

    2015-07-01

    Full Text Available The United States Department of Agriculture Forest Service (Forest Service manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting to incorporate innovative, collaborative public involvement strategies into the process for revising forest plans. In 2012 and 2015 the Forest Service codified new regulations for developing, revising, and amending forest plans. Collaboration and public involvement are explicit goals of the new regulations. This paper briefly reviews the literature on collaborative planning on national forests and explores a successful collaborative planning process used by the Green Mountain and Finger Lakes National Forests, located in Vermont and New York respectively, to develop their 2006 forest plans. This paper shows how the Green Mountain and Finger Lakes National Forests developed parallel public and internal collaborative processes to build trust, relationships, and partnership, and discusses the implications for process design, capacity building, and facilitating agreements. By looking back at this successful case of collaborative forest planning, key lessons can provide ideas for developing collaborative processes for future planning efforts.

  6. Wind-driven Water Bodies : a new paradigm for lake geology

    Science.gov (United States)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  7. Validating an erosion model using the environmental radionuclide 210Pb in the Lake Wollumboola catchment, southwestern NSW, Australia

    International Nuclear Information System (INIS)

    Simms, A.; Woodroffe, C.; Jones, B.G.; Heijnis, H.; Harrison, J.; Brooke, B.

    2005-01-01

    Soil erosion is a key limitation to achieving sustainable land use and effective soil management, and is the major source of sediment to Australian water bodies resulting in degradation of water quality. Sediment delivery is an important constraint on the sustainable management of coastal lakes along the south coast of New South Wales. Assessment and mitigation of sediment input is a major issue for the sustainable management of water bodies such as coastal lakes and soil erosion caused by rainfall and runoff is of particular concern. In this paper we examine the application of 210 Pb analyses of sediment samples to test the extent to which a modified version of the Universal Soil Loss Equation for Australian conditions (OxMUSCLE) is valid. The model is applied to Lake Wollumboola to estimate sediment yield from the catchment into its terminal lake, which is a saline coastal lake 172 km south of Sydney. 14 refs., 1 fig., 1 tab

  8. A new multi-criteria method for the ecological assessment of lakes: A case study from the Transboundary Biosphere Reserve ‘West Polesie’ (Poland

    Directory of Open Access Journals (Sweden)

    Joanna Sender

    2017-03-01

    Full Text Available A new multi-criteria method of evaluation and assessment of the ecological status of lakes is proposed. It is based on macrophytes analysis integrated with geomorphological, landscape and catchment sources of threats. A total of 22 lakes in the Transboundary Biosphere Reserve ‘West Polesie’ (Poland were investigated along trophic (available nutrients and human pressure gradients, testing the proposed method with ESMI and TRS indices. Therefore, the present indexation included 22 criteria (i.e., catchment land use, phytolittoral area, number of plant species concerning three different assessing zones (lakeshore, littoral and surrounding area, and provided a five-class ecological classification. The proposed index, in addition to the general ecological conditions assessment of lakes, allows to point out a zonal evaluation, identifying the most critic zones in terms of ecological status. The proposed method can be universally adapted for any type of lakes, regardless of their geographical characteristics. It can be applied to system monitoring, and to support lakes biodiversity, functionality, conservation, restoration, water protection and uses, as well as water, territory and landscape management actions.

  9. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes

    Science.gov (United States)

    Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie

    2018-03-01

    We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.

  10. Ecosystem evolution of Lake Gusinoe (Transbaikal region, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Pisarsky, B.L.; Hardina, A.M.; Naganawa, H. [Russian Academy of Science, Irkutsk (Russian Federation). Siberian Division

    2005-12-01

    Lake Gusinoe is situated on a basin originating from Paleozoic and Mesozoic deposits. The recorded history of the lake's ecosystem evolution is no more than 300 years. The present lake drainage basin was formed mainly in the Cenozoic era, but during the past century, major anthropogenic impacts on the lake have occurred. The human-influenced evolution of the ecosystem began in the 1940s with the development of opencut coal mining nearby the lake. Population increase and the building of the Gusinoozersk State Regional Power Plant, the TransMongolian Railroad and an associated station, and military installations were the major sources of anthropogenic impacts. Since the early 1950s about five species of fish have been introduced into Lake Gusinoe or have invaded the lake, and at least six of the native species have disappeared or are in danger of extinction. From our recent investigations, the present environment of the Lake Gusinoe Basin (Gusinoozersk Basin) is divided into four zones hydro-geochemically: (1) ultrafreshwater, (2) freshwater, (3) mineralized water, and (4) hyposaline and saltwater. Some additional data on changes of the chemical components of the drainage basin waters, as well as on the transition of zooplankton and zoobenthic fauna, are presented in consideration of the risk of industrial development, and the perspectives are discussed.

  11. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China Using a Combined Model Approach

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-09-01

    Full Text Available The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model (MIKE 21 in conjunction with transport and particle-tracking sub-models to provide comprehensive investigation of transport behaviors in Poyang Lake. Model simulations reveal that the lake’s prevailing water flow patterns cause a unique transport trajectory that primarily develops from the catchment river mouths to the downstream area along the lake’s main flow channels, similar to a river-transport behavior. Particle tracking results show that the mean residence time of the lake is 89 days during July–September. The effect of the Yangtze River (the effluent of the lake on the residence time is stronger than that of the catchment river inflows. The current study represents a first attempt to use a combined model approach to provide insights into the transport behaviors for a large river–lake system, given proposals to manage the pollutant inputs both directly to the lake and catchment rivers.

  12. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    Science.gov (United States)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  13. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  14. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  15. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    Science.gov (United States)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  16. First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands.

    NARCIS (Netherlands)

    Donk, van E.; Grimm, M.P.; Gulati, R.D.; Heuts, P.G.M.; Kloet, de W.A.; Liere, van L.

    1990-01-01

    Lake Breukeleveen is a compartment of the eutrophic Loosdrecht lakes system. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970-1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2g m-2y-1 to 0.35g m-2y-1.

  17. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  18. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  19. New insight into defining the lakes of the southern Baltic coastal zone.

    Science.gov (United States)

    Cieśliński, Roman; Olszewska, Alicja

    2018-01-29

    There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.

  20. Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie.

    Science.gov (United States)

    Hartig, J H; Zarull, M A; Ciborowski, J J H; Gannon, J E; Wilke, E; Norwood, G; Vincent, A N

    2009-11-01

    Over 35 years of US and Canadian pollution prevention and control efforts have led to substantial improvements in environmental quality of the Detroit River and western Lake Erie. However, the available information also shows that much remains to be done. Improvements in environmental quality have resulted in significant ecological recovery, including increasing populations of bald eagles (Haliaeetus leucocephalus), peregrine falcons (Falco columbarius), lake sturgeon (Acipenser fulvescens), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and burrowing mayflies (Hexagenia spp.). Although this recovery is remarkable, many challenges remain, including population growth, transportation expansion, and land use changes; nonpoint source pollution; toxic substances contamination; habitat loss and degradation; introduction of exotic species; and greenhouse gases and global warming. Research/monitoring must be sustained for effective management. Priority research and monitoring needs include: demonstrating and quantifying cause-effect relationships; establishing quantitative endpoints and desired future states; determining cumulative impacts and how indicators relate; improving modeling and prediction; prioritizing geographic areas for protection and restoration; and fostering long-term monitoring for adaptive management. Key management agencies, universities, and environmental and conservation organizations should pool resources and undertake comprehensive and integrative assessments of the health of the Detroit River and western Lake Erie at least every 5 years to practice adaptive management for long-term sustainability.

  1. Managing water addition to a degraded core

    International Nuclear Information System (INIS)

    Kuan, P.; Hanson, D.J.; Odar, F.

    1992-01-01

    In this paper the authors present information that can be used in severe accident management by providing an improved understanding of the effects of water addition to a degraded core. This improved understanding is developed using a diagram showing a sequence of core damage states. Whenever possible, a temperature and a time after accident initiation are estimated for each damage state in the sequence diagram. This diagram can be used to anticipate the evolution of events during an accident. Possible responses of plant instruments are described to identify these damage states and the effects of water addition. The rate and amount of water addition needed (a) to remove energy from the core, (b) to stabilize the core or (c) to not adversely affect the damage progression, are estimated. Analysis of the capability to remove energy from large cohesive and particulate debris beds indicates that these beds may not be stabilized in the core region and they may partially relocate to the lower plenum of the reactor vessel

  2. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?

    Science.gov (United States)

    Kuiper, Jan J.; Verhofstad, Michiel J. J. M.; Louwers, Evelien L. M.; Bakker, Elisabeth S.; Brederveld, Robert J.; van Gerven, Luuk P. A.; Janssen, Annette B. G.; de Klein, Jeroen J. M.; Mooij, Wolf M.

