WorldWideScience

Sample records for lake case study

  1. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  2. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  3. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    OpenAIRE

    Laijian Wang; Lachun Wang; Pengcheng Yin; Haiyang Cui; Longwu Liang; Zhenbo Wang

    2017-01-01

    Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model...

  4. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    Directory of Open Access Journals (Sweden)

    Laijian Wang

    2017-10-01

    Full Text Available Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model for the artificial wetland was established based on cost–benefit analysis by means of field monitoring, social surveys, GIS geostatistics, raster calculation methods, etc. Empirical analysis and calculations were performed on the case study region. The following conclusions were drawn: (1 after ecological restoration, ecosystem services of Jiuli Lake wetland which has become a national level wetland park yield positive values; (2 the improved environment of the Jiuli Lake wetland has a spillover effect on the price of surrounding land, resulting in land price appreciation; (3 using GIS geostatistics and raster calculation methods, the impact range, strength, and value of the spillover effect can be explicitly measured; (4 through the establishment of a value assessment model of the artificial wetland, incomes of the ecological restoration was found to be sufficient to cover the implementation costs, which provides a research foundation for economic feasibility of ecological restoration of mining subsided lakes.

  5. Measuring the Quality of the Lakeside Tourist Destinations: Case Study of Lake Palić and Lake Srebrno (Serbia)

    OpenAIRE

    Jelica J. MARKOVIĆ; Dragoslav J. PAVIĆ; Minucsér M. MÉSZAROS; Marko D. PETROVIĆ

    2015-01-01

    The purpose of this study is to determine the dimensions of the lakeside tourist destinations quality through the cases of Lake Palić and Lake Srebrno (Serbia), by interviewing daily visitors and tourists and to determine which dimensions of quality have a crucial impact on the overall satisfaction of daily visitors and tourists. Various models have been developed to measure quality. In this paper, the quality is measured by the model that is appropriate for lakeside tourist destinations, dev...

  6. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Outflows of groundwater in lakes: case study of Lake Raduńske Górne

    Directory of Open Access Journals (Sweden)

    Cieśliński Roman

    2014-12-01

    Full Text Available The aim of the study was to locate and describe groundwater outflows in a selected lake basin. The study hypothesis was based on the fact that, according to the specialist literature, one of the forms of lake water supply is through groundwater outflows. It was also assumed that the lakes of the Kashubian Lake District are characterised by such a form of lake water supply. The time scope of the work included the period from January 2011 to September 2012. The spatial scope of the work included the area of Lake Raduńskie Górne, located in the Kashubian Lake District in north Poland. The research plot was in the north-eastern part of the lake. Office works were aimed at gathering and studying source materials and maps. Cartographic materials were analysed with the use of the MapInfo Professional 9.5. The purpose of the field work was to find the groundwater outflows in the basin of Lake Raduńskie Górne. During the field research diving was carried out in the lake. During the dive audiovisual documentation was conducted using a Nikon D90 camera with Ikelite underwater housing for Nikon D90 and an Ikelite DS 161 movie substrobe, as well as a GoPro HD HERO 2 Outdoor camera. During the project, four groundwater outflows were found. In order to examine these springs audiovisual and photographic documentation was made. To systematise the typology of the discovered springs, new nomenclature was suggested, namely under-lake springs with subtypes: an under-lake slope spring and under-lake offshore spring

  8. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  9. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. climate change and lake water resourcesin sub-saharan africa: case ...

    African Journals Online (AJOL)

    user

    STUDY OF LAKE CHAD AND LAKE VICTORIA ... contribution to agriculture and socio-economic development of the region were ... many developing countries, current levels in water use .... 2050 and will become increasingly urban by implication. ... 4.1 Justification of Selected Case Studies ..... Orstom, Paris France. 1996.

  11. Measuring the Quality of the Lakeside Tourist Destinations: Case Study of Lake Palić and Lake Srebrno (Serbia

    Directory of Open Access Journals (Sweden)

    Jelica J. MARKOVIĆ

    2015-10-01

    Full Text Available The purpose of this study is to determine the dimensions of the lakeside tourist destinations quality through the cases of Lake Palić and Lake Srebrno (Serbia, by interviewing daily visitors and tourists and to determine which dimensions of quality have a crucial impact on the overall satisfaction of daily visitors and tourists. Various models have been developed to measure quality. In this paper, the quality is measured by the model that is appropriate for lakeside tourist destinations, developed by Ryan, Huimin, and Chon (2010. Five dimensions of quality were identified and named as: additional tourist infrastructure, lake water quality, natural environment, hospitality and cleanness of the place. The results showed that the measured quality model largely predicts overall satisfaction of daily visitors and tourists on the destination. The dimension lake water quality has the most effects on the overall satisfaction. Further research could use this research by adding some other quality dimensions into consideration (e.g. quality of service, situational conditions, destination management in examining the effect of destination’s quality on satisfaction of daily visitors and tourists. The research is important to managers of lakeside tourist destinations who tend to have highly satisfied guests and who work on promotion and improvement of destination quality.

  12. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    Science.gov (United States)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  13. Cordova Lake dam hydroelectric generating station case study

    International Nuclear Information System (INIS)

    Kerr, D.; Huxley, J.

    1993-01-01

    The Ontario Ministry of Natural Resources released a Crown owned site to the private water power industry as part of the small hydro site release program initiated by the Ontario Government in the mid 1980's. The Cordova Lake Dam Hydroelectric Generating Station, built on this site, has been in operation since the first week of October, 1992. Since that time, the plant has been operating with less than 1 % down time and has generated over 2,400 MWh of electricity. Algonquin Power Systems is responsible for the management and operations of the plant which includes full time monitoring from the company's Mississauga office and a part time employee at Cordova Lake. Cordova Lake Dam is located on the Crowe River at the outlet of Cordova Lake, approximately 125 kilometers east of Toronto, Ontario. The total cost of the Cordova Lake Dam project was $1.6 million. Algonquin Power contributed 20% equity to the project. Algonquin Power was also responsible for all engineering and geotechnical work and for completing the construction and equipment contracts. 1 tab., 2 figs

  14. Regionalisation for lake level simulation – the case of Lake Tana in the Upper Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes

    2011-04-01

    Full Text Available In this study lake levels of Lake Tana are simulated at daily time step by solving the water balance for all inflow and outflow processes. Since nearly 62% of the Lake Tana basin area is ungauged a regionalisation procedure is applied to estimate lake inflows from ungauged catchments. The procedure combines automated multi-objective calibration of a simple conceptual model and multiple regression analyses to establish relations between model parameters and catchment characteristics.

    A relatively small number of studies are presented on Lake Tana's water balance. In most studies the water balance is solved at monthly time step and the water balance is simply closed by runoff contributions from ungauged catchments. Studies partly relied on simple ad-hoc procedures of area comparison to estimate runoff from ungauged catchments. In this study a regional model is developed that relies on principles of similarity of catchments characteristics. For runoff modelling the HBV-96 model is selected while multi-objective model calibration is by a Monte Carlo procedure. We aim to assess the closure term of Lake Tana's water balance, to assess model parameter uncertainty and to evaluate effectiveness of a multi-objective model calibration approach to make hydrological modeling results more plausible.

    For the gauged catchments, model performance is assessed by the Nash-Sutcliffe coefficient and Relative Volumetric Error and resulted in satisfactory to good performance for six, large catchments. The regional model is validated and indicated satisfactory to good performance in most cases. Results show that runoff from ungauged catchments is as large as 527 mm per year for the simulation period and amounts to approximately 30% of Lake Tana stream inflow. Results of daily lake level simulation over the simulation period 1994–2003 show a water balance closure term of 85 mm per year that accounts to 2.7% of the total lake inflow. Lake level

  15. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  16. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  17. InSAR detection of aquifer recovery: Case studies of Koehn Lake (central California) and Lone Tree Gold Mine (Basin and Range)

    Science.gov (United States)

    Wdowinski, S.; Greene, F.; Amelung, F.

    2013-12-01

    Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the

  18. Sinkhole risk assessment by ERT: The case study of Sirino Lake (Basilicata, Italy)

    Science.gov (United States)

    Giampaolo, V.; Capozzoli, L.; Grimaldi, S.; Rizzo, E.

    2016-01-01

    The presence of natural or artificial lakes and reservoirs that can drain because of natural phenomena can generate catastrophic events affecting urban and agricultural areas next to the source area. Therefore, geophysical prospecting techniques have been applied in the study of Sirino Lake, which, during the last century, was affected by the sudden opening of small sinkholes, resulting in the almost total draining of the lake and in the sudden increase of water flow rates of distal springs. Two electrical resistivity tomographies (ERTs) were carried out across the lake, using electrode arrays located on land and across the water body. Self-potential (SP) data were acquired around the lake shore and the surrounding area. The geophysical prospecting contributed significant data toward explaining the unique hydrogeological characteristics of the lake. Integration of geophysical, geological, hydrogeological, and geomorphological data allowed us to estimate the thickness of the lacustrine deposits beneath the lake, to describe the main patterns of the subsurface fluid flows in the area, and to identify possible water escape routes causing the piping phenomena.

  19. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  20. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  1. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study.

    Science.gov (United States)

    Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H

    2013-08-01

    The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

  2. Climate change and diverse dimensions of glacial lake outburst floods (GLOFs): Lake Palcacocha case study, Peru

    Science.gov (United States)

    Emmer, Adam; Walker-Crawford, Noah; Carey, Mark; Huggel, Christian; Verheyen, Roda; Wallimann-Helmer, Ivo

    2017-04-01

    Post-Little Ice Age (LIA) climate change has led to worldwide glacier retreat, formation and evolution of glacial lakes, occasionally followed by glacier lake outburst floods (GLOFs). Hundreds of GLOFs are documented throughout the 20th and 21st century, of which a certain number that caused massive downstream destruction and up to thousands of lives lost. Management of GLOF hazards and risks has typically been a local concern, focusing on the implementation of specific technical and engineering measures. Recently, however, researchers have realized that the complexity of both the risks and the socio-environmental context requires a broader understanding and response beyond the more typical local perception and management. The growing cumulative greenhouse gas (GHG) emissions, for instance, increase the anthropogenic contribution to glacier retreat, lake formation and growth and eventually to GLOF. GLOF hazard and risk management is inherently linked to the global scale from this perspective. It implies that additional important dimensions enter the debate, including ethical and legal questions about the responsibility for damage and loss due to GLOFs. Here we analyze the conditions at an emblematic case in Peru's Cordillera Blanca, which has made international headlines repeatedly since it first generated one of the world's most deadly GLOFs in 1941 to its present-day growth and instability. Situated upstream from the regional center of Huaráz (population ˜120,000), Lake Palcacocha has attracted significant attention in recent years within Peru and at an international level. Perspectives on Palcacocha lack truly cross-disciplinary research, missing more comprehensive insight. This contribution is unique for its analysis of diverse dimensions, which also provide a framework for other GLOF hazard, risk, and climate-related studies. The main aim of this constribution is to understand the links between them, their drivers and inhibitors. Four dimensions were studied

  3. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    Science.gov (United States)

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  4. Mining and drought in the tropical Andes: a case study of lake Poopó

    Science.gov (United States)

    Zogheib, C.

    2017-12-01

    The respective impacts of mining water withdrawals and El Niño-related droughts on water availability in the Altiplano region of the tropical Andes were investigated. The naturally semi-arid to arid climate of the region is highly vulnerable to the effects of the El Niño Southern Oscillation (ENSO) as well as changes to the Bolivian High upper troposphere circulation. The 2015-2016 El Niño event displayed a maximal Oceanic Niño Index (ONI) of up to 2.2 °C, comparable with the 1998-1999 event, considered as the most severe of the 20th century with a maximal ONI of 2.5 °C. This has severely impacted the Altiplano region. Whereas mining has been found to affect observed water quality in the region, its influence on water availability has not been extensively examined. In light of these observations, the case of Lake Poopó, a water body at the intersection of both these climatic and anthropogenic influences, was further analyzed. The lake was officially declared dry in January 2016 by the Bolivian government. Therefore, a water balance model was implemented for the Lake Titicaca - Río Desaguadero - Lake Poopó - Salar de Coipasa (TDPS) catchment, simulating several possible climatic scenarios. Mines were identified and associated water withdrawals were extrapolated using available processing water consumption data. Long-term climatic trends, as averaged between 1970 and 2010 were used to assess the recovery prospects of the lake. Mining was found to have a very limited impact on water quantity in Lake Poopó, with total mining water withdrawals accounting for 0.2% to 0.4% of the total amount of water flowing into the lake from the Desaguadero River, reduced by only 1%. However, 1998 El Niño-induced drought conditions were found to cause a net yearly reduction in storage of 0.76 m. Under such climatic constraints, it was obtained that 32 months were needed for the lake to dry out from its height of 1.972 m as observed on the 10th of April 2013 and 38 months

  5. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  6. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  7. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies

    NARCIS (Netherlands)

    Meijer, M.L.; Boois, de I.; Scheffer, M.; Portielje, R.; Hosper, H.

    1999-01-01

    Eighteen shallow lakes in The Netherlands were subjected to biomanipulation, i.e. drastic reduction of the fish stock, for the purpose of lake restoration. The morphology and the nutrient level of the lakes differed, as did the measures applied. In some lakes biomanipulation was accompanied by

  8. Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa

    Science.gov (United States)

    Ellis, Geoffrey S.; Barry J. Katz,; Christopher A. Scholz,; Peter K. Swart,

    2015-01-01

    This study examines the relationship between depositional environment and sedimentary organic geochemistry in Lake Malawi, East Africa, and evaluates the relative significance of the various processes that control sedimentary organic matter (OM) in lacustrine systems. Total organic carbon (TOC) concentrations in recent sediments from Lake Malawi range from 0.01 to 8.80 wt% and average 2.83 wt% for surface sediments and 2.35 wt% for shallow core sediments. Hydrogen index (HI) values as determined by Rock-Eval pyrolysis range from 0 to 756 mg HC g−1 TOC and average 205 mg HC g−1 TOC for surface sediments and 228 mg HC g−1 TOC for shallow core samples. On average, variations in primary productivity throughout the lake may account for ~33% of the TOC content in Lake Malawi sediments (as much as 1 wt% TOC), and have little or no impact on sedimentary HI values. Similarly, ~33% to 66% of the variation in TOC content in Lake Malawi sediments appears to be controlled by anoxic preservation of OM (~1–2 wt% TOC), although some component of the water depth–TOC relationship may be due to physical sediment transport processes. Furthermore, anoxic preservation has a minimal effect on HI values in Lake Malawi sediments. Dilution of OM by inorganic sediment may account for ~16% of variability in TOC content in Lake Malawi sediments (~0.5 wt% TOC). The effect of inputs of terrestrial sediment on the organic character of surface sediments in these lakes is highly variable, and appears to be more closely related to the local depositional environment than the regional flux of terrestrial OM. Total nitrogen and TOC content in surface sediments collected throughout the lake are found to be highly correlated (r2 = 0.95), indicating a well-homogenized source of OM to the lake bottom. The recurring suspension and deposition of terrestrial sediment may account for significant amounts of OM deposited in offshore regions of the lake. This process effectively separates denser

  9. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    Science.gov (United States)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  10. [Estimation of DOC concentrations using CDOM absorption coefficients: a case study in Taihu Lake].

    Science.gov (United States)

    Jiang, Guang-Jia; Ma, Rong-Hua; Duan, Hong-Tao

    2012-07-01

    Dissolved organic carbon (DOC) is the largest organic carbon stock in water ecosystems, which plays an important role in the carbon cycle in water. Chromophoric dissolved organic matter (CDOM), an important water color variation, is the colored fraction of DOC and its absorption controls the instruction of light under water. The available linkage between DOC concentration and CDOM absorptions enables the determination of DOC accumulations using remote sensing reflectance or radiance in lake waters. The present study explored the multi-liner relationship between CDOM absorptions [a(g) (250) and a(g) (365)] and DOC concentrations in Taihu Lake, based on the available data in 4 cruises (201005, 201101, 201103, 201105) (totally 183 sampling sites). Meanwhile, the results were validated with the data of the experiment carried out from August 29 to September 2, 2011 in Taihu Lake (n = 27). Furthermore, a universal pattern of modeling from remote sensing was built for lake waters. The results demonstrated that this method provided more satisfying estimation of DOC concentrations in Taihu Lake. Except the data obtained in January 2011, the fitted results of which were not conductive to the winter dataset (201101) in Taihu Lake, due to the diverse sources and sinks of DOC and CDOM, the multi-liner relationship was robust for the data collected in the other three cruises (R2 = 0.64, RMSE = 14.31%, n = 164), which was validated using the 201108 sampling dataset (R2 = 0.67, RMSE = 10.58%, n = 27). In addition, the form of the statistic model is universal, to some extent, for other water areas, however, there is difference in the modeling coefficients. Further research should be focused on the parameterization using local data from different lakes, which provides effective methodology for the estimation of DOC concentrations in lakes and other water regions.

  11. Isotope techniques in lake water studies

    International Nuclear Information System (INIS)

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  12. Mathematical modelling with case studies using Maple and Matlab

    CERN Document Server

    Barnes, B

    2014-01-01

    Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-

  13. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  14. Spatial variation in lake benthic macroinvertebrate ecological assessment: a synthesis of European case studies

    DEFF Research Database (Denmark)

    Sandin, Leif Leonard; Solimini, Angelo G.

    2012-01-01

    macroinvertebrate community composition and natural and human induced environmental variables (eutrophication, catchment land-use, and hydromorphological pressures) were studied. This was done in different lake habitats (the profundal, sublittoral, and littoral) in five regions of Europe (Alpine, Northern, Central...... local invertebrate assemblages. In this issue we provide a contribution towards the understanding of basic sources of spatial variation of invertebrate assemblages in different European lake habitat types and their relationship with major human pressures. All papers have an obvious applied objective...... and our aim is to provide useful information for designing monitoring programs and invertebrate based ecological classification tools with the ultimate aim to improve a sound management of European lake ecosystems....

  15. Inclusive business model in tapioca starch industry in Lake Toba area: a case study

    Science.gov (United States)

    Tampubolon, S.; Manik, Y.

    2018-04-01

    The notion of inclusive business calls for additional focus and innovation in the way companies do business which seeks to contribute to poverty alleviation by including Bottom of the Pyramids (BoP) communities within its value chain while not losing sight of the ultimate goal of business. Lake Toba Area has potentials in providing chances for doing businesses. On the other hand, the growth of market size is rather slow and demographically still dominated by BoP. This is a case study which seeks to investigate to what extent the Inclusive Business Model (IBM) is adopted in the strategic planning and applied in the operational management of companies that operate in Lake Toba Area. The study was conducted in qualitative basis. The observation was conducted by gathering data and information through a series of interviews with the top management and desk study of the business plan in a tapioca starch industry in Toba Samosir Regency. The collected data and information were then analyzed qualitatively by comparing them with criteria and parameters of IBM suggested in a vast body of literature. The reference by which the IBM is referred in this study is a series of criteria which is synthesized from a literature review on a vast body of literature about IBM. From data analysis, it is evident that IBM has been incorporated in the strategic plan and applied in the operational activities of the object of this study. However, we also found some rooms for improvement such as expanding the involvement of BoP in their value chain as consumers, by which some innovation in the product diversification is required.

  16. The Evolution of River–Lake and Urban Compound Systems: A Case Study in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-12-01

    Full Text Available The process of urbanization takes up a lot of wetlands, profoundly changing the natural connection of surrounding river–lake systems, all the while causing serious damage to the environment of connected catchments. Urban systems and river–lake systems are not isolated and static, there is a relation between them which is constantly changing. Based on the idea of system research, the urban system is simplified into four subsystems: environment, infrastructure, social, and economic. These four components interact together, influencing the river–lake system to form a compound system. This paper aims to reflect the features and evolution laws of the compound system, by building a Collaborative Development Model to study the changing of the compound system in Wuhan, China over a 10-year period. The results show that by implementing the Donghu Lake Ecological River Network Engineering Project, the damaged river–lake system in Wuhan showed some improvement. However, in order to improve the sustainability of the compound system in Wuhan, the status of the river–lake system, social system and environment system, which are still comparatively substandard, should be constantly improved. The Collaborative Development Model could also be used in other cities and regions, to provide the basis for sustainable development.

  17. Human impact on lake ecosystems: the case of Lake Naivasha, Kenya

    African Journals Online (AJOL)

    Lake Naivasha is a wetland of national and international importance. However, it is under constant anthropogenic pressures, which include the quest for socioeconomic development within the lake ecosystem itself as well as other activities within the catchment. The lake is an important source of fresh water in an otherwise ...

  18. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  19. A Systematic Study of Zerbar Lake Restoration

    Science.gov (United States)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    The beautiful lake of Zerbar, located near Marivan City at the west of Iran, is a freshwater lake with an area of 20 km2 and average depth of 5 meters. The lake is created by regional tectonic activities and is mainly fed with natural spring water from bottom. During the past three decades, regional development has caused much disturbance to the natural environment of the lake and its watershed. Rescuing the lake is crucial to the sustainability of the whole region. The study of Zerbar Restoration was performed with the aim to restore its health indicators. Variety of human activities in the watershed, as well as the multidisciplinary nature of lake restoration studies, made it necessary to develop a systematic approach to conduct the study. In Step I of restoration studies, satellite images were investigated to identify the historical changes of watershed during the past 30 years. Meanwhile, documents since 50 years ago were studied. Results indicate that farmland and graze land areas have been relatively constant during the past 50 years. Also, the area of lake, its riparian canes and floating plants have not changed much. In fact, the only significant land use change observed was the significant spread of Marivan City that has stretched toward the lake. The main physical variation to the lake has been elevating the southern edge of the lake by a constructing a landfill dam which was done to control the lake's overflow discharge for irrigation of downstream farmland development. Step II consists of studies performed by disciplines of water resources, hydrogeology, water quality, wetland and watershed ecology, agriculture, animal farming and fishery. Study results indicate that eutrophication (TSL>100), mainly caused by sewage from Marivan City and the surrounding rural areas has been the main reason for lake ecosystem degradation. DPSIR framework, as a novel approach in lake restoration, was applied to synthesize the study results of different disciplines in a

  20. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland

    Directory of Open Access Journals (Sweden)

    Angela Kuriata-Potasznik

    2016-08-01

    Full Text Available River-lake systems most often behave as hydrographic units, which undergo complex interactions, especially in the contact zone. One such interaction pertains to the role of a river in the dispersal of trace elements carried into and out of a lake. In this study, we aimed to assess the impact of rivers on the accumulation of heavy metals in bottom sediments of natural lakes comprised in postglacial river-lake systems. The results showed that a river flowing through a lake is a key factor responsible for the input of the majority of available fraction of heavy metals (Zn, Mn, Cd and Ni into the water body and for their accumulation along the flow of river water in the lake. The origin of other accumulated elements were the linear and point sources in catchments. In turn, the Pb content was associated with the location of roads in the direct catchment, while the sediment structure (especially size of fraction and density could have affected the accumulation of Cr and Zn, which indicated correlations between these metals and fine fraction. Our results suggest that lakes act as filters and contribute to the self-purification of water that flows through them. As a result, the content of most metals in lake sediments showed a decrease by approx. 75% between the upstream (inflow and downstream (outflow sections. The increased content of two metals only, such as chromium and cadmium (higher by 2.0 and 2.5 times, respectively, after passing through the lake, was due to the correlation of the metals with fine sand. Both the content and distribution pattern of heavy metals in lake sediments are indicative of the natural response of aquatic ecosystems to environmental stressors, such as pollutant import with river water or climate change. The complex elements creating the water ecosystem of each lake can counteract stress by temporarily removing pollutants such as toxic metals form circulation and depositing them mostly around the delta.

  1. A Case Study on the Selection of Purification Project of Lake

    Directory of Open Access Journals (Sweden)

    Shen Shilong

    2015-01-01

    Full Text Available This paper will mainly talk about best scheme for the water purification project of the Lake. The engineering used the water diversion metabolism method to purify the water. If the lake area and the water volume are small, the metabolic cycle is relatively short; if the lake area and the water volume are large, the metabolic cycle is relatively long. Simultaneously, the larger the water flow is, the shorter the metabolic cycle period is and the higher the average metabolic rate is. The process of the water metabolism is in agreement with the direction of the water flow movement. With the gradual metabolism of water, different water bodies begin to dilute and diffuse. The engineers will choose the most appropriate water division project according to different water division volumes and water division routes.

  2. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    Science.gov (United States)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  3. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    Science.gov (United States)

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  4. Exploratory studies into seasonal flow forecasting potential for large lakes

    Science.gov (United States)

    Sene, Kevin; Tych, Wlodek; Beven, Keith

    2018-01-01

    In seasonal flow forecasting applications, one factor which can help predictability is a significant hydrological response time between rainfall and flows. On account of storage influences, large lakes therefore provide a useful test case although, due to the spatial scales involved, there are a number of modelling challenges related to data availability and understanding the individual components in the water balance. Here some possible model structures are investigated using a range of stochastic regression and transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world - Lake Malawi and Lake Victoria - with forecast skill demonstrated several months ahead using water balance models formulated in terms of net inflows. In both cases slight improvements were obtained for lead times up to 4-5 months from including climate indices in the data assimilation component. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.

  5. Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring

    Directory of Open Access Journals (Sweden)

    Martin Søndergaard

    2017-01-01

    Full Text Available Biomanipulation by fish removal has been used in many shallow lakes as a method to improve lake water quality. Here, we present and analyse 30 years of chemical and biological data from the shallow and 16 ha large Lake Væng, Denmark, which has been biomanipulated twice with a 20-year interval by removing roach (Rutilus rutilus and bream (Abramis brama. After both biomanipulations, Lake Væng shifted from a turbid, phytoplankton-dominated state to a clear, water macrophyte-dominated state. Chlorophyll a was reduced from 60–80 μg·L−1 to 10–30 μg·L−1 and the coverage of submerged macrophytes, dominated by Elodea canadensis, increased from <0.1% to 70%–80%. Mean summer total phosphorus was reduced from about 0.12 to 0.07 mg·L−1 and total nitrogen decreased from 1.0 to 0.4 mg·L−1. On a seasonal scale, phosphorus and chlorophyll concentrations changed from a summer maximum during turbid conditions to a winter maximum under clear conditions. The future of Lake Væng is uncertain and a relatively high phosphorus loading via the groundwater, and the accumulation of a mobile P pool in the sediment make it likely that the lake eventually will return to turbid conditions. Repeated fish removals might be a relevant management strategy to apply in shallow lakes with a relatively high external nutrient loading.

  6. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    International Nuclear Information System (INIS)

    Kumar, A Anand; Prabakaran, K; Nagarajan, R; Jaison, J; Chan, Y S

    2016-01-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed. (paper)

  7. Changes of glacier lakes using multi-temporal remote sensing data: A case study from India

    Directory of Open Access Journals (Sweden)

    Kumar Rai Praveen

    2017-01-01

    Full Text Available The present study used the potential of Landsat multispectral data and ASTER-DEM data to identify the changes of glacier lakes in part of Chandra basin and surrounding of Himachal Pradesh of India from 1989 to 2013. The Barashigri, Chotashigri, Hamtahand Parvati glacier are the major glaciers within the area. The Landsat data of TM (1989 and 2009, ETM+ (2001 and OLI-TIRS (2013 sensors having different band combinations were analysed to monitor variation in the glacier lakes and area of glaciers and terminus whereas ASTER-DEM data was used for relief information. Glaciers terminus and glacial lakes were identified and mapped using false-colour composites (FCC with band combinations of red, near-infrared (NIR and shortwave infrared (SWIR, and a true-colour composite of red, green and NIR, of Landsat TM/ETM+ images and normalized difference water index (NDWI methods. It is observed that the number of lakes in the study area increased by 18.69% during the past 34 years while it was increased from 68 in 1989 to 89 in 2013. During the analysis, it is also found that the snow and glacier covered area within this period is also reduced from 1,317.39 to 1,125.59 km2.

  8. Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake--a case study.

    Science.gov (United States)

    Schmidt, Axel; Schubert, Michael

    2007-12-01

    Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers--the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m(3) d(-1) for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m(3) d(-1), whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.

  9. Lake Titicaca: History and current studies

    International Nuclear Information System (INIS)

    Paredes Riveros, M.A.; Gonfiantini, R.

    1999-01-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed

  10. Lake Titicaca: History and current studies

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Riveros, M A [PELT, Puno (Peru); Gonfiantini, R [Istituto di Geocronologia e Geochimica Isotopica del CNR, Pisa (Italy)

    1999-12-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed.

  11. Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.

    1988-01-01

    Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Radok Lake is an isothermal and nonstratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  12. Hydroecology of Amazonian lacustrine Arcellinida (testate amoebae): A case study from Lake Quistococha, Peru.

    Science.gov (United States)

    Patterson, R Timothy; Huckerby, Gail; Kelly, Thomas J; Swindles, Graeme T; Nasser, Nawaf A

    2015-10-01

    Organic rich sediments were obtained from seven core tops taken in Lake Quistococha, near the city of Iquitos in the Peruvian Amazon. Subsamples from 0 to 4cm depth in each core were analyzed under dissecting light microscopy to carry out the first investigation of Arcellinida (testate lobose amoebae) from a lacustrine environment in this ecologically important region. The fauna was characterized by a low diversity, low abundance community dominated by centropyxids. This fauna is similar to 'stressed' assemblages reported from temperate latitudes, except that test concentrations were two orders of magnitude lower than typical in temperate lakes. Principle arcellinidan stressors in Lake Quistococha likely include the low pH 4 conditions in the lake, and a general lack of suitable minerogenic material to construct tests in the organic rich lake substrate. The low pH conditions are the result of runoff and seepage of water high in dissolved organic carbon from the adjacent similarly low pH 4 terrestrial peatland. The dearth of minerogenic material is the result of the lake being isolated from riverine input for the past ∼2000 years, even during flooding events. Other limiting factors contributing to depressed arcellinidan populations may include nutrient supply, predation pressure, competition, and post-mortem taphonomic factors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model

    Directory of Open Access Journals (Sweden)

    Kalle Eerola

    2014-12-01

    Full Text Available At the end of January 2012, a low-level cloud from partly ice-free Lake Ladoga caused very variable 2-m temperatures in Eastern Finland. The sensitivity of the High Resolution Limited Area Model (HIRLAM to the lake surface conditions was tested in this winter anticyclonic situation. The lake appeared to be (incorrectly totally covered by ice when the lake surface was described with its climatology. Both parametrisation of the lake surface state by using a lake model integrated to the NWP system and objective analysis based on satellite observations independently resulted in a correct description of the partly ice-free Lake Ladoga. In these cases, HIRLAM model forecasts were able to predict cloud formation and its movement as well as 2-m temperature variations in a realistic way. Three main conclusions were drawn. First, HIRLAM could predict the effect of Lake Ladoga on local weather, when the lake surface state was known. Second, the current parametrisation methods of air–surface interactions led to a reliable result in conditions where the different physical processes (local surface processes, radiation and turbulence were not strong, but their combined effect was important. Third, these results encourage work for a better description of the lake surface state in NWP models by fully utilising satellite observations, combined with advanced lake parametrisation and data assimilation methods.

  14. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  15. Changing climate in the Lake Superior region: a case study of the June 2012 flood and its effects on the western-lake water column

    Science.gov (United States)

    Minor, E. C.; Forsman, B.; Guildford, S. J.

    2013-12-01

    In Lake Superior, the world's largest freshwater lake by area, we are seeing annual surface-water temperature increases outpacing those of the overlying atmosphere. We are also seeing ever earlier onsets of water-column stratification (in data sets from the mid-1980s to the present). In Minnesota, including the Lake Superior watershed, precipitation patterns are also shifting toward fewer and more extreme storm events, such as the June 2012 solstice flood, which impacted the western Lake Superior basin. We are interested in how such climatological changes will affect nutrient and carbon biogeochemistry in Lake Superior. The lake is currently an oligotrophic system exhibiting light limitation of primary production in winter and spring, with summer primary production generally limited by phosphorus and sometimes co-limited by iron. Analyses in the western arm of Lake Superior showed that the June 2012 flood brought large amounts of sediment and colored dissolved organic matter (CDOM) from the watershed into the lake. There was initially a ~50-fold spike in the total phosphorus concentrations (and a 5 fold spike in soluble reactive phosphorus) in flood-impacted waters. This disappeared rapidly, in large part due to sediment settling and did not lead to an increase in chlorophyll concentrations at monitored sampling sites. Instead, lake phytoplankton appeared light limited by a surface lens of warm water enriched in CDOM that persisted for over a month after the flood event itself. Our observations highlight the need for continuing research on these complex in-lake processes in order to make accurate predictions about longer term impacts of these large episodic inputs in CDOM, sediment, and nutrient loading.

  16. Stable isotope and hydrogeochemical studies of Beaver Lake and Lake Radok, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.; Hoefling, R.; Muehle, K.

    1987-01-01

    Beaver Lake and Lake Radok, the largest known epishelf and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Lake Radok is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  17. Lake responses following lanthanum-modified bentonite clay (Phoslock) application: an analysis of water column lanthanum data from 16 case study lakes

    NARCIS (Netherlands)

    Spears, B.M.; Lürling, M.F.L.L.W.; Yasseri, S.; Castro-Castellon, A.T.; Gibbs, M.; Meis, S.; McDonald, C.; McIntosh, J.; Sleep, D.; Oosterhout, van F.

    2013-01-01

    Phoslock is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La

  18. Lead isotope ratios as a tracer for lead contamination sources: A lake Andong case study

    Directory of Open Access Journals (Sweden)

    Kim Y. H

    2013-04-01

    Full Text Available The objective of this study was to evaluate stable Pb isotope signatures as a tracer for Pb contamination in Lake Andong. For Pb isotope analysis, we collected water and sediment from Lake Andong, particles in the air, soils, and stream water, mine tailings, sludge and wastewater from zinc smelting around lake Andong watershed. The results showed that Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for zinc concentrate were 18.809 ± 0.322, 15.650 ± 0.062, and 38.728 ± 0.421, respectively. In wastewater, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were 17.363 ± 0.133, 15.550 ± 0.025, and 37.217 ± 0.092, respectively. Additionally, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for sludge were 17.515 ± 0.155, 15.537 ± 0.018, and 37.357 ± 0.173, respectively. These values were similar to those in zinc and lead concentrate originated from Canada and South America. In contrast, Pb isotope ratios of soil, tailings and sediment from Lake Andong were similar to those of Korean ore. Atmospheric particles showed different patterns of Pb isotope ratios from sediments, soils, and zinc smelting and this needs further investigation in order to identify atmospheric Pb sources.

  19. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    Science.gov (United States)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  20. Acidic pit lakes. The legacy of coal and metal surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Walter; Schultze, Martin [Helmholtz Centre for Environmental Research - UFZ, Magdeburg (Germany); Wolkersdorfer, Christian (eds.) [Cape Breton Univ., Sydney, NS (Canada). Industrial Research Chair in Mine Water Remediation and Management; International Mine Water Association, Wendelstein (Germany). General Secretary; Kleinmann, Robert

    2013-07-01

    This monograph provides an international perspective on pit lakes in post-mining landscapes, including the problem of geogenic acidification. Much has been learned during the last decade through research and practical experience on how to mitigate or remediate the environmental problems of acidic pit lakes. In the first part of the book, general scientific issues are presented in 21 contributions from the fields of geo-environmental science, water chemistry, lake physics, lake modeling, and on the peculiar biological features that occur in the extreme habitats of acidic pit lakes. Another chapter provides an overview of methods currently used to remediate acidic pit lakes and treat outflowing acidic water. The second part of the book is a collection of regional surveys of pit lake problems from three European countries and Australia, and case studies of various individual representative lakes. A final case study provides an innovative approach to assessing the economic value of new pit lakes and balancing the costs and benefits, a valuable tool for decision makers.

  1. Treating floodplain lakes of large rivers as study units for variables that vary within lakes; an evaluation using chlorophyll a and inorganic suspended solids data from floodplain lakes of the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Rogala, J.R.; Houser, J.N.

    2013-01-01

    Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.

  2. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  3. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  4. Water and chemical budgets of gravel pit lakes : Case studies of fluvial gravel pit lakes along the Meuse River (The Netherlands) and coastal gravel pit lakes along the Adriatic Sea (Ravenna, Italy)

    NARCIS (Netherlands)

    Mollema, P.N.

    2016-01-01

    Gravel pit lakes form when gravel is excavated from below the water table of a phreatic or shallow confined aquifer. Typically many of these lakes are concentrated along naturally occurring sedimentary gravel deposits in areas where gravel is needed for construction. Most gravel pit lakes are

  5. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  6. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes

    Science.gov (United States)

    Jorgenson, Zachary G.; Thomas, Linnea M.; Elliott, Sarah M.; Cavallin, Jenna E.; Randolph, Eric C.; Choy, Steven J.; Alvarez, David; Banda, Jo A.; Gefell, Daniel J.; Lee, Kathy E.; Furlong, Edward T.; Schoenfuss, Heiko L.

    2018-01-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in

  7. Case study of a gas plant alliance at Zama Lake

    International Nuclear Information System (INIS)

    Clark, S.

    1998-01-01

    The definition of gas processing effectiveness varies according to whether a producer emphasizes maximized production, or the greatest wellhead netback, or the greatest return on investment. The producer's vision and objectives can change over time, depending on his financial needs, changes in the investment market, shareholder perceptions, or management motivation. This article describes how a third party processor like Novagas Canada Limited (NCL) can help a producer achieve his objectives. The case of NCL's Zama Lake investment and alliance with Phillips Petroleum is used to illustrate the process. Based on this example, a third party processor can provide important midstream services such as raw gas gathering, field compression, gas processing, sales gas transmission, natural gas liquids recovery, transportation and fractionation. In addition, they can provide access to associated energy industries such as oil and electricity, or any combination of the above, by structuring their services to suit the individual needs of each producer. A third party producer can also reduce risk and cost, provide increased reliability, add new processing capacity, and increased netback. Details of how the alliance between NCL and Phillips Petroleum came about and the advantages that each partner derived from the partnership are described. By entering into an alliance with NCL, Phillips Petroleum gained value by divesting risk and acquiring low cost midstream services, while NCL gained by increasing its presence and by adding economies of scale and greater flexibility in its investment decisions

  8. Turning conflict into collaboration in managing commons: A case of Rupa Lake Watershed, Nepal

    Directory of Open Access Journals (Sweden)

    Pashupati Chaudhary

    2015-09-01

    Full Text Available A growing body of literature on the commons has provided fascinating and intricate insights on how some local institutions have successfully managed to avoid a seemingly inevitable “tragedy of the commons” once popularized by Garrett Hardin. Primarily benefitting from the recent studies on the commonpool resources conducted by Elinor Ostrom and colleagues, polycentric selforganization and autonomy, rather than the direct state or market control over the commons, are often recognized as key features of the long enduring commons.However, these commons are quite diverse and the outcomes are often multiple and complex, accentuating the needs to differentiate among multiple commons outcomes. Furthermore, relatively under-reported are the cases where the degradation of common-pool resources are actually halted, and even restored. This study examines both the turbulent history of fishery mismanagement in Rupa Lake, Nepal and its reversal built around the participation, engagement and inclusiveness in the governance of its watershed. We find that Rupa Lake’s experience tells two stories. Reflecting Hardin’s dire forecast, the Rupa Lake watershed verged on collapse as population grew and seemingly selfish behaviorintensified under an open-access regime. But the users also found a way to rebound and reverse their course as they adopted a bottom-up approach to fishery management and established an innovative community institution, the ‘Rupa Lake Rehabilitation and Fishery Cooperative’, dedicated to the sustainable governance of the commons. This case highlights how one community at the threshold of ‘tragedy’ transformed itself by turning conflict into collaboration, which we hope contributes to the effort of better understanding multiple commons.

  9. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  10. Using paleolimnology to find restoration solutions: the case of Lake Muzzano, Switzerland

    Directory of Open Access Journals (Sweden)

    Isabelle eLarocque-Tobler

    2015-07-01

    Full Text Available Lake Muzzano (45°59′50″N 8°55′41″E, 337 m a.s.l. is a hyper-eutrophied lake located in the Tessin region of Switzerland. Almost every year, algal blooms (Microcystis cover the lake with a thickness of 1-2 cm. These blooms associated with periods of anoxia in summer have led to fish kills in 1967 and 1994. In the hope of avoiding these blooms, a bypass bringing water away from the lake has been established in 1999. This solution was not adequate as blooms kept reoccurring. Sediment removal was then proposed by the Tessin Canton as a possible remediation technique and The L.A.K.E.S Institute had a mandate in 2010 to study the lake (present and past state to determine the reasons creating anoxia and algal blooms. The present state of the lake shows that anoxia is still occurring when the algal bloom covers the lake’s surface. Subfossil diatom and chironomid analyses show that the baseline conditions were those found before 1922 AD when the lake was oligotrophic and supported a diversified community of chironomids suggesting good oxygenation. After 1922 AD, circulation to the lake was cut out and nutrients accumulated in the lake leading to anoxia and the establishment of Microcystis. Heavy metal analysis in the sediment shows that the concentration is above the national recommendation and thus sediment should not be removed or should be stored with hazardous material. Based on the present status of the lake and paleolimnological results, two solutions are proposed: to further decrease the nutrients coming in the lake (possibly using filtrating plants followed by flushing to increase lake water circulation. Physical capping of the sediment to avoid exchange of heavy metals and phosphorus release at the water/sediment interface could also be envisaged once the two prime solutions are in place.

  11. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  12. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    Science.gov (United States)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  13. Evolution of soil and vegetation cover on the bottom of drained thermokarst lake (a case study in the European Northeast of Russia)

    Science.gov (United States)

    Kaverin, Dmitry; Pastukhov, Alexander

    2015-04-01

    The evolution of soils and landscapes has been studied in a lake bed of former thermokarst lake, which was totally drained in 1979. Melioration of thermokarst lakes was conducted experimentally and locally under Soviet economics program during 1970-s. The aim of the program was to increase in biomass productivity of virgin tundra permafrost-thermokarst sites under agricultural activities. The former thermokarst lake "Opytnoe" located in the Bolshezemelskaya Tundra, Russian European Northeast. The lake bed is covered by peat-mineral sediments, which serves as soil-forming sediments favoring subsequent permafrost aggradation and cryogenic processes as well. Initially, after drainage, swampy meadows had been developed almost all over the lake bed. Further on, succession of landscape went diversely, typical and uncommon tundra landscapes formed. When activated, cryogenic processes favored the formation of peat mounds under dwarf shrub - lichen vegetation (7% of the area). Frost cracks and peat circles affected flat mounds all over the former lake bottom. On drained peat sites, with no active cryogenic processes, specific grass meadows on Cryic Sapric Histosols were developed. Totally, permafrost-affected soils occupy 77% of the area (2011). In some part of the lake bed further development of waterlogging leads to the formation of marshy meadows and willow communities where Gleysols prevail. During last twenty years, permafrost degradation has occurred under tall shrub communities, and it will progress in future. Water erosion processes in the drained lake bottom promoted the formation of local hydrographic network. In the stream floodplain grassy willow-stands formed on Fluvisols (3% of the area). The study has been conducted under Clima-East & RFBR 14-05-31111 projects.

  14. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    Science.gov (United States)

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  15. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    Science.gov (United States)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  16. A DPSIR model for ecological security assessment through indicator screening: a case study at Dianchi Lake in China.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Given the important role of lake ecosystems in social and economic development, and the current severe environmental degradation in China, a systematic diagnosis of the ecological security of lakes is essential for sustainable development. A Driving-force, Pressure, Status, Impact, and Risk (DPSIR model, combined with data screening for lake ecological security assessment was developed to overcome the disadvantages of data selection in existing assessment methods. Correlation and principal component analysis were used to select independent and representative data. The DPSIR model was then applied to evaluate the ecological security of Dianchi Lake in China during 1988-2007 using an ecological security index. The results revealed a V-shaped trend. The application of the DPSIR model with data screening provided useful information regarding the status of the lake's ecosystem, while ensuring information efficiency and eliminating multicollinearity. The modeling approach described here is practical and operationally efficient, and provides an attractive alternative approach to assess the ecological security of lakes.

  17. The algal growth-limiting nutrient of lakes located at Mexico’s Mesa Central

    Directory of Open Access Journals (Sweden)

    Fernando W. Bernal-Brooks

    2016-03-01

    Full Text Available This paper reports on the algal growth-limiting nutrients of five lakes located on Mexico’s Mesa Central - a topic poorly known in the regional limnology of Mexico. The five case studies involved three contiguous watersheds of Michoacán State and provided a trophic state variation from mesotrophic to hypereutrophic; the case studies included Lakes Zirahuén, Pátzcuaro, Teremendo, Cuitzeo and the Cointzio Reservoir. The fieldwork involved the collection of physical and chemical data (including nutrients from each case study during the dry and rainy seasons of 2010. Additionally, water samples (1 L were obtained and filtered (0.45 µm in the laboratory to keep the nutrient content available for bioassays. The chemical analyses suggested a phosphorus (P limitation in the Cointzio Reservoir, Lake Teremendo and Lake Zirahuén relative to an N:P>16:1. There was a nitrogen (N limitation at three sampling stations of Lake Pátzcuaro, with an N:P<16:1. As result of the bioassays conducted in July 2012, the Cointzio Reservoir and Lake Teremendo appeared to be P-limited and Lake Pátzcuaro appeared to be N-limited at three sampling stations. Lake Zirahuén showed seasonal variation, with an N limitation during the dry season and a P limitation during the wet season. Those cases with similar results from both methods confirmed the limiting nutrient identification. Lake Cuitzeo, Lake Zirahuén (dry season, and the shallowest sampling station in Lake Pátzcuaro produced unclear results because of divergent outcomes. In terms of the algal growth potential, the Cointzio Reservoir remained unaltered from one season to the next. However, for most of the lakes (with the exception of Lake Pátzcuaro sites 2 and 4, the rainy season provided a dilution effect. Effective lake management depends on a clear recognition of such elements that are in control of the aquatic productivity. In the area of Michoacán, both N and P may act as limiting nutrients.

  18. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.

    Science.gov (United States)

    Duru, Umit

    2017-08-01

    The research summarized here determines historical shoreline changes along Lake Sapanca by using Remote Sensing (RS) and Geographical Information Systems (GIS). Six multi-temporal satellite images of Landsat Multispectral Scanner (L1-5 MMS), Enhanced Thematic Mapper Plus (L7 ETM+), and Operational Land Imager Sensors (L8 OLI), covering the period between 17 June 1975 and 15 July 2016, were used to monitor shoreline positions and estimate change rates along the coastal zone. After pre-possessing routines, the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and supervised classification techniques were utilized to extract six different shorelines. Digital Shoreline Analysis System (DSAS), a toolbox that enables transect-based computations of shoreline displacement, was used to compute historical shoreline change rates. The average rate of shoreline change for the entire cost was 2.7 m/year of progradation with an uncertainty of 0.2 m/year. While the great part of the lake shoreline remained stable, the study concluded that the easterly and westerly coasts and deltaic coasts are more vulnerable to shoreline displacements over the last four decades. The study also reveals that anthropogenic activities, more specifically over extraction of freshwater from the lake, cyclic variation in rainfall, and deposition of sediment transported by the surrounding creeks dominantly control spatiotemporal shoreline changes in the region. Monitoring shoreline changes using multi-temporal satellite images is a significant component for the coastal decision-making and management.

  19. Water quality and remote sensing: A case study of Lake Naivasha, Kenya

    CSIR Research Space (South Africa)

    Majozi, NP

    2012-10-01

    Full Text Available validation gave an RSME 0.24 and MAE 20%. Atmospheric correction processors, MERIS Neural Network processors, and the ODESA software, were applied to MERIS images. Eutrophic Lakes was the most accurate at 490nm with MAE 43% and RSME 0.49. The Zeu maps show...

  20. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    Science.gov (United States)

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

  1. Uranium and base metal dispersion studies in the Maquire Lake area, Saskatchewan

    International Nuclear Information System (INIS)

    Sopuck, V.J.; Lehto, D.A.W.; Alley, D.W.

    1980-03-01

    The objective of this study was to study uranium and base metal dispersion in various sample media occurring in the Maguire Lake area of Saskatchewan: bedrock, overburden, lake water, and lake sediments. Factors controlling partitioning of metals among various sample media were investigated, and lake sediment data were interpreted in terms of the factors to determine the significance of lake sediment data in indicating local mineralization. The association between organic matter contents and metal contents was found to vary between lake-center and nearshore sediments. Nickel, cobalt and zinc in lake sediments are strongly controlled by hydroxide precipitation and are less dependent on bedrock type. The concentration of Fe in center-lake sediments appears to reflect only the physicochemical parameters in the lake. Uranium and copper are strongly controlled by and preferentially concentrated in the organic matter; however, in center-lake sediments with >12 percent organic matter, U and Cu strongly reflect rock type

  2. Study of pollution in Rawal lake

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, M.I.A.; Nisar, M.; Kaleem, M.Y.

    1999-01-01

    It was intended to establish effects of pollution on quality of water of Rawal Lake, Islamabad. Six stations were located for collection of water. The data collected and analyzed so far indicated increasing pollution in the lake Increase in growth of hydrophytes in quite evident, leading towards process of eutrophication of the lake. (author)

  3. BATHYMETRIC STUDY OF WADI EL-RAYAN LAKES, EGYPT

    Directory of Open Access Journals (Sweden)

    Radwan Gad Elrab ABD ELLAH

    2016-12-01

    Full Text Available Bathymetry is a technique of measuring depths to determine the morphometry of water bodies. The derivation of bathymetry from the surveys is one of the basic researches of the aquatic environment, which has several practical implications to on the lake environment and it's monitoring. Wadi El-Rayan, as Ramsar site, is a very important wetland, in Egypt, as a reservoir for agricultural drainage water, fisheries and tourism. The Lakes are man-made basins in the Fayoum depression. Wadi El-Rayan Lakes are two reservoirs (upper Lake and Lower Lake, at different elevations. The Upper Lake is classified as open basin, while the Lower Lake is a closed basin, with no significant obvious water outflow. During recent decades, human impact on Wadi El-Rayan Lakes has increased due to intensification of agriculture and fish farming. Analyses of bathyemtric plans from 1996, 2010 and 2016 showed, the differences between morphometric parameters of the Upper Lake were generally small, while the Lower Lake changes are obvious at the three periods. The small fluctuate, in the features of Upper Lake is due to the water balance between the water inflow and water. The Lower Lake has faced extreme water loss through last twenty years is due to the agricultural lands and fish farms extended in the depression. The Upper Lake is rich in Lakeshores macrophyets, while decline the water plants in the Lower Lake. With low water levels, in the Lower Lake, the future continuity of the Lake system is in jeopardy

  4. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  5. Hydrological network and classification of lakes on the Third Pole

    Science.gov (United States)

    Gao, Yang; Wang, Weicai; Yao, Tandong; Lu, Ning; Lu, Anxin

    2018-05-01

    The intensity and form of changes in closed lakes, upstream lakes and outflow lakes on the Third Pole (TP) differ based on their drainage mode. Researchers' insufficient understanding of the hydrological networks associated with lakes hampers studies of the relationship between lakes and climate. In this study, we establish a comprehensive hydrological network for each lake (>1 km2) on the TP using 106 Landsat images, 236 Chinese topographic maps, and SRTM DEM. Three-hundred-ninety-seven closed lakes, 488 upstream lakes and 317 outflow lakes totaling 3,5498.49 km2, 7,378.82 km2, and 3,382.29 km2, respectively, were identified on the TP using 2010 data. Two-hundred-thirty-four closed lakes were found to not be linked to upstream lakes. The remaining 163 closed lakes were connected to and fed by the 488 upstream lakes. The object-oriented analyses within this study indicated that more rapid changes occurred in the surface extent of closed lakes than in upstream lakes or outflow lakes on the TP from 1970 s to 2010. Furthermore, the water volume of the examined closed lakes was almost nine times greater than that of the upstream lakes from 2003 to 2009. All the examined closed lakes exhibited an obvious water volume change compared to the corresponding upstream lakes in the same basin. Furthermore, two case studies illustrate that the annual and seasonal dynamics associated with the changes in closed lakes may reflect climate change patterns, while the upstream lake dynamics may be more controlled by the lakeshore terrain and drainage characteristics. The lake inventory and hydrological network catalogued in this study provide a basis for developing a better understanding of lake response to climate change on the TP.

  6. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    OpenAIRE

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-01-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed t...

  7. Freshwater lakes--a potential source for aquaculture activities--a model study on Perumal Lake, Cuddalore, Tamil Nadu.

    Science.gov (United States)

    Usha, R; Ramalingam, K; Bharathi Rajan, U D

    2006-10-01

    The freshwater Perumal lake located at Cuddalore was assessed for its suitability and potential for aquaculture practices. Various hydrobiological parameters determined reveals that the various physicochemical characteristics are with in normal range of values. The DO level, BOD and COD values determined in the lake revealed the consequences of community activities and pollution possibilities. The primary productivity data revealed maximum productivity during March which infer that the lake is unaffected by anthropogenic disturbance and community contamination. The bacterial count remained higher during the monsoon periods, which characterize profuse rainfall and storm water discharge into the lake. The microfauna includes zooplankter such as cladocerans, copepods, rotifers and ostracods. Benthos include carps, catfishes, mullets and prawns. The above study revealed that the various parameters in the lake conform to the levels suited for freshwater fish culture and represents a resource for scientific management.

  8. Assessing Future Ecosystem Services: a Case Study of the Northern Highlands Lake District, Wisconsin

    Directory of Open Access Journals (Sweden)

    Garry D. Peterson

    2003-12-01

    Full Text Available The Northern Highlands Lake District of Wisconsin is in transition from a sparsely settled region to a more densely populated one. Expected changes offer benefits to northern Wisconsin residents but also threaten to degrade the ecological services they rely on. Because the future of this region is uncertain, it is difficult to make decisions that will avoid potential risks and take advantage of potential opportunities. We adopt a scenario planning approach to cope with this problem of prediction. We use an ecological assessment framework developed by the Millennium Ecosystem Assessment to determine key social and ecological driving forces in the Northern Highlands Lake District. From these, we describe three alternative scenarios to the year 2025 in which the projected use of ecological services is substantially different. The work reported in this paper demonstrates how scenarios can be developed for a region and provides a starting point for a participatory discussion of alternative futures for northern Wisconsin. Although the future is unknowable, we hope that the assessment process begun in this paper will help the people of the Northern Highlands Lake District choose the future path of their region.

  9. Modern process study on Chen Co and Ranwu Lake of Tibetan Plateau

    Science.gov (United States)

    Ju, J.

    2013-12-01

    Lakes are important junctions of geospheres. There are many lakes distributed on the Tibetan Plateau (TP). Lake sediment is one of the important media for retrieving the past environmental changes. Because of the uniqueness of environment of the TP, sediment, water and ecological system in lakes has local characteristic inevitably. Modern process research on different lakes will benefit interpreting the proxies more accurately. The development of observation station makes the observation and sampling more convenient. Modern process of lakes can be fulfilled in two ways, spatial or seasonal variation study, with a same aim finding out the dominant factors controlling the variations. Chen Co is a closed lake locating at inland area of southern Tibet. Ranwu Lake is an open lake locating at outflow area of SE Tibet. In this study, I studied the spatial and (or) seasonal variation of lake water and sediment in the two distinct types of lakes to make clear the mechanism of modern process. Particular attention was given to the pattern and degree of influence of rivers supplied by glaciers on lakes. Preliminary conclusions are outlined as follow: (1) In the lakes with glacier melt supplying rivers, the patterns of supply of the rivers to the lake are different. In close lake Chen Co, the influence of glacier melt is mainly reflected in the south lake area. In the open lake Ranwu Lake, the influence is comprehensive and direct. This difference influencing patterns how the lake sediments reflected the glacier melt under the past environmental changes. (2) The supply of Kaluxiong Qu River, supplied mainly by glacier melt, to Chen co has North-South difference: more directly to south lake area, reflecting by lower value of conductivity and pH, finer grain size and west to east transporting trend, greater deposition rate, more allogenic fine sediments, not obvious biological and endogenic deposition there. This enlightens the site selection for lake cores and interpretation of

  10. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study

    NARCIS (Netherlands)

    Ibelings, B.W.; Portielje, R.; Lammens, E.H.R.R.; Meijer, M.L.; Noordhuis, R.; van den Berg, Marcel S.; Joosse, W.; Scheffer, M.

    2007-01-01

    In this paper we analyze a long-term dataset on the recovery from eutrophication of Lake Veluwe (The Netherlands). Clear hysteresis was observed in a number of ecosystem variables: the route to recovery differed significantly from the route that led to loss of clear water. The macrophyte dominated

  11. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  12. Geophysical study of the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.

    1975-01-01

    Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

  13. Geophysical and hydrologic studies of lake seepage variability

    Science.gov (United States)

    Toran, Laura; Nyquist, Jonathan E.; Rosenberry, Donald O.; Gagliano, Michael P.; Mitchell, Natasha; Mikochik, James

    2014-01-01

    Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to −282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two-dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high- and low-seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three-dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.

  14. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    Science.gov (United States)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  15. Benthic foraminiferal assemblages as bio-indicators of metals contamination in sediments, Qarun Lake as a case study, Egypt

    Science.gov (United States)

    Abd El Naby, Ahmed; Al Menoufy, Safia; Gad, Ahmed

    2018-03-01

    Qarun Lake, in the Fayoum Depression of the Western Desert of Egypt, lies within the deepest area in the River Nile flood plain. The drainage water in the Qarun Lake is derived from the discharge of the natural and artificial drainage systems in the Fayoum. Mixed domestic and agricultural pollutants, including heavy metals, nitrates, phosphates, sulfates and pesticides, are discharged into Qarun Lake. Forty-six samples, collected from the undisturbed layer of sediments were used for benthic foraminiferal analysis. Concentrations of some selected trace metal elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn) were also determined. Statistical analysis of the abiotic variables (Texture distribution of sediments, Physico-chemical parameters, and metals concentrations) and of the biotic variables (distribution of benthic foraminiferal species) were also performed. The Q-mode cluster analysis of benthic foraminiferal distribution has provided evidence that the Qarun Lake can be subdivided into two cluster groups (A and B), reflecting environmental changes in the lake ecosystem. Cluster B can also be subdivided into two sub-clusters (B1 and B2). The presence of only pollution tolerant taxa with higher faunal density and lower diversity and the absence of the other foraminiferal assemblages in cluster A were attributed to the high concentration of trace metal elements and the strong environmental stress at the eastern and central parts of the Qarun Lake.

  16. Influence of flood risk management measures on socio-economic and ecological vulnerabilities in a large water system - A case study of Lake Vänern and the Göta älv River, Sweden

    Science.gov (United States)

    Nyberg, L.; Blumenthal, B.; Johansson, M.

    2009-04-01

    An important feature of flood risk management is to integrate ecological, economical and social aspects on prevention and mitigation measures. Protective measures could potentially be in conflict with sound functions of ecosystems or cause conflicts in upstream/downstream relations. A case study of a large water system in south-western Sweden - Lake Vänern and the Göta älv River - was used to analyse the relation between socio-economic and ecological vulnerabilities and to identify opposing interests regarding water level fluctuations and high-water-level situations in the lake. Lake Vänern with its area of 5,500 km2 is the largest lake in Sweden and within the European Union. The Göta älv River runs from the lake outlet 90 km down to the sea at Gothenburg. The total catchment area upstream of the river mouth is 51,000 km2. Vänern and Göta älv are used for hydropower production, shipping, tourism, fishing, drinking water supply, as waste water recipient, etc. The risk system is complex with flood risks in the lake and in Gothenburg which are connected to landslide risks and industrial risks in the river valley, and where the drinking water supply for 700,000 persons in the Gothenburg region is at stake. Because of the landslide risks along the downstream river, the water discharge from Lake Vänern is limited. During periods of high inflow to the lake, situations of high water-levels last at least for six months. Substantial increases in precipitation during the 21st century, according to IPCC, will give a corresponding increase in flood risks.

  17. Magnetic and gravity studies of Mono Lake, east-central, California

    Science.gov (United States)

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  18. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  19. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  20. An economic inquisition of water quality trading programs, with a case study of Jordan Lake, NC.

    Science.gov (United States)

    Motallebi, Marzieh; Hoag, Dana L; Tasdighi, Ali; Arabi, Mazdak; Osmond, Deanna L

    2017-05-15

    A water quality trading (WQT) program was promulgated in North Carolina to address water quality issues related to nutrients in the highly urbanizing Jordan Lake Watershed. Although WQT programs are appealing in theory, the concept has not proved feasible in several attempts between point and nonpoint polluters in the United States. Many application hurdles that create wedges between success and failure have been evaluated in the literature. Most programs, however, face multiple hurdles; eliminating one may not clear a pathway to success. Therefore, we identify and evaluate the combined impact of four different wedges including baseline, transaction cost, trading ratio, and trading cost in the Jordan Lake Watershed program. Unfortunately, when applied to the Jordan Lake program, the analysis clearly shows that a traditional WQT program will not be feasible or address nutrient management needs in a meaningful way. The hurdles individually would be difficult to overcome, but together they appear to be unsurmountable. This analysis shows that there is enough information to pre-identify potential hurdles that could inform policy makers where, and how, the concept might work. It would have saved time, energy, and financial resources if North Carolina had done so before embarking to implement their program in the Jordan Lake Watershed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effect of climatic changes on Van lake

    International Nuclear Information System (INIS)

    Dirican, A.

    2002-01-01

    Lake levels are influenced by climatic changes, greenhouse effects and anthropogenic activities. These effects are reflected in the hydrological cycle features over the lake drainage basins. Among the significant hydrological variables, lake levels are influenced by different atmospheric and environmental conditions. During wet periods, there may be water-level rise that may cause some social and economical losses to agriculture and human activities along the lake shores. Such rises become serious in the case of shore line settlements and low lying agricultural land. Lake Van currently faces such problems due to water-level rises in eastern Turkey. Because of, it is a closed basin with no natural and artificial outlet and its water contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source, Lake Van unique. Under these circumstances, in addition to discussion of early studies air temperature, δ 18 O of precipitation, temperature profile of lake and δ 18 O variation of water column of lake Van were examined

  2. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, Ch.

    1983-01-01

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  3. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  4. Modeling the Sedimentary Infill of Lakes in the East African Rift: A Case Study of Multiple versus Single Rift Basin Segments

    Science.gov (United States)

    Zhang, C.; Scholz, C. A.

    2016-12-01

    The sedimentary basins in the East African Rift are considered excellent modern examples for investigating sedimentary infilling and evolution of extensional systems. Some lakes in the western branch of the rift have formed within single-segment systems, and include Lake Albert and Lake Edward. The largest and oldest lakes developed within multi-segment systems, and these include Lake Tanganyika and Lake Malawi. This research aims to explore processes of erosion and sedimentary infilling of the catchment area in single-segment rift (SSR) and multi-segment rift (MSR) systems. We consider different conditions of regional precipitation and evaporation, and assess the resulting facies architecture through forward modeling, using state-of-the-art commercial basin modeling software. Dionisos is a three-dimensional numerical stratigraphic forward modeling software program, which simulates basin-scale sediment transport based on empirical water- and gravity-driven diffusion equations. It was classically used to quantify the sedimentary architecture and basin infilling of both marine siliciclastic and carbonate environments. However, we apply this approach to continental rift basin environments. In this research, two scenarios are developed, one for a MSR and the other for a SSR. The modeled systems simulate the ratio of drainage area and lake surface area observed in modern Lake Tanganyika and Lake Albert, which are examples of MSRs and SSRs, respectively. The main parameters, such as maximum subsidence rate, water- and gravity-driven diffusion coefficients, rainfall, and evaporation, are approximated using these real-world examples. The results of 5 million year model runs with 50,000 year time steps show that MSRs are characterized by a deep water lake with relatively modest sediment accumulation, while the SSRs are characterized by a nearly overfilled lake with shallow water depths and thick sediment accumulation. The preliminary modeling results conform to the features

  5. Integrating remote sensing approach with pollution monitoring tools for aquatic ecosystem risk assessment and management: a case study of Lake Victoria (Uganda).

    Science.gov (United States)

    Focardi, Silvia; Corsi, Ilaria; Mazzuoli, Stefania; Vignoli, Leonardo; Loiselle, Steven A; Focardi, Silvano

    2006-11-01

    Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. The resulting enhanced nutrient loading to the soil is subsequently transported to the lake by rain or as dry fall. The data has been inserted in a Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an

  6. Strategic decision making under climate change: a case study on Lake Maggiore water system

    Directory of Open Access Journals (Sweden)

    M. Micotti

    2014-09-01

    Full Text Available Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  7. Strategic decision making under climate change: a case study on Lake Maggiore water system

    Science.gov (United States)

    Micotti, M.; Soncini Sessa, R.; Weber, E.