    2017-04-01

    Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.

  3. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  4. Onondaga Lake Watershed – A Geographic Information System Project Phase I – Needs assessment and spatial data framework

    Science.gov (United States)

    Freehafer, Douglas A.; Pierson, Oliver

    2004-01-01

    In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.

  5. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    Science.gov (United States)

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  6. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    Science.gov (United States)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  8. Fluctuations of Lake Eyre, South Australia

    Science.gov (United States)

    2002-01-01

    the two dates were processed identically to preserve relative variations in brightness between them. Wet surfaces or areas with standing water appear green due to the effect of sunglint at the nadir camera view angle. Dry, salt encrusted parts of the lake appear bright white or gray. Purple areas have enhanced forward scattering, possibly as a result of surface moistness. Some variations exhibited by the multi-angle composites are not discernible in the nadir multi-spectral images and vice versa, suggesting that the combination of angular and spectral information is a more powerful diagnostic of surface conditions than either technique by itself.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 5194 and 15679. The panels cover an area of 146 kilometers x 122 kilometers, and utilize data from blocks 113 to 114 within World Reference System-2 path 100.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  9. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2008-01-01

    Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly

  10. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  11. 2001 USACE LRE Topobathy Lidar: Lake Ontario (NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Office for Coastal Management received the 2001 Lake Ontario dataset with 2 separate metadata records in 2013 on a hard-drive device from the USGS Center for...

  12. Plutonium and americium in Lake Michigan sediments

    International Nuclear Information System (INIS)

    Edgington, D.N.; Alberts, J.J.; Wahlgren, M.A.; Karttunen, J.O.; Reeve, C.A.

    1975-01-01

    The vertical distributions of 239 , 240 Pu, 238 Pu, and 137 Cs have been measured in sediment cores taken from Lake Michigan. Sections from a limited number of cores have been analyzed for 241 Am. In addition, grab samples from ten locations in the southern basin of the lake have been analyzed for phase distribution of 239 , 240 Pu using a sequential extraction technique. The results indicate that the 239 , 240 Pu, 238 Pu, and 137 Cs from weapons testing, and the 241 Am formed in situ are concentrated in the sediments. A comparison of the total deposition of 239 , 240 Pu and 137 Cs indicates that 137 Cs may be valuable as a monitor for 239 , 240 Pu deposition in the sediments. Values of the 238 Pu/ 239 , 240 Pu ratio are in agreement with values reported in Lake Ontario sediments (and Lake Michigan plankton) and show little variation with depth. 241 Am data support the concept of in situ production with little preferential mobility after formation. Studies of sedimentary phase distributions show that 239 , 240 Pu is associated with hydrous oxide phases which are chemically stable under the prevailing conditions in lake sediments. Since Lake Michigan sediments remain aerobic, relatively little 239 , 240 Pu is available for chemical mobilization from the hydrous oxide or organic phases present in the sediments

  13. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    Science.gov (United States)

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  14. Lake Diatoms as Indicators of Land Use Effects, Changing Environmental Conditions, and the Effectiveness of Management Practices

    Science.gov (United States)

    Lakes continue to face escalating pressures associated with land cover change and growing human populations. The U.S. EPA National Lakes Assessment, which sampled more than 1000 lakes in a probabilistic survey, was the first large scale effort to characterize the condition of lak...

  15. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  16. Ecology and potential for fishery of the small barbs (Cyprinidae, Teleostei) of Lake Tana, Ethiopia

    OpenAIRE

    Dejen, E.

    2003-01-01

    Lake Tana is by far the largest lake of Ethiopia and source of the Blue Nile. By feeding on zooplankton, small barbs (< 10 cm) occupy a central position in Lake Tana's ecosystem. Catching them could release pressure on the overexploited, unique species flock of large barbs (up to 100 cm). Aiming at small barbs, we need first to assess its possible impact on the food web and productivity. To advise on sustainable management, the biology and ecology of the small Barbus species in Lake Tana w...

  17. A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid

    Science.gov (United States)

    Kostoski, G.; Albrecht, C.; Trajanovski, S.; Wilke, T.

    2010-12-01

    Immediate conservation measures for world-wide freshwater resources are of eminent importance. This is particularly true for so-called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact. Lake Ohrid, a major European biodiversity hotspot situated in a trans-frontier setting on the Balkans, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes. Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1) assess threats to Lake Ohrids' (endemic) biodiversity, (2) summarize existing conservation activities and strategies, and (3) outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species) as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1) watershed impacts, (2) agriculture and forestry, (3) tourism and population growth, (4) non-indigenous species, (5) habitat alteration or loss, (6) unsustainable exploitation of fisheries, and (7) global climate change. Among the major (well-known) threats with high impact are nutrient input (particularly of phosphorus), habitat conversion and silt load. Other threats are potentially of high impact but less well known. Such threats include pollution with hazardous substances (from sources such as mines, former industries, agriculture) or climate change. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species measures, international

  18. Refuge Lake Reclassification in 620 Minnesota Cisco Lakes under Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2017-09-01

    Full Text Available Cisco (Coregonus artedi is the most common coldwater stenothermal fish in Minnesota lakes. Water temperature (T and dissolved oxygen (DO in lakes are important controls of fish growth and reproduction and likely change with future climate warming. Built upon a previous study, this study uses a modified method to identify which of 620 cisco lakes in Minnesota can still support cisco populations under future climate and therefore be classified as cisco refuge lakes. The previous study used oxythermal stress parameter TDO3, the temperature at DO of 3 mg/L, simulated only from deep virtual lakes to classify 620 cisco lakes. Using four categories of virtual but representative cisco lakes in modified method, a one-dimensional water quality model MINLAKE2012 was used to simulate daily T and DO profiles in 82 virtual lakes under the past (1961–2008 and two future climate scenarios. A multiyear average of 31-day largest TDO3 over variable benchmark (VB periods, AvgATDO3VB, was calculated from simulated T and DO profiles using FishHabitat2013. Contour plots of AvgATDO3VB for four categories of virtual lakes were then developed to reclassify 620 cisco lakes into Tier 1 (AvgATDO3VB < 11 °C or Tier 2 refuge lakes, and Tier 3 non-refuge lakes (AvgATDO3VB > 17 °C. About 20% of 620 cisco lakes are projected to be refuge lakes under future climate scenarios, which is a more accurate projection (improving the prediction accuracy by ~6.5% from the previous study since AvgATDO3VB was found to vary by lake categories.

  19. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Science.gov (United States)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  20. Valuation of provisional and cultural services of a Ramsar site: A preliminary study on Rudrasagar lake, India

    Directory of Open Access Journals (Sweden)

    Moitree Taran

    2017-01-01

    Full Text Available Rudrasagar lake, a Ramsar site in India offers a variety of ecosystem services. The contribution of Rudrasagar lake to the society has not been estimated so far. The preliminary study aims to provide an economic valuation of the provisional and cultural services of the Rudrasagar lake. Official records of revenue collected by the Tourism Department of Tripura and a socio- economic survey was the source of information used in the economic valuation of the lake. The main provisional services provided by the lake are food (aquatic plants and fishes, fuel wood and timber whereas, the cultural services provided were boat raiding and tourism due to its historical importance. The provisioning and cultural services provided by the Rudrasagar lake are 40810 US$ and 33929.33 US$ per year respectively during the period of 2010-2015. The main threats to the wetland identified are increasing silt loads due to deforestation, expansion of agricultural land and land conversion due to population pressure. To alleviate the anthropogenic stress on the lake, better monitoring, planning and management are essential. By proper conservation and management it will be possible to enjoy the provisional and cultural services of the lake in a sustainable way.