    2014-09-01

    Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  8. An integrated approach to dam safety evaluation. A case study: Upper Lake Falls Dam, Nova Scotia, Canada

    International Nuclear Information System (INIS)

    Pelletier, P.M.; Rattue, D.A.; Brown, E.R.

    1990-01-01

    Upper Lake Falls Dam is located in southwestern Nova Scotia. It is the uppermost hydroelectric development in a series of six developments on the Mersey River. The total capacity of the Mersey River system is 42 MW. The reservoir of Upper Lake Falls, Lake Rossignol, is the largest in Nova Scotia with a total area of 66 square miles and a gross storage of 800,000 acre-feet. An overview is presented of the hydrologic and hydraulic investigations carried out for the dam, which is classified as having high hazard potential because of permanent village and urban developments located downstream. The general methodology adopted in the study consisted of the following: gathering and verifying all meteorologic and hydrologic data; evaluating the Probable Maximum Precipitation (PMP) assumed to occur over the basin, and of the antecedent conditions prior to the PMP; calibrating a watershed model on flood events generated by rainfall, and by a combination of snowmelt and rainfall, and verifying the model using additional hydrologic events; deriving the Probable Maximum Flood (PMF) using the PMP results simulated on the calibrated watershed model; hydrodynamic routing of the flood hydrograph through all the developments; dambreak analysis, following sequential or independent failures; and flood inundation mapping. Details are given of safety analysis of the earthfill and concrete dam structures, reservoir management and cost-benefit analyses. 7 refs., 8 figs., 1 tab

  9. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    Science.gov (United States)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745" target="_blank">https://doi.org/10.5281/zenodo.1193745.

  10. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Science.gov (United States)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or the Western Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria. We consider a study area of approx. 6,140 km², covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes ≥250 m² located higher than 2000 m asl are mapped from high-resolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock-dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s. 1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250-2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing

  11. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    Science.gov (United States)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  12. Geologic controls on the formation of lakes in north-central Florida

    Science.gov (United States)

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.; Pitman, Janet K.; Carroll, Alan R.

    1998-01-01

    Fluid exchange between surficial waters and groundwater, as well as the processes that control this exchange, are of critical concern to water management districts and planners. Digital high-resolution seismic systems were used to collect geophysical data from 30 lakes of north-central Florida. Although using seismic profile data in the past has been less than successful, the use of digital technology has increased the potential for success. Seismic profiles collected from the lakes of north-central Florida have shown the potential application of these techniques in understanding the formation of individual lakes. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: 1) karstification or dissolution of the underlying limestone, and 2) me collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Lake size and shape are a factor of the thickness of overburden and size of the collapse or subsidence and/or clustering of depressions allowing for lake development. Lake development is through progressive sequence stages to maturity that can be delineated into geomorphic types. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young) - the open to partially filled collapse structures typically associated with sink holes; (2) transitional phase (middle age) - the sinkhole is plugged as the voids within the collapse are filled with sediment, periodic reactivation may occur; (3) baselevel phase (mature) - active sinkholes are progressively plugged by the continual erosion of material into the basin, and eventually sediment fills the basins; and (4) polje (drowned prairie) - broad flat-bottom basins located within the epiphreatic zone that are inundated at high

  13. Refuge Lake Reclassification in 620 Minnesota Cisco Lakes under Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2017-09-01

    Full Text Available Cisco (Coregonus artedi is the most common coldwater stenothermal fish in Minnesota lakes. Water temperature (T and dissolved oxygen (DO in lakes are important controls of fish growth and reproduction and likely change with future climate warming. Built upon a previous study, this study uses a modified method to identify which of 620 cisco lakes in Minnesota can still support cisco populations under future climate and therefore be classified as cisco refuge lakes. The previous study used oxythermal stress parameter TDO3, the temperature at DO of 3 mg/L, simulated only from deep virtual lakes to classify 620 cisco lakes. Using four categories of virtual but representative cisco lakes in modified method, a one-dimensional water quality model MINLAKE2012 was used to simulate daily T and DO profiles in 82 virtual lakes under the past (1961–2008 and two future climate scenarios. A multiyear average of 31-day largest TDO3 over variable benchmark (VB periods, AvgATDO3VB, was calculated from simulated T and DO profiles using FishHabitat2013. Contour plots of AvgATDO3VB for four categories of virtual lakes were then developed to reclassify 620 cisco lakes into Tier 1 (AvgATDO3VB < 11 °C or Tier 2 refuge lakes, and Tier 3 non-refuge lakes (AvgATDO3VB > 17 °C. About 20% of 620 cisco lakes are projected to be refuge lakes under future climate scenarios, which is a more accurate projection (improving the prediction accuracy by ~6.5% from the previous study since AvgATDO3VB was found to vary by lake categories.

  14. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  15. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  16. A field studies and modeling approach to develop organochlorine pesticide and PCB total maximum daily load calculations: Case study for Echo Park Lake, Los Angeles, CA

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, V.R., E-mail: vrvasquez@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Curren, J., E-mail: janecurren@yahoo.com [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Lau, S.-L., E-mail: simlin@ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Stenstrom, M.K., E-mail: stenstro@seas.ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Suffet, I.H., E-mail: msuffet@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States)

    2011-09-01

    Echo Park Lake is a small lake in Los Angeles, CA listed on the USA Clean Water Act Section 303(d) list of impaired water bodies for elevated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in fish tissue. A lake water and sediment sampling program was completed to support the development of total maximum daily loads (TMDL) to address the lake impairment. The field data indicated quantifiable levels of OCPs and PCBs in the sediments, but lake water data were all below detection levels. The field sediment data obtained may explain the contaminant levels in fish tissue using appropriate sediment-water partitioning coefficients and bioaccumulation factors. A partition-equilibrium fugacity model of the whole lake system was used to interpret the field data and indicated that half of the total mass of the pollutants in the system are in the sediments and the other half is in soil; therefore, soil erosion could be a significant pollutant transport mode into the lake. Modeling also indicated that developing and quantifying the TMDL depends significantly on the analytical detection level for the pollutants in field samples and on the choice of octanol-water partitioning coefficient and bioaccumulation factors for the model. - Research highlights: {yields} Fugacity model using new OCP and PCB field data supports lake TMDL calculations. {yields} OCP and PCB levels in lake sediment were found above levels for impairment. {yields} Relationship between sediment data and available fish tissue data evaluated. {yields} Model provides approximation of contaminant sources and sinks for a lake system. {yields} Model results were sensitive to analytical detection and quantification levels.

  17. A preliminary magnetic study of Sawa lake sediments, Southern Iraq

    Science.gov (United States)

    Ameen, Nawrass

    2016-04-01

    A preliminary magnetic study combined with chemical analyses was carried out in Sawa Lake in Al-Muthanna province, southern Iraq, about 22 km south west of Samawa city (31°18'48.80"N, 45°0'25.25"E). The lake is about 4.74 km length, 1.75 km width and 5.5 m height, it is surrounded by a salt rim which is higher than the lake water by about 2.8 m and sea water by about 18.5 m (Naqash et al., 1977 in Hassan, 2007). The lake is an elongated closed basin with no surface water available to it, it may be fed by groundwater of the Euphrates and Dammam aquifers through system of joints and cracks. This study aims to investigate the concentrations of selected heavy metals as pollutants and magnetic susceptibility (MS) and other magnetic properties of sediment samples from fifty sites collected from the bottom of the lake, the study area lies in an industrial area. The results show spatial variations of MS with mean value of about 4.58 x 10-8 m3 kg-1. Scanning electron microscopy and magnetic mineralogy parameters indicate the dominance of soft magnetic phase like magnetite and presence of hard magnetic phase like hematite. Spatial variations of MS combined with the concentrations of heavy metals suggests the efficiency of magnetic methods as effective, inexpensive and non-time consuming method to outlining the heavy metal pollution. References: Hassan W.F., 2007. The Physio-chemical characteristic of Sawa lake water in Samawa city-Iraq. Marine Mesopotamica, 22(2), 167-179.

  18. Geographical information systems as a tool in limnological studies An applied case study in a shallow .lake of a plain area, Buenos Aires province, Argentina

    International Nuclear Information System (INIS)

    Quiroz, Orlando; Romanelli, Asuncion; Martinez, Daniel

    2009-01-01

    The understanding of the hydrological functioning and the interaction among the different water bodies in an area is essential when a sustainable use of the hydric resources is considered. The aim of the present paper is to assess both hydrological-limnological methods and GIS as an integrated methodology applied to the study of shallow lakes, and the hydrological behavior of shallow wetlands in plain areas. La Salada is an areic permanent shallow lake with an area of 5,78 km 2 located near La Dulce town (SE of Buenos Aires Province, Argentina). In this paper we applied methods and tools of the Geographical information Systems in order to assess both, the evolution and state of the wetland. Topographic profiles, showing the relationship among the lake and the other aquatic systems, and also a multi temporal assessment of the morphometric parameters were performed by using a Digital Terrain Model of the area. A sample grid was designed to obtain bathymetric, hydrogeochemical and isotopic data. The chemical water composition is homogeneous in area and depth. changes in the conductivity values along depth, the isotopic contents and the Gibbs diagram showed that the evaporation is the main process controlling the water chemistry. Physical-chemical parameters established water quality and uses of the lake.

  19. Impact of land use changes on hydrology of Mt. Kilimanjaro. The case of Lake Jipe catchment

    Science.gov (United States)

    Ngugi, Keziah; Ogindo, Harun; Ertsen, Maurits

    2015-04-01

    Mt. Kilimanjaro is an important water tower in Kenya and Tanzania. Land degradation and land use changes have contributed to dwindling surface water resources around Mt. Kilimanjaro. This study focuses on Lake Jipe catchment of about 451Km2 (Ndetei 2011) which is mainly drained by River Lumi, a tributary of river Pangani. River Lumi starts from Mt. Kilimanjaro and flows North east wards to cross the border from Tanzania to Kenya eventually flowing into Lake Jipe which is a trans-boundary lake. The main purpose of this study was to investigate historical land use changes and relate this to reduction in surface water resources. The study will propose measures that could restore the catchment thereby enhancing surface water resources feeding Lake Jipe. A survey was conducted to document community perspectives of historical land use changes. This information was corroborated using Landsat remote sensed images spanning the period 1985-2013 to determine changes in the land cover due to human activities on Lake Jipe Catchment. River Lumi flow data was obtained from Water Resources Management Authority and analyzed for flow trends. The dwindling extent of the Lake was obtained from the community's perspective survey and by Landsat images. Community survey and remote sensing indicated clearing of the forest on the mountain and conversion of the same to crop production fields; damming of river Lumi in Tanzania, conversion of bush land to crop production fields further downstream of river Lumi and irrigation. There is heavy infestation of the invasive species Prosopis juliflora which had aggressively colonized grazing land and blocked irrigation canals. Other land use changes include land fragmentation due to subdivision. Insecure land tenure was blamed for failure by farmers to develop soil and water conservation infrastructure. Available River gauging data showed a general decline in river flow. Heavy flooding occurred during rainy seasons. Towards Lake Jipe after the river

  20. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    Science.gov (United States)

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  1. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  2. Bathymetric study of the Neotectonic Naini Lake in outer Kumaun Himalaya

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Pathak, M.C; Jauhari, P.; Nair, R.R.; Sharma, A.K.; Bhakuni, D.S.; Bisht, M.K.S.; Valdiya, K.S.

    The Naini Lake is a product of rotational movement on a NW-SE trending Nainital Fault, quite after the establishment of the drainage of a mature stream named Balia Nala. Detailed bathymetric study, permits division of this crescent-shaped lake...

  3. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  4. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  5. Lake Lysevatten - A study of liming and reacidification effects in a forest lake ecosystem in southwestern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, B.I.; Hultberg, H.

    1997-02-01

    Long-term monitoring (1973 to 1987) of acidification and liming effects to a lake ecosystem is reported in this study. The liming intervention of Lake Lysevatten in spring 1974 resulted in neutralisation of lake water and positive alkalinity. Invasion and population expansion of new species started and proceeded for several years. Following the neutralisation Sphagnum was almost eradicated. The restocking with fish changed the predator-prey interactions, and the community composition gradually approached what would be expected to be within the normal range for an unacidified lake. Early signs of reacidification were: The appearance of filamentous algae; Decreased condition of Brown trout (Salmo trutta) caused by increased aluminium concentrations in connection with an acid event; Enhanced growth of Sphagnum surviving on profundal bottoms. Progressive reacidification to Ph 5.0 resulted in accelerated growth of Mougeotia reaching nuisance level. If implemented, liming should be prolonged by reinterventions before alkalinity and pH decrease to much. A stable circumneutral pH is a prerequisite to provide the timescale necessary for invasion and population growth of organisms with low dispersal capacity. Furthermore, the most sensitive organisms will be adversely affected already at pH-values around six. Extensive reacidification should by all means be prevented as development of a destabilized lake community could react rather unpredictably. 168 refs, 80 figs, 26 tabs

  6. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  7. Using paleolimnology to find restoration solutions: the case of Lake Muzzano, Switzerland

    OpenAIRE

    Larocque Tobler, Isabelle; Pla Rabès, Sergi

    2015-01-01

    Lake Muzzano (45°59′50″N 8°55′41″E, 337 m a.s.l.) is a hyper-eutrophied lake located in the Tessin region of Switzerland. Almost every year, algal blooms (Microcystis) cover the lake with a thickness of 1-2 cm. These blooms associated with periods of anoxia in summer have led to fish kills in 1967 and 1994. In the hope of avoiding these blooms, a bypass bringing water away from the lake has been established in 1999. This solution was not adequate as blooms kept reoccurring. Sediment removal ...

  8. Mercury contamination in the Laurentian Great Lakes region: Introduction and overview

    International Nuclear Information System (INIS)

    Wiener, James G.; Evers, David C.; Gay, David A.; Morrison, Heather A.; Williams, Kathryn A.

    2012-01-01

    The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land–water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish. - Highlights: ► We describe a bi-national synthesis of Hg data from the Great Lakes region. ► Emission controls have reduced Hg inputs to inland lakes about 20% since the 1980s. ► Wet and dry deposition and evasion are regionally important atmospheric Hg fluxes. ► Land use affects Hg inputs to surface waters and bioaccumulation of methylmercury. ► In some waters, Hg levels in yellow perch pose risks to fish, wildlife, and humans. - A synthesis of Hg data from the Great Lakes region reveals the chronology of contamination; the importance of wet and dry deposition and evasion to Hg budgets; the influence of land–water linkages; bioaccumulation in aquatic foods webs; and risks associated with Hg in an important prey fish.

  9. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Kramer, Daniel Boyd; Polasky, Stephen; Starfield, Anthony; Palik, Brian; Westphal, Lynne; Snyder, Stephanie; Jakes, Pamela; Hudson, Rachel; Gustafson, Eric

    2006-09-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy.

  10. Assessment of Climate Change and Agricultural Land Use Change on Streamflow Input to Devils Lake: A Case Study of the Mauvais Coulee Sub-basin

    Science.gov (United States)

    Jackson, C.; Todhunter, P. E.

    2017-12-01

    Since 1993, Devils Lake in North Dakota has experienced a prolonged rise in lake level and flooding of the lake's neighboring areas within the closed basin system. Understanding the relative contribution of climate change and land use change is needed to explain the historical rise in lake level, and to evaluate the potential impact of anthropogenic climate change upon future lake conditions and management. Four methodologies were considered to examine the relative contribution of climatic and human landscape drivers to streamflow variations: statistical, ecohydrologic, physically-based modeling, and elasticity of streamflow; for this study, ecohydrologic and climate elasticity were selected. Agricultural statistics determined that Towner and Ramsey counties underwent a crop conversion from small grains to row crops within the last 30 years. Through the Topographic Wetness Index (TWI), a 10 meter resolution DEM confirmed the presence of innumerable wetland depressions within the non-contributing area of the Mauvais Coulee Sub-basin. Although the ecohydrologic and climate elasticity methodologies are the most commonly used in literature, they make assumptions that are not applicable to basin conditions. A modified and more informed approach to the use of these methods was applied to account for these unique sub-basin characteristics. Ultimately, hydroclimatic variability was determined as the largest driver to streamflow variation in Mauvais Coulee and Devils Lake.

  11. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  12. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A synoptic study of phytoplankton in the deep lakes south of the Alps (lakes Garda, Iseo, Como, Lugano and Maggiore

    Directory of Open Access Journals (Sweden)

    Delio RUGGIU

    2003-08-01

    Full Text Available This paper presents a synoptic account of the most important results emerging from studies on the phytoplankton communities in the deep southern subalpine lakes Garda, Iseo, Como, Lugano and Maggiore (DSL in the second half of the 1990s. At present, the trophogenic layers of these lakes are trophically different, ranging from the oligo-mesotrophy of lakes Maggiore and Garda to the meso-eutrophy of lakes Iseo and Lugano. The research confirmed the existence of a common pool of species developing in the DSL, as already suggested by early studies conducted on a seasonal basis from the end of the 1970s to the first half of the 1980s. However, multivariate analyses (Correspondence Analysis, CA, and a subsequent application of Non Metric Multidimensional Scaling demonstrated that the species in this common pool were developing differently or exclusively along a geographic and a trophic gradient. The major differences in the geographic distribution were found between the easternmost lakes (Garda and Iseo and those farthest to the West (Lugano and, partly, Maggiore, with intermediate characteristics in Lake Como. These differences were due mainly to changes in the dominance relationships and only secondarily to compositional changes. The detection of the ultimate causes of these differences should take into account other factors not considered in the paper (i.e. the specific analysis of the food webs, local climatic conditions, hydrology and seasonal input of nutrients. Despite the observed differences, common patterns in the sequence of seasonal assemblages in the DSL could be recognised and defined. The second gradient in the species distribution identified by CA was strongly correlated with the principal trophic descriptors (algal biomass and total phosphorus; this meant that the phytoplankton taxa could be ranked along a trophic spectrum, from oligotrophy to eutrophy. A brief examination of the main differences which have historically arisen with

  14. Coeur d'Alene Lake, Idaho: Insights Gained From Limnological Studies of 1991-92 and 2004-06

    Science.gov (United States)

    Wood, Molly S.; Beckwith, Michael A.

    2008-01-01

    More than 100 years of mining and processing of metal-rich ores in northern Idaho's Coeur d'Alene River basin have resulted in widespread metal contamination of the basin's soil, sediment, water, and biota, including Coeur d'Alene Lake. Previous studies reported that about 85 percent of the bottom of Coeur d'Alene Lake is substantially enriched in antimony, arsenic, cadmium, copper, lead, mercury, silver, and zinc. Nutrients in the lake also are a major concern because they can change the lake's trophic status - or level of biological productivity - which could result in secondary releases of metals from contaminated lakebed sediments. This report presents insights into the limnological functioning of Coeur d'Alene Lake based on information gathered during two large-scale limnological studies conducted during calendar years 1991-92 and water years 2004-06. Both limnological studies reported that longitudinal gradients exist from north to south for decreasing water column transparency, loss of dissolved oxygen, and increasing total phosphorus concentrations. Gradients also exist for total lead, total zinc, and hypolimnetic dissolved oxygen concentrations, ranging from high concentrations in the central part of the lake to lower concentrations at the northern and southern ends of the lake. In the southern end of the lake, seasonal anoxia serves as a mechanism to release dissolved constituents such as phosphorus, nitrogen, iron, and manganese from lakebed sediments and from detrital material within the water column. Nonparametric statistical hypothesis tests at a significance level of a=0.05 were used to compare analyte concentrations among stations, between lake zones, and between study periods. The highest dissolved oxygen concentrations were measured in winter in association with minimum water temperatures, and the lowest concentrations were measured in the Coeur d'Alene Lake hypolimnion during late summer or autumn as prolonged thermal stratification restricted

  15. Hydrochemical and isotope study of Lake Titicaca

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Cioni, R.; Paredes, M.

    2002-01-01

    The chemical and isotopic compositions of Lake Titicaca and its inflow waters (precipitation, tributaries, groundwater) were determined with the aim of establishing the lake chemical and isotope balance. The three main regions of the lake, i.e. the Lago Mayor, the eastern and the western basins of Lago Menor, connected in cascade, show significant chemical and isotopic differences. Chloride and sodium balance indicates that an average of about 92% of the inflow water evaporates, and the remaining 8 % is lost through Rio Desaguadero and infiltration. The balance of each basin is also obtained, including the inter-basin fluxes. The stable isotope balance in not possible because no data are available on the mean atmospheric vapour isotopic composition. However, this was tentatively computed using the fluxes obtained from chemistry. The vapour δ-values are slightly more negative than those of rainfall. Tritium, noble gases and chloro-fluoro-carbons in vertical profiles show that the lake is vertically well mixed and there is no water segregation at depth. (author)

  16. Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China

    Directory of Open Access Journals (Sweden)

    Kang Liang

    2017-06-01

    Full Text Available Hydrological predictions in ungauged lakes are one of the most important issues in hydrological sciences. The habitat of the Relict Gull (Larus relictus in the Erdos Larus relictus National Nature Reserve (ELRNNR has been seriously endangered by lake shrinkage, yet the hydrological processes in the catchment are poorly understood due to the lack of in-situ observations. Therefore, it is necessary to assess the variation in lake streamflow and its drivers. In this study, we employed the remote sensing technique and empirical equation to quantify the time series of lake water budgets, and integrated a water balance model and climate elasticity method to further examine ELRNNR basin streamflow variations from1974 to 2013. The results show that lake variations went through three phases with significant differences: The rapidly expanding sub-period (1974–1979, the relatively stable sub-period (1980–1999, and the dramatically shrinking sub-period (2000–2013. Both climate variation (expressed by precipitation and evapotranspiration and human activities were quantified as drivers of streamflow variation, and the driving forces in the three phases had different contributions. As human activities gradually intensified, the contributions of human disturbances on streamflow variation obviously increased, accounting for 22.3% during 1980–1999 and up to 59.2% during 2000–2013. Intensified human interferences and climate warming have jointly led to the lake shrinkage since 1999. This study provides a useful reference to quantify lake streamflow and its drivers in ungauged basins.

  17. Restoration of environments with radioactive residues - the Elliot Lake case study

    International Nuclear Information System (INIS)

    Knapp, R.A.

    2000-01-01

    The Elliot Lake area experienced the boom and bust of uranium mining over a 40-year period. In 1996, the last mine closed, which left nine tailings areas for closure and long term maintenance. The practices of the 1950s left a legacy of environmental damage which has been effectively reversed through remediation and closure of the mines. Detailed environmental assessments were completed on decommissioning proposals for the mines in the late 1980s and 1990s. These assessments have demonstrated that the area's ecology can be effectively protected, and that there are no impediments to the restoration of the entire Serpent River Watershed. Environmental monitoring has shown that the reclaimed sites are performing as expected, and that healthy aquatic communities are present in all major waterways in the region. (author)

  18. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  19. Study of the wide area of a lake with remote sensing

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini C.

    2016-08-01

    Water bodies are particularly important for environment and development issues. Their study requires multiple information. Remote sensing has been proven useful in the above study. This paper concerns the wide area of Lake Orestiada in the region of Western Macedonia in Greece. The area is of particular interest because Lake Orestiada is included in the Natura 2000 network and is surrounded by diverse landcovers as built up areas and agricultural land. Multispectral and thermal Landsat 5 satellite images of two time periods are being used. Their processing is being done by Erdas Imagine software. The general physiognomy of the area and the lake shore are examined after image enhancement techniques and image interpretation. Directions of the study concern geomorphological aspects, land covers, estimation of surface temperature as well as changes through time.

  20. A new bathymetric survey of the Suwałki Landscape Park lakes

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2016-12-01

    Full Text Available The results of the latest bathymetric survey of 21 lakes in the Suwałki Landscape Park (SLP are presented here. Measurements of the underwater lake topography were carried out in the years 2012–2013 using the hydroacoustic method (sonar Lawrence 480M. In the case of four lakes (Błędne, Pogorzałek, Purwin, Wodziłki this was the first time a bathymetric survey had been performed. Field material was used to prepare bathymetric maps, which were then used for calculating the basic size and shape parameters of the lake basins. The results of the studies are shown against the nearly 90 year history of bathymetric surveying of the SLP lakes. In the light of the current measurements, the total area of the SLP lakes is over 634 hm2 and its limnic ratio is 10%. Lake water resources in the park were estimated at 143 037.1 dam3. This value corresponds to a retention index of 2257 mm. In addition, studies have shown that the previous morphometric data are not very accurate. The relative differences in the lake surface areas ranged from –14.1 to 9.1%, and in the case of volume – from –32.2 to 35.3%. The greatest differences in the volume, expressed in absolute values, were found in the largest SLP lakes: Hańcza (1716.1 dam3, Szurpiły (1282.0 dam3, Jaczno (816.4 dam3, Perty (427.1 dam3, Jegłówek (391.2 dam3 and Kojle (286.2 dam3. The smallest disparities were observed with respect to the data obtained by the IRS (Inland Fisheries Institute in Olsztyn. The IMGW (Institute of Meteorology and Water Management bathymetric measurements were affected by some significant errors, and morphometric parameters determined on their basis are only approximate.

  1. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  2. Lake sediment cores as indicators of historical metal(loid) accumulation – A case study in Mexico

    International Nuclear Information System (INIS)

    Hansen, Anne M.

    2012-01-01

    To examine and compare historical accumulation of metal(loid)s in Mexican lakes and reservoirs, 210 Pb and 137 Cs dated sediment cores were evaluated: two from the remote Zempoala and Miramar Lagoons and three from Lake Pátzcuaro, and the Intermedia and Silva dams that are affected by human activities. Sediment ecotoxicology was assessed using consensus-based sediment quality guidelines for freshwater ecosystems. The +100 a sediment core from the remote Miramar Lagoon had the highest concentrations of Cr and Ni these being higher than the Probable Effect Levels (PELs). Zinc concentrations were also higher in the Miramar Lagoon compared to the other lakes and reservoirs, with concentrations higher than the Threshold Effect Level (TEL). Mercury concentrations from this lagoon were comparable to those for the Intermedia dam that receives water from urban, industrial and agricultural areas. The higher metal concentrations in the core from the Miramar Lagoon suggest that metal concentrations in the rocks of the watershed are high. Another explanation for the higher metal concentrations is the slow sediment accumulation that causes metals to be accumulated over longer time-periods at the sediment–water interface. A decrease in the concentration of As in the Intermedia dam was observed in sediments corresponding to the last decades. This may be due to an increase in sediment accumulation rate or to the reduction in sources of this metalloid in the watershed. In the Miramar Lagoon, an increase was observed in concentrations of As and Cr in more recent sediments, probably related to increased deforestation in the area or the eruption of El Chichonal volcano in 1982. Concentrations of Pb showed a decreasing tendency over the past decades in the Lake Pátzcuaro, Miramar and Zempoala Lagoons sediment cores while such behavior was not be observed for the Intermedia dam. This reduction in concentrations of Pb was attributed to the decrease in use of leaded gasoline.

  3. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    Science.gov (United States)

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  4. Ecological Sensitivity Evaluation of Tourist Region Based on Remote Sensing Image - Taking Chaohu Lake Area as a Case Study

    Science.gov (United States)

    Lin, Y.; Li, W. J.; Yu, J.; Wu, C. Z.

    2018-04-01

    Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine) classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland. Through the eco-sensitivity analysis of

  5. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  6. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    Science.gov (United States)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  7. Lake ecosystem response to climate change 8200 years ago. A multi-proxy study at Lake Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Hede, Mikkel Ulfeldt; Noe-Nygaard, Nanna

    2009-01-01

    of climate and the effects of human activities. These problems also complicate the prediction of possible future climate influence on lake ecology. A way of circumventing these problems is the use of lake sediment records which contain a wealth of information about past lake history over long time scales...... productivity as reflected by high algal pigment accumulation rates in the period c. 8400–7950 cal yr BP. After c. 7950 cal yr BP algal productivity declined somewhat but the lake did not return to its pre-8400 cal yr BP conditions remaining a more productive and nutrient rich lake than before the climate...... was of more importance for lake ecosystem process than the change in air temperature....

  8. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  9. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  10. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    Science.gov (United States)

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  11. Ecological resilience in lakes and the conjunction fallacy

    NARCIS (Netherlands)

    Spears, Bryan M.; Futter, Martyn N.; Jeppesen, Erik; Huser, Brian J.; Ives, Stephen C.; Davidson, Thomas A.; Adrian, Rita; Angeler, David G.; Burthe, Sarah J.; Carvalho, Laurence; Daunt, Francis; Gsell, Alena S.; Hessen, Dag O.; Janssen, Annette B. G.; Mackay, Eleanor B.; May, Linda; Moorhouse, Heather; Olsen, Saara; Søndergaard, Martin; Woods, Helen J.; Thackeray, Stephen J.

    2017-01-01

    There is a pressing need to apply stability and resilience theory to environmental management to restore degraded ecosystems effectively and to mitigate the effects of impending environmental change. Lakes represent excellent model case studies in this respect and have been used widely to

  12. Salt Lake City, Utah: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  14. A Floristic Study of Hamun Lake Basin, South East of Iran

    Directory of Open Access Journals (Sweden)

    Maryam Keshavarzi

    2017-06-01

    Full Text Available Lake Hamun is the largest freshwater resource in Iran with area of about 3820 km2. The present study aims to evaluate the floristic elements of the studied site. Plant samples were gathered from nature, from March to July at the growing season. Life form and chorotype of plants in Lake Hamun basin were investigated. Totally 128 plant species belonging to 80 genera and 30 families were identified. Families as Poaceae, Amaranthaceae and Fabaceae were the most dominant and frequent families. Considering biological types revealed that the most frequent forms were therophytes (61% and hemicryptophytes (17%. Floristic elements of the area were mainly Iranotouranian mixed with Saharo-Arabian and Sindu-Sudanian types, although multi- and bi- regional elements were also frequent. As the lake has recently become an international conserved area, the complete biological and ecological study of the site is a necessity.

  15. Long-term Simulation Study about the Impact of submerse Macrophytes on thermal Stratification Dynamics and Transport Processes in an extreme shallow water lake - Lake Federsee

    Science.gov (United States)

    Wolf, Thomas; Pöschke, Franziska; Pflugbeil, Thomas

    2017-04-01

    Lake Federsee is formed primarily by ice age processes and was subjected to strong siltation processes in post-glacial times, while in the last two centuries anthropogenic impact due to amelioration projects became more important and determined it's morphometry. Lake Federsee has a maximum length of 2.4 km, a maximum width of 1.1 km and an area of approx. 1.4 km2. With respect to it's area Lake Federsee is the third largest lake in the federal state of Baden-Wuerttemberg situated in the south of Germany. It is characterized by its very flat bathymetry with a maximum depth of about 3.15 m and an average depth of about 1 m. In recent years Lake Federsee has undergone a strong reduction of the nutrient content, thus developing from hypertrophic states in the years 1980ies to eutrophic conditions in the years 2000ies. Since 2005 this development is accompanied by a change of the general habitus of the lake converting from a lake dominated by algae to a lake dominated by macrophytes. Changing successions of aquatic plants have been observed in the lake with strong seasonal variations in the composition and density of the vegetation cover, however forming often an almost complete coverage of the lake. In the present study the implementation of the hydrodynamic, three-dimensional model DELFT3D - FLOW for this extreme shallow water lake will be presented. The impact of some numerical parameters will be investigated in a sensitivity study, which is aiming to set up the hydrodynamic model in an optimal way. This 3-dim hydrodynamic model is used to simulate the 3-dim flow field and to investigate the thermal stratification as well as the mixing processes taking place in this lake. The model is run for the simulation time period 2000 - 2016 having a horizontal resolution of dx=dy=50 m and 10 or 20 equidistantly spaced fixed vertical layers giving a vertical resolution of 0.32 or 0.16 m respectively. The timestep is choosen to be dt = 10 s. Analysis of the simulated vertical

  16. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  17. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  18. Deriving Total Suspended Matter Concentration from the Near-Infrared-Based Inherent Optical Properties over Turbid Waters: A Case Study in Lake Taihu

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2018-02-01

    Full Text Available Normalized water-leaving radiance spectra nLw(λ, particle backscattering coefficients bbp(λ in the near-infrared (NIR wavelengths, and total suspended matter (TSM concentrations over turbid waters are analytically correlated. To demonstrate the use of bbp(λ in the NIR wavelengths in coastal and inland waters, we used in situ optics and TSM data to develop two TSM algorithms from measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (SNPP using backscattering coefficients at the two NIR bands bbp(745 and bbp(862 for Lake Taihu. The correlation coefficients between the modeled TSM concentrations from bbp(745 and bbp(862 and the in situ TSM are 0.93 and 0.92, respectively. A different in situ dataset acquired between 2012 and 2016 for Lake Taihu was used to validate the performance of the NIR TSM algorithms for VIIRS-SNPP observations. TSM concentrations derived from VIIRS-SNPP observations with these two NIR bbp(λ-based TSM algorithms matched well with in situ TSM concentrations in Lake Taihu between 2012 and 2016. The normalized root mean square errors (NRMSEs for the two NIR algorithms are 0.234 and 0.226, respectively. The two NIR-based TSM algorithms are used to compute the satellite-derived TSM concentrations to study the seasonal and interannual variability of the TSM concentration in Lake Taihu between 2012 and 2016. In fact, the NIR-based TSM algorithms are analytically based with minimal in situ data to tune the coefficients. They are not sensitive to the possible nLw(λ saturation in the visible bands for highly turbid waters, and have the potential to be used for estimation of TSM concentrations in turbid waters with similar NIR nLw(λ spectra as those in Lake Taihu.

  19. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  20. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    Science.gov (United States)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  1. PILOT STUDIES WITH A PHOTOGRAMMETRIC GLACIER LAKE OUTBURST FLOOD EARLY WARNING SYSTEM

    Directory of Open Access Journals (Sweden)

    H. G. Maas

    2012-07-01

    Full Text Available Glacier Lake Outburst Floods (GLOFs depict an environmental risk with an increasing damage potential in many regions of the world. GLOFs are often caused by glacier margin lakes, which suddenly find a drainage path underneath the bottom of a glacier, which is destabilized and retreating as a consequence of local or global climate changes. In a typical GLOF event, a glacier margin lake may drain completely in 24 hours, causing a large flood wave in the area downstream the glacier. The paper documents some recent GLOF events in the Northern Patagonian Icefield (Chile and presents a terrestrial photogrammetric glacier margin lake monitoring system. The system is based on a camera taking images at regular time intervals. In these images, variations of the water level can be detected by tracking the water-land interface at pre-defined image spots. Due to the drainage mechanism, which is characterized by progressive erosion and melting at the bottom of the glacier, GLOFs are indicated by a progressive water level drop in the lake. Water level changes may be detected with subpixel accuracy by image sequence processing methods. If a 3D model of the lake bottom topography (or at least one height profile through the lake exists, water level changes in monoscopic image sequences may be transformed into volume loss. The basic idea herein is the intersection of a terrain profile with a water level detected in the image and projected into object space. The camera orientation is determined through a GPS-supported photogrammetric network. Camera orientation changes, which may for instance be induced by wind, can be compensated by tracking some fiducial marks in the image. The system has been used in a pilot study at two glacier margin lakes in the Northern Patagonian Icefield. These lakes have a depth of about 80 - 100 meters. The larger one has a length of 5 km and a maximum volume of about 200,000,000 cubic meters. During the pilot study, several GLOF events

  2. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    Science.gov (United States)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  3. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  4. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  5. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  6. The evolution of a mining lake - From acidity to natural neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, Elwira, E-mail: esienkie@twarda.pan.pl; Gąsiorowski, Michał, E-mail: mgasior@twarda.pan.pl

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed “an anthropogenic lake district”. This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ{sup 13}C, δ{sup 15}N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23 years. - Highlights: • Originally acid water lake had poor phyto- and zooplankton populations. • Process of natural neutralization lasted approximately 23 years. • Presently, lake's ecosystem is similar to other shallow lakes in the region. • Changes in the lake are representative for other mine lakes.

  7. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  8. A review on anthropogenic impact to the Micro Prespa lake and its damages

    Science.gov (United States)

    Frasheri, N.; Pano, N.; Frasheri, A.; Beqiraj, G.; Bushati, S.; Taska, E.

    2012-04-01

    Paper presents the results of the integrated and multidisciplinary studies for investigation of the anthropogenic damages to Albanian part of the transborder Micro Prespa Lake. Remote sensing with Landsat images was used for identification of environmental changes in time for the period 1970 - 2010. Micro Prespa Lake is lake with international status, as Ramsar Convection, International Park and Special Protection Area-79/409/EEC. According to the studies, investigations and analyses, the following were concluded: Devolli River- Micro Prespa Lake irrigation system was not scientifically supported by environmental engineering, hydroeconomy and International Rights principles. It does work according to the projected parameters, and also, doesn't supply the agricultural needs. About of 10 % of the water volume, discharges by Devolli River in Micro Prespa Lake during the winter, is taken from this lake for the irrigation in summer. Great surface of Albanian part of Micro Prespa Lake is destroyed. The other part of the lake is atrophied and the habitat and biodiversity are damaged. Important and unique species of fish, birds and plants of national and international values are risked. The underground karstic connection ways for water circulation are blocked. There are ruining the historic values of the area, such the encient Treni cave from the Bronze Age. The Albanian part of the Micro Prespa Lake has been damaged by the human activities. A huge amount of 1,2 million cubic meters alluvium has been deposited on the lake bottom and lakeshore, which was transported by the Devolli River waters, since 1974. This river waters, rich in alluvium and organic coal material from outcropped geological formations, also absorbed free chemical toxic remains by the drainage of Devolli farm ground, which have changed the chemical features of the lake water and degrading it. Micro Prespa Lake communicates with Macro Prespa Lake, and together with Ohrid Lake. Blockage of underground

  9. An application of a water assessment and simulation model in the remediation of the eutrophication capacity of a tropical water system: Case study the Lake Obili in Yaounde (Cameroon

    Directory of Open Access Journals (Sweden)

    Ajeagah Gideon A.

    2017-06-01

    Full Text Available Lake Obili is one of the most famous lakes in the city of Yaounde, Cameroon. Studies carried out in this lake showed that it was hyper eutrophic and therefore it represents a great danger because it is used for aquaculture, tourism and a suitable laboratory for hydro-biological engineering. It is thus very vital to restore this lake ecosystem that singles itself in the heart of the city of Yaounde. This can be greatly facilitated through the use of Water Quality Analysis Simulation Program (WASP of the United State Environmental protection Agency (USEPA. The outcomes of the previous results obtained from EUTRO, a Subroutine of the WASP model specialised in determining eutrophication level have proven that the remediation of this lake can be achievable through the implementation of a wet dredging, the construction and restoration of a wastewater treatment plant, the implementation of environmental incentive policies and the arrangement of the access to the lake. The application of the model is a contribution to the scientific mastery of nutrient flow, lake functioning and possibilities of restauration of highly polluted tropical water bodies subjected to domestic and industrial pollution.

  10. ECOLOGICAL SENSITIVITY EVALUATION OF TOURIST REGION BASED ON REMOTE SENSING IMAGE – TAKING CHAOHU LAKE AREA AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-04-01

    Full Text Available Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland

  11. Field and numerical studies of flow structure in Lake Shira (Khakassia) in summer

    Science.gov (United States)

    Yakubaylik, Tatyana; Kompaniets, Lidia

    2014-05-01

    Investigations of Lake Shira are conducted within a multidisciplinary approach that includes the study of biodiversity, biochemistry, geology of lake sediments, as well as its hydrophysics. Our report focuses on field measurements in the lake during the 2009 - 2013 and numerical modeling of flow structure. The flow velocity, temperature and salinity distribution and fluctuations of the thermocline (density) were measured in summer. An analysis of spatial and temporal variability of the major hydrophysical characteristics leads us to conclusion that certain meteorological conditions may cause internal waves in this lake. Digital terrain model is constructed from measurements of Lake bathymetry allowing us to carry out numerical simulation. Three-dimensional primitive equation numerical model GETM is applied to simulate hydrophysical processes in Lake Shira. The model is hydrostatic and Boussinesq. An algorithm of high order approximation is opted for calculating the equations of heat and salt transfer. Temperature and salinity distributions resulting from field observations are taken as initial data for numerical simulations. Model calculations as well as calculations with appropriate real wind pattern being observed on Lake Shira have been carried out. In the model calculations we follow (1). Significant differences are observed between model calculations with constant wind and calculations with real wind pattern. Unsteady wind pattern leads to the appearance of horizontal vortexes and a significant increase of vertical fluctuations in temperature (density, impurities). It causes lifting of the sediments to the upper layers at the areas where the thermocline contacts the bottom. It is important for understanding the overall picture of the processes occurring in the lake in summer. Comparison of the results of numerical experiments with the field data shows the possibility of such a phenomena in Lake Shira. The work was supported by the Russian Foundation for

  12. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  13. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  14. Networking of Fruška Gora Lakes Tourist Offer through System of Cyclepaths – Case Study Sot, Bruje and Moharač (Serbia

    Directory of Open Access Journals (Sweden)

    Aleksandra Vujko

    2011-01-01

    Full Text Available Fruška gora lakes Sot, Bruje and Moharač are the lakes that can be used in many ways for sports and recreation tourism. Nevertheless, the current tourism offer in these lakes is based only on offer for sports fishing. Bearing in mind that Fruška gora National Park, where there are three zones of protection, is of great importance the fact that the second and third zones are, with regard to territorial perspective, areas where it is desirable to develop sports and recreational tourism. Cycling is becoming an increasingly popular form of sports and recreational tourism, so tourism networking of Fruška gora lakes with system of cycle paths would represent only the first step to turn the whole mountain into the European cycle mainstream. In this sense, the aim of this paper is set to map the FJSA cycling paths connected to the system. The field research resulted in the mapping of the terrain. The interviews with experts from the Provincial Secretariat of Environmental Protection, the National Park and the Cycling Association of Vojvodina helped in the SWOT analysis of cycle tourism on Fruška gora lakes.

  15. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  16. Strategic Management of Tourism in the National Parks (Case: National Park Skadar Lake

    Directory of Open Access Journals (Sweden)

    Iva Bulatović

    2015-07-01

    Full Text Available In this paper we will try to prepare strategic analysis in order to give right guidelines for national park’s management. We are going to analyze National Park Skadar Lake as a tourist destination. We will use different strategic tools for proper analysis such as Life Cycle Concept, Boston Consulting Group Matrix, Ansoff Matrix, and McKinsey matrix. A strategy that involves penetration of the market would be desirable in the case of developing excursion, cultural – religious tourism, event tourism, hunting and fishing tourism, and wine tourism. Furthermore, market diversification is essential when it comes to new tourist products such as eco-tourism, rural tourism, scientific research, MICE tourism, golf and camping tourism, while the transformation of existing and introduction of new tourist products is expected within the sport - recreational, health, culture, excursions, wine tourism, etc.The paper will provide a framework for future research in the field of strategic management of tourism development in national parks. This topic has not yet been thoroughly analyzed and it is expected to serve as the basis of a strategic plan for managing tourism in the National Park Skadar Lake and / or as an incentive for researchers to enter more deeply into the issue

  17. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water

  18. Hydrogeological and geochemical studies in the Perch Lake basin

    International Nuclear Information System (INIS)

    Barry, P.J.

    1979-08-01

    The Perch Lake basin is a small drainage system along the Ottawa River about 200 km west of Ottawa on the Canadian Shield. Since 1975, groups of scientists from several Canadian universities and government departments have been studying the hydrological, geological and geochemical properties of the basin. The object of these studies is to develop and test simulation models used to describe the time-dependent mass flow rates of water and dissolved and suspended substances through the basin. To review progress, a symposium/workshop was held at Chalk Rier in 1978 April. This report contains 24 extended summaries of the material presented verbally at the workshop. Subject matters include atmospheric sources and sinks, mass flows through the surface and subsurface regimes in the drainage basins and interactions occurring in the lake. (author)

  19. Preliminary isotopic study of Lake Asal system (Republic of Djibouti)

    International Nuclear Information System (INIS)

    Fontes, J.C.; Zuppi, G.M.; Florkowski, T.; Pouchan, P.

    1979-01-01

    The saline Lake Asal at 155 m below sea level in the Afar Rift (Republic of Djibouti) is fed mainly by sea water. In spite of the intense evaporation (about 3 m annually), the 18 O and deuterium enrichments of the lake water are relatively low, because of the reduced activity of water as a consequence of the high salt content. Isotopic balance of the lake, as well as lithium and sulphate balances, support the hypothesis of leakages from the lake of about 15 to 20% of the inflow. (author)

  20. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  1. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  2. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    veteran member of the East Bay Regional Park District, Hal MacLean, we realized that almost every lake goes through periods of slight eutrophication. Actually, this phenomenon of waxing and waning of nutrient levels is something many species have grown accustomed too. It's just the extreme cases where the water is actively being polluted by a nearby point source that cause so much damage. Overall, despite outward appearances, the lake is relatively healthy. It boasts high biodiversity in and around the lake, housing such species as dragonflies, eucalyptus, bald eagles, halibut, bass, and even tiny silver goldfish. It fluctuates in oxygen and nutrient content just like any other lake, but for now, it isn't cause for too much concern. It's a beloved element of the Castro Valley community and we hope it will remain so for many generations to come.

  3. A SIMULATION STUDY ON THE SHRUNK WETLAND AROUND QINGHAI LAKE AND REGIONAL CLIMATE

    Institute of Scientific and Technical Information of China (English)

    WANG HanJie; JING Li; GAO YunXiao

    2005-01-01

    Because of the increasing concerns about global climate change, it has been known by more and more peoples that there is a close relationship between wetland and/or peatland resources and climate change. This paper presents a new methodology to study the local climate variation caused by wetland shrinking around Qinghai Lake, the largest in-land salty lake in China, by use of a regional climate model (RCM) that commonly used in climate change study. The objective focuses on the regional climate effect of the shrunk wetland coverage in recent years. The results of numerical experiment showed that if the wetland coverage around Qinhai Lake were recovered as if in early 50s of last century,the regional climate in this area could be better with more cloud covers, higher relative humidity and more precipitation. In the other word, the area of wetland reduced is one of the most important reasons that caused regional climate aridification,eco-environmental deterioration and even desertification around Qinhai Lake.

  4. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  5. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Jensen, C.

    2003-01-01

    is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations......%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality...

  6. A new multi-criteria method for the ecological assessment of lakes: A case study from the Transboundary Biosphere Reserve ‘West Polesie’ (Poland

    Directory of Open Access Journals (Sweden)

    Joanna Sender

    2017-03-01

    Full Text Available A new multi-criteria method of evaluation and assessment of the ecological status of lakes is proposed. It is based on macrophytes analysis integrated with geomorphological, landscape and catchment sources of threats. A total of 22 lakes in the Transboundary Biosphere Reserve ‘West Polesie’ (Poland were investigated along trophic (available nutrients and human pressure gradients, testing the proposed method with ESMI and TRS indices. Therefore, the present indexation included 22 criteria (i.e., catchment land use, phytolittoral area, number of plant species concerning three different assessing zones (lakeshore, littoral and surrounding area, and provided a five-class ecological classification. The proposed index, in addition to the general ecological conditions assessment of lakes, allows to point out a zonal evaluation, identifying the most critic zones in terms of ecological status. The proposed method can be universally adapted for any type of lakes, regardless of their geographical characteristics. It can be applied to system monitoring, and to support lakes biodiversity, functionality, conservation, restoration, water protection and uses, as well as water, territory and landscape management actions.

  7. Assessing environmental risks for high intensity agriculture using the material flow analysis method--a case study of the Dongting Lake basin in South Central China.

    Science.gov (United States)

    Yin, Guanyi; Liu, Liming; Yuan, Chengcheng

    2015-07-01

    This study primarily examined the assessment of environmental risk in high intensity agricultural areas. Dongting Lake basin was taken as a case study, which is one of the major grain producing areas in China. Using data obtained from 1989 to 2012, we applied Material Flow Analysis (MFA) to show the material consumption, pollutant output and production storage in the agricultural-environmental system and assessed the environmental risk index on the basis of the MFA results. The results predicted that the status of the environmental quality of the Dongting Lake area is unsatisfactory for the foreseeable future. The direct material input (DMI) declined by 13.9%, the domestic processed output (DPO) increased by 28.21%, the intensity of material consumption (IMC) decreased by 36.7%, the intensity of material discharge (IMD) increased by 10%, the material productivity (MP) increased by 27 times, the environmental efficiency (EE) increased by 15.31 times, and the material storage (PAS) increased by 0.23%. The DMI and DPO was higher at rural places on the edge of cities, whereas the risk of urban agriculture has arisen due to the higher increasing rate of DMI and DPO in cities compared with the counties. The composite environmental risk index increased from 0.33 to 0.96, indicating that the total environmental risk changed gradually but seriously during the 24 years assessed. The driving factors that affect environmental risk in high intensity agriculture can be divided into five classes: social, economic, human, natural and disruptive incidents. This study discussed a number of effective measures for protecting the environment while ensuring food production yields. Additional research in other areas and certain improvements of this method in future studies may be necessary to develop a more effective method of managing and controlling agricultural-environmental interactions.

  8. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  9. Changing values of lake ecosystem services as a result of bacteriological contamination on Lake Trzesiecko and Lake Wielimie, Poland

    Directory of Open Access Journals (Sweden)

    Cichoń Małgorzata

    2017-12-01

    Full Text Available Lake ecosystems, on the one hand, are affected by tourism, and on the other by development for tourism. Lake ecosystem services include: water with its self-cleaning processes, air with climate control processes, as well as flora and fauna. Utilisation of services leads to interventions in the structure of ecosystems and their processes. Only to a certain extent, this is specific to each type of environmental interference, remains within the limits of ecosystem resilience and does not lead to its degradation. One of the threats is bacteriological contamination, for which the most reliable sanitation indicator is Escherichia coli. In lake water quality studies it is assumed that the lakeshore cannot be a source of bacteria. It has been hypothesised that the problem of bacterial contamination can be serious for the places that do not have any infrastructure, especially sanitation. Consequently, the purpose of the study was to determine the extent to which lakeshore sanitation, in particular the level of bacteriological contamination, has an impact on the value of services provided by the selected lake ecosystems (Lake Trzesiecko and Lake Wielimie – Szczecinek Lake District. Five selected services related to lake ecosystems are: water, control over the spread of contagious diseases, aesthetic values, tourism and recreation, as well as the hydrological cycle with its self-cleaning function. Services, as well as the criteria adopted for evaluation, allow us to conclude that the services provided by the lake ecosystems are suitable to fulfill a recreation function. However, the inclusion of quality criteria for sanitary status has shown that the value of system services has dropped by as much as 50%. Value changes are visible primarily for water and aesthetic qualities. Such a significant decrease in the value of services clearly indicates the importance of the sanitary conditions of lakes and their appropriate infrastructure. In view of the

  10. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  11. Lake Sturgeon, Acipenser fulvescens, movements in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake, Minnesota-Ontario, contains a native population of Lake Sturgeon (Acipenser fulvescens) that has gone largely unstudied. The objective of this descriptive study was to summarize generalized Lake Sturgeon movement patterns through the use of biotelemetry. Telemetry data reinforced the high utilization of the Squirrel Falls geographic location by Lake Sturgeon, with 37% of the re-locations occurring in that area. Other spring aggregations occurred in areas associated with Kettle Falls, the Pipestone River, and the Rat River, which could indicate spawning activity. Movement of Lake Sturgeon between the Seine River and the South Arm of Rainy Lake indicates the likelihood of one integrated population on the east end of the South Arm. The lack of re-locations in the Seine River during the months of September and October may have been due to Lake Sturgeon moving into deeper water areas of the Seine River and out of the range of radio telemetry gear or simply moving back into the South Arm. Due to the movements between Minnesota and Ontario, coordination of management efforts among provincial, state, and federal agencies will be important.

  12. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  13. Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake

    Science.gov (United States)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.

    2017-12-01

    Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not

  14. Study of tributary inflows in Lake Iseo with a rotating physical model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-03-01

    Full Text Available The influence of Coriolis force on the currents of large lakes is well acknowledged; very few contributions, however, investigate this aspect in medium-size lakes where its relevance could be questionable. In order to study the area of influence of the two major tributary rivers in Lake Iseo, a rotating vertically distorted physical model of the northern part of this lake was prepared and used, respecting both Froude and Rossby similarity. The model has a horizontal length scale factor of 8000 and a vertical scale factor of 500 and was used both in homogeneous and in thermally stratified conditions. We explored the pattern of water circulation in front of the entrance mouth for different hydrologic scenarios at the beginning of spring and in summer. We neglected the influence of winds. The primary purposes of the model were twofold: i to increase our level of knowledge of the hydrodynamics of Lake Iseo by verifying the occurrence of dynamical effects related to the Earth’s rotation on the plume of the two tributaries that enter the northern part of the lake and ii to identify the areas of the lake that can be directly influenced by the tributaries’ waters, in order to provide guidance on water quality monitoring in zones of relevant environmental and touristic value. The results of the physical model confirm the relevant role played by the Coriolis force in the northern part of the lake. Under ordinary flow conditions, the model shows a systematic deflection of the inflowing waters towards the western shore of the lake. The inflow triggers a clockwise gyre within the Lovere bay, to the West of the inflow, and a slow counter-clockwise gyre, to the East of the inflow, that returns water towards the river mouth along the eastern shore. For discharges with higher return period, when only the contribution by Oglio River is relevant, the effect of the Earth’s rotation weakens in the entrance zone and the plume has a more rectilinear pattern

  15. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  16. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    Science.gov (United States)

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  17. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil.

    Science.gov (United States)

    Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre

    2018-04-26

    A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.

  18. The Managed Recession of Lake Okeechobee, Florida: Integrating Science and Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Alan Steinman

    2002-12-01

    Full Text Available Resource management decisions often are based on a combination of scientific and political factors. The interaction of science and politics is not always apparent, which makes the decision-making process appear arbitrary at times. In this paper, we present a case study involving Lake Okeechobee, a key environmental resource in South Florida, USA, to illustrate the role that science played in a high-profile, highly contentious natural resource management decision. At issue was whether or not to lower the water level of Lake Okeechobee. Although scientists believed that a managed recession (drawdown of water level would benefit the lake ecosystem, risks were present because of possible future water shortages and potential environmental impacts to downstream ecosystems receiving large volumes of nutrient-rich fresh water. Stakeholders were polarized: the agriculture and utility industries favored higher water levels in the lake; recreation users and businesses in the estuaries wanted no or minimal discharge from the lake, regardless of water level; and recreation users and businesses around the lake wanted lower water levels to improve the fishery. Jurisdictional authority in the region allowed the Governing Board of the South Florida Water Management District to take emergency action, if so warranted. Based on information presented by staff scientists, an aggressive plan to release water was approved in April 2000 and releases began immediately. From a hydrological perspective, the managed recession was a success. Lake levels were lowered within the targeted time frame. In addition, water quality conditions improved throughout the lake following the releases, and submerged plants displayed a dramatic recovery. The short-term nature of the releases had no lasting negative impacts on downstream ecosystems. Severe drought conditions developed in the region during and following the recession, however. Severe water use restrictions were implemented for

  19. Low Velocity Seismic Waves Produced by Stick-Slip Processes During the Drainage of Two Supraglacial Lakes in Greenland

    Science.gov (United States)

    Kenyon, P. M.; Orantes, E. J.; Grynewize, S.; Tedesco, M.

    2016-12-01

    The drainage of supraglacial lakes over the Greenland ice sheet has been shown to have a significant impact on ice dynamics and subglacial hydrology. As supraglacial lakes drain, they produce seismic waves that can be detected on both local and regional scales. Studying such waves and the originating phenomena has the potential to advance our understanding of the subglacial processes involved. Here we present the results of an analysis of high frequency seismic waves generated during the drainage of two supraglacial lakes in southwestern Greenland. The two lakes drained by contrasting mechanisms. One (Lake Half Moon) drained slowly by overflow into an existing moulin. Here GPS data, recorded during the drainage, show an increase in ice sheet velocity that begins well before the time of maximum lake depth. The other lake (Lake Ponting) drained suddenly by hydrofracture through the lake bed. In this case, the GPS data show an increase in velocity that is essentially simultaneous with the maximum lake depth. In both cases, vertical component seismograms were obtained from the Greenland Ice Sheet Monitoring Network (GLISN) for several hours before and after the lake drainage. Arrival times were picked manually, using the criterion that an arrival must have a minimum amplitude of twice the noise level. The arrivals were then plotted on graphs of time versus distance from the lake in question. Several linear trends are visible on each graph. The velocities calculated from the slopes of these trends are unexpectedly low. We suggest that one explanation for this might be that the waves are traveling in a layer of till at the base of the ice sheet, that forms a low velocity channel. When compared with GPS and lake depth data, the origin times of the waves coincide with the velocity increase in both cases. Therefore, we conclude that the waves are being generated by stick-slip processes involving the slippage of the ice sheet on an underlying layer of till.

  20. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  1. Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt

    Science.gov (United States)

    Attia, Abdelaal H.; El-Sayed, Salah Abdelwahab; El-Sabagh, Moustafa E.

    2018-02-01

    Qaroun Lake, the study area, is a natural protectorate located at the northern part of El Fayoum Depression, Egypt. An integrated approach including hydrochemistry, mineralogy of sediments and GIS analysis and modeling was conducted in order to determine the different geoenvironmental parameters affecting the lake environmental system. Forty two environmental water and sediment samples were collected from the lake and relevant drains in 2013. The water samples were analyzed for major ions and trace elements and the sediment ones were analyzed for clay and non-clay minerals. This study showed that the saline water of the lake (31490 Mg2+ > Ca2+ > K+ - Cl- > SO42- > HCO3- > CO32-. The water salt assemblages were KCl - NaCl - Na2SO4 - MgSO4 - CaSO4 - Ca(HCO3)2 reflecting a mixed water type. The contents of NaCl, Na2SO4 and MgSO4 salts were found to be fully controlled with the lake depths. The hydrogeochemical investigations revealed that the evaporation concentration is the primary process of the lake water evolution. The presence of trace elements in the lake water is essentially of allochtonous origin. The GIS-based maps indicated that the concentrations of Zn, Co, Mo, Pb, F and Cd elements in water had increased in the eastern part of the lake; meanwhile, the contents of NO3- ions had increased in the southwestern part indicating that these parts were the most vulnerable to the potential pollution with such elements. The XRD analysis revealed the existence of different mineral assemblages (quartz, kaolinite, goethite, calcite, halite, hematite, feldspar, gypsum, dolomite and saponite) in bottom sediments. The mineral concentrations varied greatly from place to another place along the lake and their distributions were asymmetric. The dominant minerals were the quartz and calcite. The mineralogical compositions of sediments were highly affected by the natural and man-mad activities. The most effective processes were the type of the water and solid materials coming

  2. Biodiversity and productivity of Rana Patap Sagar lake a thermo-ecological study

    International Nuclear Information System (INIS)

    Verma, P.C.; Sharma, L.L.

    2007-01-01

    Rana Pratap Sagar (RPS) in Rajasthan, is a man made fresh water reservoir and is balancing between Gandhi Sagar on upstream and Jawahar sagar on its down stream. On its eastern bank there exists Rawatbhata Site, comprising of multi -nuclear facilities. There are four PHWR units of Rajasthan Atomic Power Station (RAPS) which are in operations, two are under construction and another two are under advanced stage of planning. In addition to nuclear power plants the Site also houses a Heavy Water Plant and other allied facilities such as cobalt facility and waste management facilities. RAPS draws water from RPS lake through a 300 m long conduit pipe located at lake bottom about 20 m below the surface. Duly treated low level radioactive liquid effluents from RAPS facilities are injected to the warmed condenser outlet and then allowed to discharge to RPS in a controlled manner. The warm water is likely to remain at the surface and get mixed with lake water and cooled due to dilutions, evaporation from lake surface and wind currents. The heat release to the RPS lake through condenser outlet may effect the microbiological and water quality parameters, planktonic biodiversity, fish productivity etc. and thus it is imperative to conduct the thermal ecological study to assess the extent of maturation of the water body to identify its present trophic status in terms of eutrophication. This presentation gives the details of thermal ecological studies carried out at Rana Pratap Sagar lake during 2002-2004 under DAE-BRNS project.. The study includes monitoring of several water quality parameters, biological and bacterial parameters and data on thermal stratification in respect of RPS reservoir. The data so obtained were subjected to statistical analysis. The probabilistic and possibilistic approaches have been applied to evaluate ecological risk. The study reveals that there is no adverse effect on RPS water quality owing to receive the warmed effluents from RAPS. Furthermore, it

  3. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  4. PONDS AND CLIMATE, THE GEOGRAPHICAL ASCENDANCY RELATIONSHIP (“LA BRENNE” CASE STUDY, FRANCE

    Directory of Open Access Journals (Sweden)

    Laurent TOUCHART

    2012-03-01

    Full Text Available Ponds and climate, the geographical ascendancy relationship (“La Brenne” case study, France. The climate influences markedly the volume of water ponds and lakes. However, the role and the influence of "small" water areas, and areas of ponds on the local climate remain poorly understood. Scientific studies for the Great Lakes have been made. Moreover, scientific studies on «small» water areas and areas of ponds do not exist until today. A first approach to study the area of ponds of “La Brenne” (Central Region, France was performed. The monthly climate data from some meteorological stations, with the reference station of “Issoudun”, located away from areas of ponds, were the basis of our analysis. The study focuses on the most representative climatic parameters. These are the temperature, precipitation and relative humidity. This first approach is used to distinguish and clarify the most important cases and relevant parameters in order to achieve a typology of criteria. Our results will be used for further study and quantify the real influence of "small" water areas and areas of ponds on the elements of the local climate.

  5. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain

    Science.gov (United States)

    Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier

    2018-03-01

    This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.

  6. Wellness Circles: The Alkali Lake Model in Community Recovery Processes.

    Science.gov (United States)

    Ben, Leon W.; And Others

    The case study described here was conducted as a doctoral research project at Northern Arizona University. The study documents the success of the Shuswop Indian Band of Alkali Lake, British Columbia (Canada), in their 15-year battle with alcoholism, once the people themselves decided on recovery. The study looks back at the 95 percent recovery…

  7. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  8. Comparative studies of the nitrogen metabolism of phytoplankton and periphyton in oligotrophic lakes

    International Nuclear Information System (INIS)

    Axler, R.P.; Goldman, C.R.; Reuter, J.E.; Loeb, S.L.; Priscu, J.C.; Carlton, R.G.

    1983-01-01

    This report presents the preliminary data of limnological research at the meso-oligotrophic Castle Lake, CA and at the ultratrophic Lake Tahoe, CA-NEV, USA, during 1980 to 1981. The areas of study were effects of nutrients enrichment and deficiency on primary producers; nitrogen cycling and nitrogen metabolism of benthic and planktonic algae and whole-epilimnion enrichment with ammonium nitrate. Tracer techniques using 14 C- and 15 N-labelled compounds were employed in the study

  9. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    Science.gov (United States)

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  10. How does the Taquari River influence in the cladoceran assemblages in three oxbow lakes?

    Directory of Open Access Journals (Sweden)

    EA. Panarelli

    Full Text Available This study examined the cladoceran assemblages in three oxbow lakes of the Taquari River floodplain, near the transition between the plateau and the plain. We sought to answer the following questions: does the Taquari River function as a geographical barrier or dispersal corridor for Cladocera? Can different degrees of connection induce different structures in the assemblages in each lake? Cladocerans and limnological variables were sampled every other month for one year. Forty-one species were recorded, four of which were common to all the lakes. Our results indicated that the different degrees of connection between the river and the oxbow lakes favoured environmental heterogeneity and diversification in the cladoceran assemblages. The greatest dissimilarity between the two lakes connected with the river indicates that in this case the river functions better as a barrier than a dispersal corridor.

  11. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  12. Measured and modelled trends in European mountain lakes: results of fifteen years of cooperative studies

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available Papers included in this Special Issue of the Journal of Limnology present results of long-term ecological research on mountain lakes throughout Europe. Most of these studies were performed over the last 15 years in the framework of some EU-funded projects, namely AL:PE 1 and 2, MOLAR and EMERGE. These projects together considered a high number of remote lakes in different areas or lake districts in Europe. Central to the projects was the idea that mountain lakes, while subject to the same chemical and biological processes controlling lowland lakes, are more sensitive to any input from their surroundings and can be used as earlywarning indicators of atmospheric pollution and climate change. A first section of this special issue deal with the results of long-term monitoring programmes at selected key-sites. A second section focuse on site-specific and regional applications of an acidification model designed to reconstruct and predict long-term changes in the chemistry of mountain lakes.