  1. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  2. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    Science.gov (United States)

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  3. Relative yield-per-recruit and management strategies for Cynoscion acoupa (Perciformes: Sciaenidae in Lake Maracaibo, Venezuela

    Directory of Open Access Journals (Sweden)

    Orlando José Ferrer Montaño

    2013-03-01

    Full Text Available Acoupa weakfish, Cynoscion acoupa, in Lake Maracaibo is subject to intense commercial fishing by an artisanal fleet, and a recent decrease in fish size observed from landings is of concern. This fishery has not yet been modeled, and its assessment and the establishment of management practices to overcome the current overfished condition are urgently needed. To address this, we used recent and past empirical growth estimates to model relative yield-per-recruit under different lengths at first capture. Our results from relative yield-perrecruit analysis showed evidence that growth and recruitment overfishing occur under current fishing practices in Lake Maracaibo. Particular attention was given to fishing practices in El Tablazo Bay where young, small fish predominate in the commercial catches (mean total length=33.7cm, well below the length at first sexual maturity (~40cm TL for both sexes. As management strategies, we propose to set a mesh size limit at or above 8.89cm (3.5in, which will reduce fishing mortality of immature fish, increase yield-per-recruit, and will result in an increase of Acoupa weakfish recruitment for the long term in Lake Maracaibo.La curvina, Cynoscion acoupa, en el Lago de Maracaibo se encuentra sometida a una intensa actividad pesquera comercial. No obstante, antes de este estudio no se había examinado el potencial efecto de la sobrepesca a través del modelado. Utilizamos estimados empíricos de crecimiento actuales y pasados para modelar el rendimiento-por-recluta relativo bajo diferentes longitudes de primera captura. Presentamos evidencia a partir de resultados de rendimiento-por-recluta relativo que indica que existe sobrepesca por crecimiento y reclutamiento bajo las prácticas pesqueras actuales en el Lago de Maracaibo. Se puso particular atención a las pesquerías en la Bahía El Tablazo donde predominan peces jóvenes pequeños en las capturas (longitud total promedio=33.7cm, muy por debajo de la longitud de

  4. Limnology of Priyadarshani Lake, Schirmacher Oasis, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A.H.

    , tardigrada, oligochaeta and mites. Faunal dens.ity was high in moss-associated sediments. Amaximum water depth of6.5m was recorded at the centre ofthe lake. A thick layer (25-90 em) ofmoss and algal communities covered the bottom sediments. The total volume... for microfauna, determination ofparticle size and organic content, using a metallic hand-coring device of 4.5 em diameter. Five additional stations were sampled within the lake from an inflatable boat, using a piston corer sampler of inner diameter 4.0 em. Niskin...

  5. Kokanee Stocking and Monitoring, Flathead Lake, 1993-1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Deleray, Mark (Montana Department of Fish, Wildlife and Parks, Kalispell, MT); Fredenberg, Wade (US Fish and Wildlife Service, Bozeman, MT); Hansen, Barry (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    1995-07-01

    temperatures, an upsurge in the abundance of Duphniu rhorum, and saturation planting in an area believed to have lower lake trout densities was expected to maximize short-term survival of stocked kokanee. A net-pen experiment demonstrated that yearling hatchery kokanee, in the absence of predation, adjusted to conditions in Flathead Lake and utilized available zooplankton during June and July without substantial poststocking mortality. Kokanee captured after several months in the lake exhibited good growth and condition. We concluded that the food supply in Big Arm Bay was not limiting survival of stocked kokanee. The 1994 monitoring objective was to quantify lake trout predation of kokanee in Big Arm Bay in the first eight weeks following stocking. There were three components needed to quantify predation; estimated number of lake trout in Big Arm Bay, average number of kokanee consumed by lake trout, and estimated time required for lake trout to digest kokanee. As in the previous year, the monitoring results from the 1994 kokanee plant demonstrated that lake trout predation is the primary factor reducing survival of stocked kokanee. We estimated that lake trout consumed a minimum of 232,000 kokanee in Big Arm Bay during the first eight weeks following stocking. This represents 29 percent of kokanee planted. The consumption estimate was based on a hydroacoustic estimate for lake trout abundance (7,850 fish over 300 mm in total length), an incidence of kokanee per lake trout stomach sample which ranged from 2.99 to 0.22 fish, and a gastric evacuation rate of 47 hours for lake trout to digest consumed kokanee. Due to hydroacoustic limitations in identifying bottom-oriented lake trout, we underestimated the true abundance of lake trout, which led to an underestimate of kokanee mortality. By fall of 1994, we estimated that an additional 12.7 percent of surviving kokanee matured, based on observations of similar-sized fish in the hatchery. Thus, up to 72,000 additional fish were

  6. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  7. Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia

    Directory of Open Access Journals (Sweden)

    Marko Vainu

    2014-02-01

    Full Text Available Numerous lakes in the world serve as sensitive indicators of climate change. Water levels for lakes Ahnejärv and Martiska, two vulnerable oligotrophic closed-basin lakes on sandy plains in northeastern Estonia, fell more than 3 m in 1946–1987 and rose up to 2 m by 2009. Earlier studies indicated that changes in rates of groundwater abstraction were primarily responsible for the changes, but scientifically sound explanations for water-level fluctuations were still lacking. Despite the inconsistent water-level dataset, we were able to assess the importance of changing climate, catchment vegetation and hydrogeology in water-level fluctuations in these lakes. Our results from water-balance simulations indicate that before the initiation of ground­water abstraction in 1972 a change in the vegetation composition on the catchments triggered the lake-level decrease. The water-level rise in 1990–2009 was caused, in addition to the reduction of groundwater abstraction rates, by increased precipitation and decreased evaporation. The results stress that climate, catchment vegetation and hydrogeology must all be considered while evaluating the causes of modern water-level changes in lakes.

  8. Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-08-01

    Full Text Available Four natural lakes in the middle and lower reaches of the Yangtze River—Dongting Lake, Poyang Lake, Chaohu Lake and Taihu Lake—play a key role in the climate, environment, and ecology of this area. Upstream of these lakes, the Three Gorges Dam Project has been storing water for 12 years. Future monitoring and management of rivers and lakes can certainly benefit from research on the patterns of variation of natural lakes downstream of the Three Gorges Project. This research applies Landsat TM/ETM data to evaluate water area changes in the four lakes from 2002 to 2013. The water area is estimated using AWEI (Automated Water Extraction Index from satellite images. The average areas decreased respectively 452, 11, and 5 km2 (29.6%, 1.4% and 0.2% from 2002 to 2013 for Dongting, Chaohu, and Taihu Lakes. Meanwhile, it increased 300 km2 (11.0% for Poyang Lake. Precipitation and changes in river inflow may account for the fluctuation in the surface area to a large degree, especially between 2009 and 2013. The present study was undertaken to characterize the evolution of lakes and to explore the potential driving force of variation in order to assist the management of dams upstream in the river basin.

  9. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  10. Recovery of acidified mountain lakes in Norway as predicted by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Bernard J. COSBY

    2004-02-01

    Full Text Available As part of the EU project EMERGE the biogeochemical model MAGIC was used to reconstruct acidification history and predict future recovery for mountain lakes in two regions of Norway. Central Norway (19 lakes receives low levels of acid deposition, most of the lakes have undergone only minor amounts of acidification, and all are predicted to recover in the future. Central Norway thus represents a reference area for more polluted regions in southern Norway and elsewhere in Europe. Southern Norway (23 lakes, on the other hand, receives higher levels of acid deposition, nearly all the studied lakes were acidified and had lost fish populations, and although some recovery has occurred during the period 1980-2000 and additional recovery is predicted for the next decades, the model simulations indicated that the majority of the lakes will not achieve water quality sufficient to support trout populations. Uncertainties in these predictions include possible future N saturation and the exacerbating effects of climate change. The mountain lakes of southern Norway are among the most sensitive in Europe. For southern Norway additional measures such as stricter controls of emissions of air pollutants will be required to obtain satisfactory water quality in the future.

  11. Estimating the recreational value of Pakistan's largest freshwater lake to support sustainable tourism management using a travel cost model

    NARCIS (Netherlands)

    Mangan, T.; Brouwer, R.; Lohano, H.; Nagraj, G.M.

    2013-01-01

    Keenjhar Lake, Pakistan's largest freshwater lake and an important Ramsar site, provides habitat for internationally important water birds. Annually, 385,000 people visit the lake. The lake is threatened by a variety of causes, including industrial and agricultural pollution. To support its

  12. Measurements of evaporation from a mine void lake and testing of modelling approaches

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  13. Satellite Monitoring of Pakistan's Rockslide-Dammed Lake Gojal

    Science.gov (United States)

    Kargel, Jeffrey S.; Leonard, Gregory; Crippen, Robert E.; Delaney, Keith B.; Evans, Stephen G.; Schneider, Jean

    2010-10-01

    On 4 January 2010, a rockslide 1200 meters long, 350 meters wide, and 125 meters high dammed the Hunza River in Attabad, northern Pakistan, and formed Lake Gojal. The initial mass movement of rock killed 20 people and submerged several villages and 22 kilometers of the strategic Karakoram Highway linking Pakistan and China. Tens of thousands of people were displaced or cut off from overland connection with the rest of the country. On 29 May, the lake overflow began to pour through a spillway excavated by Pakistani authorities. On approximately 20 July, the lake attained a maximum depth of 119 meters and a torrent at least 9 meters deep issued over the spillway, according to Pakistan's National Disaster Management Authority (NDMA). To date, the natural dam is holding and eroding slowly. However, the threat of a catastrophic outburst flood remains.

  14. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    Science.gov (United States)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  15. Nuclear fuel waste management program geotechnical studies of Eye-Dashwa Lakes research area rock properties

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1992-05-01

    The Eye-Dashwa Lakes pluton near Atikokan Ontario has been used as a study area for the Canadian nuclear fuel waste management research program. The pluton consists predominately of granite. Fractures formed during cooling of the pluton were filled with a succession of different materials at different times. Measurements of a series of geophysical and geotechnical properties of rock samples are published here in this report, including especially microcrack and pore structures. An indication has been found that a larger proportion of the porosity of Whiteshell and Atikokan samples is contained in connecting pores, compared to other rocks. This may seem surprising in view of the finding that approximately 70% of the effective porosity of Atikokan samples is contained in pockets

  16. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    Science.gov (United States)

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  17. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  18. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  19. Fish communities of the Wilderness Lakes System in the southern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Alexis A. Olds

    2016-08-01

    Full Text Available The Wilderness Lakes System, a temporarily open and closed estuary with three associated lakes situated in the southern Cape region of South Africa, was sampled using a range of sampling gears to assess the fish community. A total of 25 species were sampled throughout the system, with the highest diversity in the Touw Estuary (23 species and the lowest in Langvlei (11 species. Estuary-associated marine species (13 species dominated species richness with smaller proportions of estuarine resident (7 species, freshwater (3 species and catadromous species (2 species. Estuarine resident species dominated the catch numerically. The size–class distribution of euryhaline marine species indicated that upon entering the Touw Estuary as juveniles, the fish move up the system towards Rondevlei where they appear to remain. Three freshwater species were recorded in the system, all of which are alien to the Wilderness Lakes System. Decreasing salinity in the upper lakes appears to be a driving factor in the distribution and increasing abundance of the freshwater fishes. Sampling followed a drought, with the system experiencing substantially increased levels of mouth closure compared to a similar study conducted in the 1980s. The timing of mouth opening and the degree of connectivity between the lakes influence the nursery function of the system as a whole. Management actions need to focus on improving ecological functioning of this system, in particular how mouth opening is managed, to facilitate nursery function and limit the establishment of invasive species. Conservation implications: Key management actions are required to improve fish recruitment potential into and within the system. These include maintenance of adequate marine inflow through adherence to artificial mouth breaching protocols and improving connectivity between the lakes through sediment removal from localised deposition points within the connecting channels.

  20. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    Science.gov (United States)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    water sustainable management, we must deeply recognize the reality that water shortages and the limited carrying capacity, and dynamic assessment of WECC provides an early warning approach and control direction of water environment. For the East Lake, it is the primary target to mitigate the carrying capacity of social-economy, especially for prevention of lake area encroachment shrinking and domestic wastewater discharge.

  1. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    ones. The atmospherically corrected L8 data were then processed through a site-specific parameterised bio-optical model for water constituents' concentration retrieval. The EO products thus obtained were then analysed as follows. 1) Statistical analyses of water reflectance, a new Essential Climate Variables within the ESA CCI+ initiative, and chl-a concentration, a proxy of trophic status, were performed. Both water reflectance and chl-a concentration were obtained from the MERIS 10-years time series and were analyzed to identify spatial patterns, temporal trends and the onset of phytoplankton growth. 2) Combination of field shortwave and longwave radiation data with the one estimated from L8 OLI and TIRS atmospherically corrected imagery, was exploited to assess the heat fluxes and evaporation rates. In both cases, the analysis was supported by field data to highlight the accuracy of measurements obtained from EO technology. A comparative analysis among the lakes is finally presented. In addition, future work aimed at extending the MERIS time series to the new Sentinel-3-OLCI time series (2016-on going) is discussed, in expectation that EO technology will augment information for lake management and geosciences (lake's ecology and climate, in particular).

  2. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    Science.gov (United States)

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Science.gov (United States)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  4. 75 FR 79018 - Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID

    Science.gov (United States)

    2010-12-17

    ...-10-0001] Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID AGENCY... Management (BLM) proposes the sale of 26 parcels of public lands totaling 1,543.14 acres in Bear Lake County... Bear Lake County, Idaho, are proposed for sale under the authority of Sections 203 and 209 of FLPMA (90...

  5. Perspective View with Landsat Overlay, Lakes Managua and Nicaragua

    Science.gov (United States)

    2002-01-01

    -C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: scale varies in this perspective image Location: 12.1 degrees North latitude, 86.1degrees West longitude Orientation: looking South Image Data: Landsat bands 5, 4, 3 as red, green, blue respectively Original Data Resolution: SRTM 30 meters (99 feet) Date Acquired: February 2000 (SRTM)

  6. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  7. Use of fish telemetry in rehabilitation planning, management, and monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J.L.; Boston, C.; Doka, Susan E.; Gorsky, Dimitry; Gustavson, K.; Hondorp, Darryl W.; Isermann, Daniel A.; Midwood, Jonathan D.; Pratt, T.C.; Rous, Andrew M.; Withers, J. L.; Krueger, C.C.; Cooke, S.J.

    2017-01-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish–habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  8. Simbi Nyaima: An Interplay of Nature and Mythology in the Lake Victoria Region; Planning and Management for Ecotourism Transformation in Kenya

    Directory of Open Access Journals (Sweden)

    Fredrick Argwenge Odede

    2014-01-01

    Full Text Available Many countries in the world exploit cultural heritage to reduce poverty, enhance livelihood and transform of the community and support local livelihood. This paper focuses of ecotourism transformation, namely, nature (Simbi as unique Crater Lake and the mythology associated with the lake depicting the curse of a village of a strange old woman by the name Simbi. These two constellations have been used to preserve the site and needs to be used in the planning, conservation and management of this unique heritage. Stakeholder participation should use the two concepts in planning and conservation. The study aimed at mapping the site, examining its cultural identity, assessing the values and potential of the site, identifying the challenges facing the site and developing appropriate strategies for ecotourism promotion. The study used ethnographic and phenomenological modes of data collection using purposive sampling method. The data was qualitatively analysed and yielded themes with respect to research objectives. The documented the location, nature and mythology of the site as planning, conservation and branding tools, established the level of community participation in its planning, conservation and branding, identified its potential and challenges for ecotourism promotion, and proposed appropriate strategies for planning management and conservation of Simbi Nyaima for upscaling ecotourism in the study area.

  9. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  10. Preliminary Nearshore Sedimentation Rate Analysis of the Tuungane Project Northern Mahale Conservation Area, Lake Tanganyika (Tanzania)

    Science.gov (United States)

    Smiley, R. A.; McGlue, M. M.; Yeager, K. M.; Soreghan, M. J.; Lucas, J.; Kimirei, I.; Mbonde, A.; Limbu, P.; Apse, C.

    2017-12-01

    The combined effects of climate change, overfishing, and sediment pollution are altering Lake Tanganyika's littoral fisheries in profoundly negative ways. One method for conserving critical fish resources and safeguarding biodiversity in Lake Tanganyika is by establishing small-scale nearshore protected zones, which can be administrated by lakeshore villagers organized into beach management units (BMUs). Each BMU endeavors to manage offshore "no-catch" protected zones, prohibit the use of illegal fishing gear, and promote sustainable agriculture that abates erosion in the lake watershed, in order to mitigate sediment pollution in the lake. We adopted a limnogeological approach to assist in characterizing the littoral zone associated with BMUs in the northern Mahale region of Lake Tanganyika (Tanzania), a critical conservation area for the Nature Conservancy's Tuungane Project (https://www.nature.org/ourinitiatives/regions/africa/wherewework/tuungane-project.xml). We hypothesized that BMUs with heavy onshore agricultural activity would experience relatively high offshore sedimentation rates, due to enhanced sediment-laden runoff in the wet season. Such changes are predicted to alter benthic substrates and degrade habitat available for fish spawning. We mapped bathymetry and sediment types along a 29 km2 area of the littoral zone using high-resolution geophysical tools, and assessed short-term sedimentation rates using sediment cores and radionuclide geochronology (210Pb). Initial results from 210Pb analyses show that sedimentation rates at the mud-line ( 85-100 m water depth) are relatively slow but spatially variable in the northern Mahale area. Offshore of the Kalilani village BMU, linear sedimentation rates are 0.50 mm/yr. By contrast, sedimentation rates offshore from the Igualula village BMU are 0.90-1.30 mm/yr. Higher sedimentation rates near Igualula are consistent with greater sediment inputs from the nearby Lagosa River and its watershed, which has been

  11. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  12. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    Science.gov (United States)

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  13. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  14. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  15. History of metal contamination in Lake Illawarra, NSW, Australia.