  13. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  14. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  15. The Brine Shrimp Artemia Survives in Diluted Water of Lake Bunyampaka, an Inland Saline Lake in Uganda

    Directory of Open Access Journals (Sweden)

    Martin Sserwadda

    2018-02-01

    Full Text Available Ugandan aquaculture is in the process of development; however, it requires access to an affordable live food source, such as brine shrimp Artemia. This study fits within a broader feasibility study of domestic Artemia production in salt lakes. Since Uganda is a landlocked country, the only opportunity for live water food sources lies in the salt lakes in the west of the country. This study used saline water from one of these lakes, Lake Bunyampaka (salinity 72 mg L−1. Two Artemia strains, i.e., the Great Salt Lake strain, which is the dominant strain on the market, and the Vinh Chau strain, which is by far the most inoculated strain in the world, were assayed for their survival, growth, and reproduction in diluted Lake Bunyampaka water, using natural seawater as control. The organisms were fed live freshly cultured microalgae Tetraselmis suecica ad libitum. Our study revealed that the Vinh Chau strain performed especially well in Lake Bunyampaka water diluted to 50 g L−1. The data presented in this study generate the first useful information for the future inoculation of Artemia in Lake Bunyampaka in Uganda, and hence domestic Artemia production in the country; however, further larger-scale laboratory work, followed by field trials, is still needed.

  16. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    Science.gov (United States)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  17. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  18. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  19. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    Science.gov (United States)

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  20. Executive summary. Conceptual studies nuclear energy center Lake Hartwell, S.C., Phase III

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a specific site in the SSEB region. The site selected for this conceptual study is at Lake Hartwell, South Carolina. The conceptual NEC at Lake Hartwell consists of twelve 1250-MW(e) LWRs arranged on the site in four cluster of three units each, know as triads. The nominal distance between triads was selected as 2-1/2 miles. The total electric output of 15,000 MWe to be generated by the NEC would be transmitted to five major utilities in South Carolina, North Carolina, and Georgia. Objective of the study was to assess the technical, socioeconomic, environmental, and institutional issues relating to the NEC at the conceptual study site. The basic finding was that the concept of a NEC on the Lake Hartwell site is feasible, but further analysis of institutional issues and possible legislation would be required

  1. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  2. Attributes of Successful Actions to Restore Lakes and ...

    Science.gov (United States)

    As more success is achieved restoring lakes and estuaries from nutrient pollution, there is increased opportunity to evaluate the scientific, social, and policy factors associated with achieving restoration goals. We examined case studies where deliberate actions to reduce nutrient pollution resulted in ecological recovery. Cases were identified from scientific literature meeting the following: (1) scientific evidence of nutrient pollution; (2) restoration actions taken to mitigate nutrient pollution; and (3) documented ecological improvement. We identified 9 estuaries and 7 lakes spanning countries, climatic regions, physical types, depths, and watershed areas. Among these 8 achieved improvements short of stated restoration goals, 8 were successful initially, but then condition declined and 3 achieved their goals fully. We examined each case to identify both common attributes of nutrient management, grouped into ‘themes’, and the variations on those attributes, which were coded into categorical variables and examined using multiple correspondence analysis (MCA). MCA results suggested that the attributes most associated with achieving restoration goals include: (1) leadership by a dedicated watershed management agency; (2) governance through a bottom-up collaborative process; (3) a strategy that set numeric targets based on a specific ecological goal; and (4) actions to reduce nutrient loads from all sources. While our study did not provide a compreh

  3. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  4. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    Science.gov (United States)

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Science.gov (United States)

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  6. Monitoring Hydrological Patterns of Temporary Lakes Using Remote Sensing and Machine Learning Models: Case Study of La Mancha Húmeda Biosphere Reserve in Central Spain

    Directory of Open Access Journals (Sweden)

    Carolina Doña

    2016-07-01

    Full Text Available The Biosphere Reserve of La Mancha Húmeda is a wetland-rich area located in central Spain. This reserve comprises a set of temporary lakes, often saline, where water level fluctuates seasonally. Water inflows come mainly from direct precipitation and runoff of small lake watersheds. Most of these lakes lack surface outlets and behave as endorheic systems, where water withdrawal is mainly due to evaporation, causing salt accumulation in the lake beds. Remote sensing was used to estimate the temporal variation of the flooded area in these lakes and their associated hydrological patterns related to the seasonality of precipitation and evapotranspiration. Landsat 7 ETM+ satellite images for the reference period 2013–2015 were jointly used with ground-truth datasets. Several inverse modeling methods, such as two-band and multispectral indices, single-band threshold, classification methods, artificial neural network, support vector machine and genetic programming, were applied to retrieve information on the variation of the flooded areas. Results were compared to ground-truth data, and the classification errors were evaluated by means of the kappa coefficient. Comparative analyses demonstrated that the genetic programming approach yielded the best results, with a kappa value of 0.98 and a total error of omission-commission of 2%. The dependence of the variations in the water-covered area on precipitation and evaporation was also investigated. The results show the potential of the tested techniques to monitor the hydrological patterns of temporary lakes in semiarid areas, which might be useful for management strategy-linked lake conservation and specifically to accomplish the goals of both the European Water Framework Directive and the Habitats Directive.

  7. LONG-TERM CHANGES IN THE LARGE LAKE ECOSYSTEMS UNDER POLLUTION: THE CASE OF THE NORTH-EAST EUROPEAN LAKES

    Directory of Open Access Journals (Sweden)

    Tatyana Moiseenko

    2012-01-01

    Full Text Available A retrospective analysis of aquatic ecosystem long-term changes in the Russian large lakes: Ladoga, Onega, and Imandra, is given. The lakes in the past were oligotrophic and similar in their origin, water chemistry and fauna. The ecosystems transformed under the impact of pollution with toxic substances and nutrients. There are three stages of ecosystem quality: background parameters and degradation and recovery trends after the decrease of the toxic stress. On the stage of degradation, species abundance and community biodiversity were decreased. Eurybiontic species abundance and biomass were increased due to lack of competitive connections in toxic conditions and biogenic inflow. Small forms of organisms (r-strategists, providing more rapid biomass turnover in ecosystem, dominated in the formed plankton communities. On the stage of decrease of the toxic pollution, the lakes recolonization with northern species occurs, which is confirmed by replacement of dominating complexes, increasing index of plankton community biodiversity, and the rise of the mass of individual organisms of the communities. Accumulated nutrients in ecosystems are efficiently utilized at the upper trophic level. The ecosystem state after decrease of the toxic impact indicates formation of its mature and more stable modification, which differs from a natural one.

  8. Dynamics of lake Koeycegiz, SW Turkey: An environmental isotopic and hydrochemical study

    International Nuclear Information System (INIS)

    Bayari, C.S.; Kurttas, T.; Tezcan, L.

    2001-01-01

    Lake Koeycegiz, located in southwestern Turkey, is a meromictic lake with a surface area of 55 km 2 . Impermeable ophiolitic rocks, and groundwater bearing alluvium and karstified limestone are the major geologic units around the lake. Lake Koeycegiz, fed mainly by rainfall and stream flow, discharges into the Mediterranean Sea via a 14 km long natural channel. The average water level is estimated to be slightly above the sea level and the estimated lake volume is 826 million m 3 . Lake level fluctuations are well correlated with rainfall intensity. Lake Koeycegiz comprises two major basins: Sultaniye basin (-32m) at the south and Koeycegiz Basin (-24m) at the north which are connected by a 12m deep strait. Environmental isotopic and chemical data reveals that the Lake Koeycegiz has complicated mixing dynamics which are controlled mainly by density-driven flow of waters from different origins. The lake is fed mainly by rainfall and stream flow as low density waters and by high density thermal groundwater inflow at the southern coast. Complete annual mixing cannot be achieved, because of the density difference between mixolimnion and recharge. Continuous high-density thermal water input into the Sultaniye basin is the major factor controlling the lake dynamics. The high density thermal groundwater discharging into the lake sinks to the bottom of Sultaniye basin and overflows toward the north along the bottom surface. During its travel, dense bottom water is mixed with mixolimnion water and as the distance from the thermal water inflow increases, the density tends to decrease throughout the lake. Calculations based on long-term average electrical conductivity data reveal that about 60% of mixolimnion in both basins is replenished annually, whereas the annual mixing with mixolinmion for Sultaniye and Koeycegiz Basins is 20% and 30%, respectively. Turnover times for mixolimnion and monimolimnions of Sultaniye and Koeycegiz Basins are estimated to be 2 years, 5 years

  9. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.

    Science.gov (United States)

    Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro

    2018-08-01

    Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Studies on the aquatic environment at Olkiluoto and reference area. 1: Olkiluoto, reference lakes and Eurajoki and Lapijoki rivers in 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Kangasniemi, V. [Environmental Research and Assessment EnviroCase Ltd., Pori (Finland); Helin, J.

    2014-03-15

    This working report presents the first results of a sampling campaign at Olkiluoto and reference lakes and rivers selected to resemble the aquatic systems expected to form at the site in the future with the post-glacial crustal rebound (land uplift). In 2009-2010, the aim of the studies was to improve the knowledge of the aquatic systems and to produce input data to the safety case for the spent nuclear fuel repository at Olkiluoto. The first main objective was to estimate the areal biomass distribution and measure the dimensions of characteristic aquatic plants and animals. Another objective was to estimate the transfer of different elements from water to the aquatic organisms paying special attention on key elements (Ag, Cl, I, Mo, Nb and Se) in the dose assessment within the safety case. Surface water, sediment, macrophyte, fish and macrobenthos samples were collected from the Olkiluoto coastal area and from the reference lakes for biomass and dimension measurements and analysis of element concentration. Water-to-biota concentration ratios were estimated for the coastal area and for the reference lakes. From rivers, only water samples were collected at this stage. In 2009-2010, sampling procedures and pre-treatment methods were developed and analytical methods were optimised. Thus, the results reported here are indicative by their nature. After 2010, the studies have been continued with better established methods, and the more recent results will be reported later. (orig.)

  11. Real-estate lakes

    Science.gov (United States)

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    for their solution. It is not intended as a construction manual nor is it intended to supplant on-site engineering planning. Rather, the report is an a'lpraisal of the wide range of potential water and water-related problems that arise in making real-estate lakes attractive visually and functional environmentally. It is wr:tten to acquaint developers, property owners, and citizen groups with these problems so that they may be more knowledgeable in seeking adequate planning. and engfneering advice. The report should also be useful to vario·.ts regulatory agencies because it relates lake problems to basic hydrologic components. Most of the general information in this rep'lrt was obtained from the 47 district offices of the: Water Resources Division, U.S. Geological Survey. Detailed information on specific hydrologic problems came largely from a continuing study of the effects urbanization has had on real-estate lakes. Additional detailed info .. mation was provided by several short-term studies conducted by local Survey offices expressly for this report.

  12. Global Lakes Sentinel Services: Evaluation of Chl-a Trends in Deep Clear Lakes

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin

    2016-08-01

    The aim of this study is the analysis of trend in the trophic level evolution in clear deep lakes which, being characterised by good quality state, are important socio- economic resources for their regions. The selected lakes are situated in Europe (Garda, Maggiore, Constance and Vättern), North America (Michigan) and Africa (Malawi and Tanganyika) and cover a range of eco- regions (continental, perialpine, boreal, rift valley) distributed globally.To evaluate trophic level tendency we mainly focused on chlorophyll-a concentrations (chl-a) which is a direct proxy of trophic status. The chl-a concentrations were obtained from 5216 cloud-free MERIS imagery from 2002 to 2012.The 'GLaSS RoIStats tool' available within the GLaSS project was used to extract chl-a in a number of region of interests (ROI) located in pelagic waters as well as some few other stations depending on lakes morphology. For producing the time-series trend, these extracted data were analysed with the Seasonal Kendall test.The results overall show almost stable conditions with a slight increase in concentration for lakes Maggiore, Constance, and the Green Bay of Lake Michigan; a slight decrease for lakes Garda and Tanganyika and absolutely stable conditions for lakes Vättern and Malawi.The results presented in this work show the great capability of MERIS to perform trend tests analysis on trophic status with focus on chl-a concentration. Being chl-a also a key parameter in water quality monitoring plans, this study also supports the managing practices implemented worldwide for using the water of the lakes.

  13. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  14. The Cottonwood Lake study area, a long-term wetland ecosystem monitoring site

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.

    2012-01-01

    The Cottonwood Lake study area is one of only three long-term wetland ecosystem monitoring sites in the prairie pothole region of North America; the other two are Orchid Meadows in South Dakota and St. Denis in Saskatchewan. Of the three, Cottonwood Lake has, by far, the longest continuous data-collection record. Research was initiated at the study area in 1966, and intensive investigations of the hydrology, chemistry, and biology of prairie pothole wetlands continue at the site today. This fact sheet describes the study area, provides an overview of wetland ecology research that has been conducted at the site in the past, and provides an introduction to current work being conducted at the study area by USGS scientists.

  15. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  16. Ground penetrating radar study of a thickness of biogenic sediments in the vicinity of the Czechowskie Lake

    Science.gov (United States)

    Lamparski, Piotr

    2014-05-01

    The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i

  17. Final report. Conceptual studies nuclear energy center Lake Hartwell, S.C., Phase III

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a specific site in the SSEB region. The site selected for this conceptual study is at Lake Hartwell, South Carolina. The conceptual NEC at Lake Hartwell consists of twelve nuclear electric generating units, arranged on the site in four clusters of three units each, known as triads. The nominal distance between triads was selected as 2-1/2 miles. Each unit was assumed to be a 1250 MW(e). The total electric output of 15,000 MWe would be transmitted to five major utilities in South Carolina, North Carolina, and Georgia. The basic finding was that the concept of a NEC on the Lake Hartwell site is feasible, but further analysis of institutional issues and possible legislation would be required

  18. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  19. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  20. Ecological response to climate change and human activities indicated by n-alkane proxy during the mid- to late Holocene: a case study from an alpine lake

    Science.gov (United States)

    Zhang, C.; Zhao, C.

    2017-12-01

    Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.

  1. Optical dating of fluvio-deltaic clastic lake-fill sediments - A feasibility study in the Holocene Rhine delta (western Netherlands)

    NARCIS (Netherlands)

    Wallinga, J.; Bos, I.J.

    2010-01-01

    We test the applicability of quartz optically stimulated luminescence (OSL) dating on clastic lake sediments to investigate whether this dating method can be applied to study the timing and rate of deposition in Holocene fluvio-deltaic lakes. Our study concerns the filling of a lake by the

  2. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    Science.gov (United States)

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  3. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  4. Crustacean plankton communities in forty-five lakes in the experimental lakes area, northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Patalas, K

    1971-01-01

    Zooplankton communities were characterized on the basis of samples taken in summer as vertical net hauls in the central part of lakes. Twenty-eight species of crustaceans were found in the 45 lakes studied. The highest number of species as well as the highest numbers of individuals (per unit of area) usually occurred in the largest deepest lakes with most transparent water.

  5. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes.

    Science.gov (United States)

    Kougkoulos, Ioannis; Cook, Simon J; Jomelli, Vincent; Clarke, Leon; Symeonakis, Elias; Dortch, Jason M; Edwards, Laura A; Merad, Myriam

    2018-04-15

    Glacial Lake Outburst Floods (GLOFs) represent a significant threat in deglaciating environments, necessitating the development of GLOF hazard and risk assessment procedures. Here, we outline a Multi-Criteria Decision Analysis (MCDA) approach that can be used to rapidly identify potentially dangerous lakes in regions without existing tailored GLOF risk assessments, where a range of glacial lake types exist, and where field data are sparse or non-existent. Our MCDA model (1) is desk-based and uses freely and widely available data inputs and software, and (2) allows the relative risk posed by a range of glacial lake types to be assessed simultaneously within any region. A review of the factors that influence GLOF risk, combined with the strict rules of criteria selection inherent to MCDA, has allowed us to identify 13 exhaustive, non-redundant, and consistent risk criteria. We use our MCDA model to assess the risk of 16 extant glacial lakes and 6 lakes that have already generated GLOFs, and found that our results agree well with previous studies. For the first time in GLOF risk assessment, we employed sensitivity analyses to test the strength of our model results and assumptions, and to identify lakes that are sensitive to the criteria and risk thresholds used. A key benefit of the MCDA method is that sensitivity analyses are readily undertaken. Overall, these sensitivity analyses lend support to our model, although we suggest that further work is required to determine the relative importance of assessment criteria, and the thresholds that determine the level of risk for each criterion. As a case study, the tested method was then applied to 25 potentially dangerous lakes in the Bolivian Andes, where GLOF risk is poorly understood; 3 lakes are found to pose 'medium' or 'high' risk, and require further detailed investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rock magnetic properties of sediments from Lake Sanabria and its catchment (NW Spain): paleoenvironmental implications

    Science.gov (United States)

    Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.

    2013-12-01

    supported by the magnetic properties of Quaternary till sediments, which in some cases retain their original magnetic assemblage (magnetite and pyrrhotite) and in other cases include larger concentrations of magnetite. The Holocene sequence includes some discrete layers with a magnetic signature identical to that of the glacial flour. These layers are interpreted as being deposited during extreme runoff events that eroded Quaternary tills. The sharp change in magnetic properties observed in the lake sediments between 13 and 12.4 kyr BP supports the rapid deglaciation of the catchment of Lake Sanabria inferred in previous studies on the basis of sedimentological, geochemical and geomorphological data.

  7. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  8. Challenges in Developing Ecotourism in The Region of Lake Sentani Papua

    Directory of Open Access Journals (Sweden)

    Yannice Luma Marnala Sitorus

    2017-03-01

    Full Text Available The concept of community-based ecotourism is one of the sustainable development concepts suitable to be applied to traditional regions with nature tourism potential. Differences in culture between traditional communities and the outside world are not an obstacle in developing the region because with their local wisdom traditional communities can participate in protecting and managing their natural surrounding and at the same time become an attraction for other communities. However, outside societies can influence the culture of the traditional communities that originally tends to be oriented on biocentrism to shift towards anthropocentrism. This can eventually hamper the continuity of ecotourism development. This can be seen from the traditional communities at Lake Sentani, the case study of the author. The study is based on literature and secondary data and used descriptive analysis. The traditional communities of Sentani do not yet fully participate in the development of tourism in its surroundings. Their involvement in tourism development is more focused on ceremonial activities such as can be seen at the Lake Sentani Festival which is organized every year by the government. Besides this, after coming into contact with modern life the traditional communities of Lake Sentani rarely perform their daily activities based on local wisdom aimed at natural conservation of the lake. The development of urban areas in the surroundings also influences changes in land use in the Lake Sentani region which then causes among others erosion, sedimentation, and pollution of the lake water. Socio-economic and cultural changes in the traditional communities of Sentani and the growth of development also contribute towards ecological change in the area of Lake Sentani, the place they live in.

  9. Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake-River Interactions: Poyang Lake (China

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-04-01

    Full Text Available Most biochemical processes and associated water quality in lakes depends on their flushing abilities. The main objective of this study was to investigate the transport time scale in a large floodplain lake, Poyang Lake (China. A 2D hydrodynamic model (MIKE 21 was combined with dye tracer simulations to determine residence and travel times of the lake for various water level variation periods. The results indicate that Poyang Lake exhibits strong but spatially heterogeneous residence times that vary with its highly seasonal water level dynamics. Generally, the average residence times are less than 10 days along the lake’s main flow channels due to the prevailing northward flow pattern; whereas approximately 30 days were estimated during high water level conditions in the summer. The local topographically controlled flow patterns substantially increase the residence time in some bays with high spatial values of six months to one year during all water level variation periods. Depending on changes in the water level regime, the travel times from the pollution sources to the lake outlet during the high and falling water level periods (up to 32 days are four times greater than those under the rising and low water level periods (approximately seven days.

  10. Limnological controls on stable isotope records of late-holocene palaeoenvironment change in sw greenland: A paired lake study

    DEFF Research Database (Denmark)

    Olsen, Jesper; John Anderson, N.; Leng, M.J.

    2013-01-01

    Stable isotope records are increasingly being used in palaeoenvironmental studies of Arctic lakes. Here we compare stable isotope and elemental records (δ13C, δ15N, C/N) with high resolution XRF-derived geochemical and colour data from low Arctic lakes (SS1220 and SS85) in southwest Greenland. Lake...... SS1220 sediments are laminated gyttja whereas SS85 consist of homogeneous gyttja, both records cover the last c. 5000 years. d13C and carbon content suggest that organic matter in both lakes is predominantly autochthonous. The C/N variability, ranging between 11 and 15, is interpreted...... composition of lake sediments when there is a reasonable understanding of limnological processes, and records may be lake specific....

  11. A radioanalytical study of radionuclides in a dysoligotrophic lake in Southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M; Roos, P; Holm, E [Lund University Hospital, Lund, (Sweden). The Jubileum Institute, Department of Radiation Physics; Peck, G [University of Melbourne, Parkville, VIC (Australia). School of Physics, Marine Chemistry Laboratory

    1998-07-01

    Unusually high activity concentration of various artificial radionuclides (from nuclear test fallout and the Chernobyl accident) and some natural radionuclides, have been discovered in lakes with high amounts of humic substances. These lakes tend to have low pH, at times down to pH 5. The lake, Svartsjoen, in the southern part of Sweden is one of these lakes. The food chain and resulting concentration factors in Svartsjoen were investigated and compared to results for other 'normal' lakes. Fish and water samples were collected and analysed for {sup 137}Cs {sup 239+240}Pu, {sup 241}Am and {sup 210}Po during a 4-month visit to Lund. The level of {sup 239/240}Pu in the water of Svartsjoen was found to be elevated. The work on fish from the lake indicates that these elevated levels are not transferred into the food chain. It appears that the humic substances could be blocking plutonium from entering the food chain.

  12. A radioanalytical study of radionuclides in a dysoligotrophic lake in Southern Sweden

    International Nuclear Information System (INIS)

    Eriksson, M.; Roos, P.; Holm, E.; Peck, G.

    1998-01-01

    Unusually high activity concentration of various artificial radionuclides (from nuclear test fallout and the Chernobyl accident) and some natural radionuclides, have been discovered in lakes with high amounts of humic substances. These lakes tend to have low pH, at times down to pH 5. The lake, Svartsjoen, in the southern part of Sweden is one of these lakes. The food chain and resulting concentration factors in Svartsjoen were investigated and compared to results for other 'normal' lakes. Fish and water samples were collected and analysed for 137 Cs 239+240 Pu, 241 Am and 210 Po during a 4-month visit to Lund. The level of 239/240 Pu in the water of Svartsjoen was found to be elevated. The work on fish from the lake indicates that these elevated levels are not transferred into the food chain. It appears that the humic substances could be blocking plutonium from entering the food chain

  13. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  14. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    . Lastly, it describes several categories of limitations and discusses ways of extending the regional model to address issues at the local scale. Results of the simulations portray a regional groundwater-flow system that, over time, has largely maintained its natural predevelopment configuration but that locally has been strongly affected by well withdrawals. The quantity of rainfall in the Lake Michigan Basin and adjacent areas supports a dense surface-water network and recharge rates consistent with generally shallow water tables and predominantly shallow groundwater flow. At the regional scale, pumping has not caused major modifications of the shallow flow system, but it has resulted in decreases in base flow to streams and in direct discharge to Lake Michigan (about 2 percent of the groundwater discharged and about 0.5 cubic foot per second per mile of shoreline). On the other hand, well withdrawals have caused major reversals in regional flow patterns around pumping centers in deep, confined aquifers - most noticeably in the Cambrian-Ordovician aquifer system on the west side of Lake Michigan near the cities of Green Bay and Milwaukee in eastern Wisconsin, and around Chicago in northeastern Illinois, as well as in some shallow bedrock aquifers (for example, in the Marshall aquifer near Lansing, Mich.). The reversals in flow have been accompanied by large drawdowns with consequent local decrease in storage. On the west side of Lake Michigan, groundwater withdrawals have caused appreciable migration of the deep groundwater divides. Before the advent of pumping, the deep Lake Michigan groundwater-basin boundaries extended west of the Lake Michigan surface-water basin boundary, in some places by tens of miles. Over time, the pumping centers have replaced Lake Michigan as the regional sink for the deep flow system. The regional model is intended to support the framework pilot study of water availability and use for the Great Lakes Basin (Reeves, in press).

  15. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  16. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    Science.gov (United States)

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of 20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  18. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    Science.gov (United States)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  19. Regional distribution and relevance in paleonvironmental studies of lakes in the Tatra Mts. (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Joanna POCIASK-KARTECZKA

    2014-11-01

    Full Text Available Scientific limnological research in the Tatra Mountains were initiated by Stanislaw Staszic in the early XIX century.  After the World War II, the evolution of Tatra lakes was investigated by Kondracki, Klimaszewski, Baumgart-Kotarba and. Extensive paleolimnological investigations in the Tatra Mountains were started by the group of scientists led by K. Starmach in the beginning of the second half of the 20th century. There has been not much research concerned to the regional distribution of lakes and their properties in the Tatra Mountains (Pociask-Karteczka 2013. Very early division of lakes presented A. Gadomski (1922, which distinguished four types of lakes: a tarns (cirque lake or corrie loch, b bedrock-dammed lakes, c moraine lakes. This division was concerned in subsequent publications (Choiński 2007. M. Lukniš (1973, 1985 recognized additional types: kettles and landslide-dammed lakes and M. Klimaszewski (1988 – inter-sheepback lakes. J. Pacl and K. Wit-Jóźwik in Klima Tatier (Pacl, Wit-Jóźwik 1974 were focused on the temperature of water in lakes in Polish and Slovak parts and M. Borowiak (2000a,b provided a comprehensive analysis of types, dimensions, temperature and chemical composition of water in lakes in the Tatra Mountains.According to present day state of knowledge, one may distinguish following genetic types of lakes: I glacial, II not-glacial. There are four types of the glacial origin lakes in the Tatra Mountains (Fig. 1: a tarns (cirque lakes or corrie loch, b bedrock-moraine dammed lakes, c inter-sheepback lakes, d moraine lakes, e kettles.Most of lakes in the Tatra Mountains are tarns and bedrock-moraine dammed lakes, and they are located at the elevation over 1400 m a.s.l. in the Western Tatra Mountains, and over 1600 m a.s.l. in the High Tatra Mountains. Some of them are paternoster lakes – a series of stair-stepped lakes formed in individual rock basins aligned down the course of a glaciated valley. Lakes in

  20. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  1. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China

    NARCIS (Netherlands)

    Leeuw, de J.; Shankman, D.; Wu, G.; Boer, de W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J.

    2010-01-01

    Planning for the extraction of aggregates is typically dealt with at a case to case basis, without assessing environmental impacts strategically. In this study we assess the impact of sand mining in Poyang Lake, where dredging began in 2001 after sand mining in the Yangtze River had been banned. In

  2. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  3. Vegetation changes and human activity around Lake Łańskie (Olsztyn Lake District, NE Poland from the mid Holocene, based on palynological study

    Directory of Open Access Journals (Sweden)

    Madeja Jacek

    2013-12-01

    Full Text Available Bottom sediments of Lake Łańskie in NE Poland (Olsztyn Lake District were studied by pollen analysis, and vegetation changes from ca 4800 BC to modern times were reconstructed based on the results. Due to rapid sedimentation the changes in plant cover are recorded with high resolution. The variation of pollen spectra composition reflects changing shares of deciduous trees and the continuous dominance of pine forest. Nowadays the surroundings of Lake Łańskie are also heavily forested but as early as 1100 AD the deciduous trees began to be eliminated. On the basis of pollen data, five phases of increased human activity were distinguished. Based on the available archaeological chronology of local settlements, the first stage is connected with para-Neolithic groups of Ząbie-Szestno type and the Lusatian culture. They are followed by the West Baltic Barrow culture, Wielbark culture and Early Medieval Prussian tribes. The pollen record shows low intensity of exploitation of the terrain around Lake Łańskie, probably attributable to the brevity of episodes of human occupation in the near vicinity of the lake. The last phase, covering part of the Middle Ages (since ca 1000 AD and modern times, is reflected in the most distinct vegetation changes on the pollen diagram, caused by increased intensity of settlement. In spite of the distinct diminution of forest cover around the lake the scale of deforestation was much lower than at other sites in NE Poland.

  4. Simulating the moderating effect of a lake on downwind temperatures

    Science.gov (United States)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  5. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  6. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    Science.gov (United States)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models

  7. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    Science.gov (United States)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of

  8. LAKE ICE DETECTION IN LOW-RESOLUTION OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Tom

    2018-05-01

    Full Text Available Monitoring and analyzing the (decreasing trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m–1000 m satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal. Only the cloud-free (clean pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM. We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  9. Lake Ice Detection in Low-Resolution Optical Satellite Images

    Science.gov (United States)

    Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m-1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  10. Zooplankton communities in three adjacent softwater lobelia lakes of slightly differentiated morphology and trophic state

    Directory of Open Access Journals (Sweden)

    Kuczyńska-Kippen Natalia

    2017-12-01

    Full Text Available The paper presents the results of an investigation of physical-chemical features of water as well as rotifer and crustacean abundance and diversity measures, relating to the taxonomic richness and species diversity index, in three lobelia lakes differing in trophic status and morphometric features. The main purpose of this study was to establish the diversity of zooplankton communities in the open water area of lobelia lakes, including extracting species common for each lake and also to find environmental predictors which are responsible for the development of zooplankton communities. Despite the fact that the three studied lakes are of the same origin, located in the same vicinity and have generally similar environmental factors, zooplankton community structure revealed a great variation in reference to species diversity (only ca. 20% of the species were common for all lakes and particularly in inhabiting species. Obrowo Lake had the most diverse assemblages of both rotifers and crustaceans compared to Modre and Pomysko lakes. In the taxonomic structure species that are rare for the Polish fauna, such as e.g. Holopedium gibberum and Heterocope appendiculata, occurred. Even though the examined lobelia lakes are ecosystems that undergo varying human-induced impacts, they still remain taxonomically very variable aquatic ecosystems, containing rare species of very high ecological status. The observed symptoms of deterioration of water quality, reflected in the zooplankton biocoenotic features, showed that the best conditions were attributed to Obrowo Lake in comparison with the two remaining lakes – Modre and Pomysko. Total nitrogen and chlorophyll a concentration were decisive for the distribution of zooplankton species in Pomysko and Obrowo lakes, while in case of Modre lake water reactivity and conductivity were of higher impact.

  11. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Weisser, Johan Juhl; Borggaard, Ole K.

    2014-01-01

    Selected metals and polycyclic aromatic hydrocarbons (PAHs) were analyzed in sediment samples from 24 sites in Lake Nicaragua sampled May 2010 to provide a baseline of pollution levels. Cu exceeded the Consensus-Based Sediment Quality Guideline (CBSQG) Threshold Effect Concentrations (TECs) at 21...... showed that the CBSQG TECs were exceeded by naphthalene at five sites. The sum concentrations of the 16 US EPA priority PAHs (∑PAH16) ranged from 0.01mgkg(-1)dw to 0.64mgkg(-1)dw. The highest ∑PAH16 concentration was found upstream in River Mayales and the PAH composition revealed a heavy PAH fraction (e....... This study concluded that areas of Lake Nicaragua represent an important pollution baseline for future studies in this lake and other tropical lakes....

  12. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  13. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  14. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae

  15. Wind-driven Water Bodies : a new paradigm for lake geology

    Science.gov (United States)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  16. Investigation of landscape and lake acidification relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rush, R.M.; Honea, R.B.; Krug, E.C.; Peplies, R.W.; Dobson, J.E.; Baxter, F.P.

    1985-10-01

    This interim report presents the rationale and initial results for a program designed to gather and analyze information essential to a better understanding of lake acidification in the northeastern United States. The literature pertinent to a study of landscape and lake acidification relationships is reviewed and presented as the rationale for a landscape/lake acidification study. The results of a study of Emmons Pond in northwestern Connecticut are described and lead to the conclusion that a landscape change was a contributor to the acidification of this pond. A regional study of sixteen lakes in southern New England using Landsat imagery is described, and preliminary observations from a similar study in the Adirondack Mountains are given. These results indicate that satellite imagery can be useful in identifying types of ground cover important to landscape/lake acidification relationships.

  17. Climatic changes inferred fron analyses of lake-sediment cores, Walker Lake, Nevada

    International Nuclear Information System (INIS)

    Yang, In Che.