    Science.gov (United States)

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  17. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    Science.gov (United States)

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  18. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

    2008-06-30

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

  19. Ecological resilience in lakes and the conjunction fallacy

    NARCIS (Netherlands)

    Spears, Bryan M.; Futter, Martyn N.; Jeppesen, Erik; Huser, Brian J.; Ives, Stephen C.; Davidson, Thomas A.; Adrian, Rita; Angeler, David G.; Burthe, Sarah J.; Carvalho, Laurence; Daunt, Francis; Gsell, Alena S.; Hessen, Dag O.; Janssen, Annette B. G.; Mackay, Eleanor B.; May, Linda; Moorhouse, Heather; Olsen, Saara; Søndergaard, Martin; Woods, Helen J.; Thackeray, Stephen J.

    2017-01-01

    There is a pressing need to apply stability and resilience theory to environmental management to restore degraded ecosystems effectively and to mitigate the effects of impending environmental change. Lakes represent excellent model case studies in this respect and have been used widely to

  20. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  1. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    Science.gov (United States)

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  2. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  3. EDRF supports Takakia Lake public inquiry

    International Nuclear Information System (INIS)

    Katzsch, K.

    1999-01-01

    The Queen Charlotte Power Corporation (QCPC) has applied for a water licence to drain Takakia Lake in British Columbia's Queen Charlotte Islands. Their plan is to build a tunnel into the side of the lake and draw water from it to supplement their power generating capabilities at their Moresby Lake hydro generating station. The BC Ministry of Environment, Lands and Parks called for a public inquiry into the application to address public concerns about the project. Through the Environmental Dispute Resolution Fund (EDRF), the North West Habitat Foundation (NWHF) was able to participate in this public inquiry which took place in June, 1999, and represent the environmental concerns of the community. Other participants included QCPC, BC Hydro, the Skidegate Band Council and the Haida Nation. One of the arguments raised was the lack of public disclosure and consultation, particularly regarding First Nations in the area. Takakia Lake area has been referred to as an ecological gem which hosts a unique ecosys tem and several rare plant species. The NWHF argued that the resulting draw-down of water from the lake would permanently damage the microclimate of the lake and would pose a major threat to the ecosystem. The Canadian Wildlife Service has also expressed concerns regarding the impacts on migratory birds. It was also noted that prior to their proposal, QCPC and BC Hydro did not fully consider the use of energy alternatives. As a result of this inquiry, QCPC has asked for more time to submit further documents regarding their proposal. In turn, the NWHF will be given a chance to respond to those materials and to submit their own additional information. 2 figs

  4. Postglacial evolution and recent siltation of the protected lake "Taferlklaussee" (Austria)

    Science.gov (United States)

    Bernsteiner, Heidi; Götz, Joachim; Salcher, Bernhard; Lang, Andreas

    2017-04-01

    Nature conservation and human interaction with the environment often provide a multifaceted area of conflict, exemplified here by an intensively used but also protected small alpine lake. The study area is located in the Salzkammergut region (Upper Austria), which is known for its major salt deposits and especially popular for its numerous lakes. The focus is on the "Taferlklaussee" (TKS), a small freshwater body filling a basin originating from glacial erosion during the last glacial maximum (LGM) and early late glacial stadials (between 16 and 20 ka). The responsible valley glacier (Aurach) was isolated from the major alpine ice flow network during the LGM and not connected to the large adjacent Salzach and Traun outlet glaciers. In historical times the area was deforested and the lake level artificially raised in AD 1716, to allow log rafting on the river Aurach that originates from the TKS. Today, the TKS is under nature conservation but highly frequented as recreational area for summer and winter sports (e.g. hiking, biking, ice-skating and curling - the regional curling club is situated directly at the lakeside). As a consequence of the multiple uses, views on future management of the study area are diverging: On the one hand, nature is meant to be left alone and any negative impacts on the environment should be avoided and on the other hand, natural siltation should be stopped as it reduces the lake area, and provokes lots of controversy. Our research is intended to create information to support the current debate about the future of the TKS by providing first-hand data on short and long-term lake evolution. We focus on two timescales of lake development: The postglacial evolution and infill history of the lake basin (origin, structure, volume and chronology of stored sediment) as well as decadal-scale and recent trends of lake siltation. We are using a bundle of direct and indirect field surveys to generate complementary data. To investigate thickness and

  5. Comparison of fish assemblages in two disjoined segments of an oxbow lake in relation to connectivity

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2011-01-01

    Disconnection between adjacent habitat patches is one of the most notable factors contributing to the decreased biotic integrity of global ecosystems. Connectivity is especially threatened in river–floodplain ecosystems in which channel modifications have disrupted the lateral links between the main river channel and floodplain lakes. In this study, we examined the interaction between the interconnectedness of floodplain lakes and main river channels and fish assemblage descriptors. Fish assemblages in two segments of an oxbow lake, one connected to and the other isolated from the Yazoo River, Mississippi, were estimated with daytime boat electrofishing during 2007–2010. The frequency of connection for the connected segment ranged from zero to seven individual events per year (mean, ∼2). The timing of most connection events reflected regional precipitation patterns. Greater species richness, diversity, and evenness were observed in the connected segment. Additionally, the connected segment had a greater abundance of piscivores and periodic life history strategists. All fishes collected solely in the connected segment were typically riverine in nature, whereas fishes collected only in the disconnected segment were more lacustrine adapted. These results suggest that periodic connection and the associated habitat heterogeneity that it provides are important for maintaining fish species richness and diversity in large-river floodplain lakes. We suggest that maintenance or restoration of connection be an integral part of fluvial ecosystem management plans.

  6. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Science.gov (United States)

    2012-12-19

    ... Land Management, Department of the Interior. ACTION: Notice of Closure. SUMMARY: The Bureau of Land... impacts is completed through the land use planning process. The Lake Mountains are a small mountain range... ridge. There are private residences along the lake shore. Utah Lake is a popular area for recreationists...

  7. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  8. Lake ecosystem response to rapid lateglacial climate changes in lake sediments from northern Poland

    Science.gov (United States)

    Słowiński, Michał; Zawiska, Izabela; Ott, Florian; Noryśkiewicz, Agnieszka M.; Apolinarska, Karina; Lutyńska, Monika; Michczyńska, Danuta J.; Brauer, Achim; Wulf, Sabine; Skubała, Piotr; Błaszkiewicz, Mirosław

    2013-04-01

    During the Late Glacial Period environment changes were triggered by climatic oscillations which in turn controlled processes like, for example, permafrost thawing, vegetation development and ground water circulation. These environmental changes are ideally recorded in lake sediments and thus can be reconstructed applying a multi-poxy approach. Here, we present the results from the Trzechowskie paleolake, located in the northern Polish lowlands (eastern part of the Pomeranian Lakeland). The site is situated on the outwash plain of the Wda River, which was formed during the Pomeranian phase of the Vistulian glaciation ca 16,000 14C yrs BP. The depression of the Trzechowskie lake basin formed after melting of a buried ice block during the Allerød (13903±170 cal yrs BP). We reconstructed environmental changes in the Trzechowskie paleolake and its catchment using biotic proxies (macrofossils, pollen, cladocera, diatoms, oribatidae mite) and geochemical proxies (δ18O, δ13C, loss-on-ignition (LOI), CaCO3 content). In addition, we carried out µ-XRF element core scanning. The chronology has been established by means of biostratigraphyAMS14C dating on plant macro remains, varve counting in laminated intervals and the late Allerød Laacher See Tephra isochrone. Our results showed that biogenic accumulation in the lake started during the Bølling. Development of coniferous forest during the Allerød with dominance of Pinus sylvestris lead to leaching of carbonates in the catchment due to low pH increasing the flux of Ca ions into the lake. In consequence calcite precipitating in the lake increased as evidences by increasing CaCO3 contents. Both biotic and physical proxies clearly reflect the rapid decrease in productivity at the onset of the Younger Dryas. We compare the data from the Trzechowskie paleolake with the Meerfelder Maar and Rehwiese lake records based on tephrochronological synchronization using the Laacher See Tephra. This study is a contribution to the

  9. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  10. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  11. Integrative analysis of the Lake Simcoe watershed (Ontario, Canada) as a socio-ecological system.