    1989-01-01

    Organic and inorganic fractions of sediment collected from the bottom of Walker Lake, Nevada, have been dated by carbon-14 techniques. Sedimentation rates and the organic-carbon content of the sediment were correlated with climatic change. The cold climate between 25,000 and 21,000 years ago caused little runoff, snow accumulation on the mountains, and rapid substantial glacial advances; this period of cold climate resulted in a slow sedimentation rate (0.20 millimeter per year) and in a small organic-carbon content in the sediment. Also, organic-carbon accumulation rates in the lake during this period were slow. The most recent period of slow sedimentation rate and small organic-carbon content occurred between 10,000 and 5500 years ago, indicative of low lake stage and dry climatic conditions. This period of dry climate also was evidenced by dry conditions for Lake Lahontan in Nevada and Searles Lake in California, as cited in the literature. Walker Lake filled rapidly with water between 5500 and 4500 years ago. The data published in this report was not produced under an approved Site Investigation Plan (SIP) or Study Plan (SP) and will not be used in the licensing process. 10 refs., 3 figs., 2 tabs

  18. Lake Chapala change detection using time series

    Science.gov (United States)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  19. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    Science.gov (United States)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson

  20. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pu, Yang; Jia, Jihong; Cao, Jicheng

    2017-12-01

    As part of an investigation of the sources of aliphatic hydrocarbons to the sediments of alpine Lake Ximencuo, leaves of the eight dominant vascular plants were collected and their hydrocarbon contents were analyzed. A series of unsaturated aliphatic hydrocarbons were identified in the plant leaves; in particular, Festuca sp. contain a series of n-alkadienes that have rarely been reported in previous studies. The comparison of n-alkane proxies (ACL 27-33, ACL T, P aq, and CPI) and δ13Corg among plant leaves, surface soils, and lake sediments suggests that organic proxies have been altered to varying degrees during the transport and burial process of organic materials. It is believed that microbial reworking and source changes have great impacts on organic proxies in the alpine lake system. In addition, the cluster analysis for plant leaves depending on n-alkane compositions and the ACL T proxy generates similar results. Accordingly, we postulate that the average chain length of plant waxes might be a potential indicator of plant classification in regions such as the Qinghai-Tibet Plateau.

  1. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  2. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    Science.gov (United States)

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  3. Distribution of NORM in the Threatened Wadi Maryut Lake: A Comparative Case for South Mediterranean Coastal Water Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Badran, H. [Taif University (Saudi Arabia); Hassan, M. [Tanta University (Egypt)

    2014-07-01

    Wadi Maryut Lake is one of the remaining two parts of the ancient Lake Mareotis and is hardly mentioned in the scientific literature. It has a very long history and a doubtful and uncertain future. The lake is in its way to disappearances because of salt refining, agricultural and land reclamation projects. Compared with other North African water bodies, it is stable because it is relatively far from any possible effect of Nile sediments for few centuries and it has not been subject to discharge of industrial wastewater and very little urban activities. Therefore, this lake represents a good reference site that could be used in the evaluation of the pollution of other water bodies. This study includes sediment, water, wild vegetation and soil samples. Generally, locations in the southwestern part of the lake have the highest activity concentrations in sediment and soil. The concentrations of {sup 232}Th in different plant species are higher than that of {sup 226}Ra. The mean soil-to-plant transfer factor for {sup 40}K is higher than that of {sup 226}Ra and {sup 232}Th, which are in principle the same. Gamma-radiation hazard indices of soil and sediment in some locations are larger than unity which suggests possible health concerns when used as construction materials. Document available in abstract form only. (authors)

  4. Valuation of provisional and cultural services of a Ramsar site: A preliminary study on Rudrasagar lake, India

    Directory of Open Access Journals (Sweden)

    Moitree Taran

    2017-01-01

    Full Text Available Rudrasagar lake, a Ramsar site in India offers a variety of ecosystem services. The contribution of Rudrasagar lake to the society has not been estimated so far. The preliminary study aims to provide an economic valuation of the provisional and cultural services of the Rudrasagar lake. Official records of revenue collected by the Tourism Department of Tripura and a socio- economic survey was the source of information used in the economic valuation of the lake. The main provisional services provided by the lake are food (aquatic plants and fishes, fuel wood and timber whereas, the cultural services provided were boat raiding and tourism due to its historical importance. The provisioning and cultural services provided by the Rudrasagar lake are 40810 US$ and 33929.33 US$ per year respectively during the period of 2010-2015. The main threats to the wetland identified are increasing silt loads due to deforestation, expansion of agricultural land and land conversion due to population pressure. To alleviate the anthropogenic stress on the lake, better monitoring, planning and management are essential. By proper conservation and management it will be possible to enjoy the provisional and cultural services of the lake in a sustainable way.

  5. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake.

    Science.gov (United States)

    Flach, Carl-Fredrik; Johnning, Anna; Nilsson, Ida; Smalla, Kornelia; Kristiansson, Erik; Larsson, D G Joakim

    2015-10-01

    Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Lake Erie and Lake Michigan zebra mussel settlement monitoring and implications for chlorination treatment

    International Nuclear Information System (INIS)

    Demoss, D.; Mendelsberg, J.I.

    1992-01-01

    This paper reports on the 1991 zebra mussel veliger settlement monitoring program undertaken to record and evaluate zebra mussel veliger settlement in Lake Erie and Lake Michigan. Studies by Dr. Gerald Mackie of Canada in 1990 indicated veliger settlement may be occurring primarily during short time periods every season corresponding with warmer water temperatures. Veliger settlement monitoring was performed using a plexiglass sampler apparatus. The samplers were simple in design and consisted of a 20-inch-square plexiglass base panel with thirty-six 1 inch x 3 inch clear plexiglass microscope slides attached. The results of the monitoring program indicate the existence of preferential settlement periods for veligers correlating with sustained lake water temperatures above 70 degrees F. Veliger settlement concentrations in the south basin of Lake Michigan appear to be similar to those in western Lake Erie

  7. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  8. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  9. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    Science.gov (United States)

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  10. Local wisdom in preservation of Lake Toba ecosystems (study on Toba Lake community in the Village of Silalahi I, Sub District of Silahisabungan, Dairi Regency, North Sumatera Province)

    Science.gov (United States)

    Hamdani Harahap, R.; Humaizi

    2018-03-01

    This study aims to analyze the perception of Batak Toba community in Silalahi I Village, Silahisabungan Subdistrict to the existence of Lake Toba, local wisdom owned by Batak Toba community in Silalahi I Village, Silahisabungan Sub District in order to preserve Lake Toba and recommend policy to revitalize it which is still running, which runs partially or which has not been done at all. The type of research used in this research is descriptive research with qualitative analysis. Data collection was conducted by interviews with key informants and informants i.e. community leaders, religious leaders and customary leaders in the study sites. The results showed that the perception of the Silalahi I Village community of Silahiabungan subdistrict to the existence of Lake Toba is a source of life. That means Lake Toba is a source of sustenance, a source of livelihood such as a place to fish, where to put floating net cages and as a sustenance of tourism activities. The form of local wisdom in preserving the area of Lake Toba is the existence of some sacred places such as Nauli basa, Partonunan stone (Deang Namora), that the entire area of Lake Toba called Tao Silalahi controlled by aunty (Namboru) Deang Namora is a purified area so prohibited spit, wearing jewelry, doing immoral, bathing over 6 o’clock, bringing and eating pork or dogs, bathing naked in the lake, laughing until laughing, and for women if there is a long hair should tie and If you want to take a bath must first permit the grandmother (oppung) guard lake. All local wisdom is still done because they still believe, although there is also rarely done. An effective way to revitalize the existing wisdom locals is to continue to perform the ritual or ceremony of the Statue of Silahisabungan once a year, and continue to obey the advice given by the King of Silahisabungan called Poda sagu-sagu marlangan.

  11. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1994-07-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The uranium mineralization, consisting primarily of uraninite (UO 2 ), is surrounded by a clay-rich halo in both sandstone and basement rocks, and remains extremely well preserved and intact. The average grade of the mineralization is ∼ 8 wt.% U; locally grades are as high as ∼ 55 wt.%U. The Cigar lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. Specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summary of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety assessment of the Canadian, Swedish and United States disposal concepts. 15 refs., 25 figs., 55 tabs

  12. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Science.gov (United States)

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  13. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Science.gov (United States)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  14. MULTIMETRIC INDICES BASED ON VEGETATION DATA FOR ASSESSING ECOLOGICAL AND HYDROMORPHOLOGICAL QUALITY OF A MAN-REGULATED LAKE

    Directory of Open Access Journals (Sweden)

    R. Bolpagni

    2013-04-01

    Full Text Available A functional characterization of the littoral and shore vegetation was performed in the Lake Idro to assess its ecological quality and hydromorphological alteration. A detailed survey of hydro-hygrophilous vegetation was carried out in 2010-2012. Three multimetric indices were calculated: the MacroIMMI (the Italian macrophytic index for mid-size subalpine lakes with a maximum depth < 125 m, the SFI (Shorezone Functional Index, and the LHS (Lake Habitat Survey. The MacroIMMI (0.76 classified the lake in a good ecological status, although the dominant aquatic species were exotic (Elodea nuttallii and Lagarosiphon major. The SFI pointed out that the 50% of total shorelines displayed a very good or excellent conservation status; conversely, the LHS revealed high levels of morphological alteration coupled with rather good levels of habitat diversity, likely due to the high colonization rates of macrophytes along the lake shore. The lacustrine multimetric indices seem suitable for assessing the conservation status of mid-size lakes. However, for the present case-study, the metrics used require further implementation to suit the peculiarities of Italian subalpine lakes.

  15. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu)

    International Nuclear Information System (INIS)

    Zhang Tingxi; Wang Xiaorong; Jin Xiangcan

    2007-01-01

    The distribution of alkaline phosphatase activity (APA) and P fractions in sediment cores and the relationship between them were studied in a shallow Chinese freshwater lake (Lake Taihu). Sediment cores were collected from four sites, characterized by different degrees of eutrophication in June 2004. Sediment P was fractionated into Fe/Al-P, Ca-P, organic P (OP), inorganic P (IP) and total P (TP). The former two species made the largest contribution to the sediment P pool. Results show that trophic status and hydrological conditions have great impact on the APA of the sediments. The order of the APA in sediments was conjectured to be: macrophyte dominated lake > transitional lake > algal dominated lake. APA profiles follow a similar downcore decreasing trend. There was a positive relationship between the APA and the TP, IP. The multiple linear regression equation of the APA and P fractions is: APA = -97 + 0.768TP - 0.985Fe/Al-P. - Characteristics of the alkaline phosphatase activity and P fractions in sediments of different trophic status lake were studied in Lake Taihu

  16. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  17. Limnological study of Lake Shastina, Siskiyou County, California

    Science.gov (United States)

    Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.

    1974-01-01

    Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of

  18. Assessment of Reservoir Water Quality Using Multivariate Statistical Techniques: A Case Study of Qiandao Lake, China

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2016-03-01

    Full Text Available Qiandao Lake (Xin’an Jiang reservoir plays a significant role in drinking water supply for eastern China, and it is an attractive tourist destination. Three multivariate statistical methods were comprehensively applied to assess the spatial and temporal variations in water quality as well as potential pollution sources in Qiandao Lake. Data sets of nine parameters from 12 monitoring sites during 2010–2013 were obtained for analysis. Cluster analysis (CA was applied to classify the 12 sampling sites into three groups (Groups A, B and C and the 12 monitoring months into two clusters (April-July, and the remaining months. Discriminant analysis (DA identified Secchi disc depth, dissolved oxygen, permanganate index and total phosphorus as the significant variables for distinguishing variations of different years, with 79.9% correct assignments. Dissolved oxygen, pH and chlorophyll-a were determined to discriminate between the two sampling periods classified by CA, with 87.8% correct assignments. For spatial variation, DA identified Secchi disc depth and ammonia nitrogen as the significant discriminating parameters, with 81.6% correct assignments. Principal component analysis (PCA identified organic pollution, nutrient pollution, domestic sewage, and agricultural and surface runoff as the primary pollution sources, explaining 84.58%, 81.61% and 78.68% of the total variance in Groups A, B and C, respectively. These results demonstrate the effectiveness of integrated use of CA, DA and PCA for reservoir water quality evaluation and could assist managers in improving water resources management.

  19. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  20. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  1. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  2. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  3. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  4. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  5. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    Science.gov (United States)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  6. Trophic development in a volcanic lake with closed hydric balance. Lake Martignano

    International Nuclear Information System (INIS)

    Falleni, F.; Bruno, M.; Marchiori, E.; Congestri, R.; Gasperi, E.; Brambullo, M.; Amadeio, R.

    2000-01-01

    Martignano lake is a particular charming volcanic lake in the countryside of Rome. Recently it was included in a project of Regional Wildlife Park. The lack of immissaries and emissaries, the quite long renewal time and the very short homeothermic period of two-months in a year, make the lake susceptible of trophic evolution. The comparison between the present data and those from previous studies seems to confirm such a slow development towards this way, with a nutrient level (nitrate 0.97 mg/L; total phosphorus 11.14 μg/L) and chlorophyll a concentrations (10.68 μg/L), typical of mesotrophic waters. The analysis of nutrient data expressed as annual mean value in percentage from the coastal stations, suggests an under lied farming influence, and points out the need to adopt fast reduction measures, to lower the phosphorus load in acceptable levels for the lake ecosystem [it

  7. Null models for study Rotifers and Crustaceans Zooplankton species richness in Chilean Patagonian lakes

    OpenAIRE

    Escalante, Patricio de los Ríos

    2016-01-01

    Abstract Aims The Patagonian lakes are characterized by their oligotrophy that is the cause of low species number in their zooplankton assemblage. The aim of the present study is to analyze the crustacean and rotifers species number pattern in Patagonian lakes among a latitudinal gradient (40-51 °S). Results The results revealed that there are direct significant correlations between total species with rotifer species, and chlorophyll concentration with crustacean species number, and an inve...

  8. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  9. A reactive nitrogen budget for Lake Michigan

    Science.gov (United States)

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  10. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  11. Radioecological characteristics of Lake Zarnowieckie

    International Nuclear Information System (INIS)

    Soszka, G.J.; Grzybowska, D.; Rostek, J.; Pietruszewski, A.; Wardaszko, T.; Kalinowska, A.; Tomczak, J.

    1986-01-01

    Results are presented of the radioecological studies carried out in Lake Zarnowieckie as a part of pre-operational investigations related to the construction of a nuclear power station at this lake. Concentrations of essential radionuclides were determined in water, bottom sediments and selected plants and animals. Analyses were made of the distribution and spreading of 90 Sr and 137 Cs in the lake ecosystem and in the near-by meadows. 28 refs., 6 figs., 6 tabs. (author)

  12. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  13. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China

    International Nuclear Information System (INIS)

    Yuan Guoli; Liu Chen; Chen Long; Yang Zhongfang

    2011-01-01

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km 2 ) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by 210 Pb and 137 Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake.

  14. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  15. Liming the acid lake Hovvatn, Norway: a whole-ecosystem study

    Energy Technology Data Exchange (ETDEWEB)

    Raddum, G G; Brettum, P; Matzow, D; Nilssen, J P; Skov, A; Sveaelv, T; Wright, R F

    1986-12-01

    Hovvatn, a 1 sq. km. chronically-acidified lake in southernmost Norway, was treated with 200 tonne of powdered limestone in March 1981. An additional 40 tonne were added to a 0.046 sq km pond (Pollen) draining into Hovvatn. The lakes were stocked with brown trout in June 1981 and in each subsequent year. At ice-out pH rose from 4.4 to 6.3 (Hovvatn) and 7.5 (Pollen), Ca and alkalinity increased, and total Al decreased by 120 ..mu..g/l. None of the other major ions exhibited significant changes in concentration. Total organic C and P increased after liming. The phytoplankton community was dominated by chrysophytes and did not change significantly following liming. The zooplankton community was typical of acid lakes prior to liming. There was a clear succession in species dominance following treatment, although no new species immigrated to the lakes. Zoobenthos changed from a community characterized by low abundance and reduced number of species to increased abundance of oligochaetes, mayflies and chironomids. Hovvatn and Pollen were barren of fish prior to stocking. The stocked fish showed remarkably high growth rate during the first years. Liming apparently improved conditions for zoobenthos, enhancing the processing of fine detritus which in turn resulted in elevated levels of TOC and P in the lakewaters during the first year after liming. The oligotrophication process typical of acid lakes was temporarily reversed by liming. The interactions between groups of organisms in Hovvatn and Pollen indicates that many years are required before a new steady-state can be attained following liming. 61 references.

  16. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Early steroid sulfurisation in surface sediments of a permanebtly stratified lake (Ace Lake, Antarctica)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Robertson, L.; Volkman, J.K.

    2000-01-01

    Surface sediments (0 25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C27-C29 steroids.

  18. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  19. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  20. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  1. THE PRELIMINARY STUDY ON LANDSCAPE CULTURE ORIENTATION AND EXPLOITATION OF THE SOUTH DONGTING LAKE WETLAND

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Dongting Lake is internationally an important wetland. We studied and summarized the conception, function, classification and current situation of the wetland-landscape culture in this region. The results showed that the culture of Dongting Lake wetland was rich in diversity, which are the Rice Cultivation Culture, high-balustrade dwelling,Nuo Culture, Ship Culture, Dragon Boat Culture, Chu Culture, Ancient Architecture Landscape, Wetland Foodstuff andCuisine Culture, Civil Art, Historic Heritage and Cultural Relics, Revolutionary Sites and Ruins, and Production andLiving Culture, etc. We also evaluated the eeo-tourism value of wetland landscape culture, and analyzed its features andorientation. The results revealed that the south Dongting Lake wetland plays a key role on the Changjiang(Yangtze) Riverreaches civilization and Chinese civilization, even has great influence on the global civilization. We summarized that thesoul of the south Dongting Lake Culture was Wetland Culture, Water Culture, Rice Cultivation and Chu Culture. Thethoughts, principles and approaches of sustainable exploitation and utilization of the wetland landscape culture were formulated and suggested.

  2. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.

    1994-05-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The Cigar Lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This indicates that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar Lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summery of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety

  3. Study of Morphologic Change in Poyang Lake Basin Caused by Sand Dredging Using Multi-temporal Landsat Images and DEMs

    Science.gov (United States)

    Qi, S.; Zhang, X.; Wang, D.; Zhu, J.; Fang, C.

    2014-11-01

    Sand dredging has been practiced in rivers, lakes, harbours and coastal areas in recent years in China mostly because of demand from construction industry as building material. Sand dredging has disturbed aquatic ecosystems by affecting hydrological processes, increasing content of suspended sediments and reducing water clarity. Poyang Lake, connecting with Yangtze River in the lower reaches of the Yangtze River, is the largest fresh water lake in China. Sand dredging in Poyang Lake has been intensified since 2001 because such practice was banned in Yangtze River and profitable. In this study, the morphologic change caused by sand dredging in Poyang Lake basin was analysed by overlaying two DEMs acquired in 1952 and 2010 respectively. Since the reflectance of middle infrared band for sand dredging vessel is much higher than that of water surface, sand dredging vessels were showed as isolated grey points and can be counted in the middle infrared band in 12 Landsat images acquired in flooding season during 2000~2010. Another two Landsat images (with low water level before 2000 and after 2010) were used to evaluate the morphologic change by comparing inundation extent and shoreline shape. The following results was obtained: (1) vessels for sand dredging are mainly distributed in the north of Poyang Lake before 2007, but the dredging area was enlarged to the central region and even to Gan River; (2) sand dredging area reached to about 260.4 km2 and is mainly distributed in the north of Songmen Mountain and has been enlarged to central of Poyang Lake from the distribution of sand vessels since 2007. Sand dredged from Poyang Lake was about 1.99 × 109 m3 or 2448 Mt assuming sediment bulk density of 1.23 t m-3. It means that the magnitude of sand mining during 2001-2010 is almost ten times of sand depositions in Poyang Lake during 1955-2010; (3) Sand dredging in Poyang Lake has alternated the lake capacity and discharge section area, some of the watercourse in the

  4. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    Science.gov (United States)

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  5. Fish populations in a large group of acid-stressed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, H H

    1975-01-01

    The purpose of this study was to determine the effects of environmental stress on the number and diversity of fish species in a group of acid-stressed lakes. The study area was the La Cloche Mountains, a series of quartzite ridges covering 1,300 km/sup 2/ along the north shore of Georgian Bay and north channel of Lake Huron. Within these ridges are 173 lakes; 68 of the largest of these made up the study sample. The lakes of the La Cloche Mountains are undergoing rapid acidification. Coincident with this there has been the loss of sport fishes from several lakes. Lakes such as Nellie, Lumsden, O.S.A., Acid and Killarney supported good sport fisheries for the lake trout, (Salvelinus namaycush) for many years, but have ceased to do so in the last 5 to 15 years. Other sport fishes, notably the walleye (Stizostedion vitreum) and smallmouth bass (micropterus dolomieu) have disappeared from some of the La Cloche Lakes. Thus recreational fishing alone could not have been the cause of the change. Beamish (1974) recorded the extreme sparcity of the three remaining fish species in O.S.A. Lake. Many of the lakes of the La Cloche mountains are accessible only with difficulty and little or no information exists for these lakes prior to this study. This precluded simple comparison of these lakes before and during acidification. This lack of historic data determined in part the approach taken in this study; a comparison of the fish communities of a group of lakes differing in degree of acid stress.

  6. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  7. Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America

    Science.gov (United States)

    Rowe, Harold D.; Guilderson, Thomas P.; Dunbar, Robert B.; Southon, John R.; Seltzer, Geoffrey O.; Mucciarone, David A.; Fritz, Sherilyn C.; Baker, Paul A.

    2003-09-01

    developed for the Lake Titicaca sequence using different organic fractions, mobile organic sub-fractions and fractions containing mobile sub-fractions should generally be avoided in geochronology studies. Consequently, we believe humin and/or bulk decalcified ages provide the most consistent chronologies for the post-13,500 yr BP interval, and humin ages provide the most representative ages for sedimentation prior to 13,500 yr BP interval. Using the age model derived from the deep water core site and a previously published isotope-based lake-level reconstruction, we present a qualitative record of lake level in the context of several ice-core records from the western hemisphere. We find the latest Pleistocene lake-level response to changing insolation began during or just prior to the Bølling/Allerød period. Using the isotope-based lake-level reconstruction, we also find the 85-m drop in lake level that occurred during the mid-Holocene was synchronous with an increase in the variability of ice-core δ18O from a nearby icecap, but was not reflected in any of the polar ice-core records recovered from the interior of Antarctica and Greenland.

  8. Value distribution assessment of geothermal development in Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    Churchman, C.W.; Nelson, H.G.; Eacret, K.

    1977-10-01

    A value distribution assessment is defined as the determination of the distribution of benefits and costs of a proposed or actual development, with the intent of comparing such a development with alternative plans. Included are not only the social and economic effects, but also people's perceptions of their roles and how they are affected by the proposed or actual development. Discussion is presented under the following section headings: on morality and ethics; the vanishing community; case study of pre-development planning--Lake County; methodology for research; Lake County geothermal energy resource; decision making; Planning Commission hearing; communication examples; benefit tracing; response to issues raised by the report of the State Geothermal Task Force; and, conclusions and recommendations. (JGB)

  9. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  10. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study

    OpenAIRE

    Guiping Wu; Yuanbo Liu

    2016-01-01

    Poyang Lake and Dongting Lake are the two largest freshwater lakes in China. The lakes are located approximately 300 km apart on the middle reaches of the Yangtze River and are differently connected through their respective tributary systems, which will lead to different river–lake water exchanges and discharges. Thus, differences in their morphological and hydrological conditions should induce individual lake spatio-temporal inundation patterns. Quantitative comparative analyses of the dynam...

  11. Correction and validation of 14C chronologies in lake basins, with reference to modern hydrogeological and geochemical systems - examples

    International Nuclear Information System (INIS)

    Gibert, E.; Bergonzini, L.; Travi, Y.

    2004-01-01

    The primary question before establishing any accurate, confident timescale for palaeo-environmental reconstructions based on lacustrine sediments consists in the definition of the original signature of the TDIC (Total Dissolved Inorganic Carbon) of the lake water from which authigenic compounds are fog ned. This 'carbon' fingerprint of the TDIC may originate from: - The direct exchange with atmospheric CO 2 ; - The admixture of dead dissolved carbon (for example through the leaching of ancient carbonated rocks on the watershed brought to the lake via tributaries) implying the non-equilibrium, and then the ageing, of lake surface waters; - Hydrogeological features of the lake system, such as (i) the connection of the lake waters with extended, shallow aquifers in which the radioactive 14 C decay already occurs, or (ii) high hydraulic gradient (mountain landscape) precluding water-rock interaction at the basin scale; - Deep 14 C-free CO 2 rising along faults in volcanic/tectonic areas, labelled with specific, although wide, ranges of δ 13 C values from 0 to -9%o PDB. Previous and on-going works on lakes in key regions have highlighted that, although each lake constitute a specific case study, they can be gathered in groups representing typical cases of distortion of the 14 C cycle in lacustrine systems: - eg Lake Bangong (Western Tibet): deep CO 2 at the lake bottom, and corrections of the chronology based on the 13 C/ 14 C couple and on a regression equation defined on datings... - eg Lake Abiyata (East African Rift): ageing of the authigenic carbonates due to the mixing, at the water/sediment interface, of the lake water and the 14 C-depleted regional groundwater; - eg Lake Langano (East African Rift): deep CO 2 at the lake bottom and correction of the ageing of the lake surface water by a black-boxes model which provide a step-by-step calculation including the 14 C input of atmospheric nuclear weapon tests in the 1960's and the lake turn-over; - eg Lake Aibi

  12. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  13. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested

  14. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: A Pb isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, N., E-mail: n.walraven@geoconnect.nl [GeoConnect, Meester Dekkerstraat 4, 1901 PV Castricum (Netherlands); Os, B.J.H. van, E-mail: b.vanos@rce.nl [Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, P.O. Box 1600, 3800 BP Amersfoort (Netherlands); Klaver, G.Th., E-mail: g.klaver@brgm.nl [BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Middelburg, J.J., E-mail: j.b.m.middelburg@uu.nl [University Utrecht, Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht (Netherlands); Davies, G.R., E-mail: g.r.davies@vu.nl [VU University Amsterdam, Faculty of Earth and Life Sciences, Petrology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2014-06-01

    Lake sediments provide a record of atmospheric Pb deposition and changes in Pb isotope composition. To our knowledge, such an approach has not previously been performed in The Netherlands or linked to national air monitoring data. Results are presented for Pb content and isotope composition of {sup 137}Cs dated lake sediments from 2 Dutch urban lakes. Between 1942 and 2002 A.D. anthropogenic atmospheric Pb deposition rates in the two lakes varied from 12 ± 2 to 69 ± 16 μg cm{sup −2} year{sup −1}. The rise and fall of leaded gasoline is clearly reflected in the reconstructed atmospheric Pb deposition rates. After the ban on leaded gasoline, late 1970s/early 1980s, atmospheric Pb deposition rates decreased rapidly in the two urban lakes and the relative contributions of other anthropogenic Pb sources — incinerator ash (industrial Pb) and coal/galena — increased sharply. Atmospheric Pb deposition rates inferred from the lake record a clear relationship with nearby measured annual mean air Pb concentrations. Based on this relationship it was estimated that air Pb concentrations between 1942 and 2002 A.D. varied between 5 and 293 ng/m{sup 3}. - Highlights: • Sixty years of atmospheric Pb was reconstructed using urban lake sediments. • Stable Pb isotopes were applied to determine Pb sources in urban lakes. • The rise and fall of leaded gasoline is clearly reflected in the lake sediments. • Other dominant anthropogenic Pb sources are incinerator ash and coal/galena. • The lake Pb record shows a clear relationship with measured air Pb concentrations.

  15. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    Science.gov (United States)

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  16. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies

    Science.gov (United States)

    Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.

    1994-01-01

    Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.

  17. Residues of Organochlorine Pesticides in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Abu-Elamayem, M.M.; El-Sebae, A.B.; Sharaf, I.P.

    1981-01-01

    Lake Mariut, a brackish water lake adjoining the Mediterranean Coast of Egypt, has suffered much from intensive pollution in recent years due to the successive increase of human population and industry around it (Saad, 1980). The occurrence and distribution of organochlorine pesticides in the water of Lake Mariut during a period of one year were studied. This study represents an essential part of a pilot project on pollution of Lake Mariut supported by IAEA. The major organochlorine pesticides detected in the water of Lake Mariut were Lindane, p, p'-DDE, o,p'-DDT and p, p'-DDT. The mean concentrations of these pesticides were 2.091, 4.493, 0.009 and 0.134 ppb, respectively. The mean concentration of the calculated total DDT (Σ DDT) was 5.1 PPb

  18. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  19. SNOW DEPTH ESTIMATION USING TIME SERIES PASSIVE MICROWAVE IMAGERY VIA GENETICALLY SUPPORT VECTOR REGRESSION (CASE STUDY URMIA LAKE BASIN

    Directory of Open Access Journals (Sweden)

    N. Zahir

    2015-12-01

    Full Text Available Lake Urmia is one of the most important ecosystems of the country which is on the verge of elimination. Many factors contribute to this crisis among them is the precipitation, paly important roll. Precipitation has many forms one of them is in the form of snow. The snow on Sahand Mountain is one of the main and important sources of the Lake Urmia’s water. Snow Depth (SD is vital parameters for estimating water balance for future year. In this regards, this study is focused on SD parameter using Special Sensor Microwave/Imager (SSM/I instruments on board the Defence Meteorological Satellite Program (DMSP F16. The usual statistical methods for retrieving SD include linear and non-linear ones. These methods used least square procedure to estimate SD model. Recently, kernel base methods widely used for modelling statistical problem. From these methods, the support vector regression (SVR is achieved the high performance for modelling the statistical problem. Examination of the obtained data shows the existence of outlier in them. For omitting these outliers, wavelet denoising method is applied. After the omission of the outliers it is needed to select the optimum bands and parameters for SVR. To overcome these issues, feature selection methods have shown a direct effect on improving the regression performance. We used genetic algorithm (GA for selecting suitable features of the SSMI bands in order to estimate SD model. The results for the training and testing data in Sahand mountain is [R²_TEST=0.9049 and RMSE= 6.9654] that show the high SVR performance.

  20. Lake and lake-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: (1) The location of the object relative important gradients in the surrounding nature; (2) The lake catchment area and its major constituents; (3) The lake morphometry; (4) The lake ecosystem; (5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake

  1. Lake and lake-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The lake catchment area and its major constituents; 3) The lake morphometry; 4) The lake ecosystem; 5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem

  2. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    Science.gov (United States)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  3. Hydrology and water quality of Park Lake, south-central Wisconsin

    Science.gov (United States)

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  4. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    Science.gov (United States)

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  5. Geochemistry of the Cigar Lake uranium deposit: XPS studies

    International Nuclear Information System (INIS)

    Sunder, S.; Cramer, J.J.; Miller, N.H.

    1996-01-01

    Samples of uranium ore from the Cigar Lake deposit in northern Saskatchewan, Canada, were analyzed using XPS. High-resolution spectra were recorded for the strongest bands of the major elements (U 4f, C 1 s, O 1 s, Pb 4 f, S 2 p, Cu 2 p, Fe 2 p, and the valence region (0-20 eV)) to obtain chemical state information for these samples. In general, the U VI /U IV ratio was very low, i.e., much less than 0.5, the threshold for the oxidative dissolution of UO 2 . The low values of the U VI /U IV ratio observed for samples from the Cigar Lake deposit indicate thermodynamic stability of the uranium ore in the reduced aqueous environment. Similarities between the disposal vault envisaged in the Canadian Nuclear Fuel Waste Management Program and the Cigar Lake deposit suggest that, if geochemical conditions in the vault were to be similar to those in the deposit, the long-term dissolution of UO 2 fuel would be very minimal. (orig.)

  6. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  7. Temporal variation of phytoplankton in a small tropical crater lake, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2010-12-01

    Full Text Available The temporal variation in lake’s phytoplankton is important to understand its general biodiversity. For tropical lakes, it has been hypothesized that they follow a similar pattern as temperate ones, on a much accelerated pace; nevertheless, few case studies have tried to elucidate this. Most studies in Costa Rica have used a monthly sampling scheme and failed in showing the expected changes. In this study, the phytoplankton of the small Barvas’s crater lake was followed for more than three years, first with monthly and later with weekly samplings, that covered almost two years. Additional information on temperature and oxygen vertical profiles was obtained on a monthly basis, and surface temperature was measured during weekly samplings around noon. Results showed that in spite of its shallow condition (max. depth: 7m and low surface temperature (11 to 19°C, the lake stratifies at least for brief periods. The phytoplankton showed both, rapid change periods, and prolonged ones of relative stasis. The plankton composition fluctuated between three main phases, one characterized by the abundance of small sized desmids (Staurastrum paradoxum, Cosmarium asphaerosporum, a second phase dominated by equally small cryptomonads (Chryptochrysis minor, Chroomonas sp. and a third phase dominated by the green alga Eutetramorus tetrasporus. Although data evidenced that monthly sampling could miss short term events, the temporal variation did not follow the typical dry and rainy seasons of the region, or any particular annual pattern. Year to year variation was high. As this small lake is located at the summit of Barva Volcano and receives the influence from both the Caribbean and the Pacific weather, seasonality at the lake is not clearly defined as in the rest of the country and short term variations in the local weather might have a stronger effect than broad seasonal trends. The occurrence of this short term changes in the phytoplankton of small tropical

  8. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion

    Science.gov (United States)

    Ma, Ning; Szilagyi, Jozsef; Niu, Guo-Yue; Zhang, Yinsheng; Zhang, Teng; Wang, Binbin; Wu, Yanhong

    2016-06-01

    Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635 mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998-2008 at a rate of -12 mm yr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period.