    Science.gov (United States)

    Neumann, Alex; Kim, Dong-Kyun; Perhar, Gurbir; Arhonditsis, George B

    2017-03-01

    Striving for long-term sustainability in catchments dominated by human activities requires development of interdisciplinary research methods to account for the interplay between environmental concerns and socio-economic pressures. In this study, we present an integrative analysis of the Lake Simcoe watershed, Ontario, Canada, as viewed from the perspective of a socio-ecological system. Key features of our analysis are (i) the equally weighted consideration of environmental attributes with socioeconomic priorities and (ii) the identification of the minimal number of key socio-hydrological variables that should be included in a parsimonious watershed management framework, aiming to establish linkages between urbanization trends and nutrient export. Drawing parallels with the concept of Hydrological Response Units, we used Self-Organizing Mapping to delineate spatial organizations with similar socio-economic and environmental attributes, also referred to as Socio-Environmental Management Units (SEMUs). Our analysis provides evidence of two SEMUs with contrasting features, the "undisturbed" and "anthropogenically-influenced", within the Lake Simcoe watershed. The "undisturbed" cluster occupies approximately half of the Lake Simcoe catchment (45%) and is characterized by low landscape diversity and low average population density watershed management practices and provides directions in order to promote environmental programs for lake conservation and to increase public awareness and engagement in stewardship initiatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modelling assessment of oil sands pit lakes turn-over potential

    International Nuclear Information System (INIS)

    Mackenzie, I.; Vandenberg, J.; Lauzon, N.; Takyi, A.

    2006-01-01

    Pit lakes form when surface mining operations are discontinued and dewatering is terminated. Their use as a treatment step for oil sands surface mining reclamation waters was discussed. The goal of the End Pit Lake Subgroup of the Cumulative Environmental Management Association is to establish guidelines that will enable operators to achieve acceptable water quality for these lakes. Although both biological and physical processes affect turn-over potential, this presentation focused on the size of pit lakes, their depth, starting lake salinity concentrations, inflow rates and inflow salinity flux. These parameters where selected because of their influence on density gradients and turn-over potential. One-dimensional and two-dimensional modelling simulations were performed to examine turnover potential for a large range of pit lake configurations and conditions. The pit lake scenarios chosen for this modelling study included a wide range of changes in 3 lake sizes (1, 4 and 8 km 2 ), 3 lake depths (5, 20 and 50 m), 2 lake starting salinities (1 and 5 parts per thousand), 2 inflow rates (2 and 10 million m 3 per year), 3 starting inflow salinity concentrations (1, 2 and 4 parts per thousand) and 2 rates of influent salinity decrease (6- and 28- year half-life). Simulations showed that autumn is the governing season for determining turn-over potential. For the scenarios examined in this study, the expelling of salt from saline water upon ice formation and the effect of fresh water loading during spring melt events were not found to be significant factors governing turn-over potential. This presentation reviewed the DYRESM, CE-QUAL-W2, and RMA models used in this study. The conclusions reached by each model was also reviewed along with ongoing follow-up work

  13. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  14. Distribution of fallout plutonium in the waters of the lower Great Lakes

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Nelson, D.M.

    1976-01-01

    The concentrations of fallout 239 240 Pu in the surface waters from all the Great Lakes were slightly lower in 1976 samples than in those from 1973. The same trend of higher concentrations in the surface waters of the upper lakes as in the surface waters of the lower lakes was observed for both years. In addition, the 239 240 Pu concentration in samples of deep water collected during the summer of 1976 was higher than in the surface waters but was similar to the surface water values of the 1973 spring samples. This observation is significant in that it suggests that the surface waters of all the Great Lakes undergo a seasonal decrease in plutonium concentration similar to that already observed in Lake Michigan

  15. Before-after, control-impact analysis of evidence for the impacts of water level on Walleye, Northern Pike and Yellow Perch in lakes of the Rainy-Namakan complex (MN, USA and ON, CA.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Water level (WL fluctuations in lakes influence many aspects of ecosystem processes. Concern about the potential impact of WL fluctuations on fisheries was one of the factors that motivated the decision in 2000 to alter the management of WL in the Rainy-Namakan reservoir complex (on the border between the U.S. state of Minnesota and the Canadian province of Ontario. We used a Before-After, Control-Impact (BACI framework to identify potential impacts of the change in WL management to Walleye, Northern Pike and Yellow Perch catch per unit effort (CPUE. The CPUE of these species from 1990-1999 and from 2005-2014 were compared in four impact lakes (Lake Kabetogama, Namakan Lake, Rainy Lake and Sand Point Lake and two control lakes (Lake of the Woods and Lake Vermilion using a simple Bayesian model. Changes in fish CPUE in the impact lakes were often similar to changes that occurred in at least one control lake. The only change that was not similar to changes in control lakes was an increase of Yellow Perch in Lake Kabetogama. The two control lakes often differed substantially from each other, such that if only one had been available our conclusions about the role of WL management on fisheries would be very different. In general, identifying cause-and-effect relationships in observational field data is very difficult, and the BACI analysis used here does not specify a causative mechanism, so co-occurring environmental and management changes may obscure the effect of WL management.

  16. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  17. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  18. Key Lake mine water spill: further clean-up not required

    International Nuclear Information System (INIS)

    Potvin, R.

    1984-02-01

    The Atomic Energy Control Board (AECB) has concluded that no additional remedial measures are warranted with regard to the mine water spill which occurred in early January at the Key Lake Mining Corporation facility in northern Saskatchewan, and has advised the company to reconsider its proposal for clean-up of the adjoining Gerald Lake basin. On January 5, an estimated 87 million litres of mine water was accidentally released to the environment when a water storage reservoir at the mine site overflowed. The spilled water flowed into the adjoining Gerald Lake catchment area where it has remained adequately contained

  19. Validation of CryoSat-2 SAR mode based lake levels

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    2015-01-01

    Lake level serve as an important indicator of the climate and continuous measurements are therefore essential. Satellite radar altimetry has now been used successfully for more than two decades to measure lake level as an addition to gauge measurements. The technique has, due to the large footprint...... with water levels obtained from Envisat. We find that the along-track precision of the mean based on CryoSat-2 is a few centimeter, even for the small lakes, which is a significant improvement compared to previous missions such as Envisat. When validating against gauge data we find RMS values of differences...

  20. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage

  1. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  2. Tailings management best practice: a case study of the McClean Lake JEB Tailings Management Facility

    International Nuclear Information System (INIS)

    Tremblay, M.A.J.; Rowson, J.

    2005-01-01

    COGEMA Resources Inc. (which is part of the Areva Group) is a Canadian company with its head office in Saskatoon, Saskatchewan. It owns and operates mining and milling facilities in Northern Saskatchewan, which produce uranium concentrate. McClean Lake Operation commenced production in 1999 and its tailings management facility represents the state of the art for tailings management in the uranium industry in Canada. Tailings disposal has the potential to cause effects in the surrounding receiving environment primarily through migration of soluble constituents from the facility to surface water receptors. In-pit disposal or mill tailings has become the standard in the uranium mining industry in Northern Saskatchewan. This method or tailings management demonstrates advances in terms of worker radiation protection and containment of soluble constituents both during operations and into the long term. Sub-aqueous deposition of tailings protects personnel from exposure to radiation and airborne emissions and prevents freezing of tailings, which can hinder consolidation. The continuous inflow of groundwater to the facility is achieved during operations, through control of water levels within the facility. This ensures hydrodynamic containment, which prevents migration of soluble radionuclides and heavy metals into the surrounding aquifer during operations. The environmental performance of the decommissioned facility depends upon the rate of release of contaminants to the receiving environment. The rate of constituent loading to the receiving environment will ultimately be governed by the concentrations of soluble constituents within the tailings mass, the mechanisms for release from the tailings to the surrounding groundwater system, and transport of constituents within the groundwater pathway to the receiving environment. The tailings preparation process was designed to convert arsenic into a stable form to reduce soluble concentrations within the tailings mass. The

  3. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60

  4. HYDROLOGIC MODELLING OF KATSINA-ALA RIVER BASIN: AN EMERGING SCENARIO FROM LAKE NYOS THREAT

    Directory of Open Access Journals (Sweden)

    J. O. Akinyede

    2012-07-01

    Full Text Available Understanding the hydrologic system surrounding crater lakes is of great importance for prevention of flooding damages, conservation of ecological environment, and assessment of socio-economic impact of dam failure on the civilians in the downstream regions. Lake Nyos is a crater lake formed by volcanic activities at the Oku volcanic field on the Cameroon Volcanic Line. It is a freshwater lake with a maximum depth of 200 meter. In 1986, a limnic eruption at the lake emitted 1.6 million tonnes of carbon dioxide from the bottom of saturated water into the air and suffocated up to 1,800 people and 3,500 livestock at nearby villages. The lake waters are held in place by a natural dam composed of loosely consolidated volcanic rock, which is now at the verge of collapse due to accelerated erosion. This study was carried out to determine the flood risks and vulnerability of population and infrastructure along Katsina-Ala drainage basins. The project integrated both satellite images and field datasets into a hydrologic model for Katsina-Ala River Basin and its vicinity including the Lake Nyos. ArcHydro was used to construct a hydrologic database as 'data models' and MIKE SHE was employed to conduct hydrologic simulations. Vulnerable infrastructures, population and socio-economic activities were identified to assist the Federal and State governments in disaster mitigation and management plans. The result of the project provides comprehensive knowledge of hydrologic system of Katsina-Ala drainage basin to mitigate potential future disasters from a potential dam failure and manage water resources against such disasters.

  5. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  6. Geophysical study of the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.

    1975-01-01

    Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

  7. Lake and lake-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: (1) The location of the object relative important gradients in the surrounding nature; (2) The lake catchment area and its major constituents; (3) The lake morphometry; (4) The lake ecosystem; (5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake

  8. Lake and lake-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The lake catchment area and its major constituents; 3) The lake morphometry; 4) The lake ecosystem; 5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem

  9. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    Science.gov (United States)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  10. On the radiocesium behavior in a small humic lake (Lithuania)

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Koviazina, E.; Karpicz, R.; Moisejenkova, A.; Astrauskiene, N.

    2009-01-01

    Peculiarities of radiocesium contamination of a small humic lake, which became meromictic some thirty-five years ago due to the inflow of a large amount of humic water, are presented. The lake consists of two separate water layers, which do not intermix. A lower water layer of the lake below some 3-m depth is stagnant and anaerobic, and radiocesium load of the sediments is mainly caused by nuclear weapons fallout. The radiocesium load of the sediments of the upper monomictic water layer is significantly larger due to additional contamination after the Chernobyl accident. Radiocesium activity concentrations in lake water increase with depth, and even in the surface layer, they are commonly the largest among the neighboring lakes with transparent water. It is shown that bottom areas of the monomictic part of the lake with the elevated radiocesium deepening into sediments are related to the favorite sites of the tench (Tinca tinca) winter torpor. Sediment bioturbation and redistribution due to tench activities distort naturally formed radiocesium vertical profiles and they cannot be used for estimations of sedimentation rates and sediment chronology. The studied lake can be useful as an analogous model in analyzing structural and radiological consequences of humic water inflows to closed lakes. Concerning extreme radiological situations in closed humic lakes related to their specific vertical structure, they may be treated as critical objects in assessing the risk to humans after radionuclide deposition events. (authors)

  11. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    Science.gov (United States)

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands

  12. Sustainable knowledge development across cultural boundaries: Experiences from the EU-project SILMAS (Toolbox for conflict solving instruments in Alpine Lake Management)

    Science.gov (United States)

    Fegerl, Michael; Wieden, Wilfried

    2013-04-01

    Increasingly people have to communicate knowledge across cultural and language boundaries. Even though recent technologies offer powerful communication facilities people often feel confronted with barriers which clearly reduce their chances of making their interaction a success. Concrete evidence concerning such problems derives from a number of projects, where generated knowledge often results in dead-end products. In the Alpine Space-project SILMAS (Sustainable Instruments for Lake Management in Alpine Space), in which both authors were involved, a special approach (syneris® ) was taken to avoid this problem and to manage project knowledge in sustainable form. Under this approach knowledge input and output are handled interactively: Relevant knowledge can be developed continuously and users can always access the latest state of expertise. Resort to the respective tools and procedures can also assist in closing knowledge gaps and in developing innovative responses to familiar or novel problems. This contribution intends to describe possible ways and means which have been found to increase the chances of success of knowledge communication across cultural boundaries. The process of trans-cultural discussions of experts to find a standardized solution is highlighted as well as the problem of dissemination of expert knowledge to variant stakeholders. Finally lessons learned are made accessible, where a main task lies in the creation of a tool box for conflict solving instruments, as a demonstrable result of the project and for the time thereafter. The interactive web-based toolbox enables lake managers to access best practice instruments in standardized, explicit and cross-linguistic form.

  13. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    Science.gov (United States)

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  14. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    Science.gov (United States)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  15. Rubidium-strontium ages from the Oxford Lake-Knee Lake greenstone belt, northern Manitoba

    International Nuclear Information System (INIS)

    Clark, G.S.; Cheung, S.-P.

    1980-01-01

    Rb-Sr whole-rock ages have been determined for rocks from the Oxford Lake-Knee Lake-Gods Lake geenstone belt in the Superior Province of northeastern Manitoba. The age of the Magill Lake Pluton is 2455 +- 35 Ma(lambda 87 Rb = 1.42 x 10 -11 yr -1 ), with an initial 87 Sr/ 86 Sr ratio of 0.7078 +- 0.0043. This granite stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism. The age of the Bayly Lake Pluton is 2424 +- 74 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7029 +- 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed. The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 +- 125 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7014 +- 0.0009. The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granite intrusion in the area. The age for the Hayes River Group volcanic rocks is consistent with Rb-Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province. (auth)

  16. Cyanobacteria of the 2016 Lake Okeechobee and Okeechobee Waterway harmful algal bloom

    Science.gov (United States)

    Rosen, Barry H.; Davis, Timothy W.; Gobler, Christopher J.; Kramer, Benjamin J.; Loftin, Keith A.

    2017-05-31

    The Lake Okeechobee and the Okeechobee Waterway (Lake Okeechobee, the St. Lucie Canal and River, and the Caloosahatchee River) experienced an extensive harmful algal bloom within Lake Okeechobee, the St. Lucie Canal and River and the Caloosahatchee River in 2016. In addition to the very visible bloom of the cyanobacterium Microcystis aeruginosa, several other cyanobacteria were present. These other species were less conspicuous; however, they have the potential to produce a variety of cyanotoxins, including anatoxins, cylindrospermopsins, and saxitoxins, in addition to the microcystins commonly associated with Microcystis. Some of these species were found before, during, and 2 weeks after the large Microcystis bloom and could provide a better understanding of bloom dynamics and succession. This report provides photographic documentation and taxonomic assessment of the cyanobacteria present from Lake Okeechobee and the Caloosahatchee River and St. Lucie Canal, with samples collected June 1st from the Caloosahatchee River and Lake Okeechobee and in July from the St. Lucie Canal. The majority of the images were of live organisms, allowing their natural complement of pigmentation to be captured. The report provides a digital image-based taxonomic record of the Lake Okeechobee and the Okeechobee Waterway microscopic flora. It is anticipated that these images will facilitate current and future studies on this system, such as understanding the timing of cyanobacteria blooms and their potential toxin production.

  17. An overview of the recent palaeolimnology of selected lakes in the Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Simon M. HUTCHINSON

    2011-06-01

    Full Text Available Lakesediments can act as sensitive monitors of environmental change and human impacts. The Romanian Carpathians hold a significant number of glacial lakes and transverse a region of considerable environmental concerns, but relatively sparse environmental data and little recent lake sediment based research. Findings from selected lakes in two of the highest sections of these mountains inRomaniaare presented. In addition the palaeolimnological record held in the surficial sediments of other lower elevations sites in theEastern Carpathiansis also discussed. These sites are situated in contrasting sites comprising a volcanic crater lake (Lacul Sfânta Ana,HarghitaMountains and a lake dammed by land sliding (Lacul Iezer-Feredeu, Obcina Feredeului. 

  18. National Status and Trends: Bioeffects Program - Sabine Lake, Texas Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA's...

  19. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  20. Effects of Climate Change on Diffuse Pollution in Lake Mogan Watershed

    Science.gov (United States)

    Alp, E.; Özcan, Z.

    2017-12-01

    Climate change is putting increasing pressure on water bodies. It can affect the behavior of pollutants in the environment and their interaction with the hydrological cycle. For instance, changing precipitation patterns may result in higher volumes of runoff containing numerous contaminants to water bodies and eventually loss of life-supporting function of them. The purpose of this study is to evaluate the impacts of climate change on diffuse pollution in Lake Mogan watershed located in a climate change vulnerable region and where agricultural diffuse pollution is one of the significant concerns. Lake Mogan watershed has an area of 970 km2 and it is dominated by dry agricultural practices and characterized by intermittent creeks. The lake was declared as a special environmental protection region in 1990. In this study, the impacts of climate change on diffuse pollution in the Lake Mogan watershed was evaluated using with a water quality model, SWAT (Soil and Water Assessment Tool). SWAT is a conceptual, continuous time model that operates on a daily time step. The model has been used in many studies to estimate the impacts of climate change, to calculate pollutant loads and to evaluate the best management practices all over the world. The required inputs for SWAT model can be categorized under the following basic categories: topography, land use/land cover, soil properties, land management practices occurring in the watershed, and meteorological inputs. According to Turkish Ministry of Forestry and Water Affairs (2016), it is estimated that the annual average temperature values will increase up to 3.3°C during the 85 year projection period as compared to reference period in the RCP4.5 scenario in the study area. This increase is predicted as up to 5.7°C based on the RCP8.5 scenario. The calibrated SWAT model for the Lake Mogan Watershed is used for the climate change scenarios for a period of 2010 and 2100. It is aimed that the outcomes of this study will help

  1. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  2. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    Science.gov (United States)

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, pCDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  3. A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid

    Directory of Open Access Journals (Sweden)

    G. Kostoski

    2010-12-01

    Full Text Available Immediate conservation measures for world-wide freshwater resources are of eminent importance. This is particularly true for so-called ancient lakes. While these lakes are famous for being evolutionary theatres, often displaying an extraordinarily high degree of biodiversity and endemism, in many cases these biota are also experiencing extreme anthropogenic impact.