  9. Concentration dynamics in lakes and reservoirs, studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, C.

    1979-01-01

    The concentration dynamics in lakes and reservoirs through which water flows can be investigated by injecting a pulse of radioactive tracer and measuring the response at the outlet or any other point of interest inside the lake. The methodology developed for this Kind of investigation is presented. It was found that concentration dynamics in shallow reservoirs can be described by a model consisting of a time delay in series with one or two time constants. Procedures for the determination of the volumes of these regions are presented for reservoirs considered as either constant or variable parameter systems. The flow pattern in the reservoirs was investigated by measuring the response of the concentration through the lake and was analyzed in relation to the prevailing wind conditions. Wind induced currents have a dominant influence on the flow pattern. (Author) [pt

  10. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  11. Rubidium-strontium ages from the Oxford Lake-Knee Lake greenstone belt, northern Manitoba

    International Nuclear Information System (INIS)

    Clark, G.S.; Cheung, S.-P.

    1980-01-01

    Rb-Sr whole-rock ages have been determined for rocks from the Oxford Lake-Knee Lake-Gods Lake geenstone belt in the Superior Province of northeastern Manitoba. The age of the Magill Lake Pluton is 2455 +- 35 Ma(lambda 87 Rb = 1.42 x 10 -11 yr -1 ), with an initial 87 Sr/ 86 Sr ratio of 0.7078 +- 0.0043. This granite stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism. The age of the Bayly Lake Pluton is 2424 +- 74 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7029 +- 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed. The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 +- 125 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7014 +- 0.0009. The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granite intrusion in the area. The age for the Hayes River Group volcanic rocks is consistent with Rb-Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province. (auth)

  12. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  13. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  14. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Science.gov (United States)

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  15. A preliminary study on sedimentation rate in Tasek Bera Lake estimated using Pb-210 dating technique

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Johari Abdul Latif; Juhari Mohd Yusof; Kamaruzaman Mamat; Gharibreza, M.R.

    2010-01-01

    Tasek Bera is the largest natural lake system (60 ha) in Malaysia located in southwest Pahang. The lake is a complex dendritic system consisting of extensive peat-swamp forests. The catchment was originally lowland dipterocarp forest, but this has nearly over the past four decades been largely replaced with oil palm and rubber plantations developed by the Federal Land Development Authority (FELDA). Besides the environmentally importance of Tasek Bera, it is seriously subjected to erosion, sedimentation and morphological changes. Knowledge and information of accurate sedimentation rate and its causes are of utmost importance for appropriate management of lakes and future planning. In the present study, environmental 210 Pb (natural) dating technique was applied to determine sedimentation rate and pattern as well as the chronology of sediment deposit in Tasek Bera Lake. Three undisturbed core samples from different locations at the main entry and exit points of river mouth and in open water within the lake were collected during a field sampling campaign in October 2009 and analyzed for 210 Pb using gamma spectrometry method. Undisturbed sediments are classified as organic soils to peat with clayey texture that composed of 93 % clay, 5 % silt, and 2 % very fine sand. Comparatively higher sedimentation rates in the entry (0.06-1.58 cm/ yr) and exit (0.05-1.55 cm/ yr) points of the main river mouth as compared to the lakes open water (0.02- 0.74 cm/ yr) were noticed. Reasons for the different pattern of sedimentation rates in this lake and conclusion are discussed in this paper. (author)

  16. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    Science.gov (United States)

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, pCDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  17. Fish impingement at Lake Michigan power plants

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F.; Spigarelli, S.A.

    1976-01-01

    A study was initiated in 1974 to survey the magnitude and to evaluate the impact of fish impingement at 20 power plants on the Great Lakes. Data on impingement rates, site characteristics, intake designs and operational features have been collected and analyzed. Interpretive analyses of these data are in progress. The objectives of this study were: to summarize fish impingement data for Lake Michigan (16/20 plants surveyed are on Lake Michigan); to assess the significance of total and source-related mortalities on populations of forage and predator species; and to expand the assessment of power plant impingement to include all water intakes on Lake Michigan. Data are tabulated

  18. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    Science.gov (United States)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  19. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    Science.gov (United States)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic

  20. Cancer risk to First Nations’ people from exposure to polycyclic aromatic hydrocarbons near in-situ bitumen extraction in Cold Lake, Alberta

    Science.gov (United States)

    2014-01-01

    Background The Alberta oil sands are an important economic resource in Canada, but there is growing concern over the environmental and health effects as a result of contaminant releases and exposures. Recent studies have shown a temporal and spatial trend of increased polycyclic aromatic hydrocarbon (PAH) concentrations in sediments and snowpack near the Athabasca oil sands operations (i.e., open pit mines), but thus far similar studies have not been done for the Cold Lake region where steam assisted gravity drainage (in situ) extraction is performed. Methods Many PAHs are known mutagenic carcinogens, and this study measured soil and atmospheric concentrations of PAHs in the Cold Lake region to assess the excess lifetime cancer risk posed to the First Nations’ inhabitants of the region. Using both deterministic and probabilistic risk assessment methods, excess lifetime cancer risks were calculated for exposures from inhalation or inadvertent soil ingestion. Results The mean excess cancer risk for First Nations’ people through ingestion who engage in traditional wilderness activities in the Cold Lake region was 0.02 new cases per 100,000 with an upper 95% risk level of 0.07 cases per 100,000. Exposure to PAHs via inhalation revealed a maximum excess lifetime cancer risk of less than 0.1 cases per 100,000. Conclusions Excess lifetime risk values below 1 case per 100,000 is generally considered negligible, thus our analyses did not demonstrate any significant increases in cancer risks associated with PAH exposures for First Nations people inhabiting the Cold Lake region. PMID:24520827

  1. Spatial Complexity, Resilience, and Policy Diversity: Fishing on Lake-rich Landscapes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    2004-06-01

    Full Text Available The dynamics of and policies governing spatially coupled social-ecological mosaics are considered for the case of fisheries in a lake district. A microeconomic model of households addresses agent decisions at three hierarchic levels: (1 selection of the lake district from among a larger set of alternative places to live or visit, (2 selection of a base location within the lake district, and (3 selection of a portfolio of ecosystem services to use. Ecosystem services are represented by dynamics of fish production subject to multiple stable domains and trophic cascades. Policy calculations show that optimal policies will be highly heterogeneous in space and fluid in time. The diversity of possible outcomes is illustrated by simulations for a hypothetical lake district based loosely on the Northern Highlands of the State of Wisconsin. Lake districts are frequently managed as if lakes were independent, similar, endogenously regulating systems. Our findings contradict that view. One-size-fits-all (OSFA policies erode ecological and social resilience. If regulations are too stringent, social resilience declines because of the potential rewards of overharvesting. If regulations are too lax, ecological resilience is diminished by overharvesting in some lakes. In either case, local collapses of fish populations evoke spatial shifts of angling effort that can lead to serial collapses in neighboring fisheries and degraded fisheries in most or all of the lakes. Under OSFA management, the natural resources of the entire landscape become more vulnerable to transformation because of changes in, e.g., human population, the demand for resources, or fish harvesting technology. Multiplicity of management regimes can increase the ecological resilience, social resilience, and inclusive value of a spatially heterogeneous social-ecological system. Because of the complex interactions of mobile people and multistable ecosystems, management regimes must also be flexible

  2. Lake tourism fatalities: a 46-year history of death at Lake Powell.

    Science.gov (United States)

    Heggie, Travis W

    2018-05-01

    This study investigates tourist mortality at Lake Powell over a 46-year period. To date no comprehensive long-term investigation examining the relationship between the lake environment and tourist mortality exists. A retrospective study was conducted of all tourist fatalities between 1959 and 2005. There were 351 fatal incidents resulting in 386 deaths between 1959 and 2005. Over the 46-year period, the average number of fatalities was 8.4 (±5.26) per year. Out of all fatalities, 282 were classified as accidental, 80 were classified as natural deaths, 13 were suicides and 5 were classified as homicides. Males accounted for 80% of fatalities and tourists aged 20-29 years and 10-19 years accounted for 36% of all fatalities. The highest number of fatalities was recorded in July (74), May (64), August (63) and June (59). Out of all accidental deaths, boating (29%) and swimming (22%) were the most common pre-death activities. High winds capsizing boats and carbon monoxide poisoning from boat engines were common factors contributing to 31 boating fatalities. Fatigue and exhaustion contributed to 22 swimming deaths. Recreational boating and swimming account for over half of all accidental deaths. Tourists visiting Lake Powell for recreational purposes should be informed of the risks associated with the lake environment.

  3. Fluctuations of Lake Orta water levels: preliminary analyses

    Directory of Open Access Journals (Sweden)

    Helmi Saidi

    2016-04-01

    Full Text Available While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.

  4. Sustainable Lake Basin Water Resource Governance in China: The Case of Tai Lake

    Directory of Open Access Journals (Sweden)

    Zhengning Pu

    2015-12-01

    Full Text Available China’s water pollution is severe and has a negative impact on its residents. Establishing an emissions trading mechanism will be helpful for reducing the pollution. However, the government in China controls the emission rights market. The “GDP Only” preference blocks equitable rules to address the externalities. To modify this distortion, we develop a multi-objective primary distribution model that optimizes economic efficiency, environmental contribution, and fairness. In addition, the geographical location of a company and the industry differential are two key factors that would affect the local government’s decision. According to the simulation results using data from Tai Lake in China, this model can effectively help to meet the political expectation that large-scale manufacturers with poor technology can take the initiative to reduce emissions through emission-rights distribution.

  5. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  6. Exposure-related effects of Zequanox on juvenile lake sturgeon (Acipenser fulvescens) and lake trout (Salvelinus namaycush)

    Science.gov (United States)

    Luoma, James A.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew

    2018-01-01

    The environmental fate, persistence, and non-target animal impacts of traditional molluscicides for zebra, Dreissena polymorpha, and quagga, D. bugensis, mussel control led to the development of the biomolluscicide Zequanox. Although previous research has demonstrated the specificity of Zequanox, one study indicated sensitivity of salmonids and lake sturgeon, Acipenser fulvescens, following non-label compliant exposures to Zequanox. This study was conducted to evaluate sublethal and lethal impacts of Zequanox exposure on juvenile lake sturgeon and lake trout, Salvelinus namaycush, following applications that were conducted in a manner consistent with the Zequanox product label. Fish were exposed to 50 or 100 mg/L of Zequanox as active ingredient for 8 h and then held for 33 d to evaluate latent impacts. No acute mortality was observed in either species; however, significant latent mortality (P < 0.01, df = 9; 46.2%) was observed in lake trout that were exposed to the highest dose of Zequanox. Statistically significant (P < 0.03, df = 9), but biologically minimal differences were observed in the weight (range 20.17 to 21.49 g) of surviving lake sturgeon at the termination of the 33 d post-exposure observation period. Statistically significant (P < 0.05, df = 9) and biologically considerable differences were observed in the weight (range 6.19 to 9.55 g) of surviving lake trout at the termination of the 33 d post-exposure observation period. Histologic evaluation of lake trout gastrointestinal tracts suggests that the mode of action in lake trout is different from the mode of action that induces zebra and quagga mussel mortality. Further research could determine the sensitivity of other salmonid species to Zequanox and determine if native fish will avoid Zequanox treated water.

  7. Residence time and physical processes in lakes

    Directory of Open Access Journals (Sweden)

    Nicoletta SALA

    2003-09-01

    Full Text Available The residence time of a lake is highly dependent on internal physical processes in the water mass conditioning its hydrodynamics; early attempts to evaluate this physical parameter emphasize the complexity of the problem, which depends on very different natural phenomena with widespread synergies. The aim of this study is to analyse the agents involved in these processes and arrive at a more realistic definition of water residence time which takes account of these agents, and how they influence internal hydrodynamics. With particular reference to temperate lakes, the following characteristics are analysed: 1 the set of the lake's caloric components which, along with summer heating, determine the stabilizing effect of the surface layers, and the consequent thermal stratification, as well as the winter destabilizing effect; 2 the wind force, which transfers part of its momentum to the water mass, generating a complex of movements (turbulence, waves, currents with the production of active kinetic energy; 3 the water flowing into the lake from the tributaries, and flowing out through the outflow, from the standpoint of hydrology and of the kinetic effect generated by the introduction of these water masses into the lake. These factors were studied in the context of the general geographical properties of the lake basin and the watershed (latitude, longitude, morphology, also taking account of the local and regional climatic situation. Also analysed is the impact of ongoing climatic change on the renewal of the lake water, which is currently changing the equilibrium between lake and atmosphere, river and lake, and relationships

  8. Chemical evidences of the effects of global change in high elevation lakes in Central Himalaya, Nepal

    Science.gov (United States)

    Tartari, Gianni; Lami, Andrea; Rogora, Michela; Salerno, Franco

    2016-04-01

    It is well known that the lakes integrate the pressure of their surrounding terrestrial environment and the climatic variability. Both the water column and sediments are capable to accumulate signals of global change, such as warming of the deep layers or mutation of diverse biological records (e.g., fossil diatoms) and the nutrient loads variability affecting the trophic state. Typically, the biological responses to climate change have been studied in several types of lakes, while documented changes in water chemistry are much rare. A long term study of 20 high altitude lakes located in central southern Himalaya (Mt Everest) conducted since the 90s has highlighted a general change in the chemical composition of the lake water: a substantial rise in the ionic content was observed, particularly pronounced in the case of sulphate. In a couple of these lakes, monitored on an annual basis, the sulphate concentrations increased over 4-fold. A change in the composition of atmospheric wet deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes, were excluded. The chemical changes proved to be mainly related to the sulphide oxidation processes occurring in the bedrocks or the hydrographic basins. In particular, the oxidation processes, considered as the main factor causing the sulphate increase, occurred in subglacial environments characterized by higher glacier velocities causing higher glacier shrinkage. Associated to this mechanism, the exposure of fresh mineral surfaces to the atmosphere may have contributed also to increases in the alkalinity of lakes. Weakened monsoon of the past two decades may have partially contributed to the solute enrichment of the lakes through runoff waters. The almost synchronous response of the lakes studied, which differs in terms of the presence of glaciers in their basins, highlights the fact that the increasing ionic content of lake

  9. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    -level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas

  10. A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia

    Directory of Open Access Journals (Sweden)

    Tiiu Alliksaar

    2012-11-01

    Full Text Available The Water Framework Directive (WFD of the European Union requires the quality of all European water bodies to be examined, and aims to achieve good status by 2015. This study was initiated to assess whether a potential reference lake for identifying lake-type specific reference conditions meets the WFD requirements, of being minimally impacted by human activity during the last centuries. The sediments of Lake Kooraste Kõverjärv were analysed for diatom assemblages and sediment composition; past changes in the lake-water pH and total phosphorus were reconstructed, using quantitative models on sedimentary diatoms. The chronology of sediments was established, using spheroidal fly-ash particles stratigraphy. Palaeolimnological investigations, supported by information from historical maps, revealed that man-made changes around the lake have severely influenced its ecological conditions. The lake, which had been oligotrophic with soft and clear water before the mid-17th century, has been trans­formed into a hard-water lake by modifications to the inflow and outflow. The lake water quality has also been altered by the infiltration of nutrients from a nearby hypertrophic lake that was used for flax retting since the 19th century. Although the ecological status of the lake has remained good despite all these changes, it is still questionable whether to nominate it as a reference lake for stratified hard-water lake types.

  11. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic

    DEFF Research Database (Denmark)

    Jeppesen, Erik; Lauridsen, Torben L.; Christoffersen, Kirsten S.

    2017-01-01

    largest between fishless lakes and lakes hosting only sticklebacks (Gasterosteus aculeatus), while lakes with both Arctic charr (Salvelinus arcticus) and stickleback revealed a more modest response, indicating that presence of charr modulates the predation effect of sticklebacks. It is predicted that more...

  12. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-01-01

    Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868

  13. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes.

    Science.gov (United States)

    Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-12-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.

  14. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai

    2017-01-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.

  15. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  16. Lakes, Lagerstaetten, and Evolution

    Science.gov (United States)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  17. Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran.

    Science.gov (United States)

    Rashki, A; Kaskaoutis, D G; Goudie, A S; Kahn, R A

    2013-10-01

    This study examines the influence of changes in the water coverage in the Hamoun dry-bed lakes on visibility, dust outbreaks, aerosol loading and land-atmospheric fluxes over the region covering the period 1985-2005. The Hamoun basin, located on the southeastern Iran and western Afghanistan borders, has been recognized as one of the major dust source regions in south Asia and is covered by shallow, marshy lakes that are fed by the Helmand and Farahrood rivers. When the water in watersheds that support the lakes is drawn down for natural or human-induced reasons, the end result is a decrease in the water coverage in the basin, or even complete dryness as occurred in 2001. Then, strong seasonal winds, mainly in summer, blow fine sand and silt off the exposed lakebed, enhancing dust activity and aerosol loading over the region. Satellite (Landsat) and meteorological observations reveal that the water levels in the Hamoun lakes exhibit considerable inter-annual variability during the period 1985-2005 strongly related to anomalies in precipitation. This is the trigger for concurrent changes in the frequency of the dusty days, aerosol loading and deterioration of visibility over the region, as satellite (TOMS, MODIS, MISR) observations reveal. On the other hand, soil moisture and latent heat, obtained via model (GLDAS_noah-10) simulations are directly linked with water levels and precipitation over the region. The desiccation of the Hamoun lakes in certain years and the consequent increase in frequency and intensity of dust storms are serious concerns for the regional climate, ecosystems and human health. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnan, K.P.; Sinha, R.K.; Krishna, K.; Nair, S.; Singh, S.M.

    a study that was conducted in the brackish water lakes in the Larsemann Hills region (east Antarctica) is presented. The rate of in situ manganese oxidation ranged from 0.04 to 3.96 ppb day sup(-1). These lakes harbor numerous manganese-oxidizing...

  19. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  20. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    Science.gov (United States)

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  1. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  2. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  3. The release of dissolved phosphorus from lake sediments

    NARCIS (Netherlands)

    Boers, P.C.M.

    1991-01-01

    Chapter 1. Introduction: Eutrophication is one of the world's major water quality problems. Attempts to alleviate eutrophication of lakes have involved the control of phosphorus loadings. In such cases, an internal loading of phosphorus from the sediments may

  4. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  5. Carbon and energy fluxes from China's largest freshwater lake

    Science.gov (United States)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  6. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  7. Study of pike-perch (Sander lucioperca fishery from Razim Lake, Danube delta Romania

    Directory of Open Access Journals (Sweden)

    CERNIȘENCU Irina

    2018-05-01

    Full Text Available The Razim Lake is a great part of the Danube Delta Biosphere Reserve (DDBR, with a surface of 54,000 ha. Fish fauna from Razim lake include pike-perch (Sander lucioperca as one of the main top predators of fish community, however ecological significance indicates accessory species, recedent as dominance, sometimes been subrecedent species like in 2011 and 2012 sampling, but constant species regarding frequency in sampling. Otherwise, pike-perch is an important value DDBR fishery species with an average of 5% in total catch, range 2-10%, from what Razim lake contributes with average 71%, range 41-95% in the 1960-2015 period. Razim Lake has been in average 13%, range 1-40% from total Razim lake catch, in the same period of time. Since in RBDD has been fishing up to 2000 fisherman, in Razim lake activated up to 500 fishermen, however nowadays number of fishermen was regulated at lower range. Catch data series shows a continuous stock decline trend, considered to be a consequences of habitat degradation and over-exploitation. Fish stock estimation in last 15 years (2001-2016 support the hypothesis of over-exploitation. Based on length frequency structure of landings, the growth and exploitation parameters have been estimated as well as the average biomass and the maximum sustainable yields for the Razim lake pike-perch stock. Recommendation concerning fisheries management towards sustainable fishing of pike-perch stock, as increasing of cod-end seine mesh size and decreasing of fishing effort regulation are outlined.

  8. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  9. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  10. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake.

    Science.gov (United States)

    Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B

    2015-01-01

    Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.

  11. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  12. An ecohydrological-based management of Lake Beratan in Bedugul, Bali

    Science.gov (United States)

    Atmaja, D. M.; Budiastuti, M. S.; Setyono, P.; Sunarto

    2018-04-01

    Lake Beratan is one of waterway ecosystems located in the upper land of Bedugul, Bali and has become a tourist object which is visited by many foreign as well as domestic tourists. This is supported by a sufficiently high economic growth which, without the community’s being aware of, has caused environmental problems such as the shallowing of the lake, erosion, and water pollution to such an extent that have resulted in the degradation of the function of the lake as the site of catchment. The degradation of the function of the lake can be overcome by ecohydrological-based management. This study was aimed at developing an integrated and long lasting Lake Beratan environment management concept. The study used a descriptive qualitative approach using a survey, by collecting primary and secondary data. On the basis of those data the mapping of the potentials of the lake and problems of the lake which were then integrated to formulate criteria for sustainable use of Lake Beratan waters environment resources. The determination of zonation of the lake was done based on those criteria and the community’s existence consideration as well as the exising system of the lake waterway environment use. Based on the study in the field, some recommendations could be made concerning Lake Beratan waterway sustainable and integrated management.

  13. Global relationships between phosphorus and chlorophyll-a in oxbow lakes

    Science.gov (United States)

    Belcon, A. U.; Bernhardt, E. S.; Fritz, S. C.; Baker, P. A.

    2011-12-01

    Traditional limnological studies have focused on extant, large and deep bodies of fresh water. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established in temperate lakes with phosphorus generally viewed as the most limiting factor to productivity (Deevey 1940, Schindler 1977). Over the last few decades however, investigations have expanded to include the examination of shallow lakes, particularly in terms of water quality, nutrient content and regime shifts between stable alternate states. Most of these studies, however, have focused on northern, high latitude regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on oxbow lakes which are floodplain lakes and are semi or permanently connected to the river. Oxbow lakes have been shown to serve several important ecologic and economic functions including nurseries for young fish, feeding grounds for top aquatic predators and increasing the biodiversity of the landscape particularly in tropical regions of the world where high precipitation and large rivers have produced thousands of oxbow lakes. In many developing countries oxbow lakes are an important source of revenue through fishing. This study examined the relationship between nutrients and productivity in oxbow lakes globally through a wide-spread literature synthesis. Four hundred and twenty nine oxbow lakes were represented by 205 data points while 285 data points represented 156 non-floodplain lakes. Despite differences in latitude, lake size and climate we find that oxbow lakes globally have a significantly less steep slope in their TP/Chl relationship than non-floodplain lakes do indicating that the same amount of sestonic phosphorus results in lower productivity. Oxbow lakes (TP/Chl): r = 0.7676, slope = 0.7257, Non-floodplain lakes (TP/Chl): r = 0.8096, slope = 1.1309. We theorize that their connection to the

  14. 1981 Hartwell Lake Water Quality Study.

    Science.gov (United States)

    1982-09-01

    located approximately eight kilometers from stabions 2, 3, and 8. The highest and lowest temp- eratures were 101 and 11 farenheit (F) during the hottest...stations and months for ORP measurements are given in Figures B-21 through B-23. There was absolutely no pattern to the August values for both...all lake stations (excluding Station 9), but which was most pronounced in the cove where denisties dropped to zero , is unknown. Physical and chemical

  15. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  16. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    Science.gov (United States)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-03-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.

  17. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    International Nuclear Information System (INIS)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-01-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km 2 , accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent

  18. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  19. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  20. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    International Nuclear Information System (INIS)

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  1. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  2. Stable lead isotopes and lake sediments. A useful combination for the study of atmospheric lead pollution history

    Energy Technology Data Exchange (ETDEWEB)

    Renberg, I.; Braennvall, M.-L.; Bindler, R. [Department of Ecology and Environmental Science, Umea University, SE-901 87 Umea (Sweden); Emteryd, O. [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umea (Sweden)

    2002-06-20

    Analysis of stable lead isotopes and lead concentrations in lake-sediment deposits, not least in varved (annually-laminated) sediments, is a useful method to study lead pollution history. This paper presents details from a study of 31 lakes in Sweden. Using a strong acid digestion of sediment samples and ICP-MS analyses, we have found that Swedish lake sediments have a high natural (pre-pollution) 206[Pb]/207[Pb] ratio (mean 1.52{+-}0.18, range 1.28-2.01, n=31 lakes). In contrast, atmospheric lead pollution derived from metal smelting processes, coal burning and from alkyl-lead added to petrol has a lower ratio (<1.2). Consequently, when pollution lead deposition began approximately 3500 years ago, the lead isotope ratio of the sediments started to decline, and in modern sediments it is typically <1.2. Using the isotope and concentration values and a mixing model, the relative contribution of pollution and natural lead in sediment samples can be calculated. The pollution lead records of the Swedish lake sediments show a consistent picture of the atmospheric lead pollution history. Some noticeable features are the Roman peak, the large and permanent Medieval increase, peaks at approximately 1200 and 1530 ad, the rapid increase after World War II, the peak in the 1970s, and the large modern decline.

  3. Optimization of EDXRF for the study of heavy metal pollution of Lake ...

    African Journals Online (AJOL)

    The spectrometer was subsequently utilized to determine concentrations of heavy metals in water hyacinth (Eichhornia crassipes (Mart) Solms.) found growing along the shore of Lake Victoria. The optimal conditions and detection limits were determined experimentally by variation of the excitation parameters. The study ...

  4. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia

    Science.gov (United States)

    Bertone, Edoardo; Stewart, Rodney A.; Zhang, Hong; O'Halloran, Kelvin

    2015-03-01

    This paper presents an extensive investigation of the mixing processes occurring in the subtropical monomictic Advancetown Lake, which is the main water body supplying the Gold Coast City in Australia. Meteorological, chemical and physical data were collected from weather stations, laboratory analysis of grab samples and an in-situ Vertical Profiling System (VPS), for the period 2008-2012. This comprehensive, high frequency dataset was utilised to develop a one-dimensional model of the vertical transport and mixing processes occurring along the water column. Multivariate analysis revealed that air temperature and rain forecasts enabled a reliable prediction of the strength of the lake stratification. Vertical diffusion is the main process driving vertical mixing, particularly during winter circulation. However, a high reservoir volume and warm winters can limit the degree of winter mixing, causing only partial circulation to occur, as was the case in 2013. This research study provides a comprehensive approach for understanding and predicting mixing processes for similar lakes, whenever high-frequency data are available from VPS or other autonomous water monitoring systems.

  5. Phosphorus limitation in Daphnia: Evidence from a long term study of three hypereutrophic Dutch lakes

    NARCIS (Netherlands)

    DeMott, W.R.; Gulati, R.D.

    1999-01-01

    The Loosdrecht lakes comprise three shallow, interconnected hypereutrophic lakes in The Netherlands. A lake restoration project conducted during the 1980s resulted in reduced phosphorus loading. However, no changes in phytoplankton abundance or species composition were noted, although seston

  6. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  7. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    CSIR Research Space (South Africa)

    Majozi, NP

    2014-05-01

    Full Text Available radiometric and limnological data collection was undertaken at Lake Naivasha. Atmospheric correction was done on the MERIS images using MERIS Neural Network algorithms, Case 2 Waters (C2R) and Eutrophic Lakes processors and the bright pixel atmospheric...

  8. Can small zooplankton mix lakes?

    OpenAIRE

    Simoncelli, S.; Thackeray, S.J.; Wain, D.J.

    2017-01-01

    The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...

  9. Mercury in the Calcasieu River/lake Complex, Louisiana

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1989-01-01

    The Calcasieu River/Lake Complex is of great economic importance to southwestern Louisiana. Calcasieu Lake is an important fishing ground for shrimp and oysters. The Calcasieu River/Lake Complex has been the focus of an interdisciplinary study to assess the types and areas of pollution along this important waterway. Particular attention has been given to Hg because of the toxicity of this metal, and the local importance of the chloralkali industry--an industry that is known to discharge Hg into the environment. Water, sediment and biota were collected at stations in Calcasieu Lake, Calcasieu River, and along three bayou tributaries that were studied intensively. Intensive sampling included all stations along the particular bayou studied that month

  10. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  11. Feeding ecology of lake whitefish larvae in eastern Lake Ontario

    Science.gov (United States)

    Johnson, James H.; McKenna, James E.; Chalupnicki, Marc A.; Wallbridge, Tim; Chiavelli, Rich

    2009-01-01

    We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004-2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.

  12. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    Science.gov (United States)

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  13. Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea

    Directory of Open Access Journals (Sweden)

    Jinyoung Song

    2016-02-01

    Full Text Available Recently, the mining industry has introduced renewable energy technologies to resolve power supply problems at mines operating in polar regions or other remote areas, and to foster substitute industries, able to benefit from abandoned sites of exhausted mines. However, little attention has been paid to the potential placement of floating photovoltaic (PV systems operated on mine pit lakes because it was assumed that the topographic characteristics of open-pit mines are unsuitable for installing any type of PV systems. This study analyzed the potential of floating PV systems on a mine pit lake in Korea to break this misconception. Using a fish-eye lens camera and digital elevation models, a shading analysis was performed to identify the area suitable for installing a floating PV system. The layout of the floating PV system was designed in consideration of the optimal tilt angle and array spacing of the PV panels. The System Advisor Model (SAM by National Renewable Energy Laboratory, USA, was used to conduct energy simulations based on weather data and the system design. The results indicated that the proposed PV system could generate 971.57 MWh/year. The economic analysis (accounting for discount rate and a 20-year operational lifetime showed that the net present value would be $897,000 USD, and a payback period of about 12.3 years. Therefore, we could know that the economic effect of the floating PV system on the mine pit lake is relatively higher than that of PV systems in the other abandoned mines in Korea. The annual reduction of greenhouse gas emissions was analyzed and found to be 471.21 tCO2/year, which is twice the reduction effect achieved by forest restoration of an abandoned mine site. The economic feasibility of a floating PV system on a pit lake of an abandoned mine was thus established, and may be considered an efficient reuse option for abandoned mines.

  14. Resilience and Restoration of Lakes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  15. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    Science.gov (United States)

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  16. Environmental status of the Lake Michigan region. Volume 6. Zoobenthos of Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, S.C.; Howmiller, R.P.

    1977-09-01

    This report summarizes Lake Michigan zoobenthic studies up to 1974, including reports of power-plant surveys. It describes ecologies of macroinvertebrate species and some microfauna, partly through use of data from other Great Lakes. The following are discussed: methodology of field surveys; zoobenthic indicators of pollution; zoobenthic effects on sediment-water exchanges; and numbers, biomass, and production of total macroinvertebrates. Prominent features of Lake Michigan zoobenthos include predominance of the amphipod Pontoporeia affinis, usefulness of tubificid oligochaetes in mapping environmental quality, and pronounced qualitative gradients in zoobenthos in relation to depth. Further research is needed on sampling methods, energy flow rates and pathways through benthic communities, factors limiting distribution of species near shore, and effects of macroinvertebrates on sediment chemistry and structure.

  17. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    drying between ~33,000 and 16,000 yr BP when high-latitude ice sheets expanded and global temperatures cooled. This in combination with the observed little direct influence of precessional orbital forcing and exposure of the Sunda Shelf implies that central Indonesian hydroclimate varies strongly in response to high-latitude climate forcing: a hypothesis we aim to test across multiple glacial-interglacial cycles through scientific drilling. Indeed, numerous high-amplitude reflectors in the upper 150 m of lacustrine fill suggest repeated cycles of moisture-balance variations in the tropical Pacific. In summary drilling in Lake Towuti will help to: (1) Document the timing, frequency, and amplitude of orbital- to millennial-scale changes in surface hydrology and terrestrial temperature in the Indo-Pacific Warm Pool across multiple glacial-interglacial cycles; (2) Understand how variations in terrestrial hydrology and temperature in central Indonesia respond to changes in the mean state of the ENSO system, the monsoons, high-latitude forcing, and insolation; (3) Analyze the long-term stability and resilience of rainforest vegetation to changes in climate, greenhouse gases, and fire frequency; (4) Study the extent, biogeography, and metabolism of microbial life in the sediments of a non-sulfidic, ferrginous basin, and their relationships to carbon cycling, redox metal deposition, and the concentration of metal ore minerals; (5) Study the effects of climate-driven changes in the aquatic environment on both lacustrine microbial populations, and the geobiosphere within the lake's sediment; (6) Determine the age of Lake Towuti, and the ensuing rates of speciation of Towuti's endemic fauna and flora; (7) Identify the timing of past lake level fluctuations in Towuti, changes in hydrological connections among the Malili Lakes, and how these influenced biological colonization events, habitat stability, and modes of speciation (sympatric, allopatric). Important milestones concerning

  18. Assessment and prediction of land ecological environment quality change based on remote sensing-a case study of the Dongting lake area in China

    Science.gov (United States)

    Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi

    2018-02-01

    Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.

  19. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2016-10-01

    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  20. Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland)

    DEFF Research Database (Denmark)

    Anderson, N. John; Brodersen, Klaus Peter; Ryves, David B.

    2008-01-01

    The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N...

  1. Environmental isotope signatures of the largest freshwater lake in Kerala

    International Nuclear Information System (INIS)

    Unnikrishnan Warrier, C.

    2007-01-01

    Sasthamkotta lake, the largest freshwater lake in Kerala, serves as a source for drinking water for more than half a million people. Environmental 137 Cs analysis done on undisturbed sediment core samples reveals that the recent rate of sedimentation is not uniform in the lake. The useful life of lake is estimated as about 800 years. The δD and δ 18 O values of the lake waters indicate that the lake is well mixed with a slight variation horizontally. The stable isotope studies on well waters from the catchment indicate hydraulic communication with the lake and lake groundwater system is flow-through type. Analytical model also supports this view. (author)

  2. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web

    International Nuclear Information System (INIS)

    Kwon, Sae Yun; Blum, Joel D.; Nadelhoffer, Knute J.; Timothy Dvonch, J.; Tsui, Martin Tsz-Ki

    2015-01-01

    Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ 202 Hg and Δ 199 Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ 202 Hg and Δ 199 Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ 202 Hg and Δ 199 Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ 199 Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~ 20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ 202 Hg and Δ 199 Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ 199 Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ 199 Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer

  3. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sae Yun, E-mail: saeyunk@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave, Ann Arbor, MI 48109 (United States); Blum, Joel D. [Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave, Ann Arbor, MI 48109 (United States); Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109 (United States); Nadelhoffer, Knute J. [Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109 (United States); Timothy Dvonch, J. [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Tsui, Martin Tsz-Ki [Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402 (United States)

    2015-11-01

    Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ{sup 202}Hg and Δ{sup 199}Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ{sup 202}Hg and Δ{sup 199}Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ{sup 202}Hg and Δ{sup 199}Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ{sup 199}Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~ 20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ{sup 202}Hg and Δ{sup 199}Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ{sup 199}Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ{sup 199}Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative

  4. Yellowstone Lake Nanoarchaeota

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2013-09-01

    Full Text Available Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park, where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1,349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels. However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (70 pyrosequencing reads was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

  5. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  6. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial sediments and

  7. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  8. Progress in study of Prespa Lake using nuclear and related techniques (IAEA Regional Project RER/8/008)

    International Nuclear Information System (INIS)

    Anovski, Todor

    2001-09-01

    One of the main objective of the IAEA - Regional project RER/8/008 entitled Study of Prespa Lake Using Nuclear and Related Techniques was to provide a scientific basis for sustainable and environmental management of the Lake Prespa (Three lakes: Ohrid, Big Prespa and Small Prespa are on the borders between Albania, Republic of Macedonia and Greece, and are separated by the Mali i Thate and Galichica, mostly Carstificated mountains), see Fig. 1. In this sense investigations connected with the hydrogeology, water quality (Physics-chemical, biological and radiological characteristics) and water balance determination by application of Environmental isotopes ( i.e. H,D,T,O-18,O-18 etc.,) distribution, artificial water tracers and other relevant analytical techniques such as: AAS, HPLC, Total α and β-activity, α and γ-spectrometry as well as ultra sonic measurements (defining of the Lake bottom profile) through regional cooperation / Scientists from Albania, Greece and Republic of Macedonia, participated in the implementation of the Project/ during one hydrological year, had been initiated and valuable results obtained, a part of which are presented in this report. This cooperation was the only way for providing necessary data for better understanding beside the other, of the water quality of the Prespa Lake and its hydrological relationship to Ohrid Lake too, representing a unique regional hydro system in the world. (Author)

  9. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    Science.gov (United States)

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  10. Transient modelling of lacustrine regressions: two case studies from the Andean Altiplano

    Science.gov (United States)

    Condom, Thomas; Coudrain, Anne; Dezetter, Alain; Brunstein, Daniel; Delclaux, François; Jean-Emmanuel, Sicart

    2004-09-01

    A model was developed for estimating the delay between a change in climatic conditions and the corresponding fall of water level in large lakes. The input data include: rainfall, temperature, extraterrestrial radiation and astronomical mid-month daylight hours. The model uses two empirical coefficients for computing the potential evaporation and one parameter for the soil capacity. The case studies are two subcatchments of the Altiplano (196 000 km2), in which the central low points are Lake Titicaca and a salar corresponding to the desiccation of the Tauca palaeolake. During the Holocene, the two catchments experienced a 100 m fall in water level corresponding to a decrease in water surface area of 3586 km2 and 55 000 km2, respectively. Under modern climatic conditions with a marked rainy season, the model allows simulation of water levels in good agreement with the observations: 3810 m a.s.l. for Lake Titicaca and lack of permanent wide ponds in the southern subcatchment. Simulations were carried out under different climatic conditions that might explain the Holocene fall in water level. Computed results show quite different behaviour for the two subcatchments. For the northern subcatchment, the time required for the 100 m fall in lake-level ranges between 200 and 2000 years when, compared with the present conditions, (i) the rainfall is decreased by 15% (640 mm/year), or (ii) the temperature is increased by 5.5 °C, or (iii) rainfall is distributed equally over the year. For the southern subcatchment (Tauca palaeolake), the time required for a 100 m decrease in water level ranges between 50 and 100 years. This decrease requires precipitation values lower than 330 mm/year.

  11. Tale of two pit lakes: initial results of a three-year study of the Main Zone and Waterline pit lakes near Houston, British Columbia, Canada

    Science.gov (United States)

    Crusius, John; Pieters, R.; Leung, A.; Whittle, P.; Pedersen, T.; Lawrence, G.; McNee, J.J.

    2003-01-01

    Pit lakes are becoming increasingly common in North America as well as in the rest of the world. They are created as openpit mines fill passively with ground water and surface inflows on cessation of mining activity. In many instances, the water quality in these pit lakes does not meet regulatory requirements due to a number of influences. The most important are the oxidation of sulfide minerals and the associated release of acid and metals and the flushing of soluble metals during pit filling. Examples of pit lakes with severe water-quality problems include the Berkeley Pit lake (Butte, MT) and the Liberty Pit lake (Nevada), whose waters are characterized by a pH near 3 and Cu concentrations as high as ~150 mg/L (Miller et al., 1996; Davis and Eary, 1997). The importance of the problem can be seen in the fact that some of these sites in the United States are Superfund sites.

  12. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    Science.gov (United States)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers

  13. The preglacial sediment record of Lake Ladoga, NW Russia - first results from a multi-proxy study on a 23 m sediment record

    Science.gov (United States)

    Gromig, R.; Melles, M.; Wagner, B.; Krastel, S.; Andreev, A.; Fedorov, G.; Just, J.; Wennrich, V.; Savelieva, L.; Subetto, D.; Shumilovskikh, L.

    2016-12-01

    The joint German-Russian project 'PLOT - Paleolimnological Transect' aims to recover lake sediment sequences along a more than 6000 km long longitudinal transect across the Eurasian Arctic in order to study the Late Quaternary climatic and environmental history. The eastern end of the PLOT transect is formed by the well-studied record from Lake El'gygytgyn (NE Siberia). Lake Ladoga (N 60°50' E 31°30') is Europe's largest lake, both by size and volume and forms the westernmost end of the transect. Whereas modern sedimentation as well as the Holocene and Late Glacial history of Lake Ladoga have intensely been studied, the preglacial history of the lake is poorly studied to date by sediment cores drilled in the 1930's. A seismic survey of Lake Ladoga in summer 2013 revealed unconformities in the western lake basin, which may separate preglacial sediments in isolated depressions from Late Glacial and Holocene sediment successions above. A 23 m long sediment core (Co1309) was retrieved from one of these depressions. Core Co1309 was investigated by XRF-scanning, magnetic susceptibility measurements, as well as pollen, grain-size, and bio-geochemical analyses. An age-depth model combining radiocarbon, OSL, and paleomagnetic dates is in progress. Both, the pollen results and the OSL ages from the base of the record indicate a deposition during MIS 5e (Eemian). The well sorted reddish sands from this interval contain dinoflagellates suggesting at least brackish conditions, likely due to the existence of a gateway connecting a precursor of the Baltic Sea with the White Sea via Lake Ladoga. The Late Glacial sequence consists of greyish varved clays of decreasing thickness upwards with sporadically intercalated sand layers. The Holocene sequence is composed of brownish diatomaceous silty clay with minor proportions of sand.

  14. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  15. The paleolimnological development of the twin lakes Etujärvi and Takajärvi in Askola, southern Finland – implications for lake management

    Directory of Open Access Journals (Sweden)

    Samu E. Valpola

    2006-01-01

    Full Text Available The twin lakes Etujärvi and Takajärvi in Askola, southern Finland, are closely interconnected mesotrophic headwater lakes with a relatively small catchment area. Both of the lakes have suffered from eutrophication and its consequences. Remediation activities such as oxygenation and biomanipulation have not resolved the problems. In this study a large set of paleolimnological techniques (radiometric AMS dating, spherical carbonaceous particles analysis, sediment lithology, grain-size analysis, phosphorus fractionation, and diatom analysis were applied to put together the development of the basin and its water level fluctuations during the Holocene. The age for observed Trapa natans -horizons was determined, and lake management options were discussed. The studied lakes dried up after isolation from the Ancylus Lake at about 9500 cal. B.P. and remained at very low water level until ca. 8700–8500 cal. B.P. The mid-Holocene risein water level resulted in fluctuating water levels, and led to the most recent rise starting about 2500 cal. B.P. as wet and cool climate conditions prevailed. The pronounced water level fluctuations led to the extensive growth of peat deposits surrounding the lake andprobably also forced T. natans to disappear from lake flora. The unstable, erodable peat rims impact the lakes, causing heavy load of humic substances to the lake and presenting additional deterioration to their recreational value.

  16. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  17. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  18. Development of Petrov glacial-lake system (Tien Shan and outburst risk assessment

    Directory of Open Access Journals (Sweden)

    I. A. Torgoev

    2013-01-01

    Full Text Available Global climate warming causes an intensive melting and retreat of glaciers in the Tien Shan mountains. Melting water of glaciers causes overfilling of high mountain lakes. The increase of the surface and volume of the Petrov Lake accompanied with the decrease of stability of the dam represents an extremely dangerous situation that can produce a natural disaster. Failure can happen due to erosion, a buildup of water pressure, an earthquake or if a large enough portion of a glacier breaks off and massively displaces the waters in a glacial lake at its base. In case of the lake dam rupture, flooding of a disposal site of highly toxic tailing from the gold mine Kumtor is a threat. If this happens, the toxic waste containing cyanides would contaminate a large area in the Naryn (Syrdarya river basin. Even if the flooding of the disposal site does not occur, the damage after lake dam fracture will be immense due to the glacial lake outburst flood may be a devastating mudslide. In order to prevent or reduce the risk of this event we recommend performing engineering surveys for the development and implementation of the project for the controlled reduction of water level in the Blue Bay of the Petrov Lake to a safe volume.

  19. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    Science.gov (United States)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  20. New findings on the application of in-lake technologies for neutralisation of acid mining lakes; Neue Erkenntnisse zur Anwendung von In-Lake-Verfahren fuer die Neutralisation saurer Bergbaufolgeseen

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, W. [eta AG engineering, Spremberg (Germany); Uhlmann, W. [Institut fuer Wasser und Boden Dr. Uhlmann, Dresden (Germany)

    2006-07-01

    The neutralisation of acidic open cast mining lakes is an important task at the restoration of post lignit mining landscapes in Lusatia and Middle Germany. From several treatment technologies for the manipulation of ground and surface waters the in-lake-treatment procedures are most cost effective, licensable and usable with passable risks to reach ecological targets. The proceedings and the results of a two-stage-treatment technology of the Horstteich near Luckau will be exemplified in this article. In this case it was possible, within 20 days, to improve the water quality from extreme acidic (pH {approx} 2.8) to neutral conditions (pH > 8). During the neutralisation nearly all heavy metals and suspended substances were precipitated and a noticeable buffer was built up against acidic inflows. (orig.)

  1. ENVIRONMENT PROTECTION AND ENVIRONMENT MONITORING ISSUES IN THE PROJECTS OF SUBGLACIAL LAKES STUDIES IN ANTARCTICA

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2012-01-01

    Full Text Available Antarctic subglacial lakes can represent extreme natural habitats for microorganisms from the position of their evolution and adaptation, as well as they can contain the information on Antarctic ice sheet history and climatic changes in their sediments. Now only direct measurements and sampling from these habitats can answer on many fundamental questions. Special precaution should be complied at penetration into these unique relic environments without unfavorable impacts and contamination. A number of recommendations were developed on levels of cleanliness and sterility during direct exploration and research of subglacial environments. Documents considered in the article are the first and necessary steps for appropriate and long-term ecological management of subglacial Antarctic environments. Today there are three projects of subglacial aquatic environment research which are in preparation and realization – the Russian project of Lake Vostok, the similar British project of Lake Ellsworth and the American project on Whillans Ice Stream. The programs of ecological stewardship for direct exploration of these lakes are discussed. All these subglacial aquatic objects of further exploration and research are so various on their structure, age and regime, that only results of all programs as a whole can help to draw us a uniform picture of a subglacial ecological system. Ecological stewardship of these should provide the minimal ecological impact with maximal scientific results. On the basis of existing documents and recommendations the general approaches and the program of ecological stewardship for Lake Vostok research are discussed. Study of drilling fluid, drilling chips, Vostok ice core and the fresh frozen water will allow to make an assessment of biological and chemical contamination as a result of the first penetration and to modify the further stewardship program for the second penetration and direct exploration of lake water.

  2. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  3. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  4. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    Science.gov (United States)

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  5. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia)

    Science.gov (United States)

    Yazidi, Amira; Saidi, Salwa; Ben Mbarek, Nabiha; Darragi, Fadila

    2017-10-01

    The concentrations of nutrients and heavy elements in the surface water of the lake Ichkeul, main wadis which feed directly and thermal springs that flow into the lake, are measured to evaluate these chemical elements. There are used to highlight the interactions between these different aquatic compartments of Ichkeul. All metal concentrations in lake water, except Cu, were lower than the maximum permitted concentration for the protection of aquatic life. The results show that the highest concentrations are located in the eastern and south-eastern part of the lake where the polluted water comes from the lagoon of Bizerte through the wadi Tinja as well as from the city of Mateur through the wadi Joumine. The pollution indices and especially the heavy metal evaluation index (HEI) show high pollution specially located at the mouths of wadis and an increase of heavy metal concentrations, as a result of uncontrolled releases of domestic and industrial wastewater.

  6. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  7. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  8. Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study

    Directory of Open Access Journals (Sweden)

    Liudmila Shirokova

    2016-07-01

    Full Text Available Small aquatic ecosystems of the boreal zone are known to be most sensitive indicators of on-going environmental change as well as local anthropogenic pressure, while being highly vulnerable to external impacts. Compared to rather detailed knowledge of the evolution of large and small lakes in Scandinavia and Canada, and large lakes in Eurasia, highly abundant small boreal lakes of northwest Russia have received very little attention, although they may become important centers of attraction of growing rural population in the near future. Here we present the results of a multidisciplinary, multi-annual study of a small boreal humic lake of NW Russia. A shallow (3 m and a deep (16 m site of this lake were regularly sampled for a range of chemical and biological parameters. Average multi-daily, summer-time values of the epilimnion (upper oxygenated layer of the lake provided indications of possible trends in temperature, nutrients, and bacterio-plankton concentration that revealed the local pollution impact in the shallow zone and overall environmental trend in the deep sampling point of the lake. Organic phosphorus, nitrate, and lead were found to be most efficient tracers of local anthropogenic pollution, especially visible in the surface layer of the shallow site of the lake. Cycling of trace elements between the epilimnion and hypolimnion is tightly linked to dissolved organic matter speciation and size fractionation due to the dominance of organic and organo-ferric colloids. The capacity of lake self-purification depends on the ratio of primary productivity to mineralization of organic matter. This ratio remained >1 both during winter and summer periods, which suggests a high potential of lake recovery from the input of allochthonous dissolved organic matter and local anthropogenic pollution.

  9. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  10. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  11. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  14. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  15. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  16. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  17. Circulation and sedimentation in a tidal-influenced fjord lake: Lake McKerrow, New Zealand

    Science.gov (United States)

    Pickrill, R. A.; Irwin, J.; Shakespeare, B. S.

    1981-01-01

    Lake McKerrow is a tide-influenced fjord lake, separated from the open sea by a Holocene barrier spit. Fresh, oxygenated waters of the epilimnion overlie saline, deoxygenated waters of the hypolimnion. During winter, water from the Upper Hollyford River interflows along the pycnocline, depositing coarse silt on the steep delta and transporting finer sediment down-lake. An extensive sub-lacustrine channel system on the foreset delta slope is possibly maintained by turbidity currents. Saline waters of the hypolimnion are periodically replenished. During high tides and low lake levels saline water flows into the lake and downslope into the lake basin as a density current in a well defined channel.

  18. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  19. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  20. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  1. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  2. Estimating the scale of stone axe production: A case study from Onega Lake, Russian Karelia

    Directory of Open Access Journals (Sweden)

    Alexey Tarasov

    2014-03-01

    Full Text Available The industry of metatuff axes and adzes on the western coast of Onega Lake (Eneolithic period, ca. 3500 – 1500 cal. BC allows assuming some sort of craft specialization. Excavations of a workshop site Fofanovo XIII, conducted in 2010-2011, provided an extremely large assemblage of artefacts (over 350000 finds from just 30 m2, mostly production debitage. An attempt to estimate the output of production within the excavated area is based on experimental data from a series of replication experiments. Mass-analysis with the aid of image recognition software was used to obtain raw data from flakes from excavations and experiments. Statistical evaluation assures that the experimental results can be used as a basement for calculations. According to the proposed estimation, some 500 – 1000 tools could have been produced here, and this can be qualified as an evidence of “mass-production”.

  3. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  4. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  5. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  6. Palaeolimnological assessment of the reference conditions and ecological status of lakes in Estonia - implications for the European Union Water Framework Directive

    Directory of Open Access Journals (Sweden)

    Heinsalu, Atko

    2009-12-01

    Full Text Available The European Union Water Framework Directive (WFD requires an assessment of reference conditions for lakes, i.e. the conditions expected with only minimal human impact on water bodies. Limnological monitoring records seldom go back more than a few decades and so rarely document the onset of human impact on lakes. Methods of palaeolimnological approaches especially fitted for the purposes of the WFD are described and two case studies, on lakes Rõuge Tõugjärv and Pappjärv, are presented. The palaeolimnological study of Rõuge Tõugjärv demonstrated that a commonly held belief that man-made eutrophication of Estonian lakes is a relatively modern matter of concern and is related to post-industrial population growth and intensification of agriculture is a misconception. The lakes, particularly those in rich soil areas, have been mediated by human impact over millennial time-scales. In many European countries it has been agreed that AD 1850 approximately represents the reference conditions for lakes. Our observations in Rõuge Tõugjärv showed that during that period anthropogenic disturbance on the lake was the greatest. Lake Pappjärv is an example of recent human influence on the aquatic ecosystem that has undergone severe degradation due to infiltration into the ground of a variety of substances from the local bitumen plant, mineral fertilizer storage tanks, and road service sand and salt mixing-grounds that have been accumulating in the lake since the 1950s.

  7. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  8. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  9. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

    2008-06-30

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

  10. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    Science.gov (United States)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    The Lake Ohrid Basin located on 693 m a.s.l. at the south-western border of Macedonia (FYROM) with Albania is a suitable location for neotectonic studies. The lake is set in an extensional basin-and-range-like situation, which is influenced by the roll-back and detachment of the subducted slab of the Northern Hellenic Trench. The seismicity record of the area lists frequent shallow earthquakes with magnitudes of up to 6.6, which classifies the region as one of the highest risk areas for Macedonia and Albania. A multidisciplinary approach was chosen to reveal the stress history of the region. Tectonic morphology, paleostress analysis, remote sensing and geophysical investigations have been taken out to trace the landscape evolution. Furthermore, apatite fission-track (A-FT) analysis and t-T-path modelling was performed to constrain the thermal history and the exhumation rates. The deformation history of the basin can be divided in three major phases. This idea is also supported by paleostress data collected around the lake: 1. NW-SE shortening from Late Cretaceous to Miocene with compression, thrusting and uplift; 2. Uplift and diminishing compression in Late Miocene causing strike-slip and normal faulting; 3. Vertical uplift and E-W extension from Pliocene to present associated with local subsidence and (half-) graben formation. The initiation of the Ohrid Basin can be dated to Late Miocene to Pliocene. The morphology of the basin itself shows features, which characterize the area as an active seismogenic landscape. The elongated NS-trending basin is limited by the steep flanks of Galicica and Mokra Mountains to the E and W, which are tectonically controlled by normal faulting. This is expressed in linear step-like fault scarps on land with heights between 2 and 35 m. The faults have lengths between 10 and 20 km and consist of several segments. Post-glacial bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically

  11. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    Science.gov (United States)

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  12. Comparative survey of petroleum hydrocarbons i lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S G

    1976-11-01

    Hydrocarbon distribution in sediments from three lakes in Washington State were studied and found to be related to the level of human activity in the respective drainage basins. Petroleum hydrocarbon contamination was found in surface sediments of a lake surrounded by a major city, compared to no detectable contamination in a lake located in a National Park.

  13. Energy Innovation Clusters and their Influence on Manufacturing: A Case Study Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hill, Derek [National Science Foundation (NSF), Washington, DC (United States)

    2017-09-12

    Innovation clusters have been important for recent development of clean energy technologies and their emergence as mature, globally competitive industries. However, the factors that influence the co-location of manufacturing activities with innovation clusters are less clear. A central question for government agencies seeking to grow manufacturing as part of economic development in their location is how innovation clusters influence manufacturing. Thus, this paper examines case studies of innovation clusters for three different clean energy technologies that have developed in at least two locations: solar PV clusters in California and the province of Jiangsu in China, wind turbine clusters in Germany and the U.S. Great Lakes region, and ethanol clusters in the U.S. Midwest and the state of Sao Paulo in Brazil. These case studies provide initial insight into factors and conditions that contribute to technology manufacturing facility location decisions.

  14. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  15. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  16. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Science.gov (United States)

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  17. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  18. Role of neutron activation analysis in the study of heavy metal pollution of a lake-river system

    International Nuclear Information System (INIS)

    Filby, R.H.; Shah, K.R.; Funk, W.H.

    1974-01-01

    Details of a study of combined organic and metallic pollution of the Coeur d'Alene Lake-River and Spokane River system and the role played by nuclear techniques in the investigation are presented. The Coeur d'Alene River drains through the N. Idaho Pb--Zn mining region of Kellogg and the mining industry is the major source of metallic pollution of the lake and river system. The first part of the study has involved the determination of Pb, Zn, Ag, Cd, As, Cu, Sb, Co, Cr, Cs, Rb, Sc, Ba, Eu, La, Tb, Y, Zr, Fe, Mn, Mo, by INAA in waters, sediments and organisms throughout the region. Extremely high values for Pb, Zn, Sb, Fe and other metals were found in the Coeur d'Alene River delta sediments and in the lake sediments. Results from the study of metals in an aquatic ecosystem show the value of combining nuclear techniques with other methods of trace analysis in practical pollution problems

  19. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  20. Numerical modeling of a nuclear production reactor cooling lake

    International Nuclear Information System (INIS)

    Hamm, L.L.; Pepper, D.W.

    1987-01-01

    A finite element model has been developed which predicts flow and temperature distributions within a nuclear reactor cooling lake at the Savannah River Plant near Aiken, South Carolina. Numerical results agree with values obtained from a 3-D EPA numerical lake model and actual measurements obtained from the lake. Because the effluent water from the reactor heat exchangers discharges directly into the lake, downstream temperatures at mid-lake could exceed the South Carolina DHEC guidelines for thermal exchanges during the summer months. Therefore, reactor power was reduced to maintain temperature compliance at mid-lake. Thermal mitigation measures were studied that included placing a 6.1 m deep fabric curtain across mid-lake and moving the reactor outfall upstream. These measurements were calculated to permit about an 8% improvement in reactor power during summer operation

  1. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  2. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    Science.gov (United States)

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  3. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    Science.gov (United States)

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  4. A Conceptual Framework for Assessment of Governance Performance of Lake Basins: Towards Transformation to Adaptive and Integrative Governance

    Directory of Open Access Journals (Sweden)

    Peter Emmanuel Cookey

    2016-03-01

    Full Text Available Governance is essential to lake basin management, but it is the most challenged and needs increased attention. Lake Basin Governance performance assessment is designed to measure the progress and impacts of policies, institutions and the roles of various actors in ensuring sustainability. It measures the performance of technical/operational, social/networks, and institutional arrangement that make up the socio-ecological system. Governance performance assessment becomes very necessary with over-emphasis of institutions on resources utilization and exploitation. The purpose of this paper is to present a governance performance assessment framework specifically for lake basins. The Adaptive Integrated Lake Basin Management (AILBM framework is a diagnostic and prescriptive performance assessment tool with an outcome to produce an adaptive and integrative system with equity, inclusiveness, transparency, accountability and flexibility to problem-solving and resilience. A case study on water governance performance assessment of the Songkhla Lake Basin (SLB in Thailand is provided for illustration and application and indicated a poor performance rating on governance in the Basin, revealing gaps, defects, strengths and weaknesses in the current system, necessary to recommend future improvements.

  5. Paleosecular Type Curves for South America Based on Holocene-Pleistocene Lake Sediments Studies

    Science.gov (United States)

    Gogorza, C. S.

    2007-05-01

    Most of the high-resolution paleomagnetic secular variation (PSV) results were obtained from records on sediments from the Northern Hemisphere. Experimental results from South America are scarce. The first results were obtained by Creer et al. (1983) and have been continued since few years ago by the author and collaborators. This review deals with studies of PSV records from bottom sediments from three lakes: Escondido, Moreno and El Trébol (south-western Argentina, 41° S, 71° 30'W). Measurements of directions (declination D and inclination I) and intensity of natural remanent magnetization (NRM), magnetic susceptibility at low and high frequency (specific, X and volumetric, k), isothermal remanent magnetization (IRM), saturation isothermal remanent magnetization (SIRM), and back field were carried out. Stability of the NRM was investigated by alternating-field demagnetization. Rock magnetic studies suggest that the main carriers of magnetization are ferrimagnetic minerals, predominantly pseudo single domain magnetite. The correlation between cores was based on magnetic parameters as X and NRM. The tephra layers were identified from the lithologic profiles and also from the magnetic susceptibility logs. Due to their different chronological meaning and their rather bad behavior as magnetic recorder, these layers were removed from the sequence and the gaps that were produced along the profiles by the removal were closed, obtaining a "shortened depth". Radiocarbon age estimates from these cores and from earlier studies allow us to construct paleosecular variation records for the past 22,000 years. Inclination and declination curves (Gogorza et al., 2000a; Gogorza et al., 2002; Irurzun et al., 2006) show trends that are similar to a paleomagnetic secular variation curve for SW of Argentina (Gogorza et al., 2000b). References Creer, K.M., Tucholka, P. and Barton, C.E. 1983. Paleomagnetism of lake sediments, in Geomagnetism of Baked Clays and Recent Sediments, edited

  6. Microplastic pollution in the surface waters of Italian Subalpine Lakes.

    Science.gov (United States)

    Sighicelli, Maria; Pietrelli, Loris; Lecce, Francesca; Iannilli, Valentina; Falconieri, Mauro; Coscia, Lucia; Di Vito, Stefania; Nuglio, Simone; Zampetti, Giorgio

    2018-05-01

    Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (plastic particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  8. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  9. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    Science.gov (United States)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  10. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  11. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  12. Siderite formation in mining lakes. Sanitation strategy for the Spreetal Nordost lake; Sideritbildung in Tagebaurestseen. Moegliche Sanierungsstrategie des Restlochs Spreetal Nordost

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Y.; Wolkersdorfer, C. [Technische Univ. Bergakademie Freiberg (Germany)

    2006-07-01

    The treatment of acid mine lakes is a worldwide problem. In this study, it will be investigated since the sludge from acid mine drainage (AMD) treatment plants combined with carbon dioxide injections may improve the water quality in such pit lakes. Simultaneously, the emissions of carbon dioxide into the atmosphere may be reduced. The CO{sub 2} will be sequestered in the lake sediments as siderite (FeCO{sub 3}). The acid mine lake Spreetal-Nordost (Lusatia/Germany) was chosen as a test site. Since 1998 iron hydroxide sludge from an AMD treatment plant was deposited into the lake. In preliminary tests the feasibility of this treatment scheme will be investigated. (orig.)

  13. Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake

    Science.gov (United States)

    Nixdorf, E.; Boehrer, B.

    2015-11-01

    Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits vertical transport, and a chemically different (reducing) milieu can be established. As a consequence, the geochemical setting and the mixing regime of a lake can stabilize each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As an example, we chose the prominent case of iron meromixis in Waldsee near Doebern, a small lake that originated from near-surface underground mining of lignite. From a data set covering 4 years of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed the changing of the chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we designed a lab experiment, in which we removed iron compounds and organic material from monimolimnetic waters by introducing air bubbles. Precipitates could be identified by visual inspection. Eventually, the remaining solutes in the aerated water layer looked similar to mixolimnetic Waldsee water. Due to its reduced concentration of solutes, this water became less dense and remained floating on nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron-rich deep groundwater and the aeration through the lake surface were fully sufficient for the formation of iron meromixis.

  14. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    Science.gov (United States)

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  15. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  16. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  17. Rehabilitation of Mohawk Lake: Brantford's crown jewel

    International Nuclear Information System (INIS)

    Farrell, C.W.; Kube, D.J.

    1994-01-01

    Mohawk Lake in Brantford, Ontario had been receiving contaminants from various industrial and municipal sources since the late 1800s. The lake suffered a slow death with the absence of any watershed management plan. A citizen committee was established in 1990 to rehabilitate the lake so that its recreational and resource potential could be fully realized. In 1993, the committee obtained government funding to carry out a detailed baseline environmental study of the lake. Lake sediments were found to consist of an upper horizon of poorly consolidated, organic-rich, odoriferous material overlying a more compact sandy layer. Lake water was characterized by high concentrations of nutrients and metals, and high biological oxygen demand. Sediments also had high concentrations of heavy metals and low concentrations of such organic contaminants as pyrene, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The most distinct contaminant appeared to be petroleum hydrocarbons at 0.5-1% concentration. It was determined that lake rehabilitation would require removal of these sediments. Tests indicated that the sediments were non-hazardous non-registrable solid waste, and the preferred removal option was hydraulic dredging into settlement ponds along the undeveloped south shore of the lake. A sediment trap was recommended to be installed at the entrance of the lake, along with a constructed wetland to remove a variety of water pollutants. The sediment dredging, dewatering, trap and wetland installation, and land remediation of the sediment disposal area are estimated to cost ca $3.75 million, and the work will require at least 18 months to complete. 1 fig

  18. Radiocarbon dating of lake sediments

    OpenAIRE

    Pocevičius, Matas

    2016-01-01

    Matas Pocevičius, Radiocarbon dating of lake sediments, bachelor thesis, Vilnius University, Faculty of Physics, Department of General Physics and Spectroscopy, physics, Vilnius, 45 p., 2016. The aim of this study is to evaluate the possibility of radiocarbon dating application for Tapeliai lake bottom sediments. The literature review discusses topics related to accelerator mass spectrometry, principles of radiocarbon formation, importance of nuclear fallout for 14C, possible applications of ...

  19. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  20. Limnology of Eifel maar lakes

    National Research Council Canada - National Science Library

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... & morphometry - Physical & chemical characteristics - Calcite precipitation & solution in Lake Laacher See - Investigations using sediment traps in Lake Gemundener Maar - Phytoplankton of Lake Weinfelder Maar...