    Lake Ohrid, a major European biodiversity hotspot situated in a trans-frontier setting on the Balkans, is a prime example for a lake with a magnitude of narrow range endemic taxa that are under increasing anthropogenic pressure. Unfortunately, evidence for a "creeping biodiversity crisis" has accumulated over the last decades, and major socio-political changes have gone along with human-mediated environmental changes.

    Based on field surveys, monitoring data, published records, and expert interviews, we aimed to (1 assess threats to Lake Ohrids' (endemic biodiversity, (2 summarize existing conservation activities and strategies, and (3 outline future conservation needs for Lake Ohrid. We compiled threats to both specific taxa (and in cases to particular species as well as to the lake ecosystems itself. Major conservation concerns identified for Lake Ohrid are: (1 watershed impacts, (2 agriculture and forestry, (3 tourism and population growth, (4 non-indigenous species, (5 habitat alteration or loss, (6 unsustainable exploitation of fisheries, and (7 global climate change.

    Among the major (well-known threats with high impact are nutrient input (particularly of phosphorus, habitat conversion and silt load. Other threats are potentially of high impact but less well known. Such threats include pollution with hazardous substances (from sources such as mines, former industries, agriculture or climate change. We review and discuss institutional responsibilities, environmental monitoring and ecosystem management, existing parks and reserves, biodiversity and species

  4. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  5. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake

    International Nuclear Information System (INIS)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save tax dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity

  6. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  7. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  8. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    Science.gov (United States)

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  9. Introduction and spread of the threespine stickleback (Gasterosteus aculeatus) in Lakes Huron and Michigan

    Science.gov (United States)

    Stedman, Ralph M.; Bowen, Charles A.

    1985-01-01

    The threespine stickleback (Gasterosteus aculeatus) was not known to occur in the Great Lakes above Niagara Falls until 1980, when it was collected in South Bay, Manitoulin Island, in the Lake Huron basin. By 1984 this species had been found in tributaries of Lakes Huron and Michigan, and in the open waters of both lakes. All specimens identified were the completely plated morph that is most prevalent in fresh water along the east coast of North America. The status of this species in Lakes Huron and Michigan appears to be “Possibly Established.” If threespine stickleback increase in abundance they may eventually provide additional forage for large salmonids.

  10. Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives

    Science.gov (United States)

    Zhou, Minghua; Brandt, Patric; Pelster, David; Rufino, Mariana C.; Robinson, Timothy; Butterbach-Bahl, Klaus

    2014-10-01

    Using the net anthropogenic nitrogen input (NANI) approach we estimated the N budget for the Lake Victoria Basin in East Africa. The NANI of the basin ranged from 887 to 3008 kg N km-2 yr-1 (mean: 1827 kg N km-2 yr-1) for the period 1995-2000. The net nitrogen release at basin level is due primarily to livestock and human consumption of feed and foods, contributing between 69% and 85%. Atmospheric oxidized N deposition contributed approximately 14% to the NANI of the Lake Victoria Basin, while either synthetic N fertilizer imports or biological N fixations only contributed less than 6% to the regional NANI. Due to the low N imports of feed and food products (export to Lake Victoria accounted for 16%, which is much lower than for watersheds located in Europe and USA (25%). A significant reduction of the uncertainty of our N budget estimate for Lake Victoria Basin would be possible if better data on livestock systems and riverine N export were available. Our study indicates that at present soil N mining is the main source of nitrogen in the Lake Victoria Basin. Thus, sustainable N management requires increasing agricultural N inputs to guarantee food security and rehabilitation and protection of soils to minimize environmental costs. Moreover, to reduce N pollution of the lake, improving management of human and animal wastes needs to be carefully considered in future.

  11. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    Science.gov (United States)

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs recolonized sediments in western Lake Erie in the 1990s.

  12. Reintroduction of Lake Sturgeon (Acipenser fulvescens) into the St. Regis River, NY: Post-release assessment of habitat use and growth

    Science.gov (United States)

    Dittman, Dawn E.; Chalupnicki, Marc A.; Johnson, James H.; Snyder, James

    2015-01-01

    One of the depleted endemic fish species of the Great Lakes, Acipenser fulvescens (Lake Sturgeon), has been the target of extensive conservation efforts. One strategy is reintroduction into historically productive waters. The St. Regis River, NY, represents one such adaptive-management effort, with shared management between New York and the St. Regis Mohawk Tribe. Between 1998 and 2004, a total of 4977 young-of-year Lake Sturgeon were released. Adaptive management requires intermediate progress metrics. During 2004 and 2005, we measured growth, habitat use, and survivorship metrics of the released fish. We captured a total of 95 individuals of all stocked ages. Year-class minimal-survival rates ranged from 0.19–2.1%. The size-at-age and length/biomass relationships were comparable to those reported for juveniles in other Great Lakes waters. These intermediate assessment metrics can provide feedback to resource managers who make restoration-program decisions on a much shorter time-scale than the time-frame in which the ultimate goal of a self-sustaining population can be attained.

  13. Radiochemical tools at the experimental lakes area (ELA) in Ontario, Canada

    International Nuclear Information System (INIS)

    Pfitzner, J.; Brunskill, G.

    1998-01-01

    Full text: For over 20 years, Canadian research scientists have used radiochemical tracers added to remote and pristine lakes to study physical, chemical, and biological processes that could not be easily quantified by other methods. Lakes have also been manipulated by experimentally altering the hydrological cycle, chemical composition, and species of fish in selected lakes, and using companion lakes as controls. Varying additions of organic carbon, N, and P have been done, and the exchange rate of carbon dioxide between the atmosphere and water was estimated using radon evasion rates from radium spikes in the lake water. Multinuclide spikes were done to follow the path of mine waste elements through the food chain and sediment accumulation. Lakes were experimentally acidified with HCl and HNO 3 and H 2 SO 4 to simulate acid rain, and to study natural buffering capacity of the hydrological cycle. Some of this research has been used to legislate pollution control in the St. Laurence Great Lakes and across Canada and USA. ELA research team spirit has survived several forest fires, bear attacks on the kitchen, massive cut-backs in funding and reduction in staff of Fisheries and Ocean Canada

  14. NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations

    Science.gov (United States)

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.

    2004-01-01

    Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.

  15. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  16. Moses Lake Fishery Restoration Project : FY 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    None given

    2000-12-01

    The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

  17. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in western North America

    Directory of Open Access Journals (Sweden)

    Brian Fraser Cumming

    2015-08-01

    Full Text Available Recently there has been an active discussion about the potential and challenges of tracking past lake-water trophic state using paleolimnological methods. Herein, we present analyses of the relationship between modern-day diatom assemblages from the surface sediments of 251 fresh-water lakes from British Columbia and contemporary limnological variables. Total phosphorus (TP was significantly related to the modern distribution of diatom assemblages. The large size of this new calibration dataset resulted in higher abundances and occurrences of many diatom taxa thereby allowing a more accurate quantification of the optima of diatom taxa to TP in comparison to previous smaller calibration datasets. Robust diatom-based TP inference models with a moderate predictive power were developed using weighted-averaging regression and calibration. Information from the calibration dataset was used to interpret changes in the diatom assemblages from the north and south basins of Osoyoos Lake, in conjunction with fossil pigment analyses. Osoyoos Lake is a large salmon-bearing lake that straddles the British Columbia-Washington border and has undergone cultural eutrophication followed by recovery due to substantial mitigation efforts in managing sources of nutrients. Both diatom assemblages and sedimentary pigments indicate that eutrophication began c. 1950 in the north basin and c. 1960 in the southern basin, reaching peak levels of production between 1960 and 1990, after which decreases in sedimentary pigments occurred, as well as decreases in the relative abundance and concentrations of diatom taxa inferred to have high TP optima. Post-1990 changes in the diatom assemblage suggests conditions have become less productive with a shift to taxa more indicative of lower TP optima in concert with measurements of declining TP, two of these diatom taxa, Cyclotella comensis and Cyclotella gordonensis, that were previously rare are now abundant.

  18. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